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Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale
extracted imaging information to clinical and biological endpoints. The development of quantita-
tive imaging methods along with machine learning has enabled the opportunity to move data
science research towards translation for more personalized cancer treatments. Accumulating evi-
dence has indeed demonstrated that noninvasive advanced imaging analytics, that is, radiomics,
can reveal key components of tumor phenotype for multiple three-dimensional lesions at multi-
ple time points over and beyond the course of treatment. These developments in the use of CT,
PET, US, and MR imaging could augment patient stratification and prognostication buttressing
emerging targeted therapeutic approaches. In recent years, deep learning architectures have
demonstrated their tremendous potential for image segmentation, reconstruction, recognition, and
classification. Many powerful open-source and commercial platforms are currently available to
embark in new research areas of radiomics. Quantitative imaging research, however, is complex
and key statistical principles should be followed to realize its full potential. The field of radio-
mics, in particular, requires a renewed focus on optimal study design/reporting practices and
standardization of image acquisition, feature calculation, and rigorous statistical analysis for the
field to move forward. In this article, the role of machine and deep learning as a major compu-
tational vehicle for advanced model building of radiomics-based signatures or classifiers, and
diverse clinical applications, working principles, research opportunities, and available computa-
tional platforms for radiomics will be reviewed with examples drawn primarily from oncology.
We also address issues related to common applications in medical physics, such as standardiza-
tion, feature extraction, model building, and validation. © 2019 American Association of Physi-
cists in Medicine [https://doi.org/10.1002/mp.13678]
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1. INTRODUCTION

Radiomics is an emerging area in quantitative image analysis
that aims to relate large-scale data mining of images to clini-
cal and biological endpoints.1 The fundamental idea is that

medical images are much richer in information than what the
human eye can discern. Quantitative imaging features, called
also “radiomic features” can provide richer information about
intensity, shape, size or volume, and texture of tumor pheno-
types using different imaging modalities (e.g., MRI, CT,
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PET, ultrasound, etc.).2 Tumor biopsy-based assays provide
limited tumor characterization as the extracted sample may
not always represent the heterogeneity of the whole patient’s
tumor, while radiomics can comprehensively assess the three-
dimensional (3D) tumor landscape by means of extracting
relevant imaging information.3 It implies that, applying well-
known machine learning methods to radiomic features
extracted from medical images, it is possible to macroscopi-
cally decode the phenotype of many physio-pathological
structures and, in theory, solve the inverse problem of infer-
ring the genotype from the phenotype, providing valuable
diagnostic, prognostic, or predictive information.4,5

The term radiomics originated from other — omics
sciences (e.g., genomics and proteomics) and conveys the
clear intent to invoke personalized medicine based on med-
ical images. It traces its roots to computer-aided detection/
diagnosis (CAD) of medical images.6,7 However, with
recent advances and the diversity of medical imaging
acquisition technologies and processing, radiomics is estab-
lishing itself as an indispensable image analysis and under-
standing tool with applications that transcend diagnosis
into prognosis and prediction approaches for personalizing
patients’ management and their treatment. One of the main
differentiators from CAD consists of the link that radio-
mics has to establish between the current features of a phy-
sio-pathological structure at the time of investigation and
its temporal evolution in order to personalize the therapeu-
tical approach.8 The recent availability of large databases
of digital medical images and annotated information (e.g.,
evolution over time or response to treatment with a given
prescription, clinical, and survival information), the
increase in computational power based on advanced hard-
ware (e.g., GPU, cluster or cloud computing) as well as
the tremendous mathematical and algorithmic development
in areas like machine or deep learning have created favor-
able conditions to untap the potential of the enormous
amount of imaging data wealth that is being generated.

Certainly, the complementarity of other information such
as clinical or laboratory data as well as interaction mea-
surements (e.g., radiogenomics,9 relating imaging to geno-
mics, or exposomics, that is the complementary
information from the interaction of the patient with envi-
ronmental variables) will play a key role to drive future
success of radiomics, such as accuracy and reproducibility,
to levels that are acceptable for routine clinical practice.

Radiomics has been applied to many diseases including
cancer and neurodegenerative diseases to name a few.
Although the examples drawn here are from the cancer
field, the principles presented here are generally universal
across the medical imaging domain. The number of publi-
cations issued in the last years has grown almost exponen-
tially. Although there are many review articles already
about radiomics, its definition, technical details, and appli-
cations in different areas of medicine, the view of radio-
mics as an image mining tool lends itself naturally to
application of machine/deep learning algorithms as compu-
tational instruments for advanced model building of

radiomics-based signatures.9,10 This will be the main sub-
ject of this article, addressing issues related to common
applications in medical physics, standardization, feature
extraction, model building, and validation.

2. OVERVIEW OF RESEARCH AND CLINICAL
APPLICATIONS OF CANCER RADIOMICS

In this section the applications of radiomics to tumor
detection and characterization and prediction of outcome will
be reviewed. All the studies described are retrospective and
mono-institutional, except where noted.

2.A. Radiomics in diagnosis

2.A.1. Cancer detection and auto contouring

The radiomics approach of combining the extraction of
radiomic features with machine learning, can be used
either to detect/diagnose cancer or to automatically contour
the tumor lesion. Methods for radiomics-driven automatic
prostate tumor detection typically use a supervised method
trained on a set of features calculated from multimodality
images.11 For detection of prostate cancer, features were
computed in a 3 9 3 pixels sliding window in multimodal
MRI of prostate. The voxels were tagged as cancerous or
noncancerous using a support vector machine (SVM) clas-
sifier.12 In Algohary et al.13, the prostate was segmented
into areas according to the aggressiveness between malig-
nant and normal regions in the training groups. A voxel-
wise random forest model (RF) with a conditional random
field spatial regulation was used to classify the voxels in
multimodal MRI (T1, Contrast — Enhanced (CE) T1, T2,
and FLAIR) of the brain of glioblastoma multiforme
(GBM) patients into five classes: nontumor region and
four tumor subregions including necrosis, edema, nonen-
hancing area, and enhancing area14 area.12 Convolutional
neural networks have also been applied to segment organs
at risk in head and neck cancer radiotherapy15 and in
lung16 and liver cancers17 compared to traditional methods.

