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Discordance between nuclear and organellar phylogenies (cytonu-
clear discordance) can arise from several evolutionary processes, in-
cluding hybridization, incomplete lineage sorting (ILS), horizontal 
gene transfer, and gene duplication and loss (Doyle, 1992; Maddison, 
1997; Galtier and Daubin, 2008; Soltis and Soltis, 2009; Smith et al., 
2015). In plants, hybridization in particular—often accompanied by 
polyploidy, or whole-genome duplication (WGD)—has been em-
phasized as an important evolutionary process (e.g., Stebbins, 1950; 
Soltis and Soltis, 2009) and a major source of observed cytonuclear 
discordance due to chloroplast capture (e.g., Rieseberg and Soltis, 
1991; Soltis and Kuzoff, 1995; Linder and Rieseberg, 2004). While 
such instances of discordance are typically observed at shallow phy-
logenetic levels (e.g., Huang et al., 2014), recent studies have shown 

that ancient hybridization events can produce lasting signatures 
of cytonuclear discordance (Folk et  al., 2017; García et  al., 2017; 
Morales-Briones et al., 2018), even among major lineages of angio-
sperms (e.g., members of the rosid COM clade; Sun et al., 2015). We 
might expect ILS, as well, to result in persistent cytonuclear discor-
dance in some cases, but this possibility has been poorly explored 
across the phylogeny of green plants.

Our limited understanding of deep cytonuclear discordance 
stems, in part, from the historical reliance on the chloroplast ge-
nome for plant phylogenetic studies. For example, with the excep-
tion of a few nuclear and mitochondrial regions (e.g., Qiu et  al., 
1999, 2010; Soltis et  al., 1999, 2000) and the recently published 
1KP phylogeny (One Thousand Plant Transcriptomes Initiative, 
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PREMISE: Discordance between nuclear and organellar phylogenies (cytonuclear 
discordance) is a well-documented phenomenon at shallow evolutionary levels but has 
been poorly investigated at deep levels of plant phylogeny. Determining the extent of 
cytonuclear discordance across major plant lineages is essential not only for elucidating 
evolutionary processes, but also for evaluating the currently used framework of plant 
phylogeny, which is largely based on the plastid genome.

METHODS: We present a phylogenomic examination of a major angiosperm clade 
(Asteridae) based on sequence data from the nuclear, plastid, and mitochondrial genomes 
as a means of evaluating currently accepted relationships inferred from the plastome and 
exploring potential sources of genomic conflict in this group.

RESULTS: We recovered at least five instances of well-supported cytonuclear discordance 
concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, 
Aquifoliales, Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of 
incomplete lineage sorting and hybridization, the latter supported in part by previously 
inferred whole-genome duplications.

CONCLUSIONS: Our results challenge several long-standing hypotheses of asterid 
relationships and have implications for morphological character evolution and for the 
importance of ancient whole-genome duplications in early asterid evolution. These 
findings also highlight the value of reevaluating broad-scale angiosperm and green-plant 
phylogeny with nuclear genomic data.
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2019), our current framework of angiosperm phylogeny (e.g., APG 
(Angiosperm Phylogeny Group) IV, 2016) has primarily been in-
formed by analyses of plastid genes and genomes (e.g., Jansen et al. 
2007; Moore et al., 2007, 2010, 2011; Soltis et al., 2011; Ruhfel et al., 
2014; Gitzendanner et al., 2018; Li et al., 2019). While the number 
of plant phylogenetic studies employing nuclear genes is certainly 
increasing (e.g., Wickett et al., 2014; Yang et al., 2015; Zeng et al., 
2017; Couvreur et al., 2019; Johnson et al., 2019), few have explic-
itly investigated instances of deep cytonuclear discordance between 
comparable plastid and nuclear genomic data sets using tools for 
dissecting genomic conflict (e.g., Smith et al., 2015). The evolution-
ary history of angiosperms includes numerous cases of rapid radia-
tion, evident from both the fossil record (e.g., Friis et al., 2011) and 
phylogenetic diversification analyses (e.g., Magallón and Castillo, 
2009; Magallón et al., 2015; Tank et al., 2015; Landis et al., 2018; 
Smith and Brown, 2018). As a consequence, we might expect ge-
nomic signatures of ILS and introgression to be relatively common 
at deep levels across flowering plant phylogeny (Soltis et al., 2019), 
but this has been largely unexplored.

Of course, the erosion of phylogenetic signal for deep nodes—
due to saturation, for example—can render the resolution of deep 
relationships and associated evolutionary processes a considerable 
challenge (King and Rokas, 2017; Smith et al., 2019), especially in 
cases of rapid radiation (Whitfield and Lockhart, 2007; Parks et al., 
2017). For some radiations, complete and confident resolution of 
all relationships and the identification of discrete evolutionary pro-
cesses may be impossible, at least with current methods (Morales-
Briones et  al., 2019 [Preprint]). Nevertheless, these types of 
investigations are necessary for a more nuanced understanding of 
the evolutionary history of angiosperms and of plants more broadly.

An important corollary of the points above is that the widely 
used framework of angiosperm phylogeny, based largely on the 
plastid genome (e.g., APG IV, 2016; Soltis et al., 2018a, b), may not 
reflect the true species tree and/or may be incomplete as a result 
of evolutionary processes leading to cytonuclear discordance. More 
broad-scale phylogenomic studies of angiosperms and green plants 
in general, explicitly comparing results from both the nuclear and 
plastid genomes, are clearly needed to evaluate the plastid-based 
phylogenetic framework and to elucidate the extent of cytonuclear 
discordance at deep phylogenetic levels. Here, we present a phy-
logenomic investigation of the major angiosperm clade Asteridae 
(Cantino et  al., 2007), based on sequence data from the nuclear, 
plastid, and mitochondrial genomes, as a means of evaluating re-
lationships inferred from the plastome (e.g., APG IV, 2016) and 
exploring potential sources of phylogenomic conflict in this group.

The asterid clade (Asteridae), with ~80,000 species or ~25% of 
flowering plant diversity, represents one of the largest angiosperm 
radiations (Soltis et al., 2018a). This clade has been the subject of 
numerous phylogenetic studies and, to a large extent, most ma-
jor relationships appear well resolved (e.g., Olmstead et al., 1992, 
1993, 2000; Albach et al., 2001a, b; Bremer et al., 2002; Tank and 
Donoghue, 2010; Stull et al., 2015, 2018). Cornales and Ericales are 
consistently recovered as successively sister to Gentianidae, which 
in turn comprises two major clades, Lamiidae and Campanulidae, 
each with ~40,000 species (Soltis et al., 2018a). Within campanu-
lids, Aquifoliales have been consistently recovered as sister to the 
remainder of the clade (Judd and Olmstead, 2004). Within lamiids, 
several species-poor lineages (Icacinales, Metteniusales, Garryales) 
form a grade of successive sisters to the large core lamiid clade (= 
Lamianae; see Stull et al., 2015), which comprises four species-rich 

orders (Boraginales, Gentianales, Lamiales, Solanales) and the 
phylogenetically isolated genus Vahlia (Refulio-Rodriguez and 
Olmstead, 2014). This framework, however, is almost entirely based 
on data derived from the plastid genome. Significantly, several re-
cent studies of angiosperm phylogeny based on the nuclear genome 
(Zeng et al., 2017; One Thousand Plant Transcriptomes Initiative, 
2019) recovered notably different placements for several major as-
terid lineages than those reported on the basis of plastid sequences. 
A more comprehensive nuclear genomic perspective of asterid 
phylogeny is therefore urgently needed to evaluate the reliability of 
broadly accepted plastid-based relationships.

