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Summary

� Plants produce a range of volatile organic compounds (VOCs), some of which are perceived

by the human olfactory system, contributing to a myriad flavors. Despite the importance of

flavor for consumer preference, most plant breeding programs have neglected it, mainly

because of the costs of phenotyping and the complexity of disentangling the role of VOCs in

human perception.
� To develop molecular breeding tools aimed at improving fruit flavor, we carried out target

genotyping of and VOC extraction from a blueberry population. Metabolite genome-wide

association analysis was used to elucidate the genetic architecture, while predictive models

were tested to prove that VOCs can be accurately predicted using genomic information. A

historical sensory panel was considered to assess how the volatiles influenced consumers.
� By gathering genomics, metabolomics, and the sensory panel, we demonstrated that VOCs

are controlled by a few major genomic regions, some of which harbor biosynthetic enzyme-

coding genes; can be accurately predicted using molecular markers; and can enhance or

decrease consumers’ overall liking.
� Here we emphasized how the understanding of the genetic basis and the role of VOCs in

consumer preference can assist breeders in developing more flavorful cultivars at a more inex-

pensive and accelerated pace.

Introduction

Flavor is an important trait for any food crop, affecting consumer
acceptance and marketability. Its relevance is even more pro-
nounced for fruits, for which repeated purchasing behavior and
willingness to pay have been associated with positive eating expe-
riences (Clark, 1998; Diehl et al., 2013). While there is substan-
tial flavor variation within fruit species (El Hadi et al., 2013),
most plant breeding programs have historically neglected it, given
its intrinsic complexity and costs to phenotype (Klee, 2010; Klee
& Tieman, 2018). As a consequence, the drop-off in flavor qual-
ity has become one of the major causes of consumer dissatisfac-
tion (Bruhn et al., 1991; Tieman et al., 2012). To correct this
inconsistency and incorporate flavor into breeding program rou-
tines, it is necessary to identify the sources of flavor variability,
understand their genetic architecture, and then define cost-effec-
tive methods of selection.

Flavor is a complex multifactorial trait, involving a combina-
tion of taste, mouthfeel and aroma perceptions. More specifi-
cally, it is the interaction between our olfactory system and the
volatile organic compounds (VOCs) released by the fruit that

provides the diversity and uniqueness of flavor experiences (Goff
& Klee, 2006; El Hadi et al., 2013). Plants synthesize a wide
variety of VOCs (Dudareva et al., 2006; Goff & Klee, 2006),
but only a subset are produced during fruit ripening, where they
probably act as an attractant for seed-dispersing organisms,
including humans (Rodr�ıguez et al., 2013). Several fruit VOCs
have been demonstrated to influence consumers’ overall liking
(Klee & Tieman, 2018), suggesting that these metabolites are
key targets to improve the flavor perception of fruits. Although
the VOC profiles of many fruit species have been characterized
(El Hadi et al., 2013; Klee & Tieman, 2018), less is known
about the genetic basis underlying their variation among geno-
types, which hinders their implementation in breeding pro-
grams. Moreover, quantifying the abundance of metabolites is
expensive and time-consuming for a large-scale populational
application. In this scenario, molecular markers are a promising
tool to detect genetic associations and predict the phenotype of
new individuals (Klee, 2010).

Molecular breeding methods have been successfully applied
for different traits and crops (Hickey et al., 2017; Watson et al.,
2018); however, they have been less exploited for fruit flavor
improvement. Herein, we showed the feasibility of molecular
breeding for flavor-related volatiles in a blueberry breeding*These authors contributed equally to this work.
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program by integrating genomics, metabolomics, and sensory
panel data. Blueberry (Vaccinium spp.) is the second most impor-
tant soft fruit after strawberry, and it has also been popularized as
a ‘superfood’ as a result of the multiple health benefits conferred
by its abundant polyphenolic content (Kalt et al., 2019). A previ-
ous psychophysical study indicated that consumers prefer sweet
berries with intense flavor (Gilbert et al., 2015). Therefore, con-
sidering that blueberry and other fruits are important dietary
sources of micronutrients, an effort to improve flavor through
breeding is warranted, which may lead to an increase in fresh fruit
consumption that could subsequently have a positive impact on
human health.

In this study, we used a targeted genotyping approach and
volatile extractions with analysis by GC-MS of 1438 individuals
from a blueberry breeding population. Genome-wide association
studies (GWAS) elucidated the genetic architecture of VOCs and
predictive models showed that VOCs can be accurately predicted
using genomic and marker-assisted selection. Finally, a historical
blueberry sensory panel dataset was leveraged to assess how the
volatiles influenced consumer preference to ultimately assist
breeders in the direction of the selection.

Materials and Methods

Plant material

The association mapping population was composed of 886
southern highbush blueberry genotypes covering 92 full-sib fami-
lies. This population was originally designed as part of the breed-
ing program at the University of Florida in February 2011.
Seedlings originating from each family were installed in a row-
column design at the Plant Science Research and Education Unit
in Citra, Florida. Additional details on this population were pre-
viously described by Cellon et al. (2018) and Ferr~ao et al. (2018).

