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SUMMARY

 Plants produce a range of volatile organic compounds (VOCs), some of which are 

perceived by the human olfactory system, contributing for a myriad of flavors. Despite 

the importance of flavor for consumer preference, most plant breeding programs have 

neglected it, mainly due to the costs of phenotyping and the complexity of disentangling 

the role of VOCs on human perception.

  To develop molecular breeding tools aimed at improving fruit flavor, we carried out a 

target genotyping and VOC extraction of a blueberry population. Metabolite genome-

wide association analysis (GWAS) was used to elucidate the genetic architecture, while 

predictive models were tested to prove that VOCs can be accurately predicted using 

genomic information. Historical sensory panel was considered to assess how the volatiles 

influenced consumer.

 By gathering genomics, metabolomics, and sensory panel, we demonstrated that VOCs: i) 

are controlled by a few major genomic regions, some of which harboring biosynthetic 

enzyme-coding genes; ii) can be accurately predicted using molecular markers; and iii) 

can enhance or decrease consumer’s overall liking. 

 Here we emphasized how the understanding of the genetic basis and the role of VOCs on 

consumer preference can assist breeders in developing more flavorful cultivars at a more 

inexpensively and accelerated pace.
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INTRODUCTION

Flavor is an important trait for any food crop, affecting consumer acceptance and 

marketability.  Its relevance is even more pronounced for fruits, for which repeated purchasing 

behavior and willingness to pay have been associated with positive eating experiences (Clark, 

1998; Diehl et al., 2013). While substantial flavor variation exists within fruit species (El Hadi et 

al., 2013), most plant breeding programs have historically neglected it, given its intrinsic 

complexity and costs to phenotype (Klee, 2010; Klee & Tieman, 2018). As a consequence, the 

drop-off in flavor quality has become one of the major causes of consumer dissatisfaction (Bruhn 

et al., 1991; Tieman et al., 2012). To correct this inconsistency and incorporate flavor in 

breeding program routines, it is necessary to identify the sources of flavor variability, understand 

their genetic architecture, and then define cost-effective methods of selection. 

Flavor is a complex multifactorial trait, involving a combination of taste, mouthfeel and 

aroma perceptions. More specifically, it is the interaction between our olfactory system and the 

volatile organic compounds (VOCs) released by the fruit that provides the diversity and 

uniqueness of flavor experiences (Goff & Klee, 2006; El Hadi et al., 2013). Plants synthesize a 

wide variety of VOCs (Dudareva et al., 2006; Goff & Klee, 2006), but only a subset are 

produced during fruit ripening, where they likely act as an attractant for seed-dispersing 

organisms, including humans (Rodríguez et al., 2013). Several fruit VOCs have been 

demonstrated to influence consumer’s overall liking (Klee & Tieman, 2018), suggesting that 

these metabolites are key targets to improve the flavor perception of fruits. Although the VOC 

profiles of many fruit species have been characterized (El Hadi et al., 2013; Klee & Tieman, 

2018), less is known about the genetic basis underlying their variation among genotypes, which 

hinders their implementation in breeding programs.  Moreover, quantifying the abundance of 

metabolites is expensive and time consuming for a large-scale populational application. In this 

scenario, molecular markers are a promising tool to detect genetic associations and predict the 

phenotype of new individuals (Klee, 2010). 

Molecular breeding methods have been successfully applied for different traits and crops 

(Hickey et al., 2017; Watson et al., 2018), however they have been less exploited for fruit flavor 

improvement. Herein, we showed the feasibility of molecular breeding for flavor-related 

volatiles in a blueberry breeding program by integrating genomics, metabolomics, and sensory 
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panel data. Blueberry (Vaccinium spp.) is the second most important soft fruit after strawberry, 

and it has also been popularized as a “super food” due to the multiple health benefits conferred 

by its abundant polyphenolic content (Kalt et al., 2019). A previous psychophysical study 

indicated that consumers prefer sweet berries with intense flavor (Gilbert et al., 2015). 

Therefore, considering that blueberry and other fruits are important dietary sources of 

micronutrients, an effort to improve flavor through breeding is warranted, which may lead to an 

increase in fresh fruit consumption that, subsequently, could have a positive impact on human 

health.

In this study, we used a targeted genotyping approach and volatile extractions with 

analysis by gas chromatography/mass spectrometry (GC/MS) of 1,438 individuals from a 

blueberry breeding population. Genome-wide association studies (GWAS) elucidated the genetic 

architecture of VOCs and predictive models showed that VOCs can be accurately predicted 

using genomic and marker-assisted selection. Finally, a historical blueberry sensory panel dataset 

was leveraged to assess how the volatiles influenced consumer preference to ultimately assist 

breeders in the direction of the selection.

MATERIAL AND METHODS

Plant Material.

The association mapping population was composed of 886 southern highbush blueberry 

genotypes covering 92 full-sib families. This population was originally designed as part of the 

breeding program at the University of Florida in February 2011. Seedlings originated from each 

family were installed in a row-column design at the Plant Science Research and Education Unit 

in Citra, Florida. Additional details on this population were previously described by (Cellon et 

al., 2018) and (Ferrão et al., 2018).

 

Tissue Collection, Sample Processing, and Volatile Extraction.