To examine asterid relationships in a phylogenomic context, 
we assembled a large data set for 129 species comprising numer-
ous loci from the nuclear (307) and plastid (77) genomes, using a 
combination of publicly available data (1KP: http://www.onekp.
com; GenBank: https://www.ncbi.nlm.nih.gov/genba​nk/) and 
newly generated sequences from target enrichment (hyb-seq). A 
data set of 35 mitochondrial genes across 150 species (representing 
the same major lineages, but different species in many cases) was 
also assembled from GenBank to provide a more comprehensive 
perspective on inter-genomic conflict. We used both species-tree 
and concatenation methods to infer phylogenetic relationships 
from each genomic data set, as well as methods for examining con-
flict and concordance among gene trees from the nuclear genome 
(Smith et  al., 2015) and for inferring ancient reticulation events 
(e.g., Than et al., 2008; Folk et al., 2017; Wen et al., 2018). The re-
sults of these analyses provide important new insights on major 
relationships and patterns of morphological character evolution in 
Asteridae and establish a critical framework for understanding ge-
nomic conflict in light of previously inferred ancient WGDs. More 
broadly, our results underscore the importance of explicitly investi-
gating phylogenomic discordance in major plant clades, even those 
whose relationships are thought to be largely settled.

MATERIALS AND METHODS

Sampling and sequencing

We sampled 129 species (Appendix  S1) for both the nuclear and 
plastid data sets, which ultimately included 307 and 77 loci, respec-
tively. All major asterid groups were represented, with an emphasis 
on the lineages forming the basal lamiid nodes (Stull et al., 2015), as 
well as numerous outgroups spanning non-asterid eudicots.

The nuclear data set was constructed using a combination of 
publicly available transcriptome data (100 species, obtained from 
the 1KP project: Matasci et al., 2014) and newly generated sequences 
for key asterid lineages (namely, Icacinaceae, Metteniusaceae) 
obtained through target enrichment and high-throughput se-
quencing (29 species, 104 nuclear loci; Appendix S1). The transcrip-
tomes had been assembled previously (Matasci et al., 2014) using 
SOAPdenovo-Trans (Xie et al., 2014). We used hyb-seq (rather than 
transcriptome sequencing) to complete our sampling because most 
of the additional species needed are tropical and practically inacces-
sible for fresh material, necessitating an approach, such as hyb-seq, 
that is amenable to herbarium specimens.

New hyb-seq data were generated as follows. DNAs were ex-
tracted using the CTAB method (Doyle and Doyle, 1987; Cullings, 
1992), and genomic libraries were built following Stull et al. (2013) 
or by RAPiD Genomics (http://rapid​-genom​ics.com/home; see 
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Appendix  S1). Nuclear loci for probe design and target enrich-
ment were selected using MarkerMiner version 1.0 (Chamala et al., 
2015), based on analysis of five input transcriptomes (Aucuba ja-
ponica, Eucommia ulmoides, Iodes vitiginea, Oncotheca balansae, 
Pyrenacantha malvifolia) related to the taxa intended for enrich-
ment and sequencing; these transcriptomes were also obtained from 
the 1KP project (http://www.onekp.com/sampl​es/list.php). We then 
performed target enrichment of the 104 selected nuclear loci us-
ing a custom-designed MYbaits kit from Arbor Biosciences (Ann 
Arbor, MI, USA), following MYbaits Manual version 3 (https:// 
arbor​biosci.com/wp-conte​nt/uploa​ds/2017/10/MYbai​ts-manua​
l-v3.pdf). The custom MYbaits kit included 120mer baits with flex-
ible (45 bp) tiling density (~2.67×) designed across each included 
sequence (i.e., the five species listed above) for each locus (104), to-
taling to 10,001 baits. After enrichment, the samples were sequenced 
on the Illumina NextSeq 500 or MiSeq platform (2 × 150 bp) at the 
University of Florida Interdisciplinary Center for Biotechnology 
Research (Appendix S1).

The plastid data set (Appendix S1) was similarly assembled us-
ing publicly available data and newly generated sequence data. Most 
samples (100) represent the same 1KP accessions as above, but the 
data were obtained directly from Gitzendanner et al. (2018), who re-
constructed green-plant relationships using 78 protein-coding plas-
tid genes. The remaining 29 samples were obtained from Stull et al. 
(2015) or newly sequenced for this study (Appendix S1). One gene 
(petG) was ultimately excluded due to its low representation through-
out our sampling, resulting in 77 genes in the plastid data set.

Although our primary goal was to compare phylogenetic results 
between the nuclear and plastid genomes based on a comparable 
sampling of species, we also generated a mitochondrial data set us-
ing publicly available sequences from GenBank (https://www.ncbi.
nlm.nih.gov/genba​nk/), reasoning that the mitochondrial tree may 
provide useful additional evidence for interpreting instances of nu-
clear-plastid incongruence. However, given the data available on 
GenBank, it was not possible to sample the same species from the 
nuclear/plastid data sets for mitochondrial sequences. We there-
fore attempted to represent the same major lineages (e.g., Cornales, 
Ericales, Icacinaceae, Aquifoliales, Garryales) to the greatest extent 
possible, while maximizing genic representation for the species 
included. Our mitochondrial data set included 150 species and 35 
genes (Appendix S2). Most species were represented by only two or 
three mitochondrial genes, but the more “complete” species (i.e., 40 
species with >20 genes) are reasonably dispersed phylogenetically, 
helping anchor the placements of the more poorly sampled species.