Tissue collection, sample processing, and volatile extraction

During April 2015, five full mature berries were harvested from
each plant. We only sampled berries exhibiting picking quality,
including fully blue color at the scar, and no visual, pathogen or
insect damage. Fruits were quenched in liquid nitrogen and
stored at �80°C up to the time of sample processing. The five
berries from each genotype were ground together to a fine pow-
der using a liquid nitrogen pre-chilled blender/coffee grinder
(Tribest Corp., Anaheim, CA, USA) and transferred to a 12 ml
labeled tube. For each sample, 250 mg of frozen powder was
weighted in duplicate into 2 ml microtubes and stored at �80°C
until volatile extraction. Internal volatiles were extracted using a
solid-liquid-phase solvent extraction procedure. The extraction
solvent consisted of anhydrous hexane containing 50 ng µl�1

surrogate standard (trans-2-heptenal, CAS no. 18829-55-5,
Sigma-Aldrich, St Louis, MO, USA). Samples were randomly
extracted in batches containing 11 samples in duplicate and two
empty microtubes. The volatile extraction was performed as fol-
lows. Samples were retrieved from archival storage and placed in
liquid nitrogen; 1 ml of extraction solvent was added to each

sample. The samples were shaken for 5 s then vortexed for 10 s to
ensure full saturation of tissue with solvent. They were then
shaken at 23°C in a thermoshaker at 1400 rpm for 15 min, and
then centrifuged at 1500 g to induce phase separation. The top
organic portion was recovered into a glass GC sample vial using a
disposable glass Pasteur pipette. Samples were stored at �80°C
until GC-MS analysis.

Volatile analysis

Quantification of volatiles from the liquid phase extractions was
performed on an Agilent 7980A series GC equipped with an Agi-
lent 5977A single quadrupole mass spectrum detector (MSD,
Santa Clara, CA, USA). Parameters of the GC were used as fol-
lows: helium carrier gas fixed at 11.479 psi; splitless injection;
inlet temperature 220°C; injection volume 2 ll; and the syringe
wash solvents were acetone and hexane. A guard column consist-
ing of deactivated fused silica (Ultimate Plus deactivated fused
silica tubing, 5 m long9 250 lm ID; catalog no. CP802505;
Agilent Technologies, Santa Clara, CA, USA) was installed from
the GC inlet and connected to the analytical column by a pressfit
connector (catalog no. 22159; Restek, Bellefonte, PA, USA).
Sample analytes were separated using an equipped DB-5 column
[(5%-phenyl)-methylpolysiloxane, 30 m long 9 250 lm ID 9 1
um film thickness; Agilent Technologies). Oven temperatures
were programmed as follows: the initial oven temperature of
40°C was held for 30 s, then ramped 15°C min�1 to 250°C with
a post-run temperature of 260°C held for 3 min. The MSD was
equipped with an extractor ion source and tuned for sensitivity
and mass accuracy before sample analysis. Parameters for the
MSD were maintained as follows: MSD transfer line tempera-
ture, 280°C; MS source temperature, 230°C; MS quad tempera-
ture, 150°C; solvent delay, 6 min; mass scan range, 40–205 m/z
with a threshold of 150. Data were acquired using a MassHunter
Workstation Acquisition (Agilent Technologies) and processed
using Agilent’s MASSHUNTER QUANTITATIVE ANALYSIS program
v.B.06.00. Initial screening of volatiles consisted of a targeted list
of the 52 volatile compounds previously reported and described
by Gilbert et al. (2015). Additionally, spectral deconvolution was
performed for each sample in the program and manually curated
to achieve a list of compounds that were then validated based on
comparing retention time and spectra to authentic standards.
Overall, a list of 17 robust and reliable features were detected and
validated with authentic volatile standards. The most abundant
nonconvoluted m/z ion fragment for each compound was used to
integrate peak area. Integrated peaks were qualified by two addi-
tional m/z ion fragments that were required to match ratios
observed in authentic standards. Volatile mass concentration
(lg g–1 FW) was calculated using standard curves for each indi-
vidual compound. Values were normalized for recovery of the
surrogate standard, trans-2-heptenal, within each individual
batch of extracted samples and for the corresponding biological
mass of each sample. The equation used to calculate volatile mass
concentration for each individual volatile compound was as fol-
lows: VOCmass ¼ pACOI � pASSCS=pASS �M � RF, where pACOI

is the peak area of compound of interest in sample, pASSCS is the
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peak area of surrogate standard in laboratory control spike, pASS

is the peak area of surrogate standard in sample, M is biological
sample mass, and RF is the response factor from compound stan-
dard series. Two technical replicates per sample were analyzed by
GC-MS, and average quantification values were used as pheno-
type.

Genotypic data

Genotyping was carried out by RAPiD Genomics (Gainesville,
FL, USA) using the sequence capture methodology as described
in Ferr~ao et al. (2018). Sequencing was performed using an Illu-
mina HiSeq2000 platform considering 100 cycle paired-end
runs. Raw reads were filtered by quality and trimmed using TRIM-

MOMATIC v.0.36 with the following parameter settings:
‘ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 TRAILING:3 SLIDI
NGWINDOW:4:15 MINLEN:50’ (Bolger et al., 2014). Fil-
tered reads were mapped against the largest scaffolds of each of
the 12 homoeologous groups of Vaccinium corymbosum cv
‘Draper’ genome assembly (Colle et al., 2019) using the BWA

v.0.7.17 software (Li & Durbin, 2009). Single nucleotide poly-
morphisms (SNPs) were called using FREEBAYES v.1.0.1 (Gar-
rison & Marth, 2012), targeting 15 663 probe regions designed
for the sequence capture approach (Benevenuto et al., 2019).
Sequencing read counts per allele and individual were extracted
from the variant call file using the VCFTOOLS package (Danecek
et al., 2011). As blueberry is a tetraploid species (2n = 4X = 48),
we used the UPDOG package in R to call the allele dosages based
on the read counts (Gerard et al., 2018). The UPDOG package out-
puts the posterior probability means per SNP for each individual
and we used these probabilities as our genotypes. Loci were also
filtered by applying the following criteria: minimum mapping
quality of 20; only biallelic locus; maximum missing data of 50-
%; minor allele frequency of 1%; mean depth of coverage of 40;
and minimum genotype frequency of 0.01. The remained miss-
ing genotypes were imputed by the mean of each locus, as sug-
gested in the GEMMA package (Zhou & Stephens, 2012).

