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Summary. A small n, sequential, multiple-assignment, randomized trial (called ‘snSMART’) is
a small sample multistage design where participants may be rerandomized to treatment on the
basis of intermediate end points. This design is motivated by the ‘A randomized multicenter
study for isolated skin vasculitis’ trial (NCT02939573): an on-going snSMART design focusing
on the evaluation of three drugs for isolated skin vasculitis. By formulating an interim decision
rule for removing one of the treatments, we use a Bayesian model and the resulting posterior
distributions to provide sufficient evidence that one treatment is inferior to the other treatments
before enrolling more participants. By doing so, we can remove the worst performing treatment
at an interim analysis and prevent the subsequent participants from receiving the removed
treatment. On the basis of simulation results, we have evidence that the treatment response
rates can still be unbiasedly and efficiently estimated in our new design, especially for the
treatments with higher response rates. In addition, by adjusting the decision rule criteria for
the posterior probabilities, we can control the probability of incorrectly removing an effective
treatment.
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1. Introduction

Asan alternative to a traditional trial design, a small sample (n), sequential, multiple-assignment
randomized trial (called ‘snSMART’) can be used for efficient estimation of treatment effects in
rare diseases (Tamura et al., 2016). snSMART is a multistage design where participants can be
rerandomized at an interim time point on the basis of their responses to initial treatment. The ‘A
randomized multicenter study for isolated skin vasculitis’ trial (which is known as ARAMIS’)
is an on-going snSMART of 90 participants designed to compare the effects of three active
treatments for skin vasculitis (NCT02939573), and the motivating design for our proposed
methods.

In contrast, a traditional sequential, multiple-assignment randomized trial, first proposed by
Lavori and Dawson (2000) and Murphy (2005), is a multistage design that is used to evaluate the
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effects of tailored intervention sequences for treating disease, or dynamic treatment regimens
(Murphy, 2003, 2005), with a relatively large number of participants. Thus, although snSMART
may seem similar to a traditional sequential, multiple-assignment randomized trial the two
designs differ significantly in both their objective and their assumed sample size.

Like traditional clinical trials, investigators may prefer a design that allows for the potential to
remove an inferior treatment arm at an interim point during the trial. Adapting the sasSMART
design to allow for removing a treatment arm may also be favourable to participants because they
are expected to receive a more effective treatment if the worst treatment is removed during the
trial. Currently, no formal group sequential methods exist for an snSMART design, although
many such methods exist for more traditional designs.

Frequentist interim analysis methods for clinical trials have been proposed by Stallard and
Todd (2003), Stallard and Friede (2008) and Magirr et al. (2012). However, those methods
assume that the study has a control arm, and any treatment that is not superior to the control
is removed. However, in our motivating snSMART design, there is no control arm, but rather
three active treatment arms. Shih and Lavori (2013) did propose an alternative method in which
they determined the current observed best treatment at each interim analysis, and all treatments
that are shown to be inferior to the current best treatment are removed.

Bayesian approaches also exist for group sequential designs. Rosner and Berry (1995) focused
on the posterior distribution of the difference in the treatment response rates to determine
superiority at each interim analysis. However, they artificially divided their four treatments into
two groups and performed two within-pair comparisons and one between-pair comparison,
which is a limitation for application to a more general scenario of comparing multiple treatments.
Yin et al. (2012) used the posterior predictive probability of treatment difference to decide early
stopping boundaries in their Bayesian group sequential design. However, similarly to many of
the frequentist methods, Yin ez al. (2012) also selected one treatment as the standard to which all
other treatments were compared. Zhu et al. (2017) and Shi and Yin (2019) developed methods
to control the overall type I error rate in their Bayesian group sequential test, but only in the
scenario of two treatment arms.

In our current work, we propose a Bayesian group sequential design that allows for removal
of a worst performing treatment in snSMART. Similarly to a conventional group sequential
design, before the start of saSMART, we specify the number of interim analyses (looks) and the
criteria for removing an arm at each interim analysis so that we control the overall probability
of removing an arm under the scenario when three treatments have the same response rate. We
describe our method in Section 2 and demonstrate the results of our approach via simulation
in Section 3. We close with a discussion in Section 4.