During April 2015, five full mature berries were harvested from each plant. We only sampled 

berries exhibiting picking quality, including fully blue color at the scar, no visual, pathogen or 

insect damage. Fruits were quenched in liquid nitrogen and stored at -80 °C up to the time of 

sample processing. The five berries from each genotype were ground together to a fine powder 
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using a liquid nitrogen pre-chilled blender/coffee grinder (Tribest Corporation, Anaheim, CA, 

USA) and transferred into a 12 mL labeled tube. For each sample, 250 mg of frozen powder was 

weighted in duplicate into 2 mL microtubes and stored at -80 °C until volatile extraction. Internal 

volatiles were extracted using a solid-liquid-phase solvent extraction procedure. The extraction 

solvent consisted of anhydrous hexane containing 50 ng/uL surrogate standard (trans-2-heptenal, 

CAS: 18829-55-5, Sigma-Aldrich SKU: W316504-SAMPLE-K). Samples were randomly 

extracted in batches containing 11 samples in duplicate and two empty microtubes. The volatile 

extraction was performed as follows: samples were retrieved from archival storage and placed in 

liquid nitrogen; 1 mL of extraction solvent was added to each sample; samples were shaken for 5 

seconds then vortexed for 10 seconds to ensure full saturation of tissue with solvent; samples 

were then shaken at 23 °C in a thermoshaker at 1400 rpm for 15 minutes, then centrifuged at 

1500 G-force to induce phase separation; the top organic portion was recovered into a glass GC 

sample vial using a disposable glass Pasteur pipette. Samples were stored at -80 °C until GC-MS 

analysis.

Volatile Analysis.

Quantification of volatiles from the liquid phase extractions was performed on an Agilent 7980A 

series gas chromatograph (GC) equipped with an Agilent 5977A single quadrupole mass 

spectrum detector (MSD). Parameters of the GC were used as follows: Helium carrier gas fixed 

at 11.479 psi, splitless injection, inlet temperature 220 °C, injection volume 2 L, and the 

syringe wash solvents were acetone and hexane. A guard column consisting of deactivated fused 

silica (Ultimate Plus deactivated fused silica tubing, 5 m length x 250 m i.d.; Agilent 

Technologies, Santa Clara, CA, USA; catalog number: CP802505) was installed from the GC 

inlet and connected to the analytical column by a pressfit connector (Restek, Bellefonte, PA, 

USA; catalog number: 22159). Sample analytes were separated using an equipped DB-5 column 

((5%-phenyl)-methylpolysiloxane, 30 m length x 250 m i.d. x 1 um film thickness; Agilent 

Technologies, Santa Clara, CA, USA). Oven temperatures were programmed as follows: the 

initial oven temperature of 40 °C was held for 30 seconds, then ramped 15 °C min -1 to 250 °C 

with a post run temperature of 260 °C held for 3 minutes. The MSD was equipped with an 

extractor ion source and tuned for sensitivity and mass accuracy prior to sample analysis. 

Parameters for the MSD were maintained as follows: MSD transfer line temperature 280 °C, MS 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

source temperature 230 °C, MS quad temperature 150 °C, solvent delay of 6 minutes, mass scan 

range 40-205 m/z with a threshold of 150. Data were acquired using Agilent MassHunter 

Workstation Acquisition (Agilent Technologies, Santa Clara, CA) and processed using Agilent’s 

MassHunter Quantitative Analysis program v.B.06.00. Initial screening of volatiles consisted of 

a targeted list of the 52 volatile compounds previously reported and described by Gilbert et al. 

(2015). Additionally, spectral deconvolution was performed for each sample in the program and 

manually curated to achieve a list of compounds that were then validated based on comparing 

retention time and spectra to authentic standards. Overall, a list of 17 robust and reliable features 

were detected and validated with authentic volatile standards. The most abundant non-

convoluted m/z ion fragment for each compound was used to integrate peak area. Integrated 

peaks were qualified by two additional m/z ion fragments that were required to match ratios 

observed in authentic standards. Volatile mass concentration (g*gFW-1) was calculated using 

standard curves for each individual compound. Values were normalized for recovery of the 

surrogate standard, trans-2-heptenal, within each individual batch of extracted samples and for 

the corresponding biological mass of each sample. The equation used to calculate volatile mass 

concentration for each individual volatile compound was as follows: ������� =

, where  is the peak area of compound of interest in 
����� × ������ ���� × � × �� �����
sample,  is the peak area of surrogate standard in laboratory control spike,  is the ������ ����
peak area of surrogate standard in sample,   is biological sample mass, and  is the response � ��
factor from compound standard series. Two technical replicates per sample were analyzed by 

GC/MS, and averaged quantification values were used as phenotype.

Genotypic Data.

Genotyping was carried out by RAPiD Genomics (Gainesville, FL, USA) using the sequence 

capture methodology as described in (Ferrão et al., 2018). Sequencing was performed using 

Illumina HiSeq2000 platform considering 100 cycle paired-end runs. Raw reads were filtered by 

quality and trimmed using Trimmomatic v.0.36 with the following parameter settings 

“ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 TRAILING:3 SLIDINGWINDOW:4:15 

MINLEN:50” (Bolger et al., 2014). Filtered reads were mapped against the largest scaffolds of 

each of the 12 homoeologous groups of Vaccinium corymbosum cv. ‘Draper’ genome 
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assembly(Colle et al., 2019) using the BWA v.0.7.17 software(Li & Durbin, 2009). Single 

nucleotide polymorphisms (SNPs) were called using FreeBayes v.1.0.1 (Garrison & Marth, 

2012), targeting 15,663 probe regions designed for the sequence capture approach (Benevenuto 

et al., 2019).  Sequencing reads counts per allele and individual,  were extracted from the variant 

call file using the vcftools package (Danecek et al., 2011). As blueberry is a tetraploid species 

(2n=4X=48), we used the updog R package to call the allele dosages based on the read counts 

(Gerard et al., 2018). The updog package outputs the posterior probability means per SNP for 

each individual and we used these probabilities as our genotypes. Loci were also filtered by 

applying the following criteria: (i) minimum mapping quality of 20; (ii) only biallelic locus; (iii) 

maximum missing data of 50%; (iv) minor allele frequency of 1%; (v) mean depth of coverage 

of 40; and (vi) minimum genotype frequency of 0.01. The remained missing genotypes were 

imputed by the mean of each locus, as suggested in the GEMMA package (Zhou & Stephens, 

2012).