New sequence assembly and alignment

The newly generated plastid and nuclear sequence data were assem-
bled as follows. Remnant adapter sequences were removed from 
the demultiplexed reads using Cutadapt version 1.5 (Martin, 2011); 
low-quality nucleotides were removed from the reads using Sickle 
version 1.33 (Joshi and Fass, 2011). HybPiper version 1.0 (Johnson 
et al., 2016) was then used to assemble the 104 nuclear and 77 plas-
tid loci. Although HybPiper includes an optional step to assemble 
(partial to complete) intron sequences flanking the exons, we opted 
to assemble exons only, given that the transcriptomic references 
used for probe design and assembly lack introns. The assembled se-
quences were then combined with their corresponding gene regions 
from publicly available data sets for subsequent alignment. In the 
case of the nuclear data set, however, the transcriptome data were 

first subjected to a preliminary ortholog identification step before 
being combined with the corresponding hyb-seq data. Because the 
hyb-seq loci were selected from the curated gene set implemented 
in MarkerMiner, which was also used to obtain orthologs from the 
transcriptome sequences (outlined below), this readily facilitated 
the combinability of these data sets. Once combined, the nuclear 
data set was then subjected to additional filtering steps to further 
ensure orthology (outlined below).

Each gene region (for each of the genomic data sets: nuclear, 
plastid, and mitochondrial) was aligned individually using MAFFT 
version 7.220 (Katoh and Standley, 2013). Following alignment, the 
program “pxclsq” in Phyx (Brown et al., 2017) was used to remove 
columns from each alignment with >50% missing data. The final 
alignments are available from the Dryad Digital Repository: https://
doi.org/10.5061/dryad.h70rx​wdfq (Stull et al., 2020).

Ortholog identification

We used MarkerMiner to identify putative single-copy genes across 
the assembled transcriptomes. MarkerMiner conducts a reciprocal 
BLAST search across the included transcriptomes to identify pu-
tative orthologs, which are then filtered for single-copy loci based 
on a curated set of 2809 genes that have been shown to be mostly 
single-copy across angiosperms (De Smet et  al., 2013). This ap-
proach resulted in 2119 putative single-copy genes, which were 
subjected to several filtering steps before the final phylogenetic 
analyses. However, prior to filtering, we combined the sequences 
obtained from target enrichment with their corresponding genes in 
the transcriptome gene set (because MarkerMiner was used for loci 
selection in the hyb-seq data set, these two data sets were readily 
combined based on their reference gene IDs). We then filtered the 
nuclear loci such that only genes including at least 30 species were 
retained. The remaining 604 genes were then aligned individually, 
as described above, and used to generate gene trees in RAxML ver-
sion 8.2.12, using the GTRGAMMA molecular model and includ-
ing a search for the best-scoring maximum likelihood (ML) tree 
as well as 200 bootstrap replicates (Stamatakis, 2014). The resulting 
gene trees were used for two subsequent filtering steps to remove 
genes with potential paralogy issues: (1) gene trees with polyphyly 
of well-established major clades (i.e., Asteridae and Rosidae, sensu 
Soltis et al., 2018a) were excluded, as were (2) gene trees with ex-
treme root-to-tip variation or tree lengths (calculated using the 
Phyx program “pxstr”; Brown et al., 2017). Following these filter-
ing steps, 307 loci/gene trees remained for subsequent phylogenetic 
analyses.

Phylogenetic analyses

We inferred phylogenetic trees for each genomic region (nuclear, 
plastid, mitochondrial) separately. For the plastid and mitochondrial 
genomes, we concatenated each gene set (77 loci for the plastome, 
35 loci for the mitochondrial genome) using the phyx program 
“pxcat” (Brown et  al., 2017) for subsequent phylogenetic analysis 
in RAxML, using the GTRGAMMA molecular model partitioned 
by gene region and including a search for the best-scoring ML tree 
and 200 bootstrap replicates. Because organellar genomic regions 
are typically analyzed in concatenation (i.e., treated as a single lo-
cus), we followed that approach here. However, recent studies have 
shown that plastid genomes are not free of gene-tree conflict (e.g., 
Walker et al., 2019), suggesting that concatenation approaches may 
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be inappropriate for plastomes, at least in some cases (Gonçalves 
et al., 2019). In light of this, multispecies coalescent (MSC) meth-
ods have been suggested as an alternative framework for plastome 
analyses (Gonçalves et  al., 2019), but the appropriateness of this 
type of approach for plastid data, both theoretically and practically, 
has not been thoroughly considered. In addition to potential model 
violations (e.g., linkage, selection; Edwards et al., 2016), gene-tree 
estimation error—which is likely to be considerable with plastid 
genes, given that many of them are short and largely uninformative 
(Walker et al., 2019)—could potentially undermine analyses of the 
plastome, given that many species tree methods are sensitive to such 
errors (Chou et al., 2015).

With these caveats in mind, we also analyzed our plastome 
data set with ASTRAL version 5.6.3 (Zhang et  al., 2018), a “spe-
cies tree” method that infers the maximum quartet support species 
tree (MQSST), given a set of input gene trees. While ASTRAL does 
not explicitly model the MSC, it nevertheless has been shown to 
be statistically consistent in species tree inference from gene trees 
generated by the MSC process (Mirarab et al., 2014). We reasoned 
that using both of these approaches (concatenation and species 
tree) might help highlight weakly supported (or inaccurate) plastid 
relationships that may not actually represent true conflicts with the 
nuclear genome, even if both methods, in a sense, constitute model 
violations (Edwards et al., 2016). Plastid gene trees for the ASTRAL 
analysis were inferred using RAxML with the GTRGAMMA model 
and 200 bootstrap replicates. Low-supported branches (<10% boot-
strap support) in the gene trees were collapsed prior to analysis in 
ASTRAL, as this has been shown to improve species tree inference 
(Zhang et al., 2017). The ASTRAL analysis, based on 77 plastid loci, 
was implemented with the default settings, resulting in an estimated 
species tree topology with branch lengths and local posterior prob-
abilities (LPPs) as branch support values.

For the nuclear genome, as above, we inferred phylogenies using 
both concatenation and species tree methods. For the concatena-
tion analysis, we used “pxcat” to concatenate the alignments of the 
307 genes that passed all filtering steps (described above), and this 
combined set of genes was then analyzed in RAxML, using the same 
parameters and model partitioning scheme noted above. ASTRAL 
was used to infer an MQSST, with the 307 filtered gene trees from 
above as the input. As above, low-supported branches (<10% boot-
strap support) were collapsed prior to the analysis, which employed 
the default settings.

Conflict analyses

We used PhyParts (Smith et al., 2015) to examine patterns of gene-
tree concordance and conflict within the nuclear genome and to 
reveal subsets of the nuclear genome supporting alternative rela-
tionships in the plastid topology. We performed these analyses be-
cause the characterization of patterns of conflict is an important 
step for identifying areas of a phylogeny that deserve more detailed 
attention and, potentially, additional analyses (e.g., for investigation 
of ancient reticulation). Operationally, PhyParts maps a given set of 
gene trees on an input species tree to determine the number of gene 
trees that are concordant, conflicting, or uninformative with respect 
to each node in the species tree. Among the conflicting genes, it also 
determines the number of gene trees supporting a dominant alter-
native relationship. We performed two PhyParts analyses, each with 
a bootstrap support (BS) threshold of 70, meaning that gene-tree 
branches/nodes with <70% BS were considered uninformative. This 

BS value has long been considered a baseline for strong support 
(Hillis and Bull, 1993), although this notion has since been right-
fully challenged (e.g., Soltis and Soltis, 2003). Nevertheless, it is a 
useful, albeit somewhat arbitrary, value for filtering out poorly sup-
ported (and possibly spurious) branches, thus alleviating noise in 
the results of the conflict analysis (Smith et al., 2015).