The programs that were used to analyse the data can be obtained from

https://rss.onlinelibrary.wiley.com/hub/journal/14679876/series-
c-datasets.

2. Design

2.1. Standard snSMART design

2.1.1. General set-up

The two-stage design of our motivating trial, ARAMIS, is shown in Fig. 1(a); the original design
had no interim analyses. In stage 1, participants are randomized equally to one of the three active
treatments and then followed for 6 months, during which response to treatment may occur. In
stage 2, stage 1 responders continue with the same treatment, whereas non-responders are
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Fig. 1. (a) A group sequential sShNSMART design before an arm being removed, which is also an snSMART
design without interim analysis and (b) a group sequential sShNSMART design after treatment A has been
removed: the numbers around the arrows indicate the probabilities that a participant is assigned to the
treatment; R represents randomization to the following treatments; X represents deterministic assignment to
the following treatment
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rerandomized to one of the other two treatments that they did not initially receive. Participants
are then followed for an additional 6 months for the occurrence of response to treatment. The
length of stage 1 is the same as the length of stage 2, and stage 2 begins immediately after stage
1 ends. We emphasize that the term ‘stage’ refers to the fixed period of time from a participant’s
receipt of a treatment to the end of their follow-up for response to that treatment.

2.1.2. Bayesian joint stage model for snSMART

Wei et al. (2018) developed a Bayesian joint stage model (BJSM) to estimate the response rates of
three treatmentsin snSMART with binary outcomes. We briefly present the BISM here because it
is used in both the decision rule that is mentioned in Section 2.2.2 and the estimation of response
rates at the end of a trial. For participanti=1,2,..., N, where N is the number of participants,
treatment j=A,B,C, and stage k=1, 2, we let Yi’k be an indicator of response for participant i
receiving treatment j in stage k. The stage 1 response rate to treatment j is denoted by ;.

We then let 3;j7; denote the stage 2 response rate of the stage 1 responders to treatment j,
with the assumption that ;> 1, so that, if a participant responds in stage 1, they are at least as
likely to respond again to the same treatment in stage 2. For stage 1 non-responders to treatment
Jj» we let By;m; denote the response rate to treatment j' in stage 2, with the assumption that
Boj <1,1.e. stage 1 non-responders are less likely to respond to either of the two other treatments
in stage 2. Wei et al. (2018) referred to 31; and (; as linkage parameters because they link the
stage 1 response rates to the stage 2 response rates.

The BJSM estimates the response rates of three treatments as follows:

Y}, |7 ; ~ Bernoulli(;), (D

Yié|Y,~]i,7Tj, i, B1j,Boj~ Bernoulli{(ﬁlﬂj)yfj‘ (50,/77/)1_1/’!1 1, 2)
mj~beta(f,61), 3)

Boj ~ beta(62, 62), @

B1j~ Pareto(1, c). ®)

Beta priors are used for 7; and (), because we assume that they range from 0 to 1, whereas
the Pareto(l, c) prior is used for 3;; because it requires 3;; > 1. For more details about the
specification of hyperparameters, see Wei et al. (2018). The response rate for each treatment is
estimated from the posterior distribution of 7; by using Markov chain Monte Carlo sampling.

2.2. Group sequential shSMART

2.2.1.  General set-up

In stage 1, randomization will assign equal numbers of participants to each treatment; in con-
trast, the number of participants who are assigned to each treatment in stage 2 will depend on
the proportion of responders in stage 1. Thus, even without interim analyses, more participants
are expected to receive the better treatments in SnNSMART. We now wish to determine whether
we can further increase the number of participants who are assigned to the better treatments if
we allow for the removal of an inferior arm.