Phenotypic analysis

We computed the phenotypic heritability for each volatile using
the following phenotypic model: log yð Þ ¼ 1nlþ Zgþ e, where
l is the overall mean and 1n is a vector of ones; Z is the incidence
matrix linking observation in the vector y to their respective
genotype effects in the vector g. Normality was assumed for the
genotype effects and residual, where g�MVN 0;Ar2a

� �
and

e�MVN 0; Ir2
e

� �
. The genetic covariance, A, can be derived

from the expectation of co-ancestry coefficient between individu-
als from the pedigree, and it was computed assuming a tetraploid
additive relationship matrix; while r2a is the additive genetic vari-
ance. For the residual, I is an identity matrix and r2e is the resid-
ual variance. MVN denotes the n-dimensional multivariate
normal distribution. Additive genetic variance was estimated
using restricted maximum likelihood (RELM) using the SOMMER

package in R (Covarrubias-Pazaran, 2016), while the kinship
matrix A was built using the AGHMATRIX package in R (Amadeu

et al., 2016). Phenotypic heritability (h2) was computed as:
h2 ¼ r2

a

r2
aþr2

e
.

Genome-wide association study

We used GWAS to identify genomic regions controlling volatile
content in blueberry. SNP-trait association analyses were based
on a univariate linear mixed model (LMM), as described by Yu
et al. (2006) and implemented in the GEMMA package (option -
lmm 4) (Zhou & Stephens, 2012). LMM tests for association of
the phenotypes with each marker were performed with correc-
tions for main directions of population structure by regressing on
the first five principal components (PCs) calculated using the
genomic relationship matrix, and cryptic relatedness using the
polygenic background effects with covariance proportional to the
genomic relationship matrix. In a matrix notation, the follow
LMM was considered for each volatile: log yð Þ ¼ Waþ
xbþ uþ e; where log(y) corresponds to logarithm-transformed
values of the volatile; W is a matrix of covariates (fixed effects)
including a columns of 1s for the intercept and the first five prin-
cipal components; a is a vector of the corresponding fixed coeffi-
cients including the intercept; x is a vector of marker genotypes;
b is the effect size of the marker; u is the random polygenic effect
distributed as u�MVN 0;Kr2g

� �
, where K is the realized rela-

tionship matrix calculated with genome-wide markers, and r2g is
the additive genetic variance; and e is a vector of error, dis-
tributed as e�MVN 0; Ir2e

� �
. The molecular relatedness matrix

K was built using the AGHMATRIX in R (Amadeu et al., 2016),
assuming tetrasomic inheritance. Bonferroni correction consider-
ing a genome-wide significance level of 0.05 was used for estab-
lishing a P-value detection threshold for statistical significance.
The effect size of significant SNPs was calculated as described by
Pallares et al. (2014): a ¼ b̂2 � varx

� �.
vary , where varx is the

variance of the genotype at the focal SNPs, vary is the phenotypic
variance, and b̂ is the estimated SNP effect.

Functional mapping and annotation of genetic association

Single nucleotide polymorphisms were characterized in silico for
their genomic position and functional effect on protein-coding
genes using SNPDAT v.1.0.5 (Doran & Creevey, 2013) and fur-
ther manual curation. The ‘Draper’ genome assembly and gene
predictions were retrieved from the GigaScience database (Colle
et al., 2019). Genomic windows for screening of functional can-
didate genes were defined by two strategies: between the left- and
right-most significant SNPs forming a ‘tower-like’ structure in
the Manhattan plots; and between� 100 kb from significant
SNPs that do not form a ‘tower-like’ structure, given that 100 kb
was the size of the linkage disequilibrium block calculated for the
same population by Ferr~ao et al. (2018). The screened genomic
windows can be found in the Supporting Information Table S1.
Candidate genes were annotated using the BLAST2GO tool with
BLASTP search against the nonredundant protein database (G€otz
et al., 2008). Gene ontology (GO) enrichment analyses were per-
formed for each VOC’s candidate gene subset against the total
haploid blueberry gene content. We used the BiNGO plugin in
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CYTOSCAPE v.3.7.2, considering a hypergeometric test with false
discovery rate correction (P ≤ 0.05; Maere et al., 2005).

Genomic heritability

Different modeling strategies were used to estimate the genomic
heritability (proportion of variance explained by available SNPs)
of each VOC. First, we calculated the genomic heritability (h2snp)
using the methodology implemented in the GEMMA package (op-
tion -vc 2; Zhou, 2017). We also used the same method for esti-
mation of the variance partition by each chromosome
independently. Another strategy was based on the Bayesian sparse
linear-mixed model (BSLMM), which was used to further esti-
mate the proportion of the phenotypic variance explained by the
polygenic term (PVE), analogous to the h2snpand the proportion
of the PVE that is explained by SNPs with a nonzero effect on
phenotypic variation (PGE). To this end, we first used the
BSLMM to fit a multilocus GWAS model assuming that the
SNP effects are sampled from a point-normal distribution, as
implemented in the GEMMA package (option -bslmm 1). In a
matrix notation, the model is log yð Þ ¼ 1nlþ Xbþ uþ e,
where log yð Þ is an n-vector of the logarithm-transformed volatile
phenotype measured in n individuals; X is an n � p matrix of
additive tetraploid genotypes measured on the same individuals
at p genetic markers; b is the SNP effect sampled from a mixture
of two distributions, one that expects many small effects and
another that generates few strong effects, as follows:
bi � pN r2ks

�1
� �þ 1� pð Þd0, where r2k controls the expected

magnitude of nonzero SNP effects and d0 denotes a point mass
at zero; u is the polygenic term as previously described; and e is a
random independent error term. We ran the Markov chain using
the default settings implemented in the GEMMA software. Full
details about the BSLMM are described by Zhou et al. (2013).