For the first analysis, we mapped the 307 nuclear gene trees onto 
the species-tree phylogeny (which, as discussed below, is largely 
consistent with the concatenated nuclear tree in major relation-
ships) to characterize gene-tree conflict against the prevailing phy-
logenetic signal from the nuclear genome. In the second analysis, 
we mapped the 307 nuclear gene trees onto the inferred plastome 
topology to determine if subsets of the nuclear genome support the 
plastome-based topology in instances of plastid-nuclear conflict. 
We were unable to map the nuclear gene trees onto the mitochon-
drial phylogeny using PhyParts because of numerous differences in 
species sampling; instead, we visually inspected the mitochondrial 
tree to locate well-supported major relationships in conflict with the 
nuclear and plastid topologies. The output of the PhyParts analyses 
was visualized using a Python script by M. Johnson (https://github.
com/mossm​atter​s/phylo​scrip​ts/tree/maste​r/phypa​rtspi​echarts). We 
also visualized differences between the nuclear species tree and the 
plastid phylogeny using the “cophylo” function in Phytools (Revell, 
2012); this function takes two input phylogenies with identical 
sampling and makes a plot juxtaposing them, with lines connecting 
each species to its match in the alternative phylogeny, thus revealing 
differences in placement.

Coalescent simulations, gene-tree dating, and network 
analyses

One major instance of incongruence between the nuclear and plas-
tid genomes (concerning the placement of Ericales) was revealed in 
the conflict analyses and was explored further to determine whether 
the observed conflict was likely due to ancient chloroplast capture 
or ILS, although in many cases these are very difficult to tease apart 
(Pease and Hahn, 2015). Most of the informative nuclear genes (i.e., 
>70% BS for the relevant node) place Ericales sister to Cornales (61 
genes), while a subset of the nuclear genome (26 genes) and the 
plastid genome place Ericales sister to Gentianidae.

To distinguish between chloroplast capture and ILS, following 
several studies (Folk et al., 2017; García et al., 2017; Morales-Briones 
et al., 2018), we simulated 1000 organellar trees under the coales-
cent using the program DendroPy (Sukumaran and Holder, 2010), 
with the inferred species tree acting as the guide tree. The guide 
tree (which was inferred from the nuclear data set) was scaled by 
a factor of four to approximate the branch lengths expected from 
organellar inheritance; this was done because the effective popula-
tion size of the plastome is generally expected to be one-fourth that 
of the nuclear genome given the assumptions of equal sex ratios, 
haploidy (homoplasmic), and uniparental inheritance (McCauley, 
1994). This approach allowed us to evaluate the plausibility of plas-
tid ILS with respect to this particular species tree. The rationale for 
this approach is that, if the branch subtending the species-tree rela-
tionship (in this case, Cornales + Ericales) is very short, we would 
expect to see alternative relationships (e.g., Ericales + Gentianidae) 
with an appreciable frequency among the simulated trees due to 
ILS. However, if this branch is sufficiently long, we should not ob-
serve ILS from the simulations, suggesting that the actual observed 
plastid topology (Ericales + Gentianidae) is due not to ILS, but 
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rather to a later reticulation event (resulting in chloroplast capture). 
The clade frequencies of the simulated gene trees (with respect to 
the main alternative topologies: Cornales + Ericales vs. Ericales + 
Gentianidae) were calculated using PhyParts and visualized using 
the same Python script noted above.

To further explore this issue, we conducted dating analyses of 
the plastome phylogeny and the individual nuclear gene trees sup-
porting the alternative placements of Ericales. We reasoned that, in 
the case of ILS, the timing of the Ericales + Gentianidae divergences 
(in the plastome tree and the gene trees supporting this relation-
ship) should precede those of Ericales + Cornales (in the main/con-
cordant gene set), reflecting that the gene trees supporting Ericales 
+ Gentianidae are a consequence of incomplete sorting prior to the 
Ericales + Cornales split. Conversely, in the case of later hybridiza-
tion, the timing of the Ericales + Gentianidae divergences should 
occur after the Ericales + Cornales divergences.

We used treePL to date the plastome phylogeny and each indi-
vidual gene tree, and for each we ran cross-validation tests prior to 
the final analysis to determine the optimal smoothing parameters 
(see configuration files for more details, available from the Dryad 
Digital Repository: https://doi.org/10.5061/dryad.h70rx​wdfq [Stull 
et al., 2020]). Given the difficulty of consistently calibrating individ-
ual gene trees with differences in both relationships and included 
species, we employed only two calibrations: (1) one for crown eu-
dicots, with the minimum age set at 125.0 Ma (corresponding to 
the first appearance of tricolpate pollen; Doyle et al., 1977; Hughes 
and McDougall, 1990) and the maximum age set at 135.0 Ma (cor-
responding approximately to the oldest reliable fossil evidence of 
angiosperms; Trevisan, 1988; Brenner, 1996; Friis et al., 2011; Coiro 
et al., 2019); and (2) another for crown Asteridae, with the minimum 
age set at 115.75 Ma (based on the penalized likelihood minimum 
estimate from 100 ML bootstrap trees in Magallón et al., 2015) and 
the maximum age set at 125.0 Ma (the first fossil appearance of eu-
dicots, the broader clade including Asteridae). This more minimal 
calibration scheme allowed us to consistently calibrate nearly all 
gene trees, while weighting the significance of the eudicot calibra-
tion, which is generally considered one of the better angiosperm 
calibration points in that it likely captures eudicots relatively close 
to their actual geologic origin (Friis et al., 2011).

Finally, we inferred species networks using PhyloNet version 
3.8.0 (Than et al., 2008; Wen et al., 2018; Cao et al., 2019 [Preprint]), 
which models both ILS and gene flow and permits the inference of 
reticulate nodes (hybridization events). For these analyses, we used 
the set of 307 nuclear gene trees, with the sampling reduced to a 
computationally tractable size (i.e., <30 taxa; Than et al., 2008; Wen 
et  al., 2018). Specifically, we retained all species of Cornales and 
Ericales present in each gene tree, but reduced the outgroups to a 
single species and Gentianidae to three species (Oncotheca balansae 
and one species each from the lamiid and campanulid clades). The 
reduced gene trees are available on Dryad (https://doi.org/10.5061/
dryad.h70rx​wdfq). This sampling allowed us to specifically explore 
the processes responsible for the conflicting placements of Ericales. 
Species networks (with three, two, and one maximum reticulations) 
were inferred under maximum pseudo-likelihood, with branches 
including <70% BS collapsed, and five optimal networks returned 
for each analysis. We additionally inferred a strictly bifurcating spe-
cies tree as a means of testing whether the best network (i.e., the one 
with the highest log probability) or a strictly bifurcating tree better 
fits the gene trees. The command CalGTProb was used to com-
pute the likelihood scores of the best network and the bifurcating 

phylogeny (inferred using maximum pseudo-likelihood) given 
the set of gene trees, and these were then compared using a likeli-
hood-ratio test.