In a group sequential snNSMART design, treatment effects are estimated and compared at
each interim analysis (or look) I=1,2,...,L, where L is the maximum number of interim
analyses performed during a trial. Here we shall assume that L =2 so that there are at most two
looks in snSMART. If an interim analysis suggests that one treatment is inferior to the others,
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then the treatment is removed and subsequent participants entering the trial no longer receive
the removed treatment. If none of the treatments is considered inferior after look L, all three
treatments are kept to the end of the trial. We note that ‘stage’ and ‘look’ are two concepts in
our group sequential snSMART design. Stage refers to a period of time that is specific to when
each participant is followed for a response, whereas look refers to a period of time that is specific
to the entire study when the accrued data are analysed in an interim analysis.

If an interim analysis suggests removal of a treatment, the trial continues such that stage 1 non-
responders to that inferior treatment are randomized equally to the two non-inferior treatments,
whereas stage 1 non-responders to each of the non-inferior treatments are deterministically
switched to the non-inferior treatment that they had not received. In addition, stage 1 responders
continue to receive the same treatment in stage 2 regardless of whether or not the treatment has
been removed. An example of a two-stage sSnSMART design after treatment A has been removed
at look [ is demonstrated in Fig. 1(b).

To describe the process of the trial better, we demonstrate an example of a group sequential
snSMART design with two interim analyses, in Fig. 2. Here we assume that three participants
are enrolled in the trial every month, and recruitment continues for 30 months. The interim
analyses are planned after the 30th and 60th patients have completed stage 1. When the stage 1
outcome from the 30th participant has been collected (marked by the first broken box at month
16 in Fig. 2), the first look occurs and response rates are estimated by using the BJSM, and
consideration of removing a treatment is based on the decision rule that is presented in Fig. 3,
the details for which are found in Section 2.2.2. We note that the stage 2 outcomes from some
early participants are available for model fitting when the interim analysis is conducted, but not
all participants will have stage 2 outcomes.

If a treatment is removed at the first look, the second look would not occur. If no arm is
removed at the first look, the second look would occur when the stage 1 outcome from the 60th
participant has been collected (marked by the second broken box at month 26 in Fig. 2). At this
point, whether an arm is removed depends on the result from the BJSM and the decision rule,
but no more looks would be conducted until the final data analysis at the end of the trial. After
the trial has ended, we apply the BJSM to estimate the response rates of the three treatments
using the stage 1 and stage 2 response indicators from all participants. Note that, if the trial had
been designed with only one look, that look could be conducted when the stage 1 outcome from
the 45th participant had been collected.

2.2.2.  Bayesian decision rules

To consider the removal of a treatment arm, we introduce a two-step decision rule based on the
posterior distributions of the response rates at each interim look /. The sample size for each look
[ is N;, which is a cumulative number of all the accrued participants until look /, and the total
sample size for snSMART is denoted by Nt. In our design, an equal number of participants
is accrued between looks, i.e. N;— N;_; = Nt/(L +1). At each look, the BJSM can produce
posterior draws of the response rates of all treatments even though stage 2 outcomes may be
missing from some participants. In this case, the participants who provide Y/z are a subset of
the participants who provide Yill-

Welet P; ;= P(m; >my for all j'# jldata;) denote the interim posterior probability that treat-
ment j has the greatest response rate given the data up to look I, and the posterior probability
Q1= P/(m;<my forall j'# jldata;) denote the interim posterior probability that treatment j
has the smallest response rate given the data up to look I/, where data; are all available Yl.j1 and
Yl/2 for all j=A,B,C atlook I. The first step of the decision rule is based on P;; and the second
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Fig. 3. The detailed procedure of the proposed two-step Bayesian decision rule performed at an interim
analysis /: if a one-step rule is applied, then the procedure starts from computing Q; ;, j=A, B, C

step is based on Q;;, conditionally on the value of P;;. A visual presentation of the detailed
two-step decision rule is shown in Fig. 3.
Specific steps are as follows.