2.A.2. Prediction of histopathology and tumor stage

Radiomics holds the potential to revolutionize the conven-
tional tumor characterization and replace classic approaches
based on macroscopic variables and can be used to distin-
guish between malignant and benign lesions.3 Breast cancer
lesions, automatically detected using connected component
labeling and adaptive fuzzy region growing algorithm, were
classified using radiomic features as benign mass or malig-
nant tumor on digital mammography,18 dynamic contrast-en-
hanced (DCE) MRI, and ultrasound.19 A radiomic model
based on mean apparent diffusion coefficient (ADC), had
better accuracy than radiologist assessment for characteriza-
tion of prostate lesions as clinically significant cancer (Gleason
grade group ≥ 2) during prospective MRI interpretation.20 A
deep learning multiparametric MRI transfer learning method
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has also shown the ability to classify prostate cancer high
grade/low or grade.21 Radiomic models based on CT images
have been used to predict the histopathology (adenocarcinoma
or squamous cell carcinoma)22,23 and PET tumor stage24 of
lung cancer as well as micropapillary patterns in lung adercar-
cinomas.25

2.A.3. Microenvironment and intra-tumor
partitioning

A radiomic signature combining features from CE-CT,
and 18F-FDG PETwas implemented for the presence of high
level of hypoxia in head and neck cancer, defined in terms of
maximum tumor-to-blood uptake ratio > 1.4 in the 18F-
FMISO PET.26 Classification and clustering methods have
been developed for tumor separation into subregions (habitat
imaging), which contributes to the revelation of tumor
heterogeneity, and potential selection of subregions to boost
radiation dose.27 A radiomics analysis focused on a character-
ization of GBM diversity, using various diversity indices to
quantify habitat diversity of the tumor as well as to relate it to
underlying molecular alterations and clinical outcomes.28

2.A.4. Tumor genotype

Significant associations between the radiomic features and
gene-expression patterns were found in lung cancer patients.3

A radiogenomic study demonstrated the associations of
radiomic phenotypes with breast cancer genomic features as
mitochondrial DNA (miRNA) expressions, protein expres-
sions, gene somatic mutations, and transcriptional activities.
In particular, tumor size and enhancement texture had associ-
ations with transcriptional activities of pathways and miRNA
expressions.29 Radiomic models were implemented for
identification of Epithelial Growth Factor Receptor (EGFR)
mutant status from CT through multiple logistic regression
and pairwise selection30 and to decode ALK (anaplastic
lymphoma kinase), ROS1 (c-ros oncogene 1), or RET
(rearranged during transfection) fusions in lung adenocarci-
noma.31

Triple-negative breast cancer (TNBC) is likely to be iden-
tified by considering heterogeneity of background parenchy-
mal enhancement, characterized by quantitative texture
features on DCE-MRI, adds value to such differentiation
models as they are strongly associated with the TNBC sub-
type.32 Furthermore, TNBC has been proven to be differenti-
ated from fibroadenoma using ultrasound (US) radiomics. A
radiomics score obtained by penalized logistic regression
with a least absolute shrinkage and selection operator
(LASSO) analysis showed significant difference between
fibroadenoma and TNBC.33 The extraction of radiomic fea-
tures from MR of GBM was able to predict immunohisto-
chemically identified protein expression patterns.34

Despite large evidence of association among radiomics
and genomics, few preclinical studies have demonstrated cau-
sal relationship between tumor genotype and radiomic. In
one study, HCT116 colorectal carcinoma cells were grown as

xenografts in the flanks of NMRI-nu mice. Then overexpres-
sion of GADD34 gene was induced by administration of
HCT116 doxycycline (dox), or placebo was given. The radio-
mic analysis demonstrated that that gene overexpression
causes change in radiomic features, as many features differed
significantly between the dox-treated and placebo groups.4

2.A.5. Clinical and macroscopic variables

Radiomic features, derived from T2-w and ADC MRI
scan, correlate with clinical variables that are relevant for
patient’s prognosis. These include prostate specific antigen
(PSA) level35 in patients with prostate cancer, and Human
Papilloma Virus (HPV) Status in head and neck squamous
cell carcinoma.36,37 Given the well-known behavior of HPV-
positive head and neck cancer which is likely to respond at a
lower dose of chemoradiation, this opens the way to a CT-
based patient stratification for a dose de-escalation.

2.B. Radiomics in therapy

Because radiomic features can describe histology22 and
genetic footprint29–31 of the tumor, which are correlated with
the tumor aggressiveness, they can be used to build models to
predict the outcome, in terms of local/distant control or sur-
vival, of cancer therapy performed with various therapeutic
options (radio-, chemotherapy, targeted molecular therapy,
immunotherapy, nonionizing radiation) or a combination of
them.

2.B.1. Local control, response, and recurrence

Radiomics predicts response to neoadjuvant chemoradi-
ation assessed at time of surgery for nonsmall cell lung
cancer (NSCLC) and locally advanced rectal cancer.38

Local control in patients treated with stereotactic radio-
therapy for lung cancer was described using a PET and
CT signature developed by using supervised principal
component analysis was developed using features from
PET and CT.39 A radiomic model was developed using
first-order statistics, GLCM, and geometrical measure-
ments computed in T2-w and ADC 3T MRI by RF
approach for biochemical recurrence of prostate cancer
after radiotherapy.35 A total of 126 radiomic features were
extracted using GLCM, GLGCM, Gabor transform, and
GLSZM from contrast-enhanced 3T MRI using T1-w, T2-
w, and DWI sequences to predict the therapeutic response
of nasopharyngeal carcinoma (NPC) to chemoradiother-
apy.40 Deep learning methods with radiomics are also pro-
posed to predict outcomes after liver41 and lung cancers
radiotherapy.

2.B.2. Distant metastases

Radiomic models to predict the development of distant
metastases (DM) from NSCLC on patients treated with
Stereotactic Body Radiotherapy (SBRT) patients for lung
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cancer were developed using features from CT42 or from
PET-CT.39 Valli�eres et al. used texture-based model for the
early evaluation of lung metastasis risk in soft-tissue sarco-
mas43 from pretreatment FDG-PET and MRI scans compris-
ing T1-w and T2-w fat-suppressed sequences (T2FS). A
radiomic signature was developed to predict DM after locally
advanced adenocarcinoma.44 Analysis of the peritumoral
space can provide valuable information regarding the risk of
distant failure, as more invasive tumors may have different
morphologic patterns in the tumor periphery. An SVM classi-
fier was trained to predict distant failure from radiomics anal-
ysis of the peritumoral space.45

2.B.3. Survival

Aerts et al.3 built a radiomic signature consisting of a
combination of four features in a retrospective lung cancer
cohort, which was predictive for survival in head and neck
and NSCLC independent cohorts. One textural feature calcu-
lated from GLCM, SumMean,46 was identified using the
LASSO procedure as an independent predictor of overall sur-
vival that complements metabolic tumor volume (MTV) in
decision tree.47 A radiomic signature was built from PET-CT
for survival after SBRT for lung cancer.39 Deep learning was
also proposed to stratify NSCLC patients according to mor-
tality risk using standard of care CT.48

2.B.4. Molecular targeted therapy

Many tumors commonly overexpress oncogenes such as the
EGFR and respond to molecular targeted therapies such as
EGFR tyrosine kinase inhibitor. From the change in features
between the CT acquisitions before and 3 weeks after therapy it
was possible to identify NSCLC patients responding to treat-
ment with gefitinib.49 A radiomic prediction model was
designed to stratify patients according to progression-free and
overall survival after therapy with antiangiogenic for GBM.50

2.B.5. Immunotherapy

Cancer immunotherapy by immune checkpoint blockade is a
promising treatment modality that is currently under strong
development, and there is a great need for models to select
patients responding to immunotherapy. In a retrospective multi-
cohort study, an eight-feature radiomic signature predictive of
the presence of CD8 T cells, which is related to the tumor-im-
mune phenotype, was developed from CE-CT images, using
elastic-net regularized regression method.51 The signature was
successfully validated on external cohorts for discrimination of
immune phenotype, and for the prediction of survival and
response to anti-PD-1 or PD-L1 immunotherapy.

