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17 Abstract

18 Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale 

19 extracted imaging information to clinical and biological endpoints. The development of quantitative 

20 imaging methods along with machine learning has enabled the opportunity to move data science 

21 research towards translation for more personalized cancer treatments. Accumulating evidence has 

22 indeed demonstrated that non-invasive advanced imaging analytics, i.e., radiomics, can reveal key 

23 components of tumor phenotype for multiple three-dimensional lesions at multiple time points over 

24 and beyond the course of treatment. These developments in the use of CT, PET, US and MR 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t

https://doi.org/10.1002/MP.13678
https://doi.org/10.1002/MP.13678
https://doi.org/10.1002/MP.13678
mailto:mavanzo@cro.it


This article is protected by copyright. All rights reserved

25 imaging could augment patient stratification and prognostication buttressing emerging targeted 

26 therapeutic approaches. In recent years, deep learning architectures have demonstrated their 

27 tremendous potential for image segmentation, reconstruction, recognition, and classification. Many 

28 powerful open-source and commercial platforms are currently available to embark in new research 

29 areas of radiomics. Quantitative imaging research, however, is complex and key statistical 

30 principles should be followed to realize its full potential. The field of radiomics, in particular, 

31 require a renewed focus on optimal study design/reporting practices and standardization of image 

32 acquisition, feature calculation and rigorous statistical analysis for the field to move forward. In this 

33 article, the role of machine and deep learning as a major computational vehicle for advanced model 

34 building of radiomics-based signatures or classifiers, and diverse clinical applications, working 

35 principles, research opportunities and available computational platforms for radiomics will be 

36 reviewed with examples drawn primarily from oncology. We also address issues related to common 

37 applications in medical physics, such as standardization, feature extraction, model building, and 

38 validation.

39 Keywords: Quantitative image analysis, radiomics, machine learning, deep learning.

40 I. Introduction

41 Radiomics is an emerging area in quantitative image analysis that aims to relate large-scale 

42 data mining of images to clinical and biological endpoints1. The fundamental idea is that medical 

43 images are much richer in information than what the human eye can discern. Quantitative imaging 

44 features, called also “radiomic features” can provide richer information about intensity, shape, size 

45 or volume, and texture of tumor phenotypes using different imaging modalities (e.g., MRI, CT, 

46 PET, ultrasound, etc.)2. Tumor biopsy-based assays provide limited tumor characterization as the 

47 extracted sample may not always represent the heterogeneity of the whole patient’s tumor, while 

48 radiomics can comprehensively assess the three-dimensional tumor landscape by means of 

49 extracting relevant imaging information3.  It implies that, applying well-known machine learning 

50 methods to radiomic features extracted from medical images, it is possible to macroscopically 

51 decode the phenotype of many physio-pathological structures and, in theory, solve the inverse 

52 problem of inferring the genotype from the phenotype, providing valuable diagnostic, prognostic or 

53 predictive information4,5. 

54 The term radiomics originated from other –omics sciences (e.g., genomics and proteomics) 

55 and conveys the clear intent to invoke personalized medicine based on medical images. It traces its 

56 roots to computer-aided detection/diagnosis (CAD) of medical images6,7. However, with recent 
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57 advances and the diversity of medical imaging acquisition technologies and processing, radiomics is 

58 establishing itself as an indispensable image analysis and understanding tool with applications that 

59 transcend diagnosis into prognosis and prediction approaches for personalizing patients’ 

60 management and their treatment. One of the main differentiators from CAD consists of the link that 

61 radiomics has to establish between the current features of a physio-pathological structure at the time 

62 of investigation and its temporal evolution in order to personalize the therapeutical approach8. The 

63 recent availability of large databases of digital medical images and annotated information (e.g., 

64 evolution over time or response to treatment with a given prescription, clinical and survival 

65 information), the increase of computational power based on advanced hardware (e.g., GPU, cluster 

66 or cloud computing) as well as the tremendous mathematical and algorithmic development in areas 

67 like machine or deep learning have created favorable conditions to untap the potential of the 

68 enormous amount of imaging data wealth that is being generated.

69 Certainly, the complementarity of other information such as clinical or laboratory data as 

70 well as interaction measurements (e.g., radiogenomics9, relating imaging to genomics, or 

71 exposomics, that is the complementary information from the interaction of the patient with 

72 environmental variables) will play a key role to drive future success of radiomics, such as accuracy 

73 and reproducibility, to levels that are acceptable for routine clinical practice. 

74 Radiomics has been applied to many diseases including cancer and neurodegenerative 

75 diseases to name a few. Although the examples drawn here are from the cancer field, the principles 

76 presented here are generally universal across the medical imaging domain. The number of 

77 publications issued in the last years has grown almost exponentially. Although there are many 

78 review articles already about radiomics, its definition, technical details, and applications in different 

79 areas of medicine, the view of radiomics as an image mining tool lends itself naturally to 

80 application of machine/deep learning algorithms as computational instruments for advanced model 

81 building of radiomics-based signatures9,10. This will be the main subject of this article, addressing 

82 issues related to common applications in medical physics, standardization, feature extraction, model 

83 building, and validation. 

84 II. Overview of Research and Clinical Applications of cancer Radiomics

85 In this section the applications of radiomics to tumor detection and characterization and 

86 prediction of outcome will be reviewed. All the studies described are retrospective and mono-

87 institutional, except where noted. 
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88 A. Radiomics in Diagnosis

89 a. Cancer detection and auto contouring

90 The radiomics approach of combining the extraction of radiomic features with machine 

91 learning, can be used either to detect/diagnose cancer or to automatically contour the tumor lesion. 

92 Methods for radiomics-driven automatic prostate tumor detection typically use a supervised method 

93 trained on a set of features calculated from multi-modality images11. For detection of prostate 

94 cancer, features were computed in a 3×3 pixels sliding window in multimodal MRI of prostate. The 

95 voxels were tagged as cancerous or non-cancerous using a support vector machine (SVM) 

96 classifier12. In Algohary et al.13,  the prostate was segmented into areas according to the 

97 aggressiveness between malignant and normal regions in the training groups. A voxel-wise random 

98 forest model (RF) with a conditional random field spatial regulation was used to classify the voxels 

99 in multimodal MRI (T1, Contrast – Enhanced (CE) T1, T2 and FLAIR) of the brain of glioblastoma 

100 multiforme (GBM) patients into five classes: non-tumor region and four tumor subregions including 

101 necrosis, edema, non-enhancing area, and enhancing area14. area12. Convolutional neural networks 

102 have also been applied to segment organs at risk in head and neck cancer radiotherapy 15 and in 

103 lung16  and liver cancers17 compared to traditional methods.

104 b. Prediction of histopathology and tumor stage 

105 Radiomics holds the potential to revolutionize the conventional tumor characterization and 

106 replace classic approaches based on macroscopic variables and can be used to distinguish between 

107 malignant and benign lesions3. Breast cancer lesions, automatically detected using connected 

108 component labelling and adaptive fuzzy region growing algorithm, were classified using radiomic 

109 features as benign mass or malignant tumor on digital mammography18, dynamic contrast enhanced 

110 (DCE) MRI, and ultrasound19. A radiomic model based on mean apparent diffusion coefficient 

111 (ADC), had better accuracy than radiologist assessment for characterization of prostate lesions as 

112 clinically significant cancer (Gleason grade group ≥ 2) during prospective MRI interpretation20 . A 

113 deep learning multiparametric MRI transfer learning method has also shown the ability to classify 

114 prostate cancer high grade/low or grade 21. Radiomic models based on CT images have been used to 

115 predict the histopathology (adenocarcinoma or squamous cell carcinoma)22,23 and PET tumor 

116 stage24 of lung cancer as well as micropapillary patterns in lung adercarcinomas25. 