Step I: for each treatment j=A,B,C, compute P;; and compare with the prespecified cut-off
7.
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Step 2:

(a) if Pj; > 7 for any of the j=A,B,C, then compute Q ;; for treatments j' # j and remove
the treatment with higher Q y ;;

(b) if P;; <7 for all j=A,B,C, then compute Q;; for all j and compare the posterior
probability Q ;; with the prespecified cut-off ¢/;. If Q ;; > )y for any of the j=A,B,C,
then remove treatment j. Otherwise, keep all three treatments.

Our two-step approach is quite intuitive. If enough evidence shows that one treatment is best
(step 2(a)), then one of the two inferior treatments should be removed. Similarly, if no single best
treatment is identified, but there is enough evidence that one treatment is worst (step 2(b)), then
the worst treatment should be removed. Since we want to guarantee that at least two treatments
remain until the end of the trial, at most one treatment can be removed at an interim analysis,
after which, no more interim analyses would be conducted. Thus, when we refer to a design with
L looks in the following sections, we mean that at most L looks may take place. If a treatment
arm is removed at an early look, the total number of looks may be smaller than L.

The thresholds 77 and ; that are used in steps 1 and 2 can be selected by a user through a
grid search as follows. First, consider a ‘null’ setting in which all three treatments have the same
response rate (ma =7 =mc). If we let a; denote the probability of incorrectly removing an arm
from the trial at look /, the overall probability of making such an incorrect decision during the
trial is equal to o = ZILZI «y. Thus, for a predefined value of o, we recommend assigning the same
values to each 7; and to each v; in a range from 0.98 to 0.80 with a step size of 0.02. Simulations
are then run with these preassigned 7; and ¢; under the null scenario and the resulting value of
« 1s recorded to obtain an approximate range of values assigned to 77 and «; that all result in
our prespecified ov. We can then apply these values to new ‘non-null’ settings in which all three
treatments do not have the same response rates to assess the probability that an inferior arm is
now correctly dropped.

Without loss of generality, we assume that ma < g < mc. There are four possible scenarios
for the values of these response rates. We describe how our two-step decision rule works in each
of these scenarios.

(a) ma =mp=mc: Pj; > is unlikely to be true for j=A,B,C, meaning that none of the arms
is superior; then Q ;> 1) is also unlikely to be true. The rule results in keeping all three
arms.

(b) ma <mp=mc: Pj;> 7 is unlikely to be true because Pg; and Pc; should be close, but
Qa1 >y is likely to be true. The rule results in removing arm A.

(c) ma=mB <7c: Pc; > is likely to be true. The rule results in removing either arm A or
arm B with nearly identical probabilities.

(d) ma <mB <mc: Pc, > is likely to be true. The rule results in removing arm A more often
than arm B because Qa ;> Op; is more likely to be true.

Although our decision rule is comprised of two steps, we could modify the rule to have
only one step based solely on each Q ;. Specifically, if any of the Q ;; exceeds the prespecified
iy, treatment j should be removed. Thus, in the one-step rule, we consider only inferiority
of a treatment, whereas in the two-step rule we also consider superiority of a treatment. We
investigate the operating characteristics of group sequential sSnSSMART designs with both one-
step and two-step decision rules in Section 3.2.

2.2.3.  Estimation of treatment effects under the decision rule
In snSMART without interim analyses, response rates are estimated by pooling the first and
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second-stage outcomes by using the BISM. We shall show that, because of the sequential ran-
domization, each response rate that is obtained from the BJSM is an unbiased estimate of the
true treatment response rate. In our group sequential snSMART design, it is possible that stage
2 randomization is not conducted for some first-stage responders because one treatment arm is
removed. We now justify that an unbiased estimate of the response rate can be obtained even
when the second-stage treatment allocation is deterministic for some non-responders.

