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PREMISE: Discordance between nuclear and organellar phylogenies (cytonuclear discordance) 

is a well-documented phenomenon at shallow evolutionary levels but has been poorly 

investigated at deep levels of plant phylogeny. Determining the extent of cytonuclear 

discordance across major plant lineages is essential not only for elucidating evolutionary 

processes, but also for evaluating the currently used framework of plant phylogeny, which is 

largely based on the plastid genome. 
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METHODS: We present a phylogenomic examination of a major angiosperm clade (Asteridae) 

based on sequence data from the nuclear, plastid, and mitochondrial genomes as a means of 

evaluating currently accepted relationships inferred from the plastome and exploring potential 

sources of genomic conflict in this group. 

RESULTS: We recovered at least five instances of well-supported cytonuclear discordance 

concerning the placements of major asterid lineages (i.e., Ericales, Oncothecaceae, Aquifoliales, 

Cassinopsis, and Icacinaceae). We attribute this conflict to a combination of incomplete lineage 

sorting and hybridization, the latter supported in part by previously inferred whole-genome 

duplications. 

CONCLUSIONS: Our results challenge several long-standing hypotheses of asterid 

relationships and have implications for morphological character evolution and for the importance 

of ancient whole-genome duplications in early asterid evolution. These findings also highlight 

the value of reevaluating broad-scale angiosperm and green-plant phylogeny with nuclear 

genomic data. 

KEY WORDS: Aquifoliales; asterids; cytonuclear discordance; Ericales; incomplete lineage 

sorting; phylogenomics; whole-genome duplication. 

Discordance between nuclear and organellar phylogenies (cytonuclear discordance) can arise 

from several evolutionary processes, including hybridization, incomplete lineage sorting (ILS), 

horizontal gene transfer, and gene duplication and loss (Doyle, 1992; Maddison, 1997; Galtier 

and Daubin, 2008; Soltis and Soltis, 2009; Smith et al., 2015). In plants, hybridization in 

particular—often accompanied by polyploidy, or whole-genome duplication (WGD)—has been 

emphasized as an important evolutionary process (e.g., Stebbins, 1950; Soltis and Soltis, 2009) 

and a major source of observed cytonuclear discordance due to chloroplast capture (e.g., 

Rieseberg and Soltis, 1991; Soltis and Kuzoff, 1995; Linder and Rieseberg, 2004). While such 

instances of discordance are typically observed at shallow phylogenetic levels (e.g., Huang et al., 

2014), recent studies have shown that ancient hybridization events can produce lasting signatures 

of cytonuclear discordance (Folk et al., 2017; García et al., 2017; Morales-Briones et al., 2018), 

even among major lineages of angiosperms (e.g., members of the rosid COM clade; Sun et al., 
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2015). We might expect ILS, as well, to result in persistent cytonuclear discordance in some 

cases, but this possibility has been poorly explored across the phylogeny of green plants. 

Our limited understanding of deep cytonuclear discordance stems, in part, from the 

historical reliance on the chloroplast genome for plant phylogenetic studies. For example, with 

the exception of a few nuclear and mitochondrial regions (e.g., Qui et al., 1999, 2010; Soltis et 

al., 2000) and the recently published 1KP phylogeny (One Thousand Plant Transcriptomes 

Initiative, 2019), our current framework of angiosperm phylogeny (e.g., APG IV, 2016) has 

primarily been informed by analyses of plastid genes and genomes (e.g., Jansen et al. 2007; 

Moore et al., 2007, 2010, 2011; Soltis et al., 2011; Ruhfel et al., 2014; Gitzendanner et al., 2018; 

Li et al., 2019). While the number of plant phylogenetic studies employing nuclear genes is 

certainly increasing (e.g., Wickett et al., 2014; Yang et al., 2015; Zeng et al., 2017; Couvreur et 

al., 2019; Johnson et al., 2019), few have explicitly investigated instances of deep cytonuclear 

discordance between comparable plastid and nuclear genomic data sets using tools for dissecting 

genomic conflict (e.g., Smith et al., 2015). The evolutionary history of angiosperms includes 

numerous cases of rapid radiation, evident from both the fossil record (e.g., Friis et al., 2011) and 

phylogenetic diversification analyses (e.g., Magallón and Castillo, 2009; Magallón et al., 2015; 

Tank et al., 2015; Landis et al., 2018; Smith and Brown, 2018). As a consequence, we might 

expect genomic signatures of ILS and introgression to be relatively common at deep levels 

across flowering plant phylogeny (Soltis et al., 2019), but this has been largely unexplored. 