Phenotype prediction for molecular breeding

We evaluated the potential use of molecular markers for pheno-
typic prediction and for validation of our GWAS results. To this
end, we designed four training and testing scenarios, combining
different populations and methods. Besides the original popula-
tion comprising 886 individuals used in the GWAS analyses
(POP1), we also phenotyped and genotyped a new set of 552
individuals (POP2). Berries from POP2 were collected at the
same year, location, and ripening stage as individuals from POP1,
and subjected to the same phenotyping and genotyping proto-
cols. The genetic relationship between the two populations was
explored using a principal component analysis (PCA) and a
heatmap of the realized genomic matrix. To perform predictions
based on molecular information, we considered three different
approaches: a genomic selection (GS) model, which fits a regres-
sion by modeling markers as random variables drawn from the
same normal distribution, using the RR-BLUP method (Endel-
man, 2011); a GS de novo GWAS model, which combines the
RR-BLUP method with significant markers from GWAS fitted
as fixed effects covariates; and marker-assisted selection based on
candidate loci (MAS), which fits a multiple regression model

considering only the GWAS hits as fixed effects. A summary of
these scenarios is presented in Table S2. GS and GS de novo
GWAS models were fitted using ridge-regression models as
implemented in the RRBLUP package in R (Endelman, 2011). The
MAS approach was fitted using the lm function in R. To select
the GWAS hits to be used as fixed-effects covariates, we retained
the significant P-values estimated using the LMM approach and
selected the marker with the smallest P-value within every 10 kb
genomic window. Finally, we accessed the predictive ability (PA)
by computing Pearson’s correlation between predicted and origi-
nal phenotypes.

Sensory analysis

We evaluated the impact of the volatiles in flavor perception
using a consumer panel sensory data. To this end, over the course
of 6 yr (2012–2017), 24 blueberry cultivars from the breeding
program at the University of Florida were evaluated in 45 differ-
ent sensory panels. On average, 90 panelists participated of each
survey. As described by Gilbert et al. (2014) and Schwieterman
et al. (2014), panelists were trained with the scaling methods and
rated for overall liking, texture liking, sweetness, sourness, and
flavor intensity using a hedonic general labeled magnitude scales
(gLMS) ranging from �100 (greatest disliking of any kind) to
+100 (greatest liking of any kind). Concurrent with panel evalua-
tion, a subset of berries from the same genotypes were submitted
to chemistry analyses, which included volatile extraction and
quantification, soluble solids content and titratable acids (TA)
measurements (see Gilbert et al., 2015 for more details).

Results

Volatile phenotyping

A total of 17 VOCs were identified through GC-MS analyses,
which comprised different chemical classes and biosynthetic ori-
gins (Fig. S1). Among the fatty acid derivatives, there were five
aldehydes, two alcohols, and three methyl ketones. From the
mevalonic acid (MVA) or the methylerythritol phosphate (MEP)
pathways, there were five terpenoid compounds. Lastly, there
were two benzenoid compounds which are derived from shiki-
mate/phenylalanine pathway. Fatty acid-derived aldehydes were
the most abundant in concentration followed by their derived
alcohols, and the benzenoid methyl salicylate had the lowest con-
centration (Table 1).

Genome-wide association mapping

In this study, volatile–genotype associations were performed
using a LMM approach. A total of 71 487 SNPs, distributed
across the 12 haploid blueberry chromosome-scaled scaffolds,
were independently tested for association (Fig. S2; Table S3).
After Bonferroni-based multiple test correction, we detected 519
significant SNPs associated with 11 VOCs, encompassing 10
chromosomes and different metabolic pathways (Fig. 1). Most
significant SNPs converged to a tower-like structure in
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Manhattan plots, indicating the presence of few genomic regions
controlling each VOC emission (Fig. S3a,b). The number of
genomic regions associated with each VOC ranged from one (for
(E)-2-hexenal, 1-hexanol, and 2-undecanone) to five (for euca-
lyptol) (Fig. S4a; Table S1). Some common genomic windows
were detected for volatiles derived from the same biosynthetic
pathways (Fig. S4a). In chromosome 2, both methylketones (2-
nonanone and 2-undecanone) shared the same genomic region;
while in chromosome 3, overlaps were observed for the ter-
penoids linalool and D-limonene. Most of the significant SNPs
were detected in noncoding regions, and among the exonic SNPs,
most caused synonymous changes (Fig. S4b). We also explored
how much of the phenotypic variation was explained by individ-
ual markers (Fig. S4c). Notably, some significant SNPs individu-
ally explained > 10% of the phenotypic variation observed. For
example, a single marker on chromosome 2 explained > 30% of
the phenotypic variance associated with 2-undecanone (Fig. S4c).

