Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2020.



# **Supporting Information**

for Adv. Energy Mater., DOI: 10.1002/aenm.202000335

Correlating Macro and Atomic Structure with Elastic Properties and Ionic Transport of Glassy Li<sub>2</sub>S-P<sub>2</sub>S<sub>5</sub> (LPS) Solid Electrolyte for Solid-State Li Metal Batteries

Regina Garcia-Mendez, Jeffrey G. Smith, Joerg C. Neuefeind, Donald J. Siegel, and Jeff Sakamoto\*

#### Supporting Information

Correlating macro and atomic structure with elastic properties and ionic transport of glassy  $Li_2S-P_2S_5$  (LPS) solid electrolyte for solid-state Li metal batteries

Regina Garcia-Mendez, Jeffrey G. Smith, Joerg C. Neuefeind, Donald J. Siegel and Jeff Sakamoto $^*$ 







hot-pressed sample at 270 MPa 200°C

**Figure S2.** Shear Moduli of LPS 75-25 as a function of molding pressure via ultrasonic velocity measurements and Hardness values measured via nanoindentation



**Figure S3.** Effect of cell stack pressure on areal specific resistance for the bulk contribution in LPS 75-25 at room temperature



**Figure S4.** Local ordering of amorphous LPS 75-25 at 25 °C. Calculated partial pair distribution functions (p-PDF) and total neutron weighted PDF, G' (r)



**Figure S5.** Calculated partial pair distribution function of Li-Li in LPS 75-25 at 25 °C for 1 bar, 3.6, 10, and 100 kbar.



Figure S6. Raman spectra on LPS 75-25 samples processed at different molding

pressures

| Temperature [ K ]       |                         |                         |                                  |                        |       |  |
|-------------------------|-------------------------|-------------------------|----------------------------------|------------------------|-------|--|
| Density                 | 300                     | 700                     | 850                              | 1000                   | Ea    |  |
| [g · cm <sup>-3</sup> ] | 200                     | 700                     | 0.50                             | 1000                   | [eV]  |  |
| 1.56                    | 7.08 x 10 <sup>-8</sup> | 1.99 x10 <sup>-5</sup>  | 4.04 x10 <sup>-5</sup>           | 7.08 x10 <sup>-5</sup> | 0.255 |  |
| 1.65                    | 7.80 x10 <sup>-8</sup>  | 1.94 x10 <sup>-5</sup>  | 4.58 x10 <sup>-5</sup>           | 6.70 x10 <sup>-5</sup> | 0.251 |  |
| 1.76                    | 9.64 x 10 <sup>-8</sup> | 1.91 x10 <sup>-5</sup>  | 3.45 x10 <sup>-5</sup>           | 6.34 x10 <sup>-5</sup> | 0.238 |  |
| 1.89                    | 6.47 x 10 <sup>-8</sup> | 1.55 x 10 <sup>-5</sup> | $3.\overline{23 \times 10^{-5}}$ | $5.32 \times 10^{-5}$  | 0.248 |  |
| 2.42                    | $9.60 \times 10^{-10}$  | 2.01 x10 <sup>-6</sup>  | 5.09 x10 <sup>-6</sup>           | 1.13 x10 <sup>-5</sup> | 0.345 |  |

**Table S1.** Calculated Li diffusion coefficients in  $cm^2 \cdot s^{-1}$  and energy of activation for ionic conduction in LPS 75-25 samples as a function temperature and pressure



**Figure S7.** Calculated Arrhenius plot of Li diffusion coefficients and activation energies for LPS 75-25. Coefficients at room temperature are extrapolated from a linear fit (dotted lines) of the high temperature data.



**Figure S8.** Calculated largest included sphere  $D_i$  (blue diamonds) and the largest included sphere along the free sphere path  $D_{if}$  (orange diamonds) in  $Li_3PS_4$  glass. The lines are a cubic polynomial fit to the data at five densities.



**Figure S9.** Critical Current Density (CCD) measurements of LPS 75-25 at 1.5 MPa, 60 °C. (a) Cold-pressed sample, (b) Hot-pressed sample at 270 MPa, (c) zoomed-in galvanostatic test of the hot-pressed sample at 270 MPa from 65 h to 72 h.

| Stack pressure [MPa] | CCD [mA·cm <sup>-2</sup> ] |  |
|----------------------|----------------------------|--|
| 1.5                  | 0.3                        |  |
| 3.1                  | 0.4                        |  |
| 6.2                  | 0.4                        |  |

**Table S1.** Critical Current Density (CCD) measurements of cold-pressed LPS 75-25 at room temperature, as a function of stack pressure



**Figure S10.** AC and DC testing of Li-LPS-Li symmetric cells under constant current density of 0.1 mA·cm<sup>-2</sup>, fixed charge of 0.5 mAh·cm<sup>-2</sup> per half cycle as a function of stack pressure. (a) Voltage response as a function of stack pressure. (b) Voltage response under a stack pressure of 3.1 and 6.1 MPa. Impedance evolution at (c) 1.5 MPa, (d) 3.1 MPa, and (e) 6.1 MPa.