Phenotypic Analysis.

We computed the phenotypic heritability for each volatile using the following phenotypic model: 

, where  is the overall mean and  is a vector of ones; Z is the log (�) = 1� + �� + � � ��
incidence matrix linking observation in the vector y to their respective genotype effects in the 

vector g.  Normality was assumed for the genotype effects and residual, where  � ∼���(0,��2�
 and  . The genetic covariance, A, can be derived from the expectation of co-) � ∼ ���(0,��2�)

ancestry coefficient between individuals from the pedigree, and it was computed assuming a 

tetraploid additive relationship matrix; while  is the additive genetic variance. For the residual, �2�
I is an identity matrix and  is the residual variance. MVN denotes the n-dimensional �2�
multivariate normal distribution. Additive genetic variance was estimated using Restricted 

Maximum Likelihood (RELM) using the sommer R package (Covarrubias-Pazaran, 2016), while 

the kinship matrix A was built using the AGHmatrix R package (Amadeu et al., 2016). 

Phenotypic heritability ( ) was computed as:  .ℎ2 ℎ2 =
�2��2� + �2� 

Genome-Wide Association Study (GWAS).
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We used genome-wide association to identify genomic regions controlling volatile content in 

blueberry. SNP-trait association analyses were based on a univariate linear mixed model (LMM), 

as described by (Yu et al., 2006) and implemented in the GEMMA package (option -lmm 4) 

(Zhou & Stephens, 2012). LMM tests for association of the phenotypes with each marker were 

performed with corrections for: (i) main directions of population structure by regressing on the 

first five principal components (PCs) calculated using the genomic relationship matrix, and (ii) 

cryptic relatedness using the polygenic background effects with covariance proportional to the 

genomic relationship matrix. In a matrix notation, the follow LMM was considered for each 

volatile: ; where log(y) corresponds to logarithm-transformed values log(�) = �� +�� + � + �
of the volatile; W is a matrix of covariates (fixed effects) including a columns of 1’s for the 

intercept and the first five principal components;  is a vector of the corresponding fixed �
coefficients including the intercept; x is a vector of marker genotypes;  is the effect size of the �
marker; u is the random polygenic effect distributed as   --  where K is the � ∼���(0,��2�)

realized relationship matrix calculated with genome-wide markers, and  is the additive genetic �2�
variance; and  is a vector of error, distributed as . The molecular relatedness � � ∼ ���(0,��2�)

matrix K was built using the AGHmatrix R package (Amadeu et al., 2016) assuming tetrasomic 

inheritance. Bonferroni correction considering a genome-wide significance level of 0.05 was 

used for establishing a p-value detection threshold for statistical significance. The effect size of 

significant SNPs was calculated as described by (Pallares et al., 2014): , � =  
(�2

× ����) ����
where  is the variance of the genotype at the focal SNPs,  is the phenotypic variance, ���� ����
and  is the estimated SNP effect. �
Functional Mapping and Annotation of Genetic Association

SNPs were characterized in silico for their genomic position and functional effect on protein 

coding genes using SNPdat v1.0.5 (Doran & Creevey, 2013) and further manual curation. The 

'Draper' genome assembly and gene predictions were retrieved from the GigaScience database 

(Colle et al., 2019). Genomic windows for screening of functional candidate genes were defined 

by two strategies: 1) between the left- and right-most significant SNPs forming a “tower-like” 

structure in the Manhattan plots; 2) between ±100 Kb from significant SNPs that do not form a 

“tower-like” structure, given that 100 Kb was the size of the linkage disequilibrium block 
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calculated for the same population by (Ferrão et al., 2018). The screened genomic windows can 

be found in the Table S1. Candidate genes were annotated using the Blast2GO tool with 

BLASTp search against the non-redundant protein database (Götz et al., 2008). Gene ontology 

(GO) enrichment analyses were performed for each VOC’s candidate gene subset against the 

total haploid blueberry gene content. We used the BiNGO plugin on Cytoscape v. 3.7.2, 

considering a hypergeometric test with false discovery rate correction (P≤0.05) (Maere et al., 

2005).

Genomic Heritability

Different modeling strategies were used to estimate the genomic heritability (proportion of 

variance explained by available SNPs) of each VOC. First, we calculated the genomic 

heritability ( using the methodology implemented in GEMMA package (option -vc 2) ℎ2���) 

(Zhou, 2017). We also used the same method for estimate the variance partition by each 

chromosome independently. Another strategy was based on the Bayesian Sparse Linear-Mixed 

Model (BSLMM), which was used to further estimate the PVE (the proportion of the phenotypic 

variance explained by the polygenic term, analogous to the ) and PGE (the proportion of the ℎ2���
PVE that is explained by SNPs with a non-zero effect on phenotypic variation) . To this end, we 

first used the BSLMM to fit a multilocus GWAS model assuming the SNP effects are sampled 

from a point-normal distribution, as implemented in the GEMMA package (option -bslmm 1).  In 

a matrix notation, the model is: , where  is an n-vector of the log (�) = � + �� + � + � log (�)

logarithm-transformed volatile phenotype measured in n individuals; X is an  matrix of � × �
additive tetraploid genotypes measured on the same individuals at p genetic markers;  is the �
SNP effects sampled from a mixture of two distribution, one that expects many small effects and 

another that generates few strong effects, as follow: , where  �� ∼ ��(�2� �―1) + (1 ― �)�0 �2�
controls the expected magnitude of non-zero SNP effects and  denotes a point mass at zero; u �0

is the polygenic term as previously described; and  is a random independent error term.  We ran �
the Markov chain using the default settings implemented in the GEMMA software.  Full details 

about the BSLMM are described by (Zhou et al., 2013).