2.B.6. Delta-radiomics

The longitudinal study of features and of their change dur-
ing the treatment, with the goal of predicting response to ther-
apy, is called delta-radiomics. Features calculated from

pretreatment and weekly intra-treatment CT change signifi-
cantly during radiation therapy (RT) for NSCLC.52 Delta
radiomics could possibly be performed by the Cone Beam
CT (CBCT) devices for image guidance of radiotherapy treat-
ment, thus allowing large-scale study of tumor response to
total dose, fractionation and fraction dose. It has been shown
that reproducible features can be extracted from CBCT53 pre-
dictive for overall survival in NSCLC patients as much as fea-
tures from CT.54 Nevertheless, the studies on CBCT delta-
radiomics are still limited to assessment of feasibility and
reproducibility.55

2.B.7. Prediction of side effects

Radiomics-based models can help early identify the
development of side effects such as radiation induced lung
injury (RILI). The change from pre- to posttreatment (at 3,
6, and 9 months) CT features significantly correlates with
lung injury as scored by oncologist post-SBRT for lung
cancer and was found to be correlated with dose and frac-
tionation.56

A logistic regression-based classifier was constructed to
combine information from multiple features to identify
patients that will develop grade ≥ 2 radiation pneumonitis
among those who received RT for esophageal cancer.57 The
addition of normal lung image features produced superior
model performance with respect to traditional dosimetric and
clinical predictors of radiation pneumonitis (RP), suggesting
that pretreatment CT radiomic features should be considered
in the context of RP prediction. CT radiomic features were
extracted from the total lung volume defined using the treat-
ment-planning scan for RP.58

2.B.8. Differentiation of recurrence from benign
changes

The differentiation of tumor recurrence from benign radia-
tion-induced changes in follow-up images can be a major
challenge for the clinician. A radiomic signature consisting
of five image-appearance features from CT demonstrated
high discriminative capability to differentiate recurrence of
lung tumor from consolidation and opacities in SBRT
patients.59 Similarly, a combination of five radiomic features
from CE-T1w and T2w MR were found to be capable of dis-
tinguishing necrosis from progression in follow-up MR
images in patients treated with Gamma Knife radiosurgery
for brain metastases.60

2.B.9. Nonionizing radiation and other therapies

Radiomic features in MRI respond differently when Laser
interstitial thermal therapy (LITT), a highly promising focal
strategy for low-grade, organ-confined prostate cancer, is
performed on cancer or healthy prostate tissue. A radiomic
signature then could allow to assess if prostate cancer is suc-
cessfully ablated.61 A radiomic model was predictive of com-
plete response after transcatheter arterial chemoembolisation
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combined with high-intensity focused ultrasound treatment in
hepatocellular carcinoma.62

3. RADIOMICS ANALYSIS WITH MACHINE AND
DEEP LEARNING METHODS

3.A. Preprocessing

Prior to radiomics analysis, preprocessing steps need to be
applied to the images, which aim at reducing image noise,
enhancing image quality, enabling the reproducible and com-
parable radiomic analysis. For some imaging modalities, such
as PET, the images should be converted to a more meaningful
representation (standardized uptake value, SUV). Image
smoothing can be achieved by average or Gaussian filters.63

Voxel size resampling is important for datasets that have vari-
able voxel size.64 Specifically, isotropic voxel size is required
for some texture feature extraction. There are two main cate-
gories of interpolation algorithms: Polynomial and spline
interpolation. Nearest neighbor is a zero-order polynomial
method that assigns gray-level values of the nearest neighbor
to the interpolated point. Bilinear or trilinear interpolation
and bicubic or tricubic interpolation are often used for
two-dimensional (2D) in-plane interpolation or 3D cases.
Cubic spline and convolution interpolation are third order
polynomial method that interpolates smoother surface than
linear method, while being slower in implementation. Linear
interpolation is a rather commonly used algorithm, since it
neither leads to the rough blocking artifacts images that
are generated by nearest neighbors, nor will it cause out-of-
range gray levels that might be produced by higher order
interpolation.65

In the context of feature-based radiomics analysis, as dis-
cussed below, the computation of textures would require dis-
cretization of the gray levels (intensity values). There are two
ways to do the discretization: fixed bin number N and fixed
bin width B. For fixed bin number, we first decide a fixed
number of N bins, and the gray levels will be discretized into
these bins using the formula below:

Xd;k ¼ Ng
Xgl;k�Xgl;min

Xgl;max�Xgl;min

h i
þ 1 Xgl;k\Xgl;max

Ng Xgl;k ¼ Xgl;max

(
; (1)

where Xgl;k is the intensity of kth voxel.
For fixed bin width, starting at a minimum Xgl;min, a new

bin will be assigned for every intensity interval of wb. Discre-
tized gray levels are calculated as follow:

Xd;k ¼ Xgl;k � Xgl;min

wb

� �
þ 1: (2)

The fixed bin number method is better when the modality
used is not well calibrated. It maintains the contrast and
makes the images of different patients comparable, but loses
the relationship between image intensity, while fixed bin size
method keeps the direct relationship with the original scale.
Some investigations about the effect of both methods have
shown that fixed bin size method offered better repeatability

and thus may be suitable for intra- and inter-patient studies,
however, this remains a subject of ongoing research.66,67 In
CT radiomics the image pixel intensity maps to the Houns-
field Units (HU) and thus is much more directly comparable
and interpretable. MRI-related modalities are more chal-
lenging since the pixel intensities are not directly inter-
pretable, rather need to normalized relative to some
standard reference (e.g., contralateral brain, or normal
appearing white matter in neuroimaging, psoas muscle in
abdominal imaging, etc.).

3.B. Machine and deep learning algorithms for
radiomics

Machine and deep learning algorithms provide powerful
modeling tools to mine the huge amount of image data avail-
able, reveal underlying complex biological mechanisms, and
make personalized precision cancer diagnosis and treatment
planning possible. Hereafter, two main types — feature-engi-
neered (conventional radiomics) and nonengineered (deep
learning based) radiomics modeling methods — will be
briefly introduced. Generally speaking, machine learning
methods can also be divided into supervised, unsupervised
and semisupervised for both feature-based and featureless
methods. Each of these categories will be briefly discussed in
the following sections. A workflow diagram illustrating the
radiomics analysis process after image acquisition is shown
in Fig. 1.