RESULTS

Nuclear relationships

The nuclear phylogenomic analyses, using both concatenation and 
species-tree methods, recovered largely congruent relationships 
among major lineages of Asteridae (Figs.  1 and 2). Cornales and 
Ericales were recovered as sister with maximal support (Figs.  1 
and 2), and together these were sister to the remaining asterids 
(= Gentianidae). Oncotheca (of the monogeneric Oncothecaceae) 
was recovered with maximal support as sister to the remainder of 
Gentianidae, which in turn was divided into two major clades cor-
responding roughly to the campanulids and lamiids (sensu APG 
IV, 2016). However, Aquifoliales (Ilex spp. and Helwingia) were 
recovered within the lamiid clade with maximal support, posi-
tioned either as sister to Garryales (concatenated phylogeny; Fig. 1 
and Appendix S4) or along the backbone (species tree; Fig. 2 and 
Appendix  S5); Aquifoliales have been conventionally considered 
a member of the campanulid clade, sister to all other campanulid 
orders (e.g., Tank and Donoghue, 2010). Icacinaceae sensu Stull 
et al. (2015) were recovered as monophyletic with the exception of 
Cassinopsis, which was placed sister to Metteniusaceae with strong 
support (Figs. 1 and 2). Icacinaceae (minus Cassinopsis) were placed 
sister to the core lamiids (LPP = 1.0, BS = 100). Within the core lami-
ids, both analyses recovered Lamiales and Solanales as successively 
sister to Boraginales + Gentianales. Metteniusaceae + Cassinopsis 
were placed sister to all remaining lamiids (Figs. 1 and 2). Within 
the campanulids, relationships differed slightly between the con-
catenation and species-tree analyses. However, two major clades 
were recovered, one with Pennantiaceae, Escallonia (Escalloniales), 
and members of Dipsacales (Viburnum and Lonicera), and the 
other with Apiales and Asterales (Figs. 1 and 2).

Phylogenomic conflict

Regarding major asterid relationships, the results from the nuclear 
analyses (Figs.  1 and 2) show multiple instances (at least five) of 
well-supported conflict with the results from the plastid genome 
(Fig. 3 and Appendices S6, S7, S8), the latter of which are largely 
consistent with previous plastid and large-scale analyses of asterids 
(e.g., Stull et  al., 2015). Slight differences in some relationships 
were observed between the concatenated and ASTRAL analyses of 
the plastid genes (e.g., the positions of Oncotheca and Garryales; 
Appendix S8), as described below, but these differences are largely 
confined to areas of poor support, and results from both plastid 
analyses differ consistently in important ways from those of the nu-
clear genome.

Results based on the mitochondrial genome, on the other hand, 
show areas of agreement and conflict with both the nuclear and 
plastid genomes, but internal support for major relationships in 
the mitochondrial tree is generally low (Appendix S9). The plastome 
tree, for example, places Ericales sister to Gentianidae with max-
imal support (Fig.  3 and Appendix  S8), while both the nuclear 
(Figs. 1 and 2) and mitochondrial (Appendix S9) trees recovered 
Cornales and Ericales as sister (mitochondrial support is very low 

https://doi.org/10.5061/dryad.h70rxwdfq
https://doi.org/10.5061/dryad.h70rxwdfq
https://doi.org/10.5061/dryad.h70rxwdfq
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[BS = 16], while the nuclear support is maximal). However, in the 
nuclear phylogeny, the branch subtending Cornales + Ericales ex-
hibits considerable well-supported gene tree conflict (Fig. 2), with 
61 gene trees supporting this topology while 32 gene trees support 
conflicting/alternative resolutions; of these conflicting gene trees, 
26 support the plastid relationship, as revealed by the conflict anal-
ysis with the nuclear genes mapped on the plastid topology (Fig. 3). 
This nuclear-plastid conflict, with a subset of the nuclear genome 
supporting the plastid relationship, is suggestive of a possible an-
cient chloroplast capture event.

The plastid analyses (Fig. 3) place Oncothecaceae in the lami-
ids either sister to Icacinaceae (consistent with Stull et al., 2015) 
with strong support (BS = 94, concatenated analysis; Fig.  3) or 
unresolved within a clade including Garryales and the core lami-
ids (ASTRAL analysis; Appendix S8). The nuclear analyses place 
this family sister to the rest of Gentianidae (Fig. 1); no nuclear 
gene trees (with >70% BS) support the plastid topologies (Fig. 3). 
Although the mitochondrial data are consistent with plastid data 
in placing Oncothecaceae in the lamiids, none of the branches 
subtending this placement are well supported in the mitochon-
drial tree (Appendix S5). Additional instances of nuclear-plastid 
conflict, in which no or few nuclear genes support the plastid re-
lationships, include the placements of Aquifoliales, Icacinaceae, 
and Metteniusaceae. Notably, the plastid trees place Aquifoliales 
in the campanulid clade, sister to the remaining orders with 
strong support (Fig. 3 and Appendix S8), while the nuclear ge-
nome places Aquifoliales with maximal support in the lamiids 
(Figs.  1 and 2); although only six nuclear gene trees strongly 
support Aquifoliales sister to Garryales, the nuclear gene trees in 
general are overwhelmingly concordant in placing Aquifoliales in 
the lamiid clade (Fig. 2). The mitochondrial genome also places 
Aquifoliales in the lamiids, albeit with weak support (BS = 28).

The nuclear placement of Icacinaceae (minus Cassinopsis) sis-
ter to the core lamiids, although well supported in the concatena-
tion and species-tree analyses, shows notable gene-tree conflict, 
with 29 gene trees in support of this relationship and 36 in conflict 
(Fig. 2). Within Icacinaceae, generic relationships are largely con-
sistent with previous plastid analyses (e.g., Stull et  al., 2015). The 
strongly supported (LPP = 1.0, BS = 98) placement of Cassinopsis 
sister to Metteniusaceae in the nuclear tree (Figs.  1 and 2) is at 
odds with the plastid placement of this genus as sister to the rest of 
Icacinaceae (BS = 91; Fig. 3 and Appendix S8). In the nuclear trees, 
the position of this clade as a whole (Cassinopsis + Metteniusaceae) 
is well to poorly supported as sister to the remainder of Lamiidae 
(LPP = 0.93, BS = 33; Fig. 1). The mitochondrial phylogeny shows 
notably different placements for Icacinaceae (sister to the remain-
ing Gentianidae) and Garryales (sister to campanulids), but in both 
instances with weak support (Appendix S5); additionally, only two 
species of Icacinaceae (Icacina mannii and Mappianthus iodoides), 
and none of Metteniusaceae, were available in GenBank for inclu-
sion in the mitochondrial analyses.