117 c. Microenvironment and intra-tumor partitioning 
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118 A radiomic signature combining features from CE-CT, and 18F-FDG PET was implemented 

119 for the presence of high level of hypoxia in head and neck cancer, defined in terms of maximum 

120 tumor-to-blood uptake ratio >1.4 in the 18F-FMISO PET26. Classification and clustering methods 

121 have been developed for tumor separation into subregions (habitat imaging), which contributes to 

122 the revelation of tumor heterogeneity, and potential selection of subregions to boost radiation 

123 dose27. A radiomics analysis focused on a characterization of GBM diversity, using various 

124 diversity indices to quantify habitat diversity of the tumor as well as to relate it to underlying 

125 molecular alterations and clinical outcomes28.

126 d. Tumor genotype

127 Significant associations between the radiomic features and gene-expression patterns were 

128 found in lung cancer patients3. A radiogenomic study demonstrated the associations of radiomic 

129 phenotypes with breast cancer genomic features as mitochondrial DNA (miRNA) expressions, 

130 protein expressions, gene somatic mutations, and transcriptional activities. In particular, tumor size 

131 and enhancement texture had associations with transcriptional activities of pathways and miRNA 

132 expressions29. Radiomic models were implemented for identification of Epithelial Growth Factor 

133 Receptor (EGFR) mutant status from CT through multiple logistic regression and pairwise selection 

134 30 and to decode ALK (anaplastic lymphoma kinase), ROS1 (c-ros oncogene 1), or RET (rearranged 

135 during transfection) fusions in lung adenocarcinoma31. 

136 Triple negative breast cancer (TNBC) is likely to be identified by considering heterogeneity 

137 of background parenchymal enhancement, characterized by quantitative texture features on DCE-

138 MRI, adds value to such differentiation models as they are strongly associated with the TNBC 

139 subtype32. Furthermore, TNBC has been proven to be differentiated from fibroadenoma using 

140 ultrasound (US) radiomics. A radiomics score obtained by penalized logistic regression with a least 

141 absolute shrinkage and selection operator (LASSO) analysis showed significant difference between 

142 fibroadenoma and TNBC33. The extraction of radiomic features from MR of GBM was able to 

143 predict immunohistochemically identified protein expression patterns34. 

144 Despite large evidence of association among radiomics and genomics, few preclinical 

145 studies have demonstrated causal relationship between tumor genotype and radiomic. In one study, 

146 HCT116 colorectal carcinoma cells were grown as xenografts in the flanks of NMRI-nu mice. Then 

147 overexpression of GADD34 gene was induced by administration of HCT116 doxycycline (dox), or 

148 placebo was given. The radiomic analysis demonstrated that that gene overexpression causes 
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149 change in radiomic features, as many features differed significantly between the dox-treated and 

150 placebo groups4.

151 e. Clinical and macroscopic variables

152 Radiomic features, derived from T2-w and ADC MRI scan, correlate with clinical variables 

153 that are relevant for patient’s prognosis. These include prostate specific antigen (PSA) level35 in 

154 patients with prostate cancer, and Human Papilloma Virus (HPV) Status in head and neck 

155 squamous cell carcinoma36,37. Given the well-known behavior of HPV-positive head and  neck 

156 cancer which is likely to respond at a lower dose of chemoradiation, this opens the way to a CT 

157 based patient stratification for a dose de-escalation. 

158 B. Radiomics in therapy

159 Because radiomic features can describe histology22 and genetic footprint 29-31 of the tumor, 

160 which are correlated with the tumor aggressiveness, they can be used to build models to predict the 

161 outcome, in terms of local/distant control or survival, of cancer therapy performed with various 

162 therapeutic options (radio-, chemotherapy, targeted molecular therapy, immunotherapy, non – 

163 ionizing radiation) or a combination of them.

164 a. Local control, response, recurrence

165 Radiomics predicts response to neoadjuvant chemoradiation assessed at time of surgery for 

166 Non-Small Cell Lung Cancer (NSCLC) and locally advanced rectal cancer38. Local control in 

167 patients treated with stereotactic radiotherapy for lung cancer was described using a PET and CT 

168 signature developed by using supervised principal component analysis was developed using 

169 features from PET and CT39. A Radiomic model was developed using first-order statistics, GLCM, 

170 and geometrical measurements computed in T2-w and ADC 3T MRI by RF approach for 

171 biochemical recurrence of prostate cancer after radiotherapy35. A total of 126 radiomic features 

172 were extracted using GLCM, GLGCM, Gabor transform, and GLSZM from contrast-enhanced 3T 

173 MRI using T1-w, T2-w, and DWI sequences to predict the therapeutic response of nasopharyngeal 

174 carcinoma (NPC) to chemoradiotherapy40. Deep learning methods with radiomics are also proposed 

175 to predict outcomes after liver41 and lung cancers radiotherapy.

176 b. Distant metastases

177 Radiomic models to predict the development of distant metastases (DM) from NSCLC on 

178 patients treated with Stereotactic Body Radiotherapy (SBRT) patients for lung cancer were 
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179 developed using features from CT42 or from PET -CT39. Vallières et al. used texture-based model 

180 for the early evaluation of lung metastasis risk in soft-tissue sarcomas43 from pre-treatment FDG-

181 PET and MRI scans comprising T1-w and T2-w fat-suppressed sequences (T2FS). A radiomic 

182 signature was developed to predict DM after locally advanced adenocarcinoma44. Analysis of the 

183 peritumoral space can provide valuable information regarding the risk of distant failure, as more 

184 invasive tumors may have different morphologic patterns in the tumor periphery. An SVM classifier 

185 was trained to predict distant failure from radiomics analysis of the peritumoral space45. 

186 c. Survival

187 Aerts et al.3 built a radiomic signature consisting of a combination of four features in a 

188 retrospective lung cancer cohort, which was predictive for survival in head and neck and NSCLC 

189 independent cohorts. One textural feature calculated from GLCM, SumMean46, was identified using 

190 the LASSO procedure as an independent predictor of overall survival that complements metabolic 

191 tumor volume (MTV) in decision tree47. A radiomic signature was built from PET-CT for survival 

192 after SBRT for lung cancer 39. Deep learning was also proposed to stratify NSCLC patients 

193 according to mortality risk using standard of care CT48.

194 d. Molecular targeted therapy

195 Many tumors commonly overexpress oncogenes such as the EGFR and respond to 

196 molecular targeted therapies such as EGFR tyrosine kinase inhibitor. From the change in features 

197 between the CT acquisitions before and three weeks after therapy it was possible to identify 

198 NSCLC patients responding to treatment with gefitinib49. A radiomic prediction model was 

199 designed to stratify patients according to progression-free and overall survival after therapy with 

200 antiangiogenic for GBM 50. 

201 e. Immunotherapy

202 Cancer immunotherapy by immune checkpoint blockade is a promising treatment modality 

203 that is currently under strong development, and there is a great need for models to select patients 

204 responding to immunotherapy. In a retrospective multicohort study, an eight-feature radiomic 

205 signature predictive of the presence of CD8 T cells, which is related to the tumor-immune 

206 phenotype, was developed from CE-CT images, using elastic-net regularized regression method51. 