Of course, the erosion of phylogenetic signal for deep nodes—due to saturation, for 

example—can render the resolution of deep relationships and associated evolutionary processes 

a considerable challenge (King and Rokas, 2017; Smith et al., 2019), especially in cases of rapid 

radiation (Whitfield and Lockhart, 2007; Parks et al., 2017). For some radiations, complete and 

confident resolution of all relationships and the identification of discrete evolutionary processes 

may be impossible, at least with current methods (Morales-Briones et al., 2019). Nevertheless, 

these types of investigations are necessary for a more nuanced understanding of the evolutionary 

history of angiosperms and of plants more broadly.

An important corollary of the points above is that the widely used framework of 

angiosperm phylogeny, based largely on the plastid genome (e.g., APG IV, 2016; Soltis et al., 

2018a, b), may not reflect the true species tree and/or may be incomplete as a result of 

evolutionary processes leading to cytonuclear discordance. More broad-scale phylogenomic 
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studies of angiosperms and green plants in general, explicitly comparing results from both the 

nuclear and plastid genomes, are clearly needed to evaluate the plastid-based phylogenetic 

framework and to elucidate the extent of cytonuclear discordance at deep phylogenetic levels. 

Here, we present a phylogenomic investigation of the major angiosperm clade Asteridae 

(Cantino et al., 2007), based on sequence data from the nuclear, plastid, and mitochondrial 

genomes, as a means of evaluating relationships inferred from the plastome (e.g., APG IV, 2016) 

and exploring potential sources of phylogenomic conflict in this group.

The asterid clade (Asteridae), with ~80,000 species or ~25% of flowering plant diversity, 

represents one of the largest angiosperm radiations (Soltis et al., 2018a). This clade has been the 

subject of numerous phylogenetic studies and, to a large extent, most major relationships appear 

well resolved (e.g., Olmstead et al., 1993, 2000; Albach et al., 2001a, b; Bremer et al., 2002; 

Tank and Donoghue, 2010; Stull et al., 2015, 2018). Cornales and Ericales are consistently 

recovered as successively sister to Gentianidae, which in turn comprises two major clades, 

Lamiidae and Campanulidae, each with ~40,000 species (Soltis et al., 2018a). Within 

campanulids, Aquifoliales have been consistently recovered as sister to the remainder of the 

clade (Judd and Olmstead, 2004). Within lamiids, several species-poor lineages (Icacinales, 

Metteniusales, Garryales) form a grade of successive sisters to the large core lamiid clade (= 

Lamianae; see Stull et al., 2015), which comprises four species-rich orders (Boraginales, 

Gentianales, Lamiales, Solanales) and the phylogenetically isolated genus Vahlia (Refulio-

Rodriguez and Olmstead, 2014). This framework, however, is almost entirely based on data 

derived from the plastid genome. Significantly, several recent studies of angiosperm phylogeny 

based on the nuclear genome (Zeng et al., 2017; One Thousand Plant Transcriptomes Initiative, 

2019) recovered notably different placements for several major asterid lineages than those 

reported on the basis of plastid sequences. A more comprehensive nuclear genomic perspective 

of asterid phylogeny is therefore urgently needed to evaluate the reliability of broadly accepted 

plastid-based relationships. 

To examine asterid relationships in a phylogenomic context, we assembled a large data 

set for 129 species comprising numerous loci from the nuclear (307) and plastid (77) genomes, 

using a combination of publicly available data (1KP: http://www.onekp.com; GenBank: 

https://www.ncbi.nlm.nih.gov/genbank/) and newly generated sequences from target enrichment 

(hyb-seq). A data set of 35 mitochondrial genes across 150 species (representing the same major 
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lineages, but different species in many cases) was also assembled from GenBank to provide a 

more comprehensive perspective on inter-genomic conflict. We used both species-tree and 

concatenation methods to infer phylogenetic relationships from each genomic data set, as well as 

methods for examining conflict and concordance among gene trees from the nuclear genome 

(Smith et al., 2015) and for inferring ancient reticulation events (e.g., Than et al., 2008; Folk et 

al., 2017; Wen et al., 2018). The results of these analyses provide important new insights on 

major relationships and patterns of morphological character evolution in Asteridae and establish 

a critical framework for understanding genomic conflict in light of previously inferred ancient 

WGDs. More broadly, our results underscore the importance of explicitly investigating 

phylogenomic discordance in major plant clades, even those whose relationships are thought to 

be largely settled. 