Candidate genes

Putative protein-coding genes were searched for in the regions
flanking significant SNPs. Functional annotation of these genes
pointed to enzymes in VOC biosynthetic pathways and related
biological functions (Fig. 1; Table S1). The most explicit candi-
date genes were found for terpenoid volatiles (Fig. 2). One of the
genomic regions associated with both linalool and D-limonene
comprised six linalool synthase encoding genes (Fig. 2). For euca-
lyptol, eight alpha-terpineol synthases were predicted in one of
the genomic regions (Fig. 2). Moreover, the GO term ‘terpene
synthase activity’ was overrepresented for genes within candidate
regions of these volatiles (Table S4). For the carotenoid-derived
terpene, geranyl acetone, the enzymes mevalonate kinase, zeta-

carotene desaturase, and carotenoid cleavage dioxygenase 4
(CDD4) were present at distinct genomic regions associated with
this volatile (Fig. 1). For the fatty acid-derived VOCs (hexanal,
1-hexanol, decanal, 2-heptanone, 2-nonanone, and 2-unde-
canone), several enzymes involved in lipid biosynthesis and
degradation were detected (Fig. 1). Other biologically plausible
candidate genes underlying VOC variation at the different
genomic regions include those potentially involved in plant
defense, regulation of transcription, regulation of protein abun-
dance through proteasomal degradation, volatile emission
through ABC-type transporters, VOC degradation, and competi-
tion for precursors with adjacent pathways (Table S1).

Heritability of VOCs

We accessed the heritability of the 11 VOCs for which significant
associations were detected using different approaches (Fig. 3).
Using the pedigree information, we observed moderate-to-high
heritability values (h2 > 50%) for most of the metabolites.
Remarkably, 1-hexanol, 2-undecanone, decanal and linalool pre-
sented values > 97%. Considering the genomic heritability based
on all SNPs (h2snp), we also observed moderate-to-high values, but
with a relatively lower magnitude when compared with pedigree
analyses. We also used the BSLMM to investigate the genetic
contribution of sparse (PGE parameter) and polygenic compo-
nents (PVE parameter). The PVE is a Bayesian version of the
h2snpand, as expected, both analyses resulted in similar values. The
PGE is the proportion of the PVE that is explained by markers
with large effects, shedding light on the genetic architecture of
the traits. For most VOCs, we observed PGE values > 30%.
Additionally, we divided the genetic variance explained by mark-
ers in a chromosome-based scheme, and no positive trend

Table 1 Classification and summary statistics for the 17 volatile organic compounds detected among 886 blueberry individuals.

Volatile Metabolic classification Chemical abstract services number Aroma descriptor1 Mean SD

(E)-2-Hexenal Fatty acid derivate, aldehyde 6728-263 Fresh, green, fruity 65 376 1370
Decanal Fatty acid derivate, aldehyde 112-31-2 Fruity, citrus 12 184 283
Heptanal Fatty acid derivate, aldehyde 7785-70-8 Green, herbal 166.4 3.1
Hexanal Fatty acid derivate, aldehyde 66-25-1 Fresh, green, fruity 21 874 547
Nonanal Fatty acid derivate, aldehyde 124-19-6 Rose, fresh 346.8 12
(E)-2-Hexen-1-ol Fatty acid derivate, alcohol 928-95-0 Fresh green, leafy 722.1 22.6
1-Hexanol Fatty acid derivate, alcohol 111-27-3 Fruity, sweet green 631.4 14.8
2-Heptanone Fatty acid derivate, methyl ketone 110-43-0 Fruity, spicy, cheesy 96.4 4.8
2-Nonanone Fatty acid derivate, methyl ketone 821-55-6 Fruity, earthy 551.7 15
2-Undecanone Fatty acid derivate, methyl ketone 112-12-9 Fruity, floral 2166.8 38.6
Alpha-pinene MVA/MEP, monoterpene 80-56-8 Minty 6.1 0.4
D-limonene MVA/MEP, monoterpene 5989-27-5 Citrus, fresh, sweet 190.6 11
Eucalyptol MVA/MEP, monoterpene 470-82-6 Minty, woody, herbal 99.5 6.4
Geranyl acetone MVA/MEP, monoterpene 3796-70-1 Floral, rosy, sweet 475.9 13.2
Linalool MVA/MEP, monoterpene 78-70-6 Green, rosy, floral 743.4 22.2
Benzaldehyde Phenylpropanoid, benzenoid 122-78-1 Sharp, bitter, cherry 8 0.4
Methyl salicylate Phenylpropanoid, benzenoid 119-36-8 Minty 1.4 0.2

MVA, mevalonic acid; MEP, methylerythritol phosphate.
Mean and standard deviation (SD) values are expressed as ng g–1 FW. Volatiles were classified into five chemical classes: aldehydes, alcohols, methyl
ketones, monoterpenes and benzenoids.
1Aroma descriptors retrieved from Du & Rouseff (2014).
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between phenotypic variance and chromosome length was
observed – as expected for polygenic traits (Fig. S5). Altogether,
the results from the association mapping, the heritability estima-
tion, and the partitioning of the genetic variance by chromosome
length corroborated to indicate that VOC traits have a simple
genetic architecture, with few major loci controlling a large pro-
portion of the phenotypic variance.

Validation and phenotypic prediction

Marker-assisted selection based on candidate loci and GS based
on markers covering the whole genome are powerful tools to pre-
dict the phenotypic merit of an individual and support breeding
decisions. Here, we compared the feasibility and efficacy of both
approaches for implementation in breeding programs targeting
VOCs. To this end, a new set of individuals (POP2) was pheno-
typed and genotyped for real validation. POP2 is composed of
individuals genetically related to the original population (POP1)
used in the GWAS analysis (Figs 4a, S6). Subsequently, four dif-
ferent scenarios (SCE) mimicking breeding programs were
designed for ‘training’ and ‘testing’ partitions (Fig. 4b). In the
SCE1, GS models were trained and tested within POP1, by sys-
tematically splitting the original population into nonoverlapping
‘training’ and ‘testing’ partitions. In this scenario, predictive