Phenotype Prediction for Molecular Breeding.
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We evaluated the potential use of molecular markers for phenotypic prediction and for validation 

of our GWAS results. To this end, we designed four training and testing scenarios, combining 

different populations and methods. Besides the original population composed of 886 individuals 

used in the GWAS analyses (POP1), we also phenotyped and genotyped a new set of 552 

individuals (POP2). Berries from POP2 were collected at the same year, location, and ripening 

stage as individuals from POP1, and subjected to the same phenotyping and genotyping 

protocols. The genetic relationship between the two populations was explored using a Principal 

Component Analysis (PCA) and a heatmap of the realized genomic matrix.  To perform 

predictions based on molecular information, we considered three different approaches: (i) 

Genomic selection (GS) model, that fits a regression by modelling markers as random variables 

drawn from the same normal distribution, using RR-BLUP method (Endelman, 2011); (ii) GS de 

novo GWAS model, that combines RR-BLUP method with significant markers from GWAS 

fitted as fixed effects covariates; and (iii) Marker-Assisted Selection based on candidate loci 

(MAS), that fits a multiple regression model considering only the GWAS hits as fixed effects. A 

summary of these scenarios is presented in Supporting Information Table S2. GS and GS de 

novo GWAS models were fitted using ridge-regression models as implemented in the rrBLUP R-

package (Endelman, 2011). MAS approach was fitted using lm function in R software. To select 

the GWAS hits to be used as fixed effects covariates, we retained the significant p-values 

estimated using the LMM approach and selected the marker with the smallest p-value within 

every 10 Kb genomic window. Finally, we accessed the predictive ability (PA) by computing the 

Pearson’s correlation between predicted and original phenotypes. 

Sensory Analysis.

We evaluated the impact of the volatiles in flavor perception using a consumer panel sensory 

data. To this end, over the course of six years (2012-2017), 24 blueberry cultivars from the 

breeding program at University of Florida were evaluated in 45 different sensory panels. On 

average, 90 panelists participated of each survey. As described by (Gilbert et al., 2014) and 

(Schwieterman et al., 2014), panelists were trained with the scaling methods and rated for overall 

liking, texture liking, sweetness, sourness, and flavor intensity using a hedonic general Labeled 

Magnitude Scales (gLMS) ranging from -100 (greatest disliking of any kind) to +100 (greatest 

liking of any kind). Concurrent with panel evaluation, a subset of berries from the same 
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genotypes were submitted to chemistry analyses, which included: volatile extraction and 

quantification, soluble solids content and titratable acids (TA) measurements. See (Gilbert et al., 

2015) for more details. 

RESULTS 

Volatile Phenotyping.

A total of 17 VOCs were identified through GC/MS analyses, which comprised different 

chemical classes and biosynthetic origins (Fig. S1).  Among the fatty-acid derivatives, there were 

five aldehydes, two alcohols, and three methyl ketones. From the mevalonic acid (MVA) or the 

methylerythritol phosphate (MEP) pathways, there were five terpenoid compounds. Lastly, there 

were two benzenoid compounds which are derived from shikimate/phenylalanine pathway. Fatty 

acid derived aldehydes were the most abundant in concentration followed by their derived 

alcohols, and the benzenoid methyl salicylate had the lowest concentration (Table 1).

Genome-Wide Association Mapping.

In this study, volatile-genotype associations were performed using a linear mixed model 

approach. A total of 71,487 single nucleotide polymorphisms (SNPs), distributed across the 

twelve haploid blueberry chromosome-scaled scaffolds, were independently tested for 

association (Fig. S2 and Table S3). After Bonferroni-based multiple test correction, we detected 

519 significant SNPs associated with 11 VOCs, encompassing ten chromosomes and different 

metabolic pathways (Fig. 1). Most significant SNPs converged to a tower-like structure in 

Manhattan plots, indicating the presence of few genomic regions controlling each VOC emission 

(Fig. S3a and S3b). The number of genomic regions associated with each VOC ranged from one 

(for (E)-2-hexenal, 1-hexanol, and 2-undecanone) to five (for eucalyptol) (Fig. S4a and Table 

S1). Some common genomic windows were detected for volatiles derived from the same 

biosynthetic pathways (Fig. S4a).  In chromosome 2, both methylketones (2-nonanone and 2-

undecanone) shared the same genomic region; while in chromosome 3, overlaps were observed 

for the terpenoids linalool and D-limonene. Most of the significant SNPs were detected in non-

coding regions, and among the exonic SNPs, most caused synonymous changes (Fig. S4b).  We 

also explored how much of the phenotypic variation was explained by individual markers (Fig. 

S4c). Notably, some significant SNPs individually explained more than 10% of the phenotypic 
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variation observed. For example, a single marker on chromosome 2 explained more than 30% of 

the phenotypic variance associated with 2-undecanone (Fig. S4c).

Candidate Genes. 

Putative protein coding genes were searched for in the regions flanking significant SNPs. 

Functional annotation of these genes pointed to enzymes in VOCs biosynthetic pathways and 

related biological functions (Fig. 1 and Table S1). The most explicit candidate genes were found 

for terpenoid volatiles (Fig. 2). One of the genomic regions associated with both linalool and D-

limonene comprised six linalool synthase encoding genes (Fig. 2). For eucalyptol, eight alpha-

terpineol synthases were predicted in one of the genomic regions (Fig. 2). Moreover, the GO 

term “terpene synthase activity” was overrepresented for genes within candidate regions of these 

volatiles (Table S4). For the carotenoid-derived terpene, geranyl acetone, the enzymes 

mevalonate kinase, zeta-carotene desaturase, and carotenoid cleavage dioxygenase 4 (CDD4) 

were present at distinct genomic regions associated with this volatile (Fig. 1). For the fatty acid-

derived VOCs (hexanal, 1-hexanol, decanal, 2-heptanone, 2-nonanone, and 2-undecanone), 

several enzymes involved in lipid biosynthesis and degradation were detected (Fig. 1). Other 

biologically plausible candidate genes underlying VOC variation at the different genomic 

regions include those potentially involved in plant defense, regulation of transcription, regulation 

of protein abundance through proteasomal degradation, volatile emission through ABC-type 

transporters, VOC degradation, and competition for precursors with adjacent pathways (Table 

S1).  