Within the core lamiids, there is extensive gene-tree con-
flict in the nuclear genome concerning the relationships among 
Boraginales, Gentianales, Lamiales, and Solanales (Fig. 2), as well 

as conflict among relationships inferred using the nuclear, plastid, 
and mitochondrial data sets. However, support for core lamiid re-
lationships in the organellar phylogenies (Fig.  3 and Appendices 
S3, S5, S8) was generally low, in contrast to the more strongly sup-
ported nuclear relationships (Fig. 1).

Coalescent simulations, gene-tree dating, and network 
analyses

When organellar phylogenies were simulated on the scaled species 
tree under the coalescent, considerable gene-tree conflict was re-
covered at many of the nodes in the species tree conflicting with the 
actual plastid topology, suggesting that ILS is a likely explanation 
of at least some of the observed conflict (Fig. 4). In particular, for 
Cornales + Ericales, 759 of the simulated gene trees (out of 1000) 
were concordant with this relationship while 241 were in conflict, 
with roughly half of these conflicting genes (124) concordant with 
the plastid topology (Fig. 4). This suggests that the rapidity of the 
speciation events separating the lineages Gentianidae + (Cornales 
+ Ericales) created an opportunity for extensive ILS. If the branches 
separating the speciation events were longer, little or no conflict 
should be observed in the simulated organellar trees (Folk et  al., 
2017; Morales-Briones et  al., 2018). Similarly, conflict among the 
simulated organellar trees is also appreciable along the backbone of 
Lamiidae (Fig. 4), where multiple conflicting placements were ob-
served (Figs. 1 and 2), suggesting that ILS is likely also at play here.

The plastome and nuclear gene-tree dating analyses (Fig. 5 and 
Appendix S10) showed overlapping age ranges for the alternative 
topologies, making it difficult to distinguish between the alternative 
scenarios (ILS vs. hybridization) presented above. The divergences 
of Ericales + Gentianidae in the plastid tree (114.5 Ma) and in nu-
clear gene trees supporting this topology (median age = 112.5 Ma, 
range: 108.8–114.2) mostly preceded the divergences of Cornales 
+ Ericales in the main nuclear gene set (median age = 109.8 Ma, 
range: 84.491–114.5), but with notable overlap.

From the PhyloNet analyses, the inferred network with the high-
est log probability (−7185.1706) included a single reticulation, with 
the lineage Ericales descending from a reticulate node involving 
Cornales and Gentianidae (Fig. 5). This model (a network with one 
reticulation) was found to be significantly better (P = 0.0001) than 
a simpler alternative (a strictly bifurcating tree) based on the likeli-
hood-ratio test. The CalGTProb command was used to compute the 
likelihood scores for these alternatives (−1070.2706, −1062.7161) 
given the set of gene trees; these scores were used for the likeli-
hood-ratio test.

DISCUSSION

Novel insights into asterid phylogeny

Our results provide important new insights into relationships 
among major asterid lineages, highlighting multiple instances of 
well-supported conflict between the nuclear and plastid genomes 

FIGURE 1.  Tree from the concatenated maximum likelihood RAxML analysis of the 307 nuclear genes, including relationship support from this anal-
ysis (bootstrap values) as well as from the species-tree analysis of the 307 nuclear gene trees (local posterior probability values). All branches received 
100% support from both analyses unless otherwise indicated. A relationship in the concatenated phylogeny not present in the species tree is denoted 
by a hyphen.
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FIGURE 2.  Species tree topology, inferred by ASTRAL from the 307 nuclear genes, showing patterns of gene-tree concordance and conflict based on 
the PhyParts analysis. The pie charts at each node show the proportion of genes in concordance (blue), conflict (green = a single dominant alternative; 
red = all other conflicting trees), and without information (gray). The numbers above and below each branch are the numbers of concordant and 
conflicting genes at each bipartition, respectively.
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(cytonuclear discordance). Some of these points of conflict pertain 
to areas of asterid phylogeny that have long been problematic—for 
example, the relationships among basal lamiid lineages (Stull et al., 
2015) and the core lamiid orders (Refulio-Rodriguez and Olmstead, 

2014). Others, however—for example, the positions of Aquifoliales 
and Ericales—had seemed firmly settled, based on well-supported 
placements in phylogenies inferred from plastid or primarily 
plastid data (Soltis et  al., 2018a). These findings have important 

FIGURE 3.  Plastid topology, from the concatenated ML analysis of the 77 plastid genes, showing subsets of the nuclear genome in concordance 
and conflict with the plastid relationships, based on the PhyParts analysis of the 307 nuclear gene trees mapped against this tree. The pie charts at 
each node show the proportion of genes in concordance (blue), conflict (green = a single dominant alternative; red = all other conflicting trees), and 
without information (gray). The numbers above and below each branch are the numbers of concordant and conflicting genes at each bipartition, 
respectively.
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implications beyond relationships in Asteridae. Our results un-
derscore the importance of reevaluating broad-scale angiosperm 
phylogeny, as well as green-plant phylogeny in general, with more 
extensive evidence from the nuclear genome, because many other 
“accepted” relationships inferred from the plastome may be 

incorrect or incompletely understood due to evolutionary processes 
such as ILS or organellar capture via hybridization. Unfortunately, 
our results from the mitochondrial analyses were largely unre-
solved/poorly supported, suggesting that the slowly evolving mito-
chondrial genome may generally hold little promise for examining 
instances of deep cytonuclear discordance. Nevertheless, our results 
show that conflict analysis of the nuclear and plastid genomes alone 
is useful for characterizing deep cytonuclear discordance, which 
can be explored further using simulations, gene-tree dating, net-
work analyses, or other approaches (e.g., Folk et al., 2017; García 
et al., 2017; Morales-Briones et al., 2018) to help elucidate the un-
derlying biological causes.