207 The signature was successfully validated on external cohorts for discrimination of immune 

208 phenotype, and for the prediction of survival and response to anti-PD-1 or PD-L1 immunotherapy.
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209 f. Delta-radiomics

210 The longitudinal study of features and of their change during the treatment, with the goal of 

211 predicting response to therapy, is called delta-radiomics. Features calculated from pretreatment and 

212 weekly intra-treatment CT change significantly during radiation therapy (RT) for NSCLC52. Delta-

213 radiomics could possibly be performed by the Cone Beam CT (CBCT) devices for image guidance 

214 of radiotherapy treatment, thus allowing large-scale study of tumor response to total dose, 

215 fractionation and fraction dose. It has been shown that reproducible features can be extracted from 

216 CBCT53 predictive for overall survival in NSCLC patients as much as features from CT54. 

217 Nevertheless, the studies on CBCT delta-radiomics are still limited to assessment of feasibility and 

218 reproducibility55.

219 g. Prediction of side effects

220 Radiomics-based models can help early identify the development of side effects such as 

221 radiation induced lung injury (RILI). The change from pre- to post-treatment (at 3, 6, and 9 months) 

222 CT features significantly correlates with lung-injury as scored by oncologist post-SBRT for lung 

223 cancer and was found to be correlated with dose and fractionation56. 

224 A logistic regression–based classifier was constructed to combine information from multiple 

225 features to identify patients that will develop grade ≥2 radiation pneumonitis among those who 

226 received  RT for esophageal cancer57. The addition of normal lung image features produced 

227 superior model performance with respect to traditional dosimetric and clinical predictors of 

228 radiation pneumonitis (RP), suggesting that pre-treatment CT radiomic features should be 

229 considered in the context of RP prediction. CT radiomic features were extracted from the 

230 total lung volume defined using the treatment planning scan for RP 58. 

231 h. Differentiation of recurrence from benign changes

232 The differentiation of tumor recurrence from benign radiation-induced changes in follow-up 

233 images can be a major challenge for the clinician. A radiomic signature consisting of 5 image-

234 appearance features from CT demonstrated high discriminative capability to differentiate recurrence 

235 of lung tumor from consolidation and opacities in SBRT patients59. Similarly, a combination of five 

236 radiomic features from CE-T1w and T2w MR were found to be capable of distinguishing necrosis 

237 from progression in follow up MR images in patients treated with Gamma Knife radiosurgery for 

238 brain metastases60.
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239 i. Non ionizing radiation and other therapies

240 Radiomic features in MRI respond differently when Laser interstitial thermal therapy 

241 (LITT), a highly promising focal strategy for low-grade, organ-confined prostate cancer, is 

242 performed on cancer or healthy prostate tissue. A radiomic signature then could allow to assess if 

243 prostate cancer is successfully ablated61. A radiomic model was predictive of complete response 

244 after transcatheter arterial chemoembolisation combined with high-intensity focused ultrasound 

245 treatment in hepatocellular carcinoma62.

246 III. Radiomics Analysis with Machine and Deep Learning Methods

247 A. Preprocessing

248 Prior to radiomics analysis, preprocessing steps need to be applied to the images, which aim 

249 at reducing image noise, enhancing image quality, enabling the reproducible and comparable 

250 radiomic analysis. For some imaging modalities, such as PET, the images should be converted to a 

251 more meaningful representation (standardized uptake value, SUV). Image smoothing can be 

252 achieved by average or Gaussian filters63. Voxel size resampling is important for datasets that have 

253 variable voxel size64. Specifically, isotropic voxel size is required for some texture feature 

254 extraction. There are two main categories of interpolation algorithms: Polynomial and spline 

255 interpolation. Nearest neighbor is a zero-order polynomial method that assigns grey-level values of 

256 the nearest neighbor to the interpolated point. Bilinear or trilinear interpolation and bicubic or 

257 tricubic interpolation are often used for 2D in-plane interpolation or 3D cases. Cubic spline and 

258 convolution interpolation are third order polynomial method that interpolates smoother surface than 

259 linear method, while being slower in implementation. Linear interpolation is a rather commonly 

260 used algorithm, since it neither leads to the rough blocking artifacts images that are generated by 

261 nearest neighbors, nor will it cause out-of-range grey levels that might be produced by higher order 

262 interpolation65. 

263 In the context of feature-based radiomics analysis, as discussed below, the computation of 

264 textures would require discretization of the grey levels (intensity values). There are two ways to do 

265 the discretization: fixed bin number N and fixed bin width B. For fixed bin number, we first decide 

266 a fixed number of N bins, and the grey levels will be discretized into these bins using the formula 

267 below: 
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268   ,                                                       (1)��,� = {⌊�� ���,�― ���,������,���― ���,���⌋ + 1         ���,� < ���,���      ��                                          ���,� = ���,��� 
269 where  is the intensity of th voxel. ���,� �
270 For fixed bin width, starting at a minimum , a new bin will be assigned for every ���,���
271 intensity interval of .  Discretized grey levels are calculated as follow:��
272                                                                                                                (2)��,� = ⌊���,�― ���,����� ⌋ +1. 

273 The fixed bin number method is better when the modality used is not well calibrated. It 

274 maintains the contrast and makes the images of different patients comparable, but loses the 

275 relationship between image intensity, while fixed bin size method keeps the direct relationship with 

276 the original scale. Some investigations about the effect of both methods have shown that fixed bin 

277 size method offered better repeatability and thus may be suitable for intra- and inter- patient studies, 

278 however, this remains a subject of ongoing research66,67. In CT-radiomics the image pixel intensity 

279 maps to the Hounsfield Units (HU) and thus is much more directly comparable and interpretable. 

280 MRI-related modalities are more challenging since the pixel intensities are not directly 

281 interpretable, rather need to normalized relative to some standard reference (e.g., contralateral brain, 

282 or normal appearing white matter in neuroimaging, psoas muscle in abdominal imaging, etc.). 

283 B. Machine and Deep Learning Algorithms for Radiomics

284 Machine and deep learning algorithms provide  powerful modeling tools to mine the huge amount 

285 of image data available, reveal underlying complex biological mechanisms, and make personalized 

286 precision cancer diagnosis and treatment planning possible. Hereafter,  two main types - feature-

287 engineered (conventional radiomics) and non-engineered (deep learning-based) radiomics modeling 

288 methods – will be briefly introduced. Generally speaking, machine learning methods can also be 

289 divided into supervised, unsupervised and semi-supervised for both feature-based and featureless 

290 methods. Each of these categories will be briefly discussed in the following sections. A workflow 

291 diagram illustrating the radiomics analysis process after image acquisition is shown in Fig. 1. 

292 a. Feature-engineered radiomics methods

293 Traditionally, the radiomic features being extracted are hand-crafted features that capture 

294 characteristic patterns in the imaging data, including shape-based, first-, second-, and higher order 

295 statistical determinants and model-based (e.g. fractal) features. Feature-based methods require a 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

296 segmentation of the region of interest (ROI), either through a manual, semi-automated, or automatic 

297 methods. Shape-based features are external representations of a region, that characterize the shape, 

298 size and surface information of the ROIs68. Typical metrics include sphericity, and 

299 compactness3,43,69,70. First-order features (e.g. mean, median) describe the overall intensity and 

300 variation of the ROIs, while ignoring spatial relations8,24. Second-order (texture) features in contrast 

301 can provide inter-relationships among voxels. Textural features can be extracted from different 

302 matrices, e.g. grey-level co-occurrence matrix (GLCM), grey-level run-length matrix (GLRLM), 

303 etc35,46,71. Semantic features are another type of feature that can be extracted from medical images. 