To distinguish from the observed first- and second-stage outcomes Y{ and Yzj (subscript i
is omitted here for simplicity) respectively, we denote the counterfactual outcomes for first-
stage treatment j and second-stage treatment j' by Y;(j) and Y»(j, /). We also denote the first-
and second-stage treatment assignments by J; and J>. Under the consistency assumption, the
individual with observed treatment Ji = j or (Ji,J2) = (J, j)) has the observed outcomes Ylj
and Y2’ equal to his counterfactual outcomes Y| (j) and Y»(j, j/). In addition, randomization
guarantees that the assignment of treatment is independent of the counterfactual outcomes, or
J1 LY1()), J1 LY>(j, ) and Jy L Y»(j, j'). For the first-stage outcomes, under the consistency
assumption and randomization,

P(Y{ =1|J1=j)=P{¥1(j)=1]J1 = j} (consistency)
=P{Yi(j)=1} (first-stage randomization)
=7j.

The observed response rate of participants who did not respond to j in the first stage and
receive j/ in the second stage can be expressed by P(Yzj =1|J1=/, Y{ =0, Jo=/'). Thus, under
the consistency assumption and randomization,

P(Yzj/ =1lh=], Ylj =0,/ =j)=P{a(j,/)=1l/1=], Ylj =0,Lh=/"} (consistency)
=P{Y2(j,/H=1J1=], Y1j=0} (second-stage
randomization)
=P{Y2(j, /) =11J1=j,71(j)) =0} (consistency)
=P{Y>(j,j)=1|Y1(j) =0} (first-stage randomization)
=07

The relationship of observed and true second-stage response rates for first-stage responders
to treatment j can be derived by using a similar approach. Thus, valid inference can be made for
w; with the observed response rates from both stages by using the BJSM in snSMART without
interim analysis, meaning that the estimated response rates from a BJSM are unbiased.

In a group sequential snSMART design, if arm A is removed after an interim analysis,
the subsequent participants are not randomized to A, and the non-responders to B (or C)
in the first-stage are assigned C (or B) in the second-stage deterministically (Fig. 1(b)). The
failure to conduct second-stage randomization may undermine the above derivation such that
P{Y>,(B,CO)=1]|J;=B,Y2 =0, /, =C} # P{Y2(B,C) = 1]J; =B, Y =0}. However, in this spe-
cific case, we see that the condition ‘J, = C’ is equivalent to the condition ‘J; =B and YlB =0,
and this idea can be generalized to situations where other second-stage response rates are of
interest. Thus, P{Y»(B,C)=1|J; =B,YE =0, /,=C}= P{¥>(B,C) =1]J; =B, Y =0} is valid
for group sequential snSMART even if the second-stage randomization does not occur for some
first-stage non-responders, leading to the conclusion that the second-stage response rate of arm
C obtained from the observed outcomes, P(Y2C =1|J/1=B,Y, 1]3 =0, J,=C) is still an unbiased
estimate of the true second-stage response rate, Sog7c.
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3. Simulation

3.1. Data generation
We conducted simulation studies to examine the effect of interim analyses in snSMART in four
specific scenarios:

(@) ma=mg=mc=0.25;

(b) TA= 0.25 and TB=T7TC= 0.5;

(¢) ma=mg=0.25and 7c =0.5;

(d) ma =0.25, 73 =0.45 and wc =0.65.

For analysis with the BJISM, we let 814 =818 =f1c =1.5 and Gya = o = Boc =0.8. The prior
distributions for 7, 81; and fy; are beta(0.4,1.6), Pareto(1, 3) and beta(1.6,0.4) respectively,
which have respective prior means of 0.2, 1.5 and 0.8. The hyperparameters of the prior distri-
butions were chosen on the basis of the prior knowledge of the stage 1 and stage 2 treatment
effects motivated by ARAMIS.

We examined a group sequential siASMART design that uses a maximum of one look and one
that uses a maximum of two looks, as well as a traditional snSMART design with no interim
analyses. The interim analyses will be based on both the one-step and the two-step decision
rules that were described in Section 2.2.2. We also examine accrual rates of two, three and five
participants per month. In all trials, the number of participants was Nt =90 and values for 7
and ¢y in the decision rule were chosen such that the probability of dropping a treatment in
scenario (a) is close to a prespecified value of «=0.1.

3.2.  Simulation results

Table 1 presents a summary of the simulations for all four scenarios when three participants
accrue each month. In Table 1 we wish to see how operating characteristics first change as a
function of the decision rule, and then how they change as a function of the number of interim
analyses.