Heritability of VOCs. 

We accessed the heritability of the 11 VOCs for which significant associations were detected 

using different approaches (Fig. 3). Using the pedigree information, we observed moderate-to-

high heritability values (h²>50%) for most of the metabolites. Remarkably, 1-hexanol, 2-

undecanone, decanal and linalool presented values higher than 97%. Considering the genomic 

heritability based on all SNPs (h²snp), we also observed moderate-to-high values, but with a 

relative lower magnitude when compared to pedigree analyses.  We also used the Bayesian 

Sparse Linear-Mixed Model (BSLMM) to investigate the genetic contribution of sparse (PGE 

parameter) and polygenic components (PVE parameter). The PVE is a Bayesian version of the 
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h²snp and, as expected, both analyses resulted in similar values. The PGE is the proportion of the 

PVE that is explained by markers with large effects, shedding light on the genetic architecture of 

the traits. For most VOCs, we observed PGE values higher than 30%.  Additionally, we divided 

the genetic variance explained by markers in a chromosome-based scheme, and no positive trend 

between phenotypic variance and chromosome length was observed -- as expected for polygenic 

traits (Fig. S5). Altogether, the results from the association mapping, the heritability estimation, 

and the partitioning of the genetic variance by chromosome length corroborated to indicate that 

VOC traits have a simple genetic architecture, with few major loci controlling a large proportion 

of the phenotypic variance. 

Validation and Phenotypic Prediction. 

Marker-assisted selection (MAS) based on candidate loci and genomic selection (GS) based on 

markers covering the whole genome are powerful tools to predict the phenotypic merit of an 

individual and support breeding decisions. Here, we compared the feasibility and efficacy of 

both approaches for implementation in breeding programs targeting VOCs. To this end, a new 

set of individuals (POP2) was phenotyped and genotyped for real validation. POP2 is composed 

of individuals genetically related to the original population (POP1) used in the GWAS analysis 

(Fig. 4a, Figure S6). Subsequently, four different scenarios (SCE) mimicking breeding programs 

were designed for “training" and “testing" partitions (Fig. 4b). In the SCE1, GS models were 

trained and tested within POP1, by systematically splitting the original population into non-

overlapping “training" and “testing" partitions. In this scenario, predictive performances ranged 

from 0.41 to 0.67 for hexanal and 2-nonanone, respectively (Fig. 4c and Figure S7).  The SCE2 

captured GS validations across populations. Compared with SCE1, there were substantial 

decreases in the predictive abilities (Fig. 4c). In order to validate our previous findings in the 

GWAS analysis we designed the SCE3 and SCE4 scenarios, whereby the GWAS hits were used 

as fixed effects in the prediction models across populations (Fig. 4b and Table S5).  In the SCE3, 

also named as “GS de novo GWAS”, most of the validations yielded higher predictive 

performances when compared to SCE2. Notably, for some volatiles, the performances were 

comparable with the results in the SCE1 (Fig. 4c). The MAS approach was represented in SCE4 

(Fig. 4b) and high predictive ability was achieved for most of the VOCs (Fig. 4c), demonstrating 

that a small set of markers (Table S5) can be used for VOC prediction. Overall, the prediction 
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results were aligned with the PGE values (Fig. 3): volatiles with lower PGE values, such as 

hexanal, 1-hexanol and (E)-2-hexenal, showed lower predictive performances (Figure S8).

Sensory Panel. 

To determine the impact of VOCs, soluble solids, and titratable acidity (TA) content on the 

consumer perception, we used a historical set of sensory panel data. Over the course of 6 years, 

consumer panelists rated overall liking, texture, sweetness, sourness and flavor intensity of 24 

cultivars (Table S6). In the correlation analysis, overall liking was strongly and positively 

correlated with soluble solids that, aside other compounds, can be an indicator of sugar content 

(Fig. 5a and Fig. S9). In contrast, TA was negatively correlated with overall liking (Fig. 5a). For 

VOCs, positive and negative trends were observed in the dataset (Fig. 5a and Fig. S9). The 

volatiles 1-hexanol and 2-undecanone were the most positively correlated with overall liking 

(0.48 and 0.43, respectively), while (E)-2-hexanal and eucalyptol were the most negatively 

correlated (-0.75 and -0.56, respectively). To exemplify the importance of the biochemical 

compounds on flavor enhancement, we selected three cultivars for additional comments. 

‘Kestrel’ and ‘Windsor’ have been consistently rated by panelist with high and low scores of 

overall liking, respectively. By contrasting the biochemical profile of both cultivars, the low 

sugar to acid ratio observed in ‘Windsor’ is probably the main difference negatively influencing 

panelists liking scores (Fig. 5b). In addition to sugar and acids, VOCs also play an important role 

on flavor. To exemplify, we selected ‘Kestrel’ and ‘Snowchaser’, two cultivars with similar 

profiles of soluble solids and TA, but displaying distinct volatile profiles and liking scores (Fig. 

5b). ‘Snowchaser’ had higher eucalyptol content; while ‘Kestrel’ had higher linalool content, 

which are likely influencing the flavor perception. 

DISCUSSION

Over the recent decades, it has been generally accepted that the drop-off in flavor quality 

is one of the major sources of consumer dissatisfaction with fresh fruit produce (Bruhn et al., 

1991; Klee, 2010).  Despite its importance, flavor is an expensive and complex trait to be 

routinely evaluated in breeding programs. In this scenario, the use of molecular breeding to track 

flavor-associated metabolites emerges as the best strategy for flavor improvement (Klee, 2010). 