3.B.1. Feature-engineered radiomics methods

Traditionally, the radiomic features being extracted are
hand-crafted features that capture characteristic patterns in
the imaging data, including shape-based, first-, second-, and
higher order statistical determinants and model-based (e.g.,
fractal) features. Feature-based methods require a segmenta-
tion of the region of interest (ROI), either through a manual,
semiautomated, or automatic methods. Shape-based features
are external representations of a region that characterize the
shape, size, and surface information of the ROIs.68 Typical
metrics include sphericity, and compactness.3,43,69,70 First-
order features (e.g., mean, median) describe the overall inten-
sity and variation of the ROIs, while ignoring spatial rela-
tions.8,24 Second-order (texture) features in contrast can
provide inter-relationships among voxels. Textural features
can be extracted from different matrices, for example, gray-
level co-occurrence matrix (GLCM), gray-level run-length
matrix (GLRLM), etc.35,46,71 Semantic features are another
type of feature that can be extracted from medical images.
These features describe qualitative features of the image typi-
cally used in the radiology workflow.

Hundreds or even thousands of radiomic features are not
uncommon when we deal with outcome modeling. Feature
selection and/or extraction thus is a crucial step that aims at
obtaining the optimal feature subset or feature representation
that correlates most with the endpoint and meanwhile corre-
lates least between each other. After the feature subset is
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obtained, various machine learning algorithms can be applied
based on them. Fourteen feature selection and 12 classifica-
tion methods were evaluated in terms of their predictive per-
formance on two independent lung cancer cohorts.72

Sometimes, the feature selection and model construction can
be implemented together, called the embedded method, such
as least absolute shrinkage and selection operator
(LASSO).73 In contrast, wrapper methods select the features
based on the models’ performance for different subsets of fea-
tures, for which we need to rebuild the model again after fea-
tures are selected, for instance, recursive feature elimination
support vector machines (SVM-RFE). Filter method also sep-
arates the feature selection and model construction processes,
whose uniqueness of it is its independence of the classifier

being used for the subsequent model building, such as Pear-
son correlation-based feature ranking. In any feature selection
method, it is essential to ensure that there is no “double dip-
ping” into the training data for both feature selection, hyper-
parameter optimization, and model selection. Rather the
methods of “nested cross validation” should be used in order
to prevent overfitting or incorrect estimates of generalization.
According to whether or not the labels (ground truths) are
used, feature selection and extraction can be divided into
supervised, unsupervised and semisupervised ways. The
three feature selection methods discussed above are mostly
supervised. Examples of unsupervised methods are principle
component analysis (PCA),74 clustering and t-distributed
stochastic neighbor embedding (t-SNE).75 PCA uses an

FIG. 1. Workflow for radiomics analysis with feature-based (conventional machine learning) and featureless (deep learning) approaches.
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orthogonal linear transformation to convert the data into a
new coordinate system so that large variances are projected to
orthogonal coordinates. Clustering is another feature extrac-
tion algorithm which aims at finding relevant features and
combining them by their cluster centroids based on some
similarity measure, such as K-means and hierarchical cluster-
ing.76 Unsupervised consensus clustering identified robust
imaging subtypes using dynamic CE-MRI data for patients
with breast cancer.77 t-distributed stochastic neighbor embed-
ding is a dimension reduction method capable of retaining
the local structure (pairwise similarity) of data, while reveal-
ing some important global structure.

In the medical field, two types of questions are mainly
investigated, binary problems (classification), such as
whether or not a disease has recurred, the patient is alive
beyond certain time threshold, etc; and survival analysis, that
is able to show if a risk factor or treatment affects time to
event. For the classification problem logistic regression fits
the coefficients of the variables to predict a logit transforma-
tion of the probability of the presence of the event. SVM, fre-
quently used in Computed Aided Diagnosis (CAD)6 and
radiomics,32,59,76,78 learns an optimal hyperplane that sepa-
rates the classes as wide as possible, while trying to balance
with misclassified cases. SVM can also perform non-linear
classification using the “kernel trick” — different basis
functions (e.g., radial basis function), mapping to higher
dimensional feature space. The hyperplane maximizes the
margin between the two classes in a nonlinear feature space.
SVM also tolerates some points on the wrong side of the
boundary, thus improving model robustness and generaliza-
tion.79 RF is based on decision trees, a popular concept in
machine learning especially in the field of medicine,
because their representation of hypotheses as sequential “if-
then” resembles human reasoning.80 RF applies bootstrap
aggregating to decision trees and improve the performance
by lowering the high variance of the trees.81 Risk assessment
models (classification and survival) were constructed via
RFs and imbalance adjustment strategies for locoregional
recurrences and distant metastases in head and neck can-
cer.82

Neural networks, though usually used in the featureless
context, can also be used in conventional feature selection
and modeling.22,38,78 These algorithms are mainly for super-
vised learning, while in particular in the medical field, there
are a lot of data without labeling, in these cases, semisuper-
vised learning can be applied to make use of the unlabeled
data combined with the small amount of labeled data. The
self-training is bootstrapped with additional labeled data
obtained from its predictions.83 The transductive SVM
(TSVM) tries to keep the unlabeled data as far away from the
margin as possible.84 Graph-based methods construct a graph
connecting similar observations and enable the class informa-
tion being transported through the graph.85

For the survival analysis, Cox regression,86 random sur-
vival forests,87 and support vector survival88 methods are also
available to investigate the presence of a set of variables that
may affect survival time. Due to the length limit, we will not

go into the details. Interested readers can refer to the refer-
ences to read more about these algorithms.

3.B.2. Non feature-engineered radiomics methods

Although hand-crafted features introduced above provide
prior knowledge, they also suffer from the tedious designing
process and may not faithfully capture the underlying imag-
ing information. Alternatively, with the development of deep
learning technologies based on multilayer neural networks,
especially the convolutional neural networks (CNN), the
extraction of machine learnt features is becoming widely
applicable recently. In deep learning, the processes of data
representation and prediction (e.g., classification or regres-
sion) are performed jointly.89 In such a case, multistack neu-
ral layers of varying modules (e.g., convolution or pooling)
with linear/nonlinear activation functions perform the task of
learning the representations of data with multiple levels of
abstraction and subsequent fully connected layers are tasked
with classification, for instance. A typical scenario to get
such features is to use the data representation CNN layers as
feature extractor. Each hidden layer module within the net-
work transforms the representation at one level. For example,
the first level may represent edges in an image oriented in a
particular direction, the second may detect motifs in the
observed edges, the third could recognize objects from
ensembles of motifs.89 Patch-/pixel-based machine learning
(PML) methods use pixel/voxel values in images directly
instead of features calculated from segmented objects as in
other approaches.89,90 Thus PML removes the need for seg-
mentation, one of the major sources of variability of radiomic
features. Moreover, the data representation removes the fea-
ture selection portion eliminating associated statistical bias in
the process. For the CNN network, either self-designed (from
scratch) or existing structures, for example, VGG,91 Resnet,92