By comparing the top two rows of Table 1 with the middle two rows, we find that the probability
of correctly removing an arm in scenario (b) is relatively unaffected whether one step or two
steps are used in the decision rule. However, in scenarios (¢) and (d), we see that the two-step
rule performs better than the one-step rule, with an increase of 20-30 percentage points in the
probability of removing a treatment arm. We note that this observed difference in probability of
correctly removing a treatment arm increases as Nt increases (the data are not shown). Thus, a
two-step rule is preferred to a one-step rule.

Next, we compare the middle two rows of Table 1 with the bottom two rows to assess the
effect of moving from one interim analysis to two interim analyses. In all of scenarios (b), (c)
and (d), we see that the probability of correctly removing a treatment arm increases when two
interim analyses are performed relative to one interim analysis. When N1 =300 (the data are not
shown), the benefit of two interim analyses is no longer apparent, mostly because, with such a
large sample size, the probability of correctly removing a treatment arm with one look already
reaches 0.95.

In Fig. 4, we assess how interim analyses impact the number of stage 2 participants who are
assigned to the best treatment in a group sequential snSMART design. The height of each bar
represents the ratio of the number of participants who are assigned to each treatment relative to
the number of participants that would occur in snSMART without interim analyses. In scenario
(a), we see bar heights that are close to 1.0, indicating that interim analyses have little effect on
patient allocation, relative to no interim analyses, because all three response rates are equal.
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Fig. 4. Ratio of the second-stage participant count under a group sequential ShNSMART design with the
given rule (one step or two step) and number of maximum interim analyses (one look or two looks) to the
second-stage participant count under an snSMART design without interim analyses (the four scenarios are
listed in the Section 3.2 and the total number of participants on trial was Nt =90) (=, one step, one look; i,
two steps; one look; m, two steps; two looks): (a) scenario (a); (b) scenario (b); (c) scenario (c); (d) scenario

(d)

In scenarios (b), (c) and (d), we see bars with heights that are greater than 1.0 corresponding
to treatments with the highest response rate and bars with heights that are less than 1.0 for
treatments with the lowest response rate. This indicates that including interim analyses leads
to assigning more participants to the better performing treatments compared with snSMART
without interim analyses. Furthermore, the ratio for the best treatment is highest when the two-
step decision rule is used with two interim analyses, which agrees with the pattern of probabilities
of correctly removing a treatment arm that was shown in Table 1. We obtained a similar pattern
if we focused on the stage 1 participant counts (the data are not shown). Thus, with regard to
participant assignment, a two-step decision rule with two interim analyses is preferred for all
scenarios for Nt =90.

In Table 2, we assess how interim analyses impact the numbers of responders to each treatment
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Table 2. Average numbers of responders to the treatments in the second stage of a standard snSMART
design (snSMART without interim analyses) or a group sequential ShNSMART design with the given type of
rule (one step or two step), for a given number of interim analyses (one look or two looks) under all four
scenarios listed in Section 3.2}

Looks  Steps 7 o Treatment Mean number of treatment responders in stage 2

Scenario (a) Scenario (b) Scenario (¢) Scenario (d)

3 3 3 A 7.52 7.53 7.52 7.53
B 7.41 14.89 7.42 13.39
C 7.50 15.02 15.01 19.51
Total 22.43 37.43 29.95 40.43
1 1 3 089 A 7.29 4.48 6.26 4.17
B 7.25 20.35 6.46 15.96
C 7.24 20.28 21.10 31.86
Total 21.78 45.11 33.81 51.99
1 2 0.95 091 A 7.27 4.55 6.07 3.83
B 7.24 20.31 6.26 16.00
C 7.28 20.14 22.08 32.84
Total 21.79 45.01 34.40 52.67
2 2 096,095 096,095 A 7.27 4.50 5.86 3.78
B 7.27 20.40 6.30 15.86
C 7.34 19.96 22.20 33.21
Total 21.88 44.85 34.36 52.85