Some breeding programs are already taking advantage of marker-assisted selection to this end 
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(Chambers et al., 2014; Eduardo et al., 2014; Emanuelli et al., 2014). In this study, by using a 

combination of genomics, metabolomics, and sensory panel data, we identified markers 

associated with flavor-related volatiles and showed their real application in a blueberry breeding 

program.  

With a relatively recent domestication history dated from the 1900's, blueberry breeding 

programs still possess a wide variability of flavors to be explored, and unlike other fruits, like 

bananas, there is not a single chemical that represents a typical blueberry flavor. Guided by prior 

findings that the blueberry flavor is influenced by several volatile metabolites (Gilbert et al., 

2013, 2015; Tieman et al., 2017), we first used a metabolomics approach to detect and quantify 

these VOCs in a southern highbush blueberry breeding population. Previous analyses in 

blueberry used a dynamic headspace collection, which provided sensitive and detailed volatile 

profiling (Gilbert et al. 2013, 2015). However, the tissue requirements and current limited 

throughput of dynamic headspace collection system necessitated the development of a 

quantitative and higher throughput volatile screen for a large breeding population. Therefore, we 

developed a liquid extraction-based method that was able to detect most of the volatiles 

previously reported as influential to the human hedonic and sensory perception (Gilbert et al., 

2015). In this study, a total of 17 volatiles from different chemical classes and biosynthetic 

origins were quantified. Among them, aldehydes and alcohols have been frequently associated 

with green, grassy, and herbal flavors as well as the terpene eucalyptol (Klee, 2010; Gilbert et 

al., 2015; Farneti et al., 2017b).   Terpenes like linalool, D-limonene, and geranyl acetone have 

been linked with  floral, fresh, and citrusy flavors (Farneti et al., 2017b). The methyl ketones 2-

nonanone and 2-undecanone have been associated with fruity flavors, while 2-heptanone with 

cheesy and banana-like flavor. Such variability highlights the amplitude of flavors that could be 

explored. 

Although the blueberry volatile landscape has already been characterized in several 

studies (Parliment & Kolor, 1975; Hirvi & Honkanen, 1983; Du et al., 2011; Gilbert et al., 2013; 

Du & Rouseff, 2014; Gilbert et al., 2015; Farneti et al., 2017b), the genetic basis underlying 

VOCs variation among genotypes is still unknown. Through GWAS analyses, we identified 

molecular markers with large effects and showed that few genomic regions were involved in the 

variation of VOCs content in blueberry. Most of the genomic studies addressing volatiles in 

fruits have been performed using traditional QTL mapping (Zini et al., 2005; Doligez et al., 
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2006; Tieman et al., 2006; Duchêne et al., 2009; Dunemann et al., 2009; Costa et al., 2013; 

Eduardo et al., 2013; Paterson et al., 2013; Urrutia et al., 2017), while GWAS has been only 

recently conducted in studies applied to tomato (Sauvage et al., 2014; Zhang et al., 2015; 

Bauchet et al., 2017; Tieman et al., 2017) and apple (Kumar et al., 2015; Farneti et al., 2017a; 

Larsen et al., 2019). When compared to QTL mapping, GWAS increases the mapping resolution 

by making use of more diverse populations with lower levels of linkage disequilibrium and 

higher marker density, which narrows the genomic regions to search for potential candidate 

genes and causal polymorphisms (Korte & Farlow, 2013).  

Herein, we found plausible candidate genes within the genomic windows surrounding 

significant SNPs. The most striking candidate genes were clusters of monoterpene synthases 

found in one of the regions associated with the terpenoids linalool, D-limonene, and eucalyptol. 

Terpene synthases are part of a large family of enzymes that generate the diversity of volatile 

terpenoids found in plants (Bohlmann et al., 1998; Dudareva et al., 2006). These enzymes 

catalyze the first committed step toward the synthesis of terpenoids from substrates derived from 

MEP/MVA pathways. Terpene synthases were also found in QTL regions of terpenes in peach 

(Eduardo et al., 2013; Sánchez et al., 2014), raspberry (Paterson et al., 2013), and carrot 

(Keilwagen et al., 2017). The terpene geranyl acetone is also derived from MEP/MVA pathways 

but it is formed through the oxidative cleavage of carotenoids. In the regions associated with 

geranyl acetone, there were enzymes involved in the early steps of the biosynthetic pathway 

(mevalonate kinase), in the biosynthesis of carotenoids (zeta-carotene desaturase), and in the 

final step of carotenoid cleavage (CDD4) (Yuan et al., 2015). Previous QTLs detected in other 

species have found only carotenoid biosynthetic enzymes in the associated area, suggesting that 

the carotenoid content of the fruits was the determinant of this suite of volatiles (Lewinsohn et 

al., 2005; Tieman et al., 2006, 2017; Klee, 2010). Notably, this is the first study that the authors 

are aware of where a CDD-encoding enzyme was detected in a QTL region for an apocarotenoid 

volatile variation.  For the fatty-acid derivative VOCs (aldehydes, alcohols, and methyl ketones), 

several enzymes involved in the lipid metabolism were detected. The synthesis and degradation 

of fatty acids can have a major impact on downstream volatile synthesis, as suggested in tomato 

studies (Howe & Schilmiller, 2002; Garbowicz et al., 2018). Besides biosynthetic enzymes, 

other biological mechanisms could also be involved in VOCs variation as detected in other 

associated genomics regions.  For example, ABC transporters have been shown to facilitate 
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VOCs emission (Adebesin et al., 2017); cytochrome P450 enzymes can act in volatile 

biosynthesis and modification (Dudareva et al., 2006); transcriptional regulation can induce or 

repress VOCs synthesis and release (Dudareva et al., 2006). Despite finding interesting 

candidates, we did not detect causal polymorphisms in the genes, and functional validation is 

also needed to confirm our hypotheses. It is noteworthy, however, that recent studies have 

revealed that noncoding regulatory regions in plant genomes are highly variable at the species 

level and can impact the expression of hundreds of genes that ultimately alter various traits 

(Yocca et al., 2019). Unfortunately, the noncoding regulatory space remains completely 

unknown in blueberry, and the genotyping approach used herein is unable to assess all types of 

variants that exist between the genotypes. Nonetheless, tightly linked markers are valuable for 

breeding purposes.