can be used. Depending on the data size, we can choose to
fix the parameters or fine-tune the network using our data,
also called transfer learning. Instead of using deep networks
as feature extractors, we can use them directly for the whole
modeling process. Similarly to the conventional machine
learning methods, there are also supervised, unsupervised,
and semi-supervised methods. CNN are similar to regular
neural networks, but the architecture is modified to fit to the
specific input of large-scale images. Inspired by the Hubel
and Wiesel’s work on the animal visual cortex,93 local filters
are used to slide over the input space in CNNs, which not
only exploit the strong local correlation in natural images but
also reduce the number of weights significantly by sharing
weights for each filter. Recurrent neural networks (RNN) can
use their internal memory to process sequence inputs and
take the previous output as inputs. There are two popular
types of RNN — Long short-term memory (LSTM)94 and
Gated recurrent units (GRU).95 They were invented to solve
the problem of vanishing gradient for long sequences by
internal gates that are able to learn which data in the sequence
is important to keep or discard. Deep autoencoders (AE),
which are unsupervised learning algorithms, have been
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applied to medical imaging for latent representative feature
extraction. There are variations to the AEs, such as varia-
tional autoencoders that resemble the original AE and varia-
tional Bayesian methods to learn a probability distribution
that represents the data,96 convolutional autoencoders that
preserve spatial locality,97 etc. Another unsupervised method
is the restricted Boltzmann machine (RBM), which is con-
sists of visible and hidden layers.98 The forward pass learns
the probability of activations given the inputs, while the back-
ward pass tries to estimate the probability of inputs given
activations. Thus, the RBMs lead to the joint probability dis-
tribution of inputs and activations. Deep belief networks can
be regarded as a stack of RBMs, where each RBM communi-
cates with previous and subsequent layers. RBMs are quite
similar with AEs, however, instead of using deterministic
units, like RELU, RBMs use stochastic units with certain dis-
tribution. As mentioned above, labeled data are limited, espe-
cially in the medical field. Neural network based
semisupervised approaches combine unsupervised and super-
vised learning by training the supervised network with an
additional loss component from the unsupervised generative
models (e.g., AEs, RBMs).99

Machine learning methods are highly effective with
large number of samples; however, they suffer from overfit-
ting pitfalls with limited training samples. For deep learn-
ing, data augmentation (e.g., by affine transformation of
the images) during training is commonly implemented.
Transfer learning is another way to reduce the difficulty in
training. Using deep models trained on other dataset (natu-
ral images) and then fine-tune on the target dataset. The
structures of the networks can also be modified to reduce
overfitting, such as by adding dropout and batch normaliza-
tion layers. Dropout randomly deactivates a fraction of the
units during training and can be viewed as a regularization
technique that adds noise to the hidden units.100 Batch nor-
malization reduces the internal covariate shift by normaliz-
ing for each training mini-batch.101

Comparing with feature-based methods, deep learning
methods are more flexible and can be used with some
modifications in various tasks. In addition to classification,
segmentation, registration, and lesion detection are widely
explored by deep learning techniques. Fully CNN (FCN),
trained end-to-end, merge features learnt from different
stages in the encoders and then upsampling low-resolution
feature maps by deconvolutions.102 U-Net, built upon
FCN, with the pooling layers being replaced by upsam-
pling layers, resulted in a nearly symmetric U-shaped net-
work.103 Skipping structures combines the context
information with the unsampled feature maps to achieve
higher resolution. CNN, trained end-to-end from clinical
images were directly used for binary classification of skin
cancer and achieved performance on par with experts.104

Chang et al. proposed a multiscale convolutional sparse
coding method that provides an unsupervised solution for
learning transferable base knowledge and fine-tuning it
towards target tasks.105

3.C. Validation and benchmarking of radiomics
models

Once models are developed using the selected predictors,
quantifying the predictive ability of the models (validation) is
necessary. Based on the TRIPOD criteria,106 there are four
types of validation: (1a) developing and validating on the
same data, which gives apparent performance. This evalua-
tion is usually optimistic estimation of the true performance.
(1b) Developing the models using all the data, then using
resampling techniques to evaluate the performance. (2a) Ran-
domly split the data into two groups for development and val-
idation separately. (2b) Split the data nonrandomly (e.g., by
location or time), which is stronger than (2a), (3), and (4).
Develop the model using one data set and validate on sepa-
rate data. It is ideal if there is a separate data set for external
validation, however, in the frequent case that only a single
data set is available, internal validation (1b) is required. Two
popular resampling methods are bootstrapping and cross-val-
idation. Feature selection, which is required before machine
learning, should precede cross-validation, or it will lead to a
selection bias due to the leak of information by the prefilter-
ing of the features.107

Radiomic classifiers output a score that indicates the like-
lihood of one event to happen, and a threshold, to generate
positive or negative predictions according to the task at hand.
For example, fewer false positives would be required if we
are implementing a conservative experiment, thus larger
threshold will be preferred. Classifiers are evaluated using
either a numeric metric (e.g., accuracy), or the so-called con-
fusion matrix, or a graphical representation of performance,
such as a receiver operating characteristic curve (ROC), a 2D
graph with true positive rate being the Y axis, and false posi-
tive rate the X axis. It has the advantage that they show classi-
fier performance without regard to threshold and class
distribution, thus widely used in model evaluation. The area
under an ROC curve (AUC) is more convenient when com-
paring, and is equivalent to the probability that the classifier
will rank a randomly chosen positive instance higher than a
randomly chosen negative instance.108 For survival analysis,
Harrell’s C index109 is commonly used to measure discrimi-
nation ability of the model, which is motivated by Kendall’s
tau correlation. Harrell defines the overall C index as the pro-
portion of all usable pairs in which the predicted risk proba-
bilities and outcomes are concordant (Usable pairs are two
cases that at least one of them is event).110

Kaplan–Meier (KM) curves are used to estimate the sur-
vival function from lifetime data, and also used to compare
different risk groups. The risk groups can be patients that are
treated with certain plan and the control group, or they can be
the outputs from a survival model (e.g., Cox model) that
divides the patients into high- and low-risk groups. It is
highly recommended to visualize confidence intervals of the
curves. The log rank test gives a quantitative evaluation of
the statistical significance of the difference for different
curves, which is also widely provided for KM curves.111
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4. IMPLEMENTATION IN MEDICAL PHYSICS
PRACTICE

4.A. Software tools for radiomics

In most published research studies in radiomics, in-house
developed methods are used. However, some research groups
developed image analysis/radiomic software tools, both com-
mercial and open source, available to the scientific commu-
nity. The main goals of these tools are: (a) to speed up the
development of competences based on more recent skills on
radiomics; (b) to allow reproducibility and comparability of
results from different research groups, and (c) to standardize
both feature definitions and computation methods to guaran-
tee the reliability of radiomic results.112,113

Table I shows a list of the software, web platforms, and
toolkits available free of charge for the extraction of radio-
mics features, along with some of their main functionalities
and relevant information. Given the high pace of radiomic
developments, the list is not exhaustive and does not intend
to cover all possible solutions. Furthermore, considering
recent and increased interest in the radiomic field, many other
dedicated tools are under development. All the open-source
solutions shown in this overview have been implemented by
research teams (MaZda,114 LifeX,115 ePAD,116 Heterogene-
ityCAD,3 PyRadiomics/Radiomics,117 QuantImage,118 the
Texture Analysis Toolbox,43 QIFE,119 IBEX,120 and Medo-
micsLab) and are capable of analyzing CT, MRI, and PET,
some of them can process also other medical images, such as
mammography, radiography, or ultrasound.