304 These features describe qualitative features of the image typically used in the radiology workflow. 

305 Hundreds or even thousands of radiomic features are not uncommon when we deal with 

306 outcome modeling. Feature selection and/or extraction thus is a crucial step that aims at obtaining 

307 the optimal feature subset or feature representation that correlates most with the endpoint and 

308 meanwhile correlates least between each other. After the feature subset is obtained, various machine 

309 learning algorithms can be applied based on them. 14 feature selection and 12 classification 

310 methods were evaluated in terms of their predictive performance on two independent lung cancer 

311 cohorts72.  Sometimes, the feature selection and model construction can be implemented together, 

312 called the embedded method, such as least absolute shrinkage and selection operator (LASSO)73. In 

313 contrast, wrapper methods select the features based on the models’ performance for different 

314 subsets of features, for which we need to rebuild the model again after features are selected, for 

315 instance, recursive feature elimination support vector machines (SVM-RFE). Filter method also 

316 separates the feature selection and model construction processes, whose uniqueness of it is its 

317 independence of the classifier being used for the subsequent model building, such as Pearson 

318 correlation-based feature ranking. In any feature selection method, it is essential to ensure that there 

319 is no “double dipping” into the training data for both feature selection, hyperparameter optimization 

320 and model selection. Rather the methods of “nested cross validation” should be used in order to 

321 prevent overfitting or incorrect estimates of generalization. According to whether or not the labels 

322 (ground truths) are used, feature selection and extraction can be divided into supervised, 

323 unsupervised and semi-supervised ways. The three feature selection methods discussed above are 

324 mostly supervised. Examples of unsupervised methods are principle component analysis (PCA)74, 

325 clustering and t-Distributed Stochastic Neighbor Embedding (t-SNE)75. PCA uses an orthogonal 

326 linear transformation to convert the data into a new coordinate system so that large variances are 

327 projected to orthogonal coordinates. Clustering is another feature extraction algorithm which aims 

328 at finding relevant features and combining them by their cluster centroids based on some similarity 

329 measure, such as K-means and hierarchical clustering 76. Unsupervised consensus clustering 
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330 identified robust imaging subtypes using dynamic CE-MRI data for patients with breast cancer77. 

331 tSNE is a dimension reduction method capable of retaining the local structure (pairwise similarity) 

332 of data, while revealing some important global structure. 

333 In the medical field, two types of questions are mainly investigated, binary problems 

334 (classification), such as whether or not a disease has recurred, the patient is alive beyond certain 

335 time threshold, etc; and survival analysis, that is able to show if a risk factor or treatment affects 

336 time to event. For the classification problem logistic regression fits the coefficients of the variables 

337 to predict a logit transformation of the probability of the presence of the event. SVM, frequently 

338 used in Computed Aided Diagnosis (CAD)6 and radiomics32,59,76,78, learns an optimal hyperplane 

339 that separates the classes as wide as possible, while trying to balance with misclassified cases. SVM 

340 can also perform non-linear classification using the “kernel trick” -- different basis functions (e.g. 

341 radial basis function), mapping to higher dimensional feature space. The hyperplane maximizes the 

342 margin between the two classes in a non-linear feature space. SVM also tolerates some points on 

343 the wrong side of the boundary, thus improving model robustness and generalization79. RF is based 

344 on decision trees, a popular concept in machine learning especially in the field of medicine, because 

345 their representation of hypotheses as sequential “if-then” resembles human reasoning80. RF applies 

346 bootstrap aggregating to decision trees and improve the performance by lowering the high variance 

347 of the trees81. Risk assessment models (classification and survival) were constructed via RFs and 

348 imbalance adjustment strategies for locoregional recurrences and distant metastases in head and 

349 neck cancer82

350 Neural networks, though usually used in the featureless context, can also be used in 

351 conventional feature selection and modeling22,38,78. These algorithms are mainly for supervised 

352 learning, while in particular in the medical field, there are a lot of data without labeling, in these 

353 cases, semi-supervised learning can be applied to make use of the unlabeled data combined with the 

354 small amount of labeled data. The self-training is bootstrapped with additional labelled data 

355 obtained from its predictions83. The transductive SVM (TSVM) tries to keep the unlabeled data as 

356 far away from the margin as possible84. Graph-based methods construct a graph connecting similar 

357 observations and enable the class information being transported through the graph85.

358 For the survival analysis, Cox regression86, random survival forests87 and support vector 

359 survival88 methods are also available to investigate the presence of a set of variables that may affect 

360 survival time. Due to the length limit, we will not go into the details. Interested readers can refer to 

361 the references to read more about these algorithms. 
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362 b. Non feature-engineered radiomics methods

363 Though hand-crafted features introduced above provide prior knowledge, they also suffer 

364 from the tedious designing process and may not faithfully capture the underlying imaging 

365 information. Alternatively, with the development of deep learning technologies based on multi-

366 layer neural networks, especially the convolutional neural networks (CNN), the extraction of 

367 machine learnt features is becoming widely applicable recently. In deep learning, the processes of 

368 data representation and prediction (e.g, classification or regression) are performed jointly89. In such 

369 a case, multi-stack neural layers of varying modules (e.g., convolution or pooling) with linear/non-

370 linear activation functions perform the task of learning the representations of data with multiple 

371 levels of abstraction and subsequent fully connected layers are tasked with classification, for 

372 instance. A typical scenario to get such features is to use the data representation CNN layers as 

373 feature extractor. Each hidden layer module within the network transforms the representation at one 

374 level. For example, the first level may represent edges in an image oriented in a particular direction, 

375 the second may detect motifs in the observed edges, the third could recognize objects from 

376 ensembles of motifs89. Patch-/pixel-based machine learning (PML) methods use pixel/voxel values 

377 in images directly instead of features calculated from segmented objects as in other approaches 90,89. 

378 Thus PML removes the need for segmentation, one of the major sources of variability of radiomic 

379 features. Moreover, the data representation removes the feature selection portion eliminating 

380 associated statistical bias in the process.  For the CNN network, either self-designed (from scratch) 

381 or existing structures, e.g. VGG91, Resnet92, can be used. Depending on the data size, we can choose 

382 to fix the parameters or fine tune the network using our data, also called transfer learning. Instead of 

383 using deep networks as feature extractors, we can use them directly for the whole modeling process. 

384 Similarly to the conventional machine learning methods, there are also supervised, unsupervised 

385 and semi-supervised methods. CNN are similar to regular neural networks, but the architecture is 

386 modified to fit to the specific input of large-scale images. Inspired by the Hubel and Wiesel’s work 

387 on the animal visual cortex93, local filters are used to slide over the input space in CNNs, which not 

388 only exploit the strong local correlation in natural images, but also reduce the number of weights 

389 significantly by sharing weights for each filter. Recurrent neural networks (RNN) can use their 

390 internal memory to process sequence inputs and take the previous output as inputs. There are two 

391 popular types of RNN – Long short-term memory (LSTM)94 and Gated recurrent units (GRU)95. 

392 They were invented to solve the problem of vanishing gradient for long sequences by internal gates 

393 that are able to learn which data in the sequence is important to keep or discard. Deep autoencoders 

394 (AE), which are unsupervised learning algorithms, have been applied to medical imaging for latent 

395 representative feature extraction. There are variations to the AEs, such as variational autoencoders 
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396 that resemble the original AE and variational Bayesian methods to learn a probability distribution 

397 that represents the data96, convolutional autoencoders that preserve spatial locality97, etc. Another 

398 unsupervised method is the restricted Boltzmann machine (RBM), which is consists of visible and 

399 hidden layers98. The forward pass learns the probability of activations given the inputs, while the 

400 backward pass tries to estimate the probability of inputs given activations. Thus, the RBMs lead to 

401 the joint probability distribution of inputs and activations. Deep belief networks can be regarded as 

402 a stack of RBMs, where each RBM communicates with previous and subsequent layers. RBMs are 

403 quite similar with AEs, however, instead of using deterministic units, like RELU, RBMs use 

404 stochastic units with certain distribution. As mentioned above, labeled data is limited, especially in 

405 the medical field. Neural network based semi-supervised approaches combine unsupervised and 

406 supervised learning by training the supervised network with an additional loss component from the 

407 unsupervised generative models (e.g. AEs, RBMs)99. 