<h1>MATERIALS AND METHODS

<h2>Sampling and sequencing

We sampled 129 species (Appendix S1) for both the nuclear and plastid data sets, which 

ultimately included 307 and 77 loci, respectively. All major asterid groups were represented, 

with an emphasis on the lineages forming the basal lamiid nodes (Stull et al., 2015), as well as 

numerous outgroups spanning non-asterid eudicots. 

The nuclear data set was constructed using a combination of publicly available 

transcriptome data (100 species, obtained from the 1KP project: Matasci et al., 2014) and newly 

generated sequences for key asterid lineages (namely, Icacinaceae, Metteniusaceae) obtained 

through target enrichment and high-throughput sequencing (29 species, 104 nuclear loci; 

Appendix S1). The transcriptomes had been assembled previously (Matasci et al., 2014) using 

SOAPdenovo-Trans (Xie et al., 2014). We used hyb-seq (rather than transcriptome sequencing) 

to complete our sampling because most of the additional species needed are tropical and 

practically inaccessible for fresh material, necessitating an approach, such as hyb-seq, that is 

amenable to herbarium specimens. 

New hyb-seq data were generated as follows. DNAs were extracted using the CTAB 

method (Doyle and Doyle, 1987; Cullings, 1992), and genomic libraries were built following 

Stull et al. (2013) or by RAPiD Genomics (http://rapid-genomics.com/home; see Appendix S1). 

Nuclear loci for probe design and target enrichment were selected using MarkerMiner version 
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1.0 (Chamala et al., 2015), based on analysis of five input transcriptomes (Aucuba japonica, 

Eucommia ulmoides, Iodes vitiginea, Oncotheca balansae, Pyrenacantha malvifolia) related to 

the taxa intended for enrichment and sequencing; these transcriptomes were also obtained from 

the 1KP project (http://www.onekp.com/samples/list.php). We then performed target enrichment 

of the 104 selected nuclear loci using a custom-designed MYbaits kit from Arbor Biosciences 

(Ann Arbor, MI, USA), following MYbaits Manual version 3 (https://arborbiosci.com/wp-

content/uploads/2017/10/MYbaits-manual-v3.pdf). The custom MYbaits kit included 120mer 

baits with flexible (45 bp) tiling density (~2.67×) designed across each included sequence (i.e., 

the five species listed above) for each locus (104), totaling 10,001 baits. After enrichment, the 

samples were sequenced on the Illumina NextSeq 500 or MiSeq platform (2 × 150 bp) at the 

University of Florida Interdisciplinary Center for Biotechnology Research (Appendix S1). 

The plastid data set (Appendix S1) was similarly assembled using publicly available data 

and newly generated sequence data. Most samples (100) represented the same 1KP accessions as 

above, but the data were obtained directly from Gitzendanner et al. (2018), who reconstructed 

green-plant relationships using 78 protein-coding plastid genes. The remaining 29 samples were 

obtained from Stull et al. (2015) or newly sequenced for this study (Appendix S1). One gene 

(petG) was ultimately excluded due to its low representation throughout our sampling, resulting 

in 77 genes in the plastid data set. 