Four software programs (MaZda, LifeX, ePAD, IBEX)
offer the possibility of manually or automatically segmenting
medical images. Three toolkits (HeterogeneityCAD, PyRa-
diomics/Radiomics, QIFE) are designed exclusively for the
extraction of features. They can be embedded in more com-
plete solutions (e.g., 3D Slicer121). Morphological, first, sec-
ond, and third order statistical features can be extracted by all
software solutions, except for ePAD. Four of them (TexRAD,
MaZda, PyRadiomics/Radiomics, IBEX) offer also the possi-
bility of extracting features from filtered images. Of note,
MEDomicsLab is an open-source software currently being
developed by a consortium of research institutions, which
will be available in the second half of 2019.

4.B. Commercial programs for radiomics

Commercial software programs are also becoming
increasingly available due to the interest of many medical
device incumbents as well as newcomers such as commercial
spin-off of research groups or de novo start-up companies.
Such software programs can be divided into:

5. RESEARCH PLATFORMS

Research platforms enable the discovery of new signatures
by linking quantitative imaging biomarkers, clinical and
omics data to clinical endpoints. They are usually considered

nonmedical devices in that they do not affect the clinical rou-
tine, run usually on independent workstations, and are not
used to drive clinical decisions. Their main differentiator
from open access software consists of workflow optimization
and efficiency improvements, enabling an automatic, end-to-
end seamless processing pipeline. TexRad�, QIDS�, Radio-
miX, iBiopsy�, and EVIDENS offer research capabilities at
a different level, ranging from simple features extraction to
image filter application and machine learning modules. In the
research mode, these software programs are usually open to
process any 3D image, DICOM or not, up to 2D digital
pathology images (histomics or pathomics).

5.A. Clinically validated software programs

In order to use decision support systems (DSSs), based on
an already discovered signatures and thoroughly validated on
large independent datasets, also known as clinical grade
DSS, in clinical practice, a regulatory clearance is usually
needed, as they fall within the definition of medical devices
in many regulatory systems, for example, class I or II medical
device as a function of their intended use (e.g., mere support
to decision vs a computer-aided diagnosis/prognosis). DSSs
are usually limited to a specific modality, mostly CT, and to a
specific disease in a specific body district: these constraints
come primarily from the intended use definition to which
these DSSs are subjected to be compliantly marketed.

Research tools or clinical grade DSSs can be embedded
into more comprehensive platforms such as Picture Archive
and Communication Systems (PACS), Hospital Information
Systems (HIS), Oncology Information Systems (OIS) or
Treatment Planning Systems (TPS), or being stand-alone.
Usually, large medical device incumbents tend to embed
DSSs into their research or clinical solutions, while newcom-
ers often offer their solution as a standalone system.

It is not unusual that large medical device players embed
open access or commercial software programs to provide
their customers with the possibility of exploring or exploiting
radiomic potential: examples are IntelliSPace Discovery (Phi-
lips, the Netherlands) which interfaces to Pyradiomics,
Advantage Workstation (GE, Buc, France) which interfaces
through a plugin to QuantibTM Brain or Syngo.via Frontier
(Siemens, Erlangen, Germany) which interfaces to Radio-
miX. It is also beneficial to mention the platform (www.en
voyai.com) which offers the possibility of sharing
applications and, once solutions reached the product matu-
rity, to commercialize them.

6. CURRENT CHALLENGES AND
RECOMMENDATIONS

6.A. Interpretability issues

It is recognized that machine learning algorithms tend to
generally trade interpretability for better prediction. Hence,
clinicians are still reluctant to embrace these methods as part
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of their clinical practice, because they have long been per-
ceived them as “black boxe,” meaning that it is difficult to
determine how they arrive at their predictions. For example,
it is difficult to understand deep neural networks due to the
large number of interacting, nonlinear parts.122,123 In order to
improve interpretability of radiomics for the clinician, meth-
ods based on graph approaches can be utilized,124 and in the
context of deep learning better visualization tools are being
developed such as maps highlighting regions of the tumor
that impact the prediction of the deep learning classifier are
also being proposed.123

6.B. Repeatability and reproducibility issues

In radiomics, repeatability is measured by extraction of
features from repeated acquisition of images under identi-
cal or near-identical conditions and acquisition parame-
ters,125 whereas reproducibility or robustness, is assessed
when measuring system or parameters differ. These can be
assessed by use of digital or physical phantoms. Physical
phantoms usually contain inserts of different with different
density, shape, or texture properties in order to produce a
wide range of radiomics feature values. These phantoms
allow to assess the reproducibility or robustness of the
entire workflow, from image acquisition to extraction of
radiomic features. Their major drawback is that they do
not reflect the variability of human anatomy in the clinical
scenario.

A phantom for radiomics was created for use with
CT113 or CBCT126 called Credence Cartridge Radiomics
(CCR) Phantom. This consisted of ten cartridges with dif-
ferent density and texture properties in order to produce a
wide range of radiomics feature values: wood, rubber, cork,
acrylic, and plaster. Phantoms for PET with heterogeneous
lesions have been also proposed, for example, with differ-
ent 3D printed inserts reflecting different heterogeneities in
FDG uptake.127

Digital phantoms are usually scans of patients acquired
under controlled conditions. They are therefore realistic, but
cannot be used for studying radiomic features’ sensitivity to
the image acquisition and its parameters. A dataset consisting
of 31 sets of repeated CT scans acquired approximately
15 min apart is now publicly accessible through The Refer-
ence Image Database to Evaluate Therapy Response
(RIDER). This dataset allows “test-retest” analysis, a compar-
ison of the results from images acquired within a short time
on the same patient.128

6.C. Factors affecting stability

For CT, inter-scanner variability of image features pro-
duces differences in extracted features that are comparable to
the variability in patient images acquired by the same scan-
ner.113 The choice of methods of reconstruction, such as fil-
tered back projection or iterative algorithm, also affect
radiomic feature.129 Smoothing of the image and reducing the

slice thicknesses can improve reproducibility of CT-extracted
features.128,130 In PET imaging, textural features are sensitive
to different acquisition modes,131,132 reconstruction algo-
rithms, and their user-defined parameters such as the number
of iterations, the postfiltering level, input data noise, matrix
size, and discretization bin size.133,134

Radiomic features extracted from MRI scans depend on
the field of view, field strength, reconstruction algorithm, and
slice thickness. Results of the DCE-MRI depend on the con-
trast agent dose, method of administration, and the pulse
sequence used. The radiomic features extracted from DW-
MRI depend on acquisition parameters and conditions as k-
space trajectory, gradient strengths and b-values. The repeata-
bility of MR-based radiomic features has been investigated135

using a ground truth digital phantom of brain glioma patients
and an MRI simulator capable of generating images accord-
ing to different acquisition (field strength, pulse sequence,
arrangement of field coils) and reconstruction methods. It
was found that some features are subject to small changes,
compared with clinical effect size.