408 Machine learning methods are highly effective with large number of samples; however, they 

409 suffer from overfitting pitfalls with limited training samples. For deep learning, data augmentation 

410 (e.g. by affine transformation of the images) during training is commonly implemented. Transfer 

411 learning is another way to reduce the difficulty in training. Using deep models trained on other 

412 dataset (natural images) and then fine-tune on the target dataset. The structures of the networks can 

413 also be modified to reduce overfitting, such as, by adding dropout and batch normalization layers. 

414 Dropout randomly deactivates a fraction of the units during training and can be viewed as a 

415 regularization technique that adds noise to the hidden units100. Batch normalization reduces the 

416 internal covariate shift by normalizing for each training mini-batch101.

417 Comparing with feature-based methods, deep learning methods are more flexible and can be 

418 used with some modifications in various tasks. In addition to classification, segmentation, 

419 registration, and lesion detection are widely explored by deep learning techniques. Fully CNN 

420 (FCN), trained end-to-end, merge features learnt from different stages in the encoders and then 

421 upsampling low resolution feature maps by deconvolutions102. Unet, built upon FCN, with the 

422 pooling layers being replaced by upsampling layers, resulted in a nearly symmetric U-shaped 

423 network103. Skipping structures combines the context information with the unsampled feature maps 

424 to achieve higher resolution. CNN, trained end-to-end from clinical images were directly used for 

425 binary classification of skin cancer and achieved performance on par with experts104. Chang et al 

426 proposed a multi-scale convolutional sparse coding method that provides an unsupervised solution 

427 for learning transferable base knowledge and fine-tuning it towards target tasks105.
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428 Fig. 1. Workflow for radiomics analysis with feature-based (conventional machine learning) and 

429 featureless (deep learning) approaches.

430 C. Validation and Benchmarking of Radiomics Models

431 Once models are developed using the selected predictors, quantifying the predictive ability 

432 of the models (validation) is necessary. Based on the TRIPOD criteria106, there are 4 types of 

433 validation: 1a. Developing and validating on the same data, which gives apparent performance. This 

434 evaluation is usually optimistic estimation of the true performance. 1b. Developing the models using 

435 all the data, then using resampling techniques to evaluate the performance. 2a. Randomly split the 

436 data into 2 groups for development and validation separately. 2b. Split the data non-randomly (e.g. by 

437 location or time), which is stronger than 2a. 3 & 4. Develop the model using one data set and validate 

438 on separate data. It is ideal if there is a separate data set for external validation, however, in the 

439 frequent case that only a single data set is available, internal validation (1b) is required. Two popular 

440 resampling methods are bootstrapping and cross-validation. Feature selection, which is required 

441 before machine learning, should precede cross-validation, or it will lead to a selection bias due to the 

442 leak of information by the pre-filtering of the features107.

443 Radiomic classifiers output a score that indicates the likelihood of one event to happen, and 

444 a threshold, to generate positive or negative predictions according to the task at hand. For example, 

445 fewer false positives would be required if we are implementing a conservative experiment, thus 

446 larger threshold will be preferred. Classifiers are evaluated using either a numeric metric (e.g. 

447 accuracy), or the so-called confusion matrix, or a graphical representation of performance, such as a 

448 receiver operating characteristic curve (ROC), a two-dimensional graph with true positive rate being 

449 the Y axis, and false positive rate the X axis. It has the advantage that they show classifier 

450 performance without regard to threshold and class distribution, thus widely used in model evaluation. 

451 The area under an ROC curve (AUC) is more convenient when comparing, and is equivalent to the 

452 probability that the classifier will rank a randomly chosen positive instance higher than a randomly 

453 chosen negative instance108. For survival analysis, Harrell’s C index109 is commonly used to measure 

454 discrimination ability of the model, which is motivated by Kendall’s tau correlation.  Harrell defines 

455 the overall C index as the proportion of all usable pairs in which the predicted risk probabilities and 

456 outcomes are concordant (Usable pairs are two cases that at least one of them is event)110.

457 Kaplan-Meier (KM) curves are used to estimate the survival function from lifetime data, and 

458 also used to compare different risk groups. The risk groups can be patients that are treated with 

459 certain plan and the control group, or they can be the outputs from a survival model (e.g. Cox model) 
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460 that divides the patients into high and low risk groups. It is highly recommended to visualize 

461 confidence intervals of the curves. The log rank test gives a quantitative evaluation of the statistical 

462 significance of the difference for different curves, which is also widely provided for KM curves111. 

463 IV. Implementation in medical physics practice

464 A. Software tools for radiomics

465 In most published research studies in radiomics, in-house developed methods are used. 

466 However, some research groups developed image analysis/radiomic software tools, both 

467 commercial or open source, available to the scientific community. The main goals of these tools 

468 are: 1) to speed up the development of competences based on more recent skills on radiomics; 2) to 

469 allow reproducibility and comparability of results from different research groups, and 3) to 

470 standardize both feature definitions and computation methods to guarantee the reliability of 

471 radiomic results 112,113.

472 Table 1 shows a list of the software, web platforms, and toolkits available free of charge for 

473 the extraction of radiomics features, along with some of their main functionalities and relevant 

474 information. Given the high pace of radiomic developments, the list is not exhaustive and does not 

475 intend to cover all possible solutions. Furthermore, considering recent and increased interest in the 

476 radiomic field, many other dedicated tools are under development. All the open source solutions 

477 shown in this overview have been implemented by research teams (MaZda114, LifeX 115, ePAD116, 

478 HeterogeneityCAD3, PyRadiomics/Radiomics 117, QuantImage 118, the Texture Analysis Toolbox43, 

479 QIFE119, IBEX 120, and MedomicsLab) and are capable of analyzing CT, MRI, and PET, some of 

480 them can process also other medical images, such as mammography, radiography, or ultrasound.

481 Four software programs (MaZda, LifeX, ePAD, IBEX) offer the possibility of manually or 

482 automatically segmenting medical images. Three toolkits (HeterogeneityCAD, 

483 PyRadiomics/Radiomics, QIFE) are designed exclusively for the extraction of features. They can be 

484 embedded in more complete solutions (e.g. 3D Slicer 121).  Morphological, first, second and third 

485 order statistical features can be extracted by all software solutions, except for ePAD. Four of them 

486 (TexRAD, MaZda, PyRadiomics/Radiomics, IBEX) offer also the possibility of extracting features 

487 from filtered images. Of note, MEDomicsLab is an open-source software currently being developed 

488 by a consortium of research institutions, which will be available in the second half of 2019.

489 B. Commercial Programs for radiomics
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490 Commercial software programs are also becoming increasingly available due to the interest 

491 of many medical device incumbents as well as newcomers such as commercial spin-off of research 

492 groups or de novo start-up companies. Such software programs can be divided into:

493 a. Research platforms

494 These platforms enable the discovery of new signatures by linking quantitative imaging 

495 biomarkers, clinical and –omics data to clinical endpoints. They are usually considered non-medical 

496 devices in that they do not affect the clinical routine, run usually on independent workstations, and 

497 are not used to drive clinical decisions. Their main differentiator from open access software consists 

498 of workflow optimization and efficiency improvements, enabling an automatic, end-to-end seamless 

499 processing pipeline. TexRad®, QIDS®, RadiomiX, iBiopsy® and EVIDENS offer research 

500 capabilities at a different level, ranging from simple features extraction to image filter application 

501 and machine learning modules. In the research mode, these software programs are usually open to 

502 process any 3D image, DICOM or not, up to 2D digital pathology images (histomics or pathomics).