performances ranged from 0.41 to 0.67 for hexanal and
2-nonanone, respectively (Figs 4c, S7). The SCE2 captured GS
validations across populations. Compared with SCE1, there were
substantial decreases in the predictive abilities (Fig. 4c). In order
to validate our previous findings in the GWAS analysis we
designed the SCE3 and SCE4 scenarios, whereby the GWAS hits
were used as fixed effects in the prediction models across popula-
tions (Fig. 4b; Table S5). In the SCE3, also named as ‘GS de novo
GWAS’, most of the validations yielded higher predictive perfor-
mances when compared with SCE2. Notably, for some volatiles,
the performances were comparable with the results in the SCE1
(Fig. 4c). The MAS approach was represented in SCE4 (Fig. 4b)
and high predictive ability was achieved for most of the VOCs
(Fig. 4c), demonstrating that a small set of markers (Table S5)
can be used for VOC prediction. Overall, the prediction results
were aligned with the PGE values (Fig. 3): volatiles with lower
PGE values, such as hexanal, 1-hexanol and (E)-2-hexenal,
showed lower predictive performances (Fig. S8).

Sensory panel

To determine the impact of VOCs, soluble solids, and TA con-
tent on the consumer perception, we used a historical set of sen-
sory panel data. Over the course of 6 yr, consumer panelists rated

Fig. 1 Schematic representation of the pathways leading to the biosynthesis of volatiles detected in this study. Volatiles with uncharacterized pathways are
indicated with a question mark (?). Different color shadings indicate different metabolic pathways. Arrows with triple heads indicate multiple steps. Colored
asterisks on the pathways indicate the potential enzymatic role of candidate genes detected in the significant genomic regions. Chromosomes with
significant associations in the genome-wide association studies (GWAS) analyses are indicated by colored circles in front of each volatile organic
compound.
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overall liking, texture, sweetness, sourness and flavor intensity of
24 cultivars (Table S6). In the correlation analysis, overall liking
was strongly and positively correlated with soluble solids that,
aside from other compounds, can be an indicator of sugar con-
tent (Figs 5a, S9). By contrast, TA was negatively correlated with
overall liking (Fig. 5a). For VOCs, positive and negative trends
were observed in the dataset (Figs 5a, S9). The volatiles 1-hexanol
and 2-undecanone were the most positively correlated with over-
all liking (0.48 and 0.43, respectively), while (E)-2-hexanal and
eucalyptol were the most negatively correlated (�0.75 and
�0.56, respectively). To exemplify the importance of the bio-
chemical compounds on flavor enhancement, we selected three
cultivars for additional comments. ‘Kestrel’ and ‘Windsor’ have
been consistently rated by panelists with high and low scores of
overall liking, respectively. By contrasting the biochemical profile
of both cultivars, the low sugar to acid ratio observed in ‘Wind-
sor’ is probably the main difference negatively influencing pan-
elists’ liking scores (Fig. 5b). In addition to sugar and acids,
VOCs also play an important role in flavor. To exemplify, we
selected ‘Kestrel’ and ‘Snowchaser’, two cultivars with similar
profiles of soluble solids and TA, but displaying distinct volatile
profiles and liking scores (Fig. 5b). ‘Snowchaser’ had higher euca-
lyptol content, while ‘Kestrel’ had higher linalool content, which
are probably influencing the flavor perception.

Discussion

Over the recent decades, it has generally been accepted that the
drop-off in flavor quality is one of the major sources of consumer
dissatisfaction with fresh fruit produce (Bruhn et al., 1991; Klee,
2010). Despite its importance, flavor is an expensive and complex
trait to be routinely evaluated in breeding programs. In this sce-
nario, the use of molecular breeding to track flavor-associated
metabolites emerges as the best strategy for flavor improvement
(Klee, 2010). Some breeding programs are already taking advan-
tage of marker-assisted selection to this end (Chambers et al.,
2014; Eduardo et al., 2014; Emanuelli et al., 2014). In this study,
by using a combination of genomics, metabolomics, and sensory
panel data, we identified markers associated with flavor-related
volatiles and showed their real application in a blueberry breeding
program.

With a relatively recent domestication history dated from the
1900s, blueberry breeding programs still possess a wide variability
of flavors to be explored, and unlike other fruits, such as bananas,
there is not a single chemical that represents a typical blueberry
flavor. Guided by prior findings that the blueberry flavor is influ-
enced by several volatile metabolites (Gilbert et al., 2013, 2015;
Tieman et al., 2017), we first used a metabolomics approach to
detect and quantify these VOCs in a southern highbush

(a)

(b)

(c)

Fig. 2 Significant associations and candidate genes underlying linalool and eucalyptol volatiles. (a) Manhattan plots showing the significance of each single
nucleotide polymorphism (SNP) association in the genome-wide association studies (GWAS). The horizontal red lines represent the Bonferroni significance
threshold. (b) Genomic regions harboring biosynthetic enzyme-coding genes (blue and red arrows) and the nearest significant single nucleotide
polymorphisms (SNPs; yellow triangles). LIS/TPS, enzymes linalool synthase/alpha-terpineol synthase. Double bars indicate out of scale. (c) Pairwise
linkage disequilibrium (LD(r2)) between significant SNPs along the highlighted genomic region.
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blueberry breeding population. Previous analyses in blueberry
used a dynamic headspace collection, which provided sensitive
and detailed volatile profiling (Gilbert et al., 2013, 2015). How-
ever, the tissue requirements and current limited throughput of
dynamic headspace collection system necessitated the develop-
ment of a quantitative and higher throughput volatile screen for a
large breeding population. Therefore, we developed a liquid
extraction-based method that was able to detect most of the
volatiles previously reported as influential to the human hedonic
and sensory perception (Gilbert et al., 2015). In this study, a total
of 17 volatiles from different chemical classes and biosynthetic
origins were quantified. Among them, aldehydes and alcohols
have been frequently associated with green, grassy, and herbal fla-
vors as well as the terpene eucalyptol (Klee, 2010; Gilbert et al.,
2015; Farneti et al., 2017b). Terpenes like linalool, D-limonene,
and geranyl acetone have been linked with floral, fresh, and
citrusy flavors (Farneti et al., 2017b). The methyl ketones 2-
nonanone and 2-undecanone have been associated with fruity fla-
vors, while 2-heptanone has been associated with cheesy and
banana-like flavor. Such variability highlights the amplitude of
flavors that could be explored.