TThe mean numbers of responders to each treatment and all treatments are listed for each design under each
scenario. N1 =90.
i Not applicable.

in each scenario. In scenario (a), since all response rates are equal, there are almost equal numbers
of participants responding to each treatment. However, in scenarios (b), (c) and (d), we see that
incorporating interim analyses leads to more responders to the treatments with higher response
rates. Most importantly, when the response rates of three treatments are not equal, a group
sequential design has more responders than that of a design without interim analyses. Together
with the result in Fig. 4, we conclude that group sequential snSMART designs allocate more
participants to the better treatment, and more participants can benefit from their assigned
treatment.

In Fig. 5, we assess the effect of interim analyses on the bias and root-mean-squared error
rMSE of the response rates by using the BISM. We focus solely on a design with two interim
analyses that use the two-step decision rule, as that design was seen to be best in terms of patient
assignment. In general, the interim analysis does appear to lead to a slightly higher bias, but the
overall biases still remain small compared with the true response rates. We note that the bias
corresponding to the worst treatment can be higher than the bias of the other treatments, which
is expected because fewer participants are assigned to the worst treatment. As with bias, rMSE
is impacted to a small degree when interim analyses are incorporated in the design. Although
there is a small effect on the rMSE of the best treatment, the efficiency corresponding to the
worst treatment is compromised in the group sequential snSMART design, again because fewer
participants are assigned to this treatment when interim analyses are used. Furthermore, the
conditional bias by using only the simulations where a treatment arm was removed increased
slightly in the scenarios where

(@) Pgrop was small or
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Fig. 5. (a)—(d) Bias of the estimated response rates under the four scenarios listed in Section 3.2 and
(e)—(h) root-mean-squared error rMSE of the estimated response rates under the same four scenarios (H,
two steps, two looks, meaning the group sequential sSnSMART design using the two-step decision rule with
at most two looks: I, standard snSMART, meaning the snSMART design without interim analyses; the total
number of participants on trial was Nt =90): (a), (e) scenario (a); (b), (f) scenario (b); (c), (g) scenario (c);

(d), (h) scenario (d)



A Group Sequential Multiple-assignment Randomized Trial 677
(b) the response rates of a treatment were small

(the results are not shown). This increase is expected because these biases were calculated by
using the results from fewer simulations and/or fewer participants assigned to a treatment.
When neither of the above conditions was true, the conditional bias was almost as small as the
marginal bias that is shown in Fig. 5.

In Table 3, we examine how the probability of correctly removing a treatment is impacted by
the accrual rate, as faster or slower accrual implies respectively a higher or lower proportion of
participants who have not completed stage 2 by the time of the interim analysis. The top two rows
of Table 3 summarize when accrual is faster (five participants per month), the middle two rows
are the original accrual (three participants per month) and the bottom two rows correspond to
slower accrual (two participants per month).

In scenarios (b), (¢) and (d), we see generally that, as the accrual rate increases, there is a
decrease in the probability of correctly removing a treatment arm, which is likely to be due to
the increasing proportion of missing stage 2 outcomes. Correspondingly, when the accrual rate
is slower, more stage 2 outcomes from participants can be collected for model fitting and there
is an increase in the probability of correctly removing a treatment arm. Nonetheless, although
the slower rate of accrual leads to a slightly higher probability of correctly removing a treatment
arm, the slower rate of accrual also leads to a longer trial. Certainly the rate of accrual will
vary with the rarity of the disease and the number of sites that recruit participants but, overall,
we expect that realistic rates of accrual will only slightly affect the probabilities of correctly
removing a treatment arm.

4. Discussion

We provide a framework for incorporating interim analyses into saSMART potentially to re-
move one of three treatment arms. With the proposed two-step Bayesian decision rule, a group
sequential sSnSMART design with two interim analyses may be more appealing to both those
designing the trial and those participating in the trial. In a group sequential sn\SMART design,
fewer participants are expected to receive the worst treatment and the estimation of the response
rate of the best treatment is not compromised relative to snSMART without interim analyses.
Similarly to traditional group sequential designs, we can control the overall probability of re-
moving an arm under a null scenario when three response rates are equal by using simulations
to determine the values that are used for the cut-off values in the decision rule.