503 b. Clinically validated software programs, 

504 In order to use decision support systems (DSSs), based on an already discovered signatures 

505 and thoroughly validated on large independent datasets, also known as clinical grade DSS, in 

506 clinical practice, a regulatory clearance is usually needed, as they fall within the definition of 

507 medical devices in many regulatory systems, e.g., class I or II medical device as a function of their 

508 intended use (e.g. mere support to decision versus a computer aided diagnosis/prognosis). DSSs are 

509 usually limited to a specific modality, mostly CT, and to a specific disease in a specific body 

510 district: these constraints come primarily from the intended use definition to which these DSSs are 

511 subjected to be compliantly marketed.

512 Research tools or clinical grade DSSs can be embedded into more comprehensive platforms 

513 such as Picture Archive and Communication Systems (PACS), Hospital Information Systems (HIS), 

514 Oncology Information Systems (OIS) or Treatment Planning Systems (TPS), or being stand-alone. 

515 Usually, large medical device incumbents tend to embed DSSs into their research or clinical 

516 solutions, while newcomers often offer their solution as a standalone system.

517 It is not unusual that large medical device players embed open access or commercial 

518 software programs to provide their customers with the possibility of exploring or exploiting 

519 radiomic potential: examples are IntelliSPace Discovery (Philips, the Netherlands) which interfaces 

520 to Pyradiomics, Advantage Workstation (GE, Buc, France) which interfaces through a plugin to 
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521 QuantibTM Brain or Syngo.via Frontier (Siemens, Erlangen, Germany) which interfaces to 

522 RadiomiX. It is also beneficial to mention the platform (www.envoyai.com) which offers the 

523 possibility of sharing applications and, once solutions reached the product maturity, to 

524 commercialize them.

525 V. Current challenges and recommendations

526 A. Interpretability issues

527 It is recognized that machine learning algorithms tend to generally trade interpretability for 

528 better prediction. Hence, clinicians are still reluctant to embrace these  methods as part of their 

529 clinical practice, because they have long been perceived them as “black boxes”, meaning that it is 

530 difficult to determine how they arrive at their predictions. For example, it is difficult to understand 

531 deep neural networks due to the large number of interacting, non-linear parts 122,123. In order to 

532 improve interpretability of radiomics for the clinician, methods based on graph approaches can be 

533 utilized124, and in the context of deep learning better visualization tools are being developed such as 

534 maps highlighting regions of the tumor that impact the prediction of the deep learning classifier are 

535 also being proposed 123.

536 B. Repeatability and Reproducibility issues

537 In radiomics, repeatability is measured by extraction of features from repeated acquisition of 

538 images under identical or near-identical conditions and acquisition parameters125, whereas 

539 reproducibility or robustness, is assessed when measuring system or parameters differ. These can be 

540 assessed by use of digital or physical phantoms. Physical phantoms usually contain inserts of 

541 different with different density, shape or texture properties in order to produce a wide range of 

542 radiomics feature values. These phantoms allow to assess the reproducibility or robustness of the 

543 entire workflow, from image acquisition to extraction of radiomic features. Their major drawback is 

544 that they do not reflect the variability of human anatomy in the clinical scenario.

545 A phantom for radiomics was created for use with CT 113 or CBCT126 called Credence 

546 Cartridge Radiomics (CCR) Phantom.  This consisted of 10 cartridges with different density and 

547 texture properties in order to produce a wide range of radiomics feature values: wood, rubber, cork, 

548 acrylic, and plaster. Phantoms for PET with heterogeneous lesions have been also proposed, e.g. 

549 with different 3D printed inserts reflecting different heterogeneities in FDG uptake127.
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550 Digital phantoms are usually scans of patients acquired under controlled conditions. They 

551 are therefore realistic, but cannot be used for studying radiomic features’ sensitivity to the image 

552 acquisition and its parameters. A dataset consisting of 31 sets of repeated CT scans acquired 

553 approximately 15 minutes apart is now publicly accessible through The Reference Image Database 

554 to Evaluate Therapy Response (RIDER). This dataset allows “test-retest” analysis, a comparison of 

555 the results from images acquired within a short time on the same patient128.

556 C. Factors affecting stability

557 For CT, inter-scanner variability of image features produces differences in extracted features 

558 that are comparable to the variability in patient images acquired by the same scanner113. The choice 

559 of methods of reconstruction, such as filtered back projection or iterative algorithm, also affect 

560 radiomic feature129. Smoothing of the image and reducing the slice thicknesses can improve 

561 reproducibility of CT-extracted features128,130. In PET imaging, textural features are sensitive to 

562 different acquisition modes 131,132, reconstruction algorithms, and their user-defined parameters such 

563 as the number of iterations, the post-filtering level, input data noise, matrix size, and discretization 

564 bin size133,134. 

565 Radiomic features extracted from MRI scans depend on the field of view, field strength, 

566 reconstruction algorithm and slice thickness. Results of the DCE MRI depend on the contrast agent 

567 dose, method of administration, and the pulse sequence used. The radiomic features extracted from 

568 DW-MRI depend on acquisition parameters and conditions as k-space trajectory, gradient strengths 

569 and b-values. The repeatability of MR-based radiomic features has  been investigated135 using a 

570 ground truth digital phantom of brain glioma patients and an MRI simulator capable of generating 

571 images according to different acquisition (field strength, pulse sequence, arrangement of field coils) 

572 and reconstruction methods. It was found that some features are subject to small changes, compared 

573 with clinical effect size.

574 In presence of significant respiratory tumor motion as in the case of lung cancer, 

575 conventional PET images are influenced by motion as, because of their relatively long acquisition 

576 times, the counts measured are averaged over multiple breathing cycles. Respiratory-gated PET 

577 accounts for respiratory motion and textural features from gated PET have been found robust136.

578 Segmentation affects the radiomics workflow, regardless of the imaging technique, because 

579 many extracted features depend on the segmented region2,5. Semiautomatic segmentation 
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580 algorithms may improve the stability of radiomic features137, and recently available fully automatic 

581 segmentation tools may be as accurate as manual segmentation by medical experts138.

582 The studies on the comparisons of the performance of many classifier and feature selection 

583 methods indicate that the choice of classification method is the most dominant source of models’ 

584 predictive performance variability 72. Fourteen feature selection algorithms were compared on a set 

585 of 464 lung cancer patients considering 440 radiomic variables 76. The feature selection method 

586 based on the Wilcoxon signed-rank (WLCX) test had the highest prognostic performance with high 

587 stability against data perturbation. Interestingly, WLCX is a simple univariate method based on 

588 ranks, which does not take into account the redundancy of selected features during feature ranking. 

589 In a comparison of performance of 24 feature selection methods for radiomic signature building for 

590 lung cancer histology it was shown that RELIEF with its variants were the best performing 

591 methods22.

592 D. Quality, Radiomics quality score  

593 The workflow for radiomic studies involves several steps, from data acquisition, selection, 

594 and curation, to feature extraction, feature selection, and modelling. There is an important need that 

595 radiomics studies are properly designed and reported to ensure the field can continue to develop and 

596 produce clinically useful tools and techniques. A number of issues can arise providing misleading 

597 information, including imaging artifacts, poor study design, overfitting of data, and incomplete 

598 reporting of results8,139. Although imaging artifacts are inevitable in medical imaging, consistent 

599 imaging parameters may help reduce variability in radiomic features126. To minimize the potential 

600 of overfitting of radiomic models, 10 patients are needed for each feature in the final model140. 