In presence of significant respiratory tumor motion as in
the case of lung cancer, conventional PET images are influ-
enced by motion as, because of their relatively long acquisi-
tion times, the counts measured are averaged over multiple
breathing cycles. Respiratory-gated PET accounts for respira-
tory motion and textural features from gated PET have been
found robust.136

Segmentation affects the radiomics workflow, regardless
of the imaging technique, because many extracted features
depend on the segmented region.2,5 Semiautomatic segmen-
tation algorithms may improve the stability of radiomic fea-
tures,137 and recently available fully automatic segmentation
tools may be as accurate as manual segmentation by medical
experts.138

The studies on the comparisons of the performance of
many classifier and feature selection methods indicate that
the choice of classification method is the most dominant
source of models’ predictive performance variability.72

Fourteen feature selection algorithms were compared on a
set of 464 lung cancer patients considering 440 radiomic
variables.76 The feature selection method based on the Wil-
coxon signed-rank (WLCX) test had the highest prognostic
performance with high stability against data perturbation.
Interestingly, WLCX is a simple univariate method based
on ranks, which does not take into account the redundancy
of selected features during feature ranking. In a comparison
of performance of 24 feature selection methods for radio-
mic signature building for lung cancer histology it was
shown that RELIEF with its variants were the best per-
forming methods.22

6.D. Quality, radiomics quality score

The workflow for radiomic studies involves several
steps, from data acquisition, selection, and curation, to fea-
ture extraction, feature selection, and modeling. There is
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an important need that radiomics studies are properly
designed and reported to ensure the field can continue to
develop and produce clinically useful tools and techniques.
A number of issues can arise providing misleading infor-
mation, including imaging artifacts, poor study design,
overfitting of data, and incomplete reporting of results.8,139

Although imaging artifacts are inevitable in medical imag-
ing, consistent imaging parameters may help reduce vari-
ability in radiomic features.126 To minimize the potential of
overfitting of radiomic models, ten patients are needed for
each feature in the final model.140 Ideally, an independent
external validation dataset is also used to confirm the prog-
nostic ability of any radiomic model. The radiomics quality
score (RQS) has recently been developed to assess all
areas of a radiomic study and determine whether it is com-
pliant with best practice procedures,139 emulated from the
TRIPOD initiative previously described.

6.E. Standardization and harmonization

Although research in the field of radiomics has drastically
increased over the past several years, there still remains a lack
of reproducibility and validation of current radiomic models.
There are currently no guidelines and standard definitions for
radiomic features and for constructing these features into clin-
ical models. Current initiatives are underway to improve stan-
dardization and harmonization in radiomic studies.

As a part of radiomic signature validation, there are efforts
to explore distributed feature sharing and model development
across contributing institutions.141 A key component in this
exercise is the assessment and redressal of batch effects142

and confounding variables across contributing sites, so as to
ameliorate systematic yet unmeasured sources of variation.
Another key component is the use of methods to harmonize
data as well as model parameters across study sites, with the

FIG. 2. Radiomics computation workflow as defined by the image biomarker standardization initiative.
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intent of meaningful comparisons across clinical popula-
tion.143 Such efforts are necessary to enable the widespread
and generalizable development of models that are trans-
portable across institutions. In addition to the careful calibra-
tion and stability analysis of radiomic features within
predictive models, there is also a need for ensuring model
robustness through approaches like noise injection.144 Adver-
sarial training approaches from neural networks can have
value in the modern deep learning modeling area by incorpo-
rating not only positive examples but negative ones too.145

The workflow for computing features is complex and involves
many steps, often leading to incomplete reporting of method-
ological information (e.g., texture matrix design choices and
gray-level discretization methods). As a consequence, few

radiomics studies in the current literature can be reproduced
from start to end.

To accelerate the translation of radiomics methods to the
clinical environment, the image biomarker standardization
initiative (IBSI)65 has the goal to provide standard definitions
and nomenclature for radiomic features, reporting guidelines,
and to provide benchmark datasets and values to verify image
processing and radiomic feature calculations. Figure 2 pre-
sents the standardized radiomics workflow defined by the
IBSI. The IBSI aims at standardizing both the computation of
features and the image processing steps required before fea-
ture extraction. For this purpose, a simple digital phantom
was designed and used in Phase 1 of the IBSI to standardize
the computation of 172 features from 11 categories. In Phase

TABLE II. Reporting guidelines on the computation of radiomics features (adapted from Refs. [65] and [146]).

General

Image acquisition Acquisition protocols and scanner parameters: equipment vendor, reconstruction algorithms and filters, field of view and
acquisition matrix dimensions, MRI sequence parameters, PET acquisition time and injected dose, CT x-ray energy (kVp),
exposure (mAs), etc

Volumetric analysis Imaging volumes are analyzed as separate images (2D) or as fully connected volumes (3D)

Workflow structure Sequence of processing steps leading to the extraction of features

Software Software type and version of code used for the computation of features

Image preprocessing

Conversion How data were converted from input images: for example, conversion of PET activity counts to SUV, calculation of ADC
maps from raw DW-MRI signal, etc

Processing Image processing steps taken after image acquisition: for example, noise filtering, intensity nonuniformity correction in
MRI, partial-volume effect corrections, etc

ROI segmentationa,b How regions of interests (ROIs) were delineated in the images: software and/or algorithms used, how many different
persons and what expertise (specialty, experience), how a consensus was obtained if several persons carried out the
segmentation, in automatic or semiautomatic mode, etc

Interpolation

Voxel dimensions Original and interpolated voxel dimensions

Image interpolation method Method used to interpolate voxels values (e.g, linear, cubic, spline, etc.) as well as how original and interpolated grids were
aligned

Intensity rounding Rounding procedures for noninteger interpolated gray levels (if applicable), for example, rounding of Hounsfield units in
CT imaging following interpolation

ROI interpolation method Method used to interpolate ROI masks. Definition of how original and interpolated grids were aligned

ROI partial volume Minimum partial volume fraction required to include an interpolated ROI mask voxel in the interpolated ROI (if applicable):
for example, a minimum partial volume fraction of 0.5 when using linear interpolation