Our analyses showed that perhaps both ancient reticulation 
and ILS were at play in the initial radiation of Asteridae. The net-
work analyses inferred Ericales to be a reticulate lineage formed 
by hybridization between Cornales and Gentianidae. However, the 
organellar simulations indicated that, with the rapidity of specia-
tion events at the base of Asteridae, extensive ILS should have been 
common as well. Furthermore, results from the gene-tree dating 
analyses were largely overlapping and therefore plausibly consistent 
with either scenario. Teasing apart ILS from hybridization in an-
cient radiations is a challenging task (Morales-Briones et al., 2019 
[Preprint]), in part because rapid radiations create ample opportu-
nity for both of these evolutionary processes (Fontaine et al., 2015; 
Pease and Hahn, 2015), and additionally because phylogenetic sig-
nal is often eroded over long periods of evolutionary time (Smith 
et al., 2019), reducing our ability to infer any type of evolutionary 
process. However, it is noteworthy that the observed conflict coin-
cides with inferred WGDs for Asteridae and for Ericales + Cornales 
(Landis et al., 2018); this provides additional potential evidence for 
reticulation in early asterid diversification. We elaborate on the po-
tential significance of these WGD events below.

The processes responsible for the different placements of 
Aquifoliales are less clear, as the considerable phylogenetic distance 
between the alternative positions makes it more difficult to eval-
uate alternative scenarios. Nevertheless, the nuclear genome over-
whelmingly supports the placement of this order in the lamiid clade, 

FIGURE 4.  Summary of the organellar phylogenies simulated under the 
coalescent, obtained by mapping the simulated trees against the guide 
tree (i.e., the nuclear species tree) using PhyParts. The pie charts show 
the proportion of simulated trees concordant (blue) and conflicting 
(green = a single dominant alternative; red = all other conflicting trees) 
with each node; the numbers above and below each pie chart are the 
numbers of concordant and conflicting trees, respectively.

Lamianae

2

998

0

1000

156

844   

80

920
791

209
573

427 106

894

241

759

Ericales

Aquifoliales

Cornales

Garryales

Icacinaceae

Campanulidae

Metteniusaceae

Oncothecaceae

FIGURE 5.  (A) The optimal phylogenetic network inferred using PhyloNet, depicting Ericales as a reticulate lineage formed by hybridization between 
Cornales and Gentianidae. The inheritance probabilities (IP) are shown for each hybrid branch. (B) The dated nuclear gene trees (with ages estimated 
using treePL) visualized using DensiTree (Bouchaert and Heled, 2014 [Preprint]). The time scale spans from 150 million years ago to the present.

A B



800  •  American Journal of Botany

whereas our plastid analyses as well as earlier plastid results (e.g., 
Moore et al., 2010, 2011; Tank and Donoghue, 2010) place the order 
with strong support as sister to all other campanulids. This nuclear- 
based placement is actually more consistent with morphological 
data and traditional classifications, given that Aquifoliales (and spe-
cifically Cardiopteridaceae and Stemonuraceae) include numerous 
genera of what was formerly Icacinaceae s.l. (Kårehed, 2001).

Implications for character evolution

Aquifoliales, Icacinaceae, and Metteniusaceae (which also in-
clude genera of Icacinaceae s.l.) are all generally woody, evergreen 
plants, mostly of tropical habitats, with alternate, exstipulate leaves 
(although minute stipules are present in Aquifoliaceae), relatively 
inconspicuous flowers with free to slightly fused petals, superior 
ovaries, and drupaceous fruits (Stull et al., 2018). Many of these fea-
tures, however, are likely ancestral for Gentianidae or Asteridae as a 
whole (Stull et al., 2018) and therefore do not necessarily offer mor-
phological support for the placement of Aquifoliales in the lamiids, 
although they also do not contradict it. Nevertheless, the position 
of Aquifoliales in lamiids, as opposed to campanulids, might help 
clarify the reconstructions of several morphological characters (e.g., 
ovary position, fruit type) in the latter clade. For example, inferior 
ovaries likely would be reconstructed as ancestral for campanulids 
(see Stull et al., 2018), as would capsular fruits (see Beaulieu and 
Donoghue, 2013).

The placement (and slightly revised circumscription, see below) 
of Icacinaceae based on the nuclear data set also has several broader 
implications for character evolution. Previously, unilacunar nodes 
and simple perforation plates were considered likely synapomor-
phies for the subclade of Icacinaceae excluding Cassinopsis (Stull 
et al., 2015). However, these morphological features also character-
ize the core lamiids, to which Icacinaceae (minus Cassinopsis) ap-
pear to be sister; therefore, these features may be synapomorphic for 
this broader clade instead. The possible placement of Oncotheca as 
sister to the rest of Gentianidae would also be consequential for un-
derstanding broader patterns of character evolution in Gentianidae 
and Asteridae, although this phylogenetic position for Oncotheca 
deserves further scrutiny. It is noteworthy that Oncotheca has five 
carpels while Gentianidae more broadly are characterized by only 
two or three; perhaps carpel reduction in Gentianidae occurred 
after the divergence of Oncotheca. However, carpel number is am-
biguous in Icacinaceae, Metteniusaceae, and Aquifoliales, where 
pseudomonomery seems to predominate (Engler, 1872; Baillon, 
1874; Sleumer, 1942; González and Rudall, 2010; Tobe, 2013; Kong 
et al., 2014), and the genus Emmotum (Metteniusaceae) is notable 
for having a pseudotrimerous gynoecium of five carpels (Endress 
and Rapini, 2014). Thus, more detailed developmental studies of 
asterid gynoecia, in addition to further phylogenetic investigation, 
will be necessary to resolve these questions.

Phylogeny and circumscription of Icacinaceae and 
Metteniusaceae

The placement of Cassinopsis in Icacinaceae was questioned in ear-
lier phylogenetic studies (e.g., Kårehed, 2001), although analyses 
of the plastid genome (Stull et al., 2015; present study) have sup-
ported its inclusion in Icacinaceae as sister to the rest of the family. 
Morphologically, however, it is isolated from the other members of 
Icacinaceae—for example, it differs from other genera of Icacinaceae 

in having scalariform perforation plates, multilacunar nodes, op-
posite leaves, and occasional axillary thorns (Potgieter and Duno, 
2016). Several of these features (scalariform perforation plates 
and multilacunar nodes) are shared with Metteniusaceae, although 
not necessarily synapomorphic. The nuclear analyses presented 
here suggest that Cassinopsis is indeed phylogenetically isolated 
from Icacinaceae and more closely related to Metteniusaceae, and 
should perhaps be included within a slightly expanded circumscrip-
tion of the latter family. For Icacinaceae, the absence of Cassinopsis 
thus renders the family more morphologically coherent (Kårehed, 
2001; Stull et al., 2015). Excluding Cassinopsis, the circumscription 
of Icacinaceae would thus include 23 genera: all those listed in Stull 
et al. (2015) plus Vadensea, a genus recently established to accom-
modate the continental African species of Desmostachys (Jongkind 
and Lachenaud, 2019), which was previously shown to be polyphy-
letic (Byng et al., 2014; Stull et al., 2015).