Motivated by the possibility to predict volatile content using genomic data, we first 

investigated the use of genomic selection (Meuwissen et al., 2001). High predictive accuracies 

were observed for most of the VOCs, which have also been reported in the plant literature for 

other types of metabolites (Riedelsheimer et al., 2012; Guo et al., 2016; Kainer et al., 2018; 

Schrag et al., 2018). Subsequently, we explored the importance and applicability of our GWAS 

findings for prediction in an independent dataset by using the significant GWAS hits as fixed 

effects into GS models. This GWAS de novo GS framework showed an increase of more than 

20% in the predictive ability for some volatiles (e.g., 2-undecanone), when compared to 

traditional GS methods. Using a similar strategy, gains in predictive performance for other traits 

were also reported in maize (Bernardo, 2014; Rice & Lipka, 2019), sorghum (Rice & Lipka, 

2019), and rice (Spindel et al., 2016).  Finally, an even more promising approach is to use only 

the GWAS hits for MAS, thereby reducing costs associated to genome-wide genotyping. By 

acknowledging the simple genetic nature of each VOC, the MAS approach yielded high 

predictive performances. These results demonstrate the remarkable benefits that molecular 

breeding can achieve for flavor improvements in blueberry, providing a motivation for similar 

studies in other crop species.

Our last contribution concerned unraveling the role of VOCs in sensory analyses. Plants 

synthesize hundreds of VOCs; however, only a small subset generates the “flavor fingerprint” 

recognized by humans (Goff & Klee, 2006). Moreover, some VOCs are going to be positively or 

negatively perceived, affecting the overall liking experience. Regarding the taste components, 
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sugar and acid contents are well-known for their opposite relationship with blueberry overall 

liking (Gilbert et al., 2015), which was also evident in our analyses. Regarding VOCs, hexanal 

and 2-undecanone had a positive correlation with overall liking scores, while (E)-2-hexanal and 

eucalyptol were negatively correlated. Linalool has been pointed out as a key metabolite for the 

characteristic blueberry aroma (Parliment & Kolor, 1975; Hirvi & Honkanen, 1983; Du et al., 

2011); however an overall low positive correlation was detected herein. Nonetheless, when we 

compared two cultivars with similar sugar and acidity profiles (`Kestrel` and `Snowchaser`), the 

contrasting linalool content suggested it does have a positive role on overall liking. Another 

important flavor contributor is eucalyptol. Similar studies also observed that blueberries with 

high eucalyptol content had reduced blueberry liking scores (Gilbert et al., 2015; Farneti et al., 

2017b).  High concentration of eucalyptol is observed in green fruits, with a drastic reduction 

during ripening; raising the hypothesis that eucalyptol may be considered as “not attractive” or as 

a “repellent” metabolite, negatively affecting consumer preferences (Farneti et al., 2017b). 

Overall, by considering our sensory panel results, VOCs should be a significant 

consideration for manipulation in breeding programs focusing on improving flavor, with some 

VOCs targeted to up- or down-concentrations. Moreover, the high heritability values estimated 

for VOCs are promising for achieving faster genetic gains across the generations, especially 

compared with previously values obtained for soluble solids (sugars) and pH (acids) (Cellon et 

al., 2018; de Bem Oliveira et al., 2019). Unlike sugars and acids which are primary sources of 

energy and carbon for plants to metabolize into other compounds, VOCs are metabolic end 

products derived from few major biochemical pathways. For comparison, sugar and acids occur 

at millimolar concentrations in fruits, while VOCs are often present at picomolar to nanomolar 

concentrations. These differences suggest that manipulating VOC accumulation through 

breeding should be easier compared to making meaningful changes in sugar and acid content, 

while having little impact on other metabolic activities. 

Altogether, in this study we have demonstrated how metabolomics, genomics and 

sensory panel data can be combined to implement molecular breeding techniques for flavor 

improvements. Some of the main findings presented herein include: (i) Some VOCs have a 

simple genetic architecture controlled by few genomic regions, with high heritability values, and 

QTLs with major effects; (ii) Some of the associated genomic regions harbored candidate genes 

known to be involved in volatile biosynthetic pathways; (iii) Given the difficulties in 
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phenotyping VOCs, we demonstrated that marker-assisted selection is a feasible and efficient 

tool to be implemented at the scope of breeding programs; (iv) Sensory panel data showed that 

some VOCs modulate consumer preference, indicating the direction of the breeding selection. 