Our group sequential snSMART design can be used more flexibly in real practice. First, the
decision rule proposed can be extended if there are interactions between stage 1 and 2 treatments
that vary depending on which treatments are used. Second, we assumed that interim analyses
were performed when stage 1 outcomes were collected from a fixed number of participants at
equal intervals. Instead, we can easily adjust the design to accommodate interim analyses at any
interval of time. Third, the prior distributions of the response rates and linkage parameters can
also be changed to reflect prior beliefs in the treatment response rates and linkage parameters. We
assumed a Pareto distribution for the linkage parameters 3; because we believed that responders
were more likely to respond again in stage 2 if they had already responded in stage 1. However,
we can change this prior distribution to a gamma or log-normal distribution, which ranges from
0 to oo, under different assumptions for the responders. Similarly, the other prior distributions
and their hyperparameters could differ given the specific trial setting. On the basis of other
simulations (results which are not shown), even if the prior distributions are centred away from
the true parameter values, estimation of the response rates shows little bias.

We note that, in a traditional group sequential design, the number of interim analyses is
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often decided by many factors, including the total sample size, the power under the expected
treatment effect difference and the effort to carry out interim analyses (Jennison and Turnbull,
1999). Practitioners can decide an appropriate number of interim analyses through simulation
studies after the total sample size, power under expected treatment effect difference, rate of
accrual and maximum number of interim analyses have been prespecified in group sequential
snSMART designs. In small sample scenarios, such as 90 participants in our simulations, we
do not recommend more than two interim analyses. A greater number of interim analyses will
not substantially enhance the probability of correctly removing an arm because insufficient
information will be available for decision making at the earlier interim analyses. Furthermore,
if one wants to remove an arm more quickly when some early evidence of strong inferiority
can be identified, then earlier interim analysis would be desired. In contrast, if one wants to be
more conservative about making a decision to remove an arm, a late interim analysis would be
preferred.

Choosing the specific values of response rates under scenario (a) is arbitrary as long as the
three response rates are equal. In our simulations we chose 0.25 as the null response rates
for all three treatments because this response rate was considered ineffective across treatments
for our setting. Although different response rates for scenario (a) might change the chosen
threshold values 77 and 1);, we have found that the small difference in threshold values does
not greatly change the operating characteristics of the group sequential snSMART design in
scenarios (b), (c) and (d) (the data are not shown). In addition, we investigated simulation studies
with different true null response rates, where the threshold values were chosen by assuming
null response rates of 0.25, but the true null response rates were 0.35 or 0.45. For both null
values of 0.35 and 0.45, we found that a =0.09, which was very close to the nominal value of
0.10.

The posterior probabilities Q ;7 ; of the two-step decision rule can be equal in extremely rare
cases because these two probabilities were computed using the posterior draws from Markov
chain Monte Carlo sampling. For example, in scenario (c), where treatments A and B have the
same response rate that is smaller than that of C, it is possible, though very unlikely, that Q4 ;
and Qg are equal at the second step of the decision rule. As a solution, one could randomly
remove one of the two treatments or instead decide not to remove either arm and wait for a
later look to make a decision.

Our group sequential snSMART is preferred for rare disease trials or trials where the rate of
accrual is relatively slow. If patient accrual is much faster than the timing of outcome measure-
ments, most treatment allocations will be completed before interim analyses can be performed.
In this case, the removal of a treatment arm will have a very limited effect in allocating patients
to potentially better treatments.

Our two-step decision rule is currently only applicable to a three-arm trial, where there is
a single best or worst treatment if three treatments do not have the same response rate. Thus,
future work includes the development of a more general decision rule that can be applied
to an snSMART design with more than three arms. Moreover, if many arms are compared
at the same time, we would like to develop a decision rule that can remove more than one
arm.
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