Although the blueberry volatile landscape has already been
characterized in several studies (Parliment & Kolor, 1975; Hirvi
& Honkanen, 1983; Du et al., 2011; Gilbert et al., 2013, 2015;
Du & Rouseff, 2014; Farneti et al., 2017b), the genetic basis
underlying VOC variation among genotypes is still unknown.

Through GWAS analyses, we identified molecular markers with
large effects and showed that few genomic regions were involved
in the variation of VOC content in blueberry. Most of the
genomic studies addressing volatiles in fruits have been per-
formed using traditional quantitative trait locus (QTL) mapping
(Zini et al., 2005; Doligez et al., 2006; Tieman et al., 2006;
Duchêne et al., 2009; Dunemann et al., 2009; Costa et al., 2013;
Eduardo et al., 2013; Paterson et al., 2013; Urrutia et al., 2017),
while GWAS has only been recently conducted in studies applied
to tomato (Sauvage et al., 2014; Zhang et al., 2015; Bauchet
et al., 2017; Tieman et al., 2017) and apple (Kumar et al., 2015;
Farneti et al., 2017a; Larsen et al., 2019). When compared with
QTL mapping, GWAS increases the mapping resolution by mak-
ing use of more diverse populations with lower levels of linkage
disequilibrium and higher marker density, which narrows the
genomic regions to search for potential candidate genes and
causal polymorphisms (Korte & Farlow, 2013).

Herein, we found plausible candidate genes within the
genomic windows surrounding significant SNPs. The most strik-
ing candidate genes were clusters of monoterpene synthases
found in one of the regions associated with the terpenoids
linalool, D-limonene, and eucalyptol. Terpene synthases are part
of a large family of enzymes that generate the diversity of volatile
terpenoids found in plants (Bohlmann et al., 1998; Dudareva
et al., 2006). These enzymes catalyze the first committed step
towards the synthesis of terpenoids from substrates derived from

Fig. 3 Heritability estimations. h2, pedigree-
based heritability; h2snp, genomic heritability
computed using molecular markers; PVE, the
proportion of the phenotypic variance
explained by genetic terms; BSLMM,
Bayesian sparse linear-mixed model, a
Bayesian version of h2snp, but assuming single
nucleotide polymorphism (SNP) effects
sampled from a point-normal distribution. In
BSLMM, the genetic term is divided as: PVE
is the proportion of phenotypic variance
explained by the polygenic term and PGE is
the proportion of the PVE explained by SNPs
with a nonzero effect.
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MEP/MVA pathways. Terpene synthases were also found in
QTL regions of terpenes in peach (Eduardo et al., 2013; S�anchez
et al., 2014), raspberry (Paterson et al., 2013), and carrot (Keil-
wagen et al., 2017). The terpene geranyl acetone is also derived
from MEP/MVA pathways but it is formed through the oxidative
cleavage of carotenoids. In the regions associated with geranyl
acetone, there were enzymes involved in the early steps of the
biosynthetic pathway (mevalonate kinase), in the biosynthesis of
carotenoids (zeta-carotene desaturase), and in the final step of
carotenoid cleavage (CDD4) (Yuan et al., 2015). Previous QTLs
detected in other species have found only carotenoid biosynthetic
enzymes in the associated area, suggesting that the carotenoid
content of the fruits was the determinant of this suite of volatiles
(Lewinsohn et al., 2005; Tieman et al., 2006, 2017; Klee, 2010).
Notably, this is the first study that the authors are aware of where
a CDD-encoding enzyme was detected in a QTL region for an
apocarotenoid volatile variation. For the fatty acid derivative
VOCs (aldehydes, alcohols, and methyl ketones), several enzymes

involved in the lipid metabolism were detected. The synthesis
and degradation of fatty acids can have a major impact on down-
stream volatile synthesis, as suggested in tomato studies (Howe &
Schilmiller, 2002; Garbowicz et al., 2018). Besides biosynthetic
enzymes, other biological mechanisms could also be involved in
VOC variation as detected in other associated genomics regions.
For example, ABC transporters have been shown to facilitate
VOC emission (Adebesin et al., 2017); cytochrome P450
enzymes can act in volatile biosynthesis and modification
(Dudareva et al., 2006); transcriptional regulation can induce or
repress VOCs synthesis and release (Dudareva et al., 2006).
Despite finding interesting candidates, we did not detect causal
polymorphisms in the genes, and functional validation is also
needed to confirm our hypotheses. It is noteworthy, however,
that recent studies have revealed that noncoding regulatory
regions in plant genomes are highly variable at the species level
and can impact the expression of hundreds of genes that ulti-
mately alter various traits (Yocca et al., 2019). Unfortunately, the

(a)

(c)

(b)

Fig. 4 Phenotypic prediction. (a) Principal component analysis (PCA) of two blueberry populations: POP1 represents the original 886 individuals used for
the genome-wide association studies (GWAS) analysis and POP2 is a new set of 552 individuals used for genomic prediction. (b) Four prediction scenarios
using different approaches: genomic selection (GS) intra- and interpopulation (all markers simultaneously modeled as random effects and predictive ability
measured within POP1 and across populations, respectively); GS de novo GWAS (GWAS hits modeled as fixed effects into GS models and cross-validation
performed across populations); and marker assisted selection (MAS; only the GWAS hits modeled as fixed effects in regression models and cross-validation
performed across populations). (c) Predictive ability for volatile content across the four prediction scenarios.
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noncoding regulatory space remains completely unknown in
blueberry, and the genotyping approach used herein is unable to
assess all types of variants that exist between the genotypes.
Nonetheless, tightly linked markers are valuable for breeding pur-
poses.