601 Ideally, an independent external validation dataset is also used to confirm the prognostic ability of 

602 any radiomic model. The radiomics quality score (RQS) has recently been developed to assess all 

603 areas of a radiomic study and determine whether it is compliant with best practice procedures139, 

604 emulated from the TRIPOD initiative previously described.

605 E. Standardization and harmonization 

606 Although research in the field of radiomics has drastically increased over the past several 

607 years, there still remains a lack of reproducibility and validation of current radiomic models. There 

608 are currently no guidelines and standard definitions for radiomic features and for constructing these 

609 features into clinical models. Current initiatives are underway to improve standardization and 

610 harmonization in radiomic studies. 
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611 As a part of radiomic signature validation, there are efforts to explore distributed feature 

612 sharing and model development across contributing institutions141. A key component in this 

613 exercise is the assessment and redressal of batch effects142 and confounding variables across 

614 contributing sites, so as to ameliorate systematic yet unmeasured sources of variation. Another key 

615 component is the use of methods to harmonize data as well as model parameters across study sites, 

616 with the intent of meaningful comparisons across clinical population143. Such efforts are necessary 

617 to enable the widespread and generalizable development of models that are transportable across 

618 institutions. In addition to the careful calibration and stability analysis of radiomic features within 

619 predictive models, there is also a need for ensuring model robustness through approaches like noise 

620 injection144. Adversarial training approaches from neural networks can have value in the modern 

621 deep learning modeling area by incorporating not only positive examples but negative ones too145. 

622 The workflow for computing features is complex and involves many steps, often leading to 

623 incomplete reporting of methodological information (e.g., texture matrix design choices and gray-

624 level discretization methods). As a consequence, few radiomics studies in the current literature can 

625 be reproduced from start to end.

626 To accelerate the translation of radiomics methods to the clinical environment, the Image 

627 Biomarker Standardization Initiative (IBSI)65 has the goal to provide standard definitions and 

628 nomenclature for radiomic features, reporting guidelines, and to provide benchmark datasets and 

629 values to verify image processing and radiomic feature calculations. Figure 2 presents the 

630 standardized radiomics workflow defined by the IBSI. The IBSI aims at standardizing both the 

631 computation of features and the image processing steps required before feature extraction. For this 

632 purpose, a simple digital phantom was designed and used in Phase 1 of the IBSI to standardize the 

633 computation of 172 features from 11 categories. In Phase 2 of the IBSI, a set of CT images from a 

634 lung cancer patient was used to standardize radiomics image processing steps using 5 different 

635 combinations of parameters including volumetric approaches (2D vs 3D), image interpolation, re-

636 segmentation and discretization methods. The initiative is now reaching completion and a 

637 consensus on image processing and computation of features has been reached over time. 

638 Overall, the use of standardized computation methods would greatly enhance the 

639 reproducibility of radiomics studies, and it may also lead to standardized software solutions 

640 available to the community. It would also be desirable that the code of existing software be updated 

641 to conform with standards established by the IBSI. Furthermore, it is essential to include in 

642 radiomics studies the comprehensive description of feature computation details as defined by the 

643 IBSI65 and Vallières et al146, as shown in Table 2. Ultimately, we envision the use of dedicated 
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644 ontologies to improve the interoperability of radiomics analyses via consistent tagging of features, 

645 image processing parameters and filters. The Radiomics Ontology 

646 (www.bioportal.bioontology.org/ontologies/RO) could provide a standardized means of reporting 

647 radiomics data and methods, and would more concisely summarize the implementation details of a 

648 given radiomics workflow.

649 Finally, some guiding principles already exist to help radiomics scientists further implement 

650 the responsible research paradigm into their current practice. A concise set of principles for better 

651 scientific data management and stewardship, the “FAIR guiding principles”147, stating that all 

652 research objects should be findable, accessible, interoperable, and reusable. Implementation of the 

653 FAIR principles within the radiomics field could facilitate its faster clinical translation. First, all 

654 methodological details and clinical information must be clearly reported or described to facilitate 

655 reproducibility and comparison with other studies and meta-analyses. Second, models must be 

656 tested in sufficiently large patient datasets distinct from teaching (training and validation) sets to 

657 statistically demonstrate their efficacy over conventional models (e.g., existing biomarkers, tumor 

658 volume, cancer stage, etc.). To allow for optimal reproducibility potential and further independent 

659 testing, all data, final models and programming code related to a given study needs to be made 

660 available to the community. Table 3 provides guidelines that can help to evaluate the quality of 

661 radiomics studies146. More guidelines on reproducible prognostic modeling can also be found in the 

662 TRIPOD statement106.

663 VI. Conclusions

664 The field of radiomics is constantly growing within the field of medical physics and is an 

665 exciting opportunity for the medical physics community to participate in novel research for the safe 

666 translation of quantitative imaging. Machine and deep learning-based models have the potential to 

667 provide clinicians with DSS to improve diagnosis, treatment selection, and response assessment in 

668 oncology. As the field expands, the need to associate radiomic features with other clinical and 

669 biological variables will become of increased importance. The field should also continue to strive 

670 for standardized data collection, evaluation criteria, and reporting guidelines in order to mature as a 

671 field. Data-sharing will be crucial to develop the large-scale datasets needed for proper validation of 

672 radiomic models and there will be a need for collaborations to validate models across multiple 

673 institutions. In order to move radiomic models into the clinical practice it is imperative to 

674 demonstrate improvements to the clinical workflow and decision making, through expert observer 

675 studies and eventually clinical trials. Future developments in the areas of machine and deep learning 
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676 with their improved balance of interpretability and prediction will also continue to advance 

677 radiomic studies.

678

679 FIGURE AND TABLE CAPTIONS

680 Fig. 1. Workflow for radiomics analysis with feature-based (conventional machine learning) and 

681 featureless (deep learning) approaches.

682 Fig. 2. Radiomics computation workflow as defined by the IBSI.

683 Table 1. Open access software programs for radiomics analysis.

684 Table 2. Reporting guidelines on the computation of radiomics features (adapted from Refs.65 and 

685 146).

686 Table 3. Quality factors in radiomics studies (adapted from Refs 139 and 146)

687
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Table 1. Open access software programs for radiomics analysis. 

 

Software/ 

Toolbox 
MaZda114 lifeX115  ePAD116 QIFE119 

HeterogeneityCAD 
3 

PyRadiomics 

/ 

Radiomics11

7  

QuantImage 
118 

Texture 

Analysis 

Toolbox43 

IBEX 120 MEDomicsLab 

Research 

group 

Institute of 

Electronics, 

Technical 

University 

of Lodz, 

Poland 

IMIV, 

CEA, 

Inserm, 

CNRS, 

Univ. 

Paris-Sud, 

Université 

Paris 

Saclay 

Rubin Lab, 

Stanford 

University 

Sandy 

Napel, 

Stanford 

University 

V.Narayan,  

J. Jagadeesan 

Dana-Farber 

Cancer 

Institute, 

Brigham 

Women's 

Hospital 

Harvard 

Medical 

School, 

Boston 

University of 

Applied 

Science and 

Arts, 

Western 

Switzerland 

M. 