Ancient hybridization and whole-genome duplication in 
Asteridae

Recent analyses of transcriptome and genome data (e.g., Cannon 
et al., 2014; Landis et al., 2018; Smith et al., 2018; Yang et al., 2018; 
Larson et al., 2019 [Preprint]; One Thousand Plant Transcriptomes 
Initiative, 2019) have greatly expanded our understanding of the 
extent of paleopolyploidy (or WGD) in the evolutionary history of 
green plants, and especially of angiosperms. These studies indicate 
that polyploidy played an important role in the early evolution of 
Asteridae, with WGD events inferred in the common ancestor of 
Asteridae as a whole and in the common ancestor of Cornales + 
Ericales. There also appears to be a WGD event in the early diver-
sification of Ericales (Larson et al., 2019 [Preprint]), as well as in 
numerous other, more nested areas of asterid phylogeny (Landis 
et  al., 2018; One Thousand Plant Transcriptomes Initiative, 2019; 
see also Barker et al., 2008). Notably, the most prominent genomic 
conflict we observed in our analyses seems to coincide with these 
deep asterid WGD events. Namely, the earliest divergences in as-
terid phylogeny—those of Gentianidae + (Cornales + Ericales)—
exhibit well-supported conflict both between the nuclear and 
plastid genomes and within the nuclear genome. This suggests that 
these deep WGD events were significantly involved in the initial 
radiation of asterids. While the relationship between WGD and di-
versification remains unclear, or perhaps idiosyncratic (e.g., Vamosi 
and Dickinson, 2006; Tank et al., 2015; Kellogg, 2016; Landis et al., 
2018), the potential for WGD to contribute directly to evolution-
ary novelty—in terms of biochemistry, physiology, morphology, or 
ecological niche—has long been recognized (e.g., Stebbins, 1950; 
Roose and Gottlieb, 1976; Levin, 1983; Edger et al., 2015; Soltis and 
Soltis, 2016; Van de Peer et al., 2017; Baniaga et al., 2020). It is there-
fore possible that these WGD events played a role in the evolution 
of major asterid innovations, such as iridoid production; integ-
ument, nucellus, and endosperm type; and sympetaly (Stull et al., 
2018). This hypothesis deserves further study.

The methods used to detect WGDs include examination of Ks 
plots—that is, the distribution of synonymous substitutions per site 
(Ks) between paralogs in a genome (Lynch and Conery, 2000; Cui 
et al., 2006; One Thousand Plant Transcriptomes Initiative, 2019); 
a spike of many paralog pairs with a similar level of divergence in 
the plot suggests a simultaneous point of origin stemming from a 
WGD event. Because autopolyploidy results in extra alleles (not 
duplicate genes) across homologous chromosomes with polysomic 
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inheritance, we would not necessarily expect Ks plots to capture 
autopolyploidy events, or at least not as distinctly as they should 
capture allopolyploid events. Consequently, WGDs inferred, at least 
in part, using Ks plots are perhaps more likely to be the result of 
allopolyploidy. Given these considerations—as well as the patterns 
of genomic conflict observed here (Figs. 2 and 3) and the results 
of our phylogenetic network analyses (Fig. 5)—the WGD event de-
tected in the common ancestor of Ericales + Cornales (e.g., Landis 
et  al., 2018; Larson et  al., 2019 [Preprint]; One Thousand Plant 
Transcriptomes Initiative, 2019) might therefore have resulted 
from a reticulation event involving the ancestors of Cornales and 
Gentianidae. This possibility deserves further scrutiny, as identifi-
ability of sources of conflict is generally low (Morales-Briones et al., 
2019 [Preprint]), and other types of data (e.g., complete genomes) 
would be useful to fully resolve this question.

In contrast to most major asterid groups, Cornales and Ericales 
both have an extensive Cretaceous fossil record tracing roughly 
to the Turonian-Coniacian boundary, ~90 mya (e.g., Crepet et al., 
2013, 2018; Atkinson et al., 2017, 2018a, b). These fossil reports, 
along with various molecular dating analyses (e.g., Wikström et al., 
2001; Bremer et al., 2004; Bell et al., 2010; Magallón et al., 2015), 
indicate that Cornales and Ericales were actively diversifying in the 
early part of the Upper Cretaceous—perhaps spurred, at least in 
part, by these WGD events (Landis et al., 2018). Backbone relation-
ships in both Cornales (e.g., Xiang et al., 2002, 2011; Atkinson, 2018; 
Fu et al., 2019) and Ericales (e.g., Schönenberger et al., 2005; Rose 
et al., 2018; Larson et al., 2019 [Preprint]) have been notoriously dif-
ficulty to resolve, which likely reflects the rapid (and ancient) diver-
sification of these lineages. Ericales also seem to share an additional 
WGD in their early evolutionary history, shortly after divergence of 
the crown node (Landis et al., 2018; Larson et al., 2019 [Preprint]; 
One Thousand Plant Transcriptomes Initiative, 2019). Collectively, 
these lines of evidence reveal a complex early evolutionary history 
for asterid angiosperms.

FUTURE DIRECTIONS

While this study provides important initial insight into asterid 
phylogeny based on the nuclear genome, additional sampling 
is necessary to further clarify some relationships. For example, 
greater sampling of Aquifoliales, Metteniusaceae (including 
Cassinopsis), and Icacinaceae for transcriptome or target-capture 
sequencing would more firmly resolve major lamiid relation-
ships and perhaps help elucidate the biological processes under-
lying this complex radiation. In addition to the deepest asterid 
WGD events, described above, there appear to be multiple WGD 
events early in the diversification of both lamiids and campanu-
lids (Landis et al., 2018). However, among the basal lamiids es-
pecially, poor transcriptomic sampling has made it difficult to 
pinpoint the precise locations of several WGD events. For exam-
ple, Pyrenacantha malvifolia (Icacinaceae) shows signatures of a 
WGD in its history (Landis et  al., 2018), but in the absence of 
transcriptomes from close relatives, it is difficult to say if a WGD 
event is limited to this species or occurred deeper in the evolu-
tionary history of Icacinaceae. A similar situation is evident for 
Ilex paraguariensis (Landis et  al., 2018). Increased sampling is 
essential for accurately determining the number and locations of 
WGDs within a clade (Yang et  al., 2018). This issue is demon-
strated by comparing analyses of dense (Yang et  al., 2018) and 

sparse (Landis et al., 2018) samplings of the clade Caryophyllales; 
the former provides a much more nuanced picture of the extent 
of WGD in this clade.

Future nuclear phylogenomic studies of asterids will continue 
to illuminate the complex evolutionary history of this important 
clade. We anticipate that similar reinvestigations of other major 
groups—not only angiosperms, but other lineages of green life—
will reveal other unexpected nuclear-cytoplasmic discordances 
that will ultimately enrich our understanding of evolutionary 
history. Although the generation of new sequence data will re-
main important, we are quickly approaching a time when some 
of the most significant new insights about the Tree of Life and 
the complexities of genome history will likely result from careful 
reanalysis of existing data.
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