Motivated by the possibility to predict volatile content using
genomic data, we first investigated the use of genomic selection
(Meuwissen et al., 2001). High predictive accuracies were
observed for most of the VOCs, which have also been reported in
the plant literature for other types of metabolites (Riedelsheimer
et al., 2012; Guo et al., 2016; Kainer et al., 2018; Schrag et al.,
2018). Subsequently, we explored the importance and applicabil-
ity of our GWAS findings for prediction in an independent
dataset by using the significant GWAS hits as fixed effects in GS
models. This GWAS de novo GS framework showed an increase
of more than 20% in the predictive ability for some volatiles (e.g.
2-undecanone), when compared with traditional GS methods.
Using a similar strategy, gains in predictive performance for other
traits were also reported in maize (Bernardo, 2014; Rice & Lipka,
2019), sorghum (Rice & Lipka, 2019) and rice (Spindel et al.,
2016). Finally, an even more promising approach is to use only
the GWAS hits for MAS, thereby reducing costs associated with
genome-wide genotyping. By acknowledging the simple genetic
nature of each VOC, the MAS approach yielded high predictive
performances. These results demonstrate the remarkable benefits

that molecular breeding can achieve for flavor improvements in
blueberry, providing a motivation for similar studies in other
crop species.

Our last contribution concerned unraveling the role of VOCs
in sensory analyses. Plants synthesize hundreds of VOCs; how-
ever, only a small subset generates the ‘flavor fingerprint’ recog-
nized by humans (Goff & Klee, 2006). Moreover, some VOCs
are going to be positively or negatively perceived, affecting the
overall liking experience. Regarding the taste components, sugar
and acid contents are well known for their opposite relationship
to overall liking of blueberry (Gilbert et al., 2015), which was
also evident in our analyses. Regarding VOCs, hexanal and 2-un-
decanone had a positive correlation with overall liking scores,
while (E)-2-hexanal and eucalyptol were negatively correlated.
Linalool has been pointed out as a key metabolite for the charac-
teristic blueberry aroma (Parliment & Kolor, 1975; Hirvi &
Honkanen, 1983; Du et al., 2011); however, an overall low posi-
tive correlation was detected herein. Nonetheless, when we com-
pared two cultivars with similar sugar and acidity profiles
(‘Kestrel’ and ‘Snowchaser’), the contrasting linalool content sug-
gested that it does have a positive role in overall liking. Another
important flavor contributor is eucalyptol. Similar studies also
observed that blueberries with high eucalyptol content had
reduced blueberry liking scores (Gilbert et al., 2015; Farneti
et al., 2017b). High concentration of eucalyptol is observed in

(a) (b)

Fig. 5 Sensory analysis. (a) Pearson’s correlation between five sensory scores and biochemical compounds; (b) comparison of blueberry ‘Kestrel’ and
‘Windsor’, evidencing the importance of sugar to acid ratio on the liking rates. Comparison of ‘Kestrel’ and ‘Snowchaser’, both cultivars with similar
content of soluble solids and titratable acidity (TA), but different volatile profiles and liking perception.
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green fruits, with a drastic reduction during ripening, raising the
hypothesis that eucalyptol may be considered as ‘not attractive’
or as a ‘repellent’ metabolite, negatively affecting consumer pref-
erences (Farneti et al., 2017b).

Overall, by considering our sensory panel results, VOCs should
be a significant consideration for manipulation in breeding pro-
grams focusing on improving flavor, with some VOCs targeted to
up- or down-concentrations. Moreover, the high heritability val-
ues estimated for VOCs are promising for achieving faster genetic
gains across the generations, especially compared with previous
values obtained for soluble solids (sugars) and pH (acids) (Cellon
et al., 2018; de Bem Oliveira et al., 2019). Unlike sugars and acids
which are primary sources of energy and carbon for plants to
metabolize into other compounds, VOCs are metabolic end prod-
ucts derived from few major biochemical pathways. For compar-
ison, sugar and acids occur at millimolar concentrations in fruits,
while VOCs are often present at picomolar to nanomolar concen-
trations. These differences suggest that manipulating VOC accu-
mulation through breeding should be easier compared with
making meaningful changes in sugar and acid content, while hav-
ing little impact on other metabolic activities.

Altogether, in this study we have demonstrated how
metabolomics, genomics and sensory panel data can be combined
to implement molecular breeding techniques for flavor improve-
ments. Some of the main findings presented herein are as follows:
(1) Some VOCs have a simple genetic architecture controlled by
few genomic regions, with high heritability values, and QTLs
with major effects.
(2) Some of the associated genomic regions harbored candidate
genes known to be involved in volatile biosynthetic pathways.
(3) Given the difficulties in phenotyping VOCs, we demon-
strated that marker-assisted selection is a feasible and efficient
tool to be implemented at the scope of breeding programs.
(4) Sensory panel data showed that some VOCs modulate con-
sumer preference, indicating the direction of the breeding selec-
tion.

Overall, this work is a promising step toward understanding
the genetic basis of VOCs for breeding purposes and the role of
VOCs in fruit flavor perception. Although this study is applied
to blueberry, our findings have a broad relevance in the context
of plant breeding aimed at the improvement of flavor.
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