Vallières 

The 

University 

of Texas 

MD 

Anderson 

Cancer 

Center, 

Houston, 

Texas 

MEDomics 

consortium 

 

 

Image 

modalities 

CT, MRI, 

PET 

CT, MRI, 

PET, 

ultrasound 

CT, MRI, 

radiography 

CT, MRI, 

PET 
CT, MRI, PET 

CT, MRI, 

PET 
 

CT, MRI, 

PET 

CT, MRI, 

PET 

 

CT, MRI, PET 

Segmentation YES YES YES NO NO NO NO NO YES NO 

Segmentation 

methods 

manual, 

automatic 

(threshold, 

flood-filling) 

manual, 

automatic 

(threshold, 

snake) 

Manual / / / / / 

manual, 

automatic 

(threshold) 

/ 

Radiomic 

features: 

morphology 

YES YES NO YES YES YES YES YES YES YES 

statistical 1° 

order 
YES YES YES YES YES YES YES YES YES YES 

statistical 2° 

order 
YES YES YES YES YES YES YES YES YES YES 

statistical 3° 

order 
YES YES NO YES YES YES YES YES YES YES 

Filtering YES NO NO NO NO YES NO NO YES YES 

Feature 

selection 
YES NO NO NO NO NO NO YES NO YES 

Feature 

selection 

methods 

Fisher score, 

classification 

error, corr. 

coeff, 

mutual 

informat., 

minimal 

classification 

error 

/ / / / / / 

Maximal 

information 

coefficient   

/ 

 False discovery 

avoidance, 

Elastic Net, 

minimum 

Redundancy 

Maximum 

Relevance 

Stratification NO NO NO NO NO NO NO NO NO YES 
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Table 2. Reporting guidelines on the computation of radiomics features (adapted from Refs.65 and 
146). 

 

GENERAL  

   Image acquisition Acquisition protocols and scanner parameters: equipment vendor, reconstruction 

algorithms and filters, field of view and acquisition matrix dimensions, MRI sequence 

parameters, PET acquisition time and injected dose, CT x-ray energy (kVp) and exposure 

(mAs), etc. 

   Volumetric analysis Imaging volumes are analyzed as separate images (2D) or as fully-connected volumes 

(3D). 

   Workflow structure Sequence of processing steps leading to the extraction of features. 

   Software Software type and version of code used for the computation of features. 

IMAGE PRE-

PROCESSING 

 

   Conversion How data were converted from input images: e.g, conversion of PET activity counts to 

SUV, calculation of ADC maps from raw DW-MRI signal, etc. 

   Processing Image processing steps taken after image acquisition: e.g., noise filtering, intensity non-

uniformity correction in MRI, partial-volume eff ect corrections, etc. 

ROI 

SEGMENTATION a;b 

How regions of interests (ROIs) were delineated in the images: software and/or algorithms 

used, how many diff erent persons and what expertise (specialty, experience), how a 

consensus was obtained if several persons carried out the segmentation, in automatic or 

semi-automatic mode, etc. 

INTERPOLATION  

Voxel dimensions Original and interpolated voxel dimensions. 

Image interpolation 

method 

Method used to interpolate voxels values (e.g, linear, cubic, spline, etc.) as well as how 

original and interpolated grids were aligned. 

Intensity rounding Rounding procedures for non-integer interpolated gray levels (if applicable), e.g., 
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rounding of Hounsfield units in CT imaging following interpolation. 

ROI interpolation 

method 

Method used to interpolate ROI masks. Definition of how original and interpolated grids 

were aligned. 

ROI partial volume Minimum partial volume fraction required to include an interpolated ROI mask voxel in 

the interpolated ROI (if applicable): e.g., a minimum partial volume fraction of 0.5 when 

using linear interpolation. 

ROI RE-

SEGMENTATION 

 

Inclusion/exclusion 

criteria 

Criteria for inclusion and/or exclusion of voxels from the ROI intensity mask (if 

applicable), e.g., the exclusion of voxels with Hounsfield units values outside a pre-

defined range inside the ROI intensity mask in CT imaging. 

IMAGE 

DISCRETIZATION 

 

Discretization method Method used for discretizing image intensities prior to feature extraction: e.g., fixed bin 

number, fixed bin width, histogram equalization, etc. 

Discretization parameters Parameters used for image discretization:  the number of bins, the bin width and minimal 

value of discretization range, etc. 

FEATURE 

CALCULATION 

 

Features set Description and formulas of all calculated features. 

Features parameters Settings used for the calculation of features: voxel connectivity, with or without merging 

by slice, with or without merging directional texture matrices, etc. 

CALIBRATION   

Image processing steps Specifying which image processing steps match the benchmarks of the IBSI. 

Features calculation Specifying which feature calculations match the benchmarks of the IBSI. 

aIn order to reduce inter-observer variability, automatic and semi-automatic methods are favored. 

bIn multimodal applications (e.g., PET/CT, PET/MRI, etc.) ROI definition may involve the 

propagation of contours between modalities via co-registration. In that case, the technical details of 

the registration should also be provided. 
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Table 3. Quality factors in radiomics studies (adapted from Refs 139 and 146). 

IMAGING  

Standardized imaging 

protocols 

Imaging acquisition protocols are well described and ideally similar across patients. 

Alternatively, methodological steps are taken towards standardizing them. 

Imaging quality assurance Methodological steps are taken to only incorporate acquired images of sufficient 

quality. 

Calibration Computation of radiomics features and image processing steps match the benchmarks 

of the IBSI. 

EXPERIMENTAL SETUP  

Multi-institutional/external 

datasets 

Model construction and/or performance evaluation is carried out using cohorts from 

diff erent institutions, ideally from different parts of the world. 

Registration of prospective 

study 

Prospective studies provide the highest level of evidence supporting the clinical 

validity and usefulness of radiomics models. 

FEATURE SELECTION  

Feature robustness The robustness of features against segmentation variations and varying imaging 

settings (e.g., noise fluctuations, inter-scanner diff erences, etc.) is evaluated. 

Unreliable features are discarded. 

Feature complementarity The inter-correlation of features is evaluated. Redundant features are discarded. 

MODEL ASSESSMENT  

False discovery corrections Correction for multiple testing comparisons (e.g., Bonferroni or Benjamini- 

Hochberg) is applied in univariate analysis. 

Estimation of model 

performance 

The teaching dataset is separated into training and validation set(s) to estimate optimal 

model parameters. Example methods include bootstrapping, cross-validation, random 

sub-sampling, etc. 

Independent testing A testing set distinct from the teaching set is used to evaluate the performance of 

complete models (i.e., without retraining and without adaptation of cut- off  values). 

The evaluation of the performance is unbiased and not used to optimize model 

parameters. 

Performance results 

consistency 

Model performance obtained in the training, validation and testing sets is reported. 

Consistency checks of performance measures across the different sets are performed. 
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Comparison to conventional 

metrics 

Performance of radiomics-based models is compared against conventional metrics 

such as tumor volume and clinical variables (e.g., staging) in order to evaluate the 

added value of radiomics (e.g., by assessing the significance of AUC increase 

calculated with the DeLong test). 

Multivariable analysis  with  

non- radiomics variables 

Multivariable analysis integrates variables other than radiomics features (e.g., clinical 

information, demographic data, panomics, etc.). 

CLINICAL 

IMPLICATIONS 

 

Biological correlate Assessment of the relationship between macroscopic tumor phenotype(s) described 

with radiomics and the underlying microscopic tumor biology. 

Potential clinical application The study discusses the current and potential application(s) of proposed radiomics-

based models in the clinical setting. 

MATERIAL 

AVAILABILITY 

 

Open data Imaging data, tumor ROI and clinical information are made available. 

Open code All software code related to computation of features, statistical analysis and machine 

learning, and allowing to exactly reproduce results, is open source. This code package 

is ideally shared in the form of easy-to-run organized scripts pointing to other relevant 

pieces of code, along with useful sets of instructions. 

Open models Complete models are available, including model parameters and cut-off  values. 
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