Overall, this work is a promising step toward understanding the genetic basis of VOCs for 

breeding purposes and the role of VOCs on fruit flavor perception. Although this study is applied 

to blueberry, our findings have a broad relevance in the context of plant breeding aiming at the 

improvement of flavor. 
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Brief legends for the Supplemental Information:

Fig. S1: Raw frequency distribution of 17 volatiles 

Fig. S2: SNP density

Fig S3a and S3b: Manhattan plots and the respective quantile-quantile plots

Fig S4: Distribution of GWAS peaks and percentage of phenotypic variation

Fig S5: Chromosomal partition of the variance

Fig S6: Heatmap of the realized genomic matrix 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

Fig S7: Boxplot of the predictive abilities

Fig S8: Linear relationship between PGE and predictive ability 

Fig S9: p-values of the Pearson’s correlation and Principal Component Analysis (PCA)

Table S1: Annotation of candidate genes underlying and flanking significant SNPs related to 

volatile emission in blueberry (Excel file)

Table S2: Scenarios for genomic prediction and marker-assisted selection

Table S3: Number of raw and filtered SNPs used in the GWAS study

Table S4: Gene ontology (GO) enrichment analyses (Excel file) 

Table S5: Molecular markers used as fixed effects for genomic selection

Table S6: Metabolite concentration and hedonic ratings (Excel file)

Full legends for the Figures:

Fig 1: Schematic representation of the pathways leading to the biosynthesis of volatiles detected 

in this study. Volatiles with uncharacterized pathways are indicated with a question mark (?). 

Different color shadings indicate different metabolic pathways. Arrows with triple heads indicate 

multiple steps. Colored asterisks on the pathways indicate the potential enzymatic role of 

candidate genes detected in the significant genomic regions. Chromosomes with significant 

associations in the GWAS analyses are indicated by colored circles in front of each volatile 

organic compound.

Fig2: Significant associations and candidate genes underlying linalool and eucalyptol volatiles. 

a) Manhattan plots showing the significance of each single nucleotide polymorphism (SNP)  

association in the GWAS. The horizontal red lines represent the Bonferroni significance 

threshold. b) Genomic regions harboring biosynthetic enzyme-coding genes (blue and red 

arrows) and the nearest significant SNPs (yellow triangles). LIS and TPS indicate the enzymes 

linalool synthase and alpha-terpineol synthase, respectively. Double bars indicate out of scale. c) 

Pairwise linkage disequilibrium (r2) between significant SNPs along the highlighted genomic 

region.

Fig3: Heritability estimations. h2 refers to pedigree-based heritability; h2snp is the genomic 

heritability computed using molecular markers. For both cases, PVE is the proportion of the 
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phenotypic variance explained by genetic terms. Bayesian Sparse Linear-Mixed Model 

(BSLMM) is a Bayesian version of h2snp, but assuming single nucleotide polymorphism (SNP)  

effects sampled from a point-normal distribution. In BSLMM, the genetic term is divided as: 

PVE is the proportion of phenotypic variance explained by the polygenic term and PGE is the 

proportion of the PVE explained by SNPs with a non-zero effect.

Fig 4: Phenotypic prediction a) Principal component analysis (PCA) of two blueberry 

populations: POP1 represents the original 886 individuals used for the GWAS analysis and 

POP2 is a new set of 552 individuals used for genomic prediction.  b) Four prediction scenarios 

using different approaches: genomic selection (GS) intra and inter-population (all markers 

simultaneously modeled as random effects and predictive ability measured within POP1 and 

across populations), GS de novo GWAS (GWAS hits modeled as fixed effects into GS models 

and cross-validation performed across populations) and marker assisted selection (MAS – only 

the GWAS hits modeled as fixed effects in regression models and cross-validation performed 

across populations). c) Predictive ability for volatile content across the four prediction scenarios.

Fig 5. Sensory analysis. a) Pearson’s correlation between five sensory scores and biochemical 

compounds; b) Comparison of blueberry `Kestrel` and `Windsor`, evidencing the importance of 

sugar to acid ratio on the liking rates. Comparison of `Kestrel` and `Snowchaser`, both cultivars 

with similar content of soluble solids and titratable acidity (TA), but different volatile profiles 

and liking perception. 

Table 1. Classification and summary statistics for the 17 volatile organic compounds detected 

among 886 blueberry individuals. 

Volatile Metabolic Classification CAS Number Aroma Descriptor1 Mean SD

(E)-2-hexenal Fatty acid derivate, aldehyde 6728-263 fresh, green, fruity 65376 1370

decanal Fatty acid derivate, aldehyde 112-31-2 fruity, citrus 12184 283

heptanal Fatty acid derivate, aldehyde 7785-70-8 green, herbal 166.4 3.1

hexanal Fatty acid derivate, aldehyde 66-25-1 fresh, green, fruity 21874 547

nonanal Fatty acid derivate, aldehyde 124-19-6 rose, fresh 346.8 12

(E)-2-hexen-1-ol Fatty acid derivate, alcohol 928-95-0 fresh green, leafy 722.1 22.6
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1-hexanol Fatty acid derivate, alcohol 111-27-3 fruity, sweet green 631.4 14.8

2-heptanone Fatty acid derivate, methyl ketone 110-43-0 fruity, spicy, cheesy 96.4 4.8

2-nonanone Fatty acid derivate, methyl ketone 821-55-6 fruity, earthy 551.7 15

2-undecanone Fatty acid derivate, methyl ketone 112-12-9 fruity, floral 2166.8 38.6

alpha-pinene MVA/MEP, monoterpene 80-56-8 minty 6.1 0.4

D-limonene MVA/MEP, monoterpene 5989-27-5 citrus, fresh, sweet 190.6 11

eucalyptol MVA/MEP, monoterpene 470-82-6 minty, woody, herbal 99.5 6.4

geranyl acetone MVA/MEP, monoterpene 3796-70-1 floral, rosy, sweet 475.9 13.2

linalool MVA/MEP, monoterpene 78-70-6 green, rosy, floral 743.4 22.2

benzaldehyde Phenylpropanoid, benzenoid 122-78-1 sharp, bitter, cherry 8 0.4

methyl salicylate Phenylpropanoid, benzenoid 119-36-8 minty 1.4 0.2

1Aroma descriptors retrieved from Du & Rouseff (2014)

Mean and standard deviation (SD) values are expressed as ng*gFW-1. Volatiles were classified in 

five chemical classes: aldehydes, alcohols, methyl ketones, monoterpenes and benzenoids. 
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