ROI re-segmentation

Inclusion/exclusion criteria Criteria for inclusion and/or exclusion of voxels from the ROI intensity mask (if applicable), for example, the exclusion of
voxels with Hounsfield units values outside a predefined range inside the ROI intensity mask in CT imaging

Image discretization

Discretization method Method used for discretizing image intensities prior to feature extraction: for example, fixed bin number, fixed bin width,
histogram equalization, etc

Discretization parameters Parameters used for image discretization: the number of bins, the bin width and minimal value of discretization range, etc

Feature calculation

Features set Description and formulas of all calculated features

Features parameters Settings used for the calculation of features: voxel connectivity, with or without merging by slice, with or without merging
directional texture matrices, etc

Calibration

Image processing steps Specifying which image processing steps match the benchmarks of the IBSI

Features calculation Specifying which feature calculations match the benchmarks of the IBSI

aIn order to reduce inter-observer variability, automatic and semiautomatic methods are favored.
bIn multimodal applications (e.g., PET/CT, PET/MRI, etc.) ROI definition may involve the propagation of contours between modalities via co-registration. In that case, the
technical details of the registration should also be provided.
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2 of the IBSI, a set of CT images from a lung cancer patient
was used to standardize radiomics image processing steps
using five different combinations of parameters including
volumetric approaches (2D vs 3D), image interpolation, re-
segmentation and discretization methods. The initiative is
now reaching completion and a consensus on image process-
ing and computation of features has been reached over time.

Overall, the use of standardized computation methods
would greatly enhance the reproducibility of radiomics stud-
ies, and it may also lead to standardized software solutions
available to the community. It would also be desirable that
the code of existing software be updated to conform with
standards established by the IBSI. Furthermore, it is essential
to include in radiomics studies the comprehensive description
of feature computation details as defined by the IBSI65 and
Valli�eres et al,146 as shown in Table II. Ultimately, we envi-
sion the use of dedicated ontologies to improve the interoper-
ability of radiomics analyses via consistent tagging of

features, image processing parameters and filters. The Radio-
mics Ontology (www.bioportal.bioontology.org/ontologies/
RO) could provide a standardized means of reporting radio-
mics data and methods, and would more concisely summa-
rize the implementation details of a given radiomics
workflow.

Finally, some guiding principles already exist to help
radiomics scientists further implement the responsible
research paradigm into their current practice. A concise set of
principles for better scientific data management and steward-
ship, the “FAIR guiding principles,”147 stating that all
research objects should be findable, accessible, interoperable,
and reusable. Implementation of the FAIR principles within
the radiomics field could facilitate its faster clinical transla-
tion. First, all methodological details and clinical information
must be clearly reported or described to facilitate repro-
ducibility and comparison with other studies and meta-analy-
ses. Second, models must be tested in sufficiently large

TABLE III. Quality factors in radiomics studies (adapted from Refs. [139] and [146]).

Imaging

Standardized imaging protocols Imaging acquisition protocols are well described and ideally similar across patients. Alternatively, methodological
steps are taken towards standardizing them

Imaging quality assurance Methodological steps are taken to only incorporate acquired images of sufficient quality

Calibration Computation of radiomics features and image processing steps match the benchmarks of the IBSI

Experimental setup

Multi-institutional/external datasets Model construction and/or performance evaluation is carried out using cohorts from different institutions, ideally from
different parts of the world

Registration of prospective study Prospective studies provide the highest level of evidence supporting the clinical validity and usefulness of radiomics
models

Feature selection

Feature robustness The robustness of features against segmentation variations and varying imaging settings (e.g., noise fluctuations, inter-
scanner differences, etc.) is evaluated. Unreliable features are discarded

Feature complementarity The inter-correlation of features is evaluated. Redundant features are discarded

Model assessment

False discovery corrections Correction for multiple testing comparisons (e.g., Bonferroni or Benjamini–Hochberg) is applied in univariate analysis

Estimation of model performance The teaching dataset is separated into training and validation set(s) to estimate optimal model parameters. Example
methods include bootstrapping, cross-validation, random subsampling, etc.

Independent testing A testing set distinct from the teaching set is used to evaluate the performance of complete models (i.e., without
retraining and without adaptation of cutoff values). The evaluation of the performance is unbiased and not used to
optimize model parameters

Performance results consistency Model performance obtained in the training, validation and testing sets is reported. Consistency checks of performance
measures across the different sets are performed

Comparison to conventional metrics Performance of radiomics-based models is compared against conventional metrics such as tumor volume and clinical
variables (e.g., staging) in order to evaluate the added value of radiomics (e.g., by assessing the significance of AUC
increase calculated with the DeLong test)

Multivariable analysis with
non- radiomics variables

Multivariable analysis integrates variables other than radiomics features (e.g., clinical information, demographic data,
panomics, etc.)

Clinical implications

Biological correlate Assessment of the relationship between macroscopic tumor phenotpe(s) described with radiomics and the underlying
microscopic tumor biology

Potential clinical application The study discusses the current and potential application(s) of proposed radiomics-based models in the clinical setting

Material availability

Open data Imaging data, tumor ROI and clinical information are made available

Open code All software code related to computation of features, statistical analysis and machine learning, and allowing to exactly
reproduce results, is open source. This code package is ideally shared in the form of easy-to-run organized scripts
pointing to other relevant pieces of code, along with useful sets of instructions

Open models Complete models are available, including model parameters and cutoff values
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patient datasets distinct from teaching (training and valida-
tion) sets to statistically demonstrate their efficacy over con-
ventional models (e.g., existing biomarkers, tumor volume,
cancer stage, etc.). To allow for optimal reproducibility
potential and further independent testing, all data, final mod-
els and programming code related to a given study needs to
be made available to the community. Table III provides
guidelines that can help to evaluate the quality of radiomics
studies.146 More guidelines on reproducible prognostic mod-
eling can also be found in the TRIPOD statement.106

7. CONCLUSIONS

The field of radiomics is constantly growing within the
field of medical physics and is an exciting opportunity for the
medical physics community to participate in novel research
for the safe translation of quantitative imaging. Machine and
deep learning-based models have the potential to provide
clinicians with DSS to improve diagnosis, treatment selec-
tion, and response assessment in oncology. As the field
expands, the need to associate radiomic features with other
clinical and biological variables will become of increased
importance. The field should also continue to strive for stan-
dardized data collection, evaluation criteria, and reporting
guidelines in order to mature as a field. Data sharing will be
crucial to develop the large-scale datasets needed for proper
validation of radiomic models and there will be a need for
collaborations to validate models across multiple institutions.
In order to move radiomic models into the clinical practice it
is imperative to demonstrate improvements to the clinical
workflow and decision making, through expert observer stud-
ies and eventually clinical trials. Future developments in the
areas of machine and deep learning with their improved bal-
ance of interpretability and prediction will also continue to
advance radiomic studies.
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