Although our primary goal was to compare phylogenetic results between the nuclear and 

plastid genomes based on a comparable sampling of species, we also generated a mitochondrial 

data set using publicly available sequences from GenBank 

(https://www.ncbi.nlm.nih.gov/genbank/), reasoning that the mitochondrial tree may provide 

useful additional evidence for interpreting instances of nuclear-plastid incongruence. However, 

given the data available on GenBank, it was not possible to sample the same species from the 

nuclear/plastid data sets for mitochondrial sequences. We therefore attempted to represent the 

same major lineages (e.g., Cornales, Ericales, Icacinaceae, Aquifoliales, Garryales) to the 

greatest extent possible, while maximizing genic representation for the species included. Our 

mitochondrial data set included 150 species and 35 genes (Appendix S2). Most species were 

represented by only two or three mitochondrial genes, but the more “complete” species (i.e., 40 

species with >20 genes) are reasonably dispersed phylogenetically, helping anchor the 

placements of the more poorly sampled species. 
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<h2>New sequence assembly and alignment

The newly generated plastid and nuclear sequence data were assembled as follows. Remnant 

adapter sequences were removed from the demultiplexed reads using Cutadapt version 1.5 

(Martin, 2011); low-quality nucleotides were removed from the reads using Sickle version 1.33 

(Joshi, 2011). HybPiper version 1.0 (Johnson et al., 2016) was then used to assemble the 104 

nuclear and 77 plastid loci. Although HybPiper includes an optional step to assemble (partial to 

complete) intron sequences flanking the exons, we opted to assemble exons only, given that the 

transcriptomic references used for probe design and assembly lack introns. The assembled 

sequences were then combined with their corresponding gene regions from publicly available 

data sets for subsequent alignment. In the case of the nuclear data set, however, the transcriptome 

data were first subjected to a preliminary ortholog identification step before being combined with 

the corresponding hyb-seq data. Because the hyb-seq loci were selected from the curated gene 

set implemented in MarkerMiner, which was also used to obtain orthologs from the 

transcriptome sequences (outlined below), this readily facilitated the combinability of these data 

sets. Once combined, the nuclear data set was then subjected to additional filtering steps to 

further ensure orthology (outlined below). 

Each gene region (for each of the genomic data sets: nuclear, plastid, and mitochondrial) 

was aligned individually using MAFFT version 7.220 (Katoh and Standley, 2013). Following 

alignment, the program “pxclsq” in Phyx (Brown et al., 2017) was used to remove columns from 

each alignment with >50% missing data. The final alignments are available from the Dryad 

Digital Repository: https://doi.org/10.5061/dryad.h70rxwdfq (Stull et al., 2020). 

<h2>Ortholog identification

We used MarkerMiner to identify putative single-copy genes across the assembled 

transcriptomes. MarkerMiner conducts a reciprocal BLAST search across the included 

transcriptomes to identify putative orthologs, which are then filtered for single-copy loci based 

on a curated set of 2809 genes that have been shown to be mostly single-copy across 

angiosperms (De Smet et al., 2013). This approach resulted in 2119 putative single-copy genes, 

which were subjected to several filtering steps before the final phylogenetic analyses. However, 

prior to filtering, we combined the sequences obtained from target enrichment with their 
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corresponding genes in the transcriptome gene set (because MarkerMiner was used for loci 

selection in the hyb-seq data set, these two data sets were readily combined based on their 

reference gene IDs). We then filtered the nuclear loci such that only genes including at least 30 

species were retained. The remaining 604 genes were then aligned individually, as described 

above, and used to generate gene trees in RAxML version 8.2.12, using the GTRGAMMA 

molecular model and including a search for the best-scoring maximum likelihood (ML) tree as 

well as 200 bootstrap replicates (Stamatakis, 2014). The resulting gene trees were used for two 

subsequent filtering steps to remove genes with potential paralogy issues: (1) gene trees with 

polyphyly of well-established major clades (i.e., Asteridae and Rosidae, sensu Soltis et al., 

2018a) were excluded, as were (2) gene trees with extreme root-to-tip variation or tree lengths 

(calculated using the Phyx program “pxstr”; Brown et al., 2017). Following these filtering steps, 

307 loci/gene trees remained for subsequent phylogenetic analyses. 

<h2>Phylogenetic analyses

We inferred phylogenetic trees for each genomic region (nuclear, plastid, mitochondrial) 

separately. For the plastid and mitochondrial genomes, we concatenated each gene set (77 loci 

for the plastome, 35 loci for the mitochondrial genome) using the phyx program “pxcat” (Brown 

et al., 2017) for subsequent phylogenetic analysis in RAxML, using the GTRGAMMA 

molecular model partitioned by gene region and including a search for the best-scoring ML tree 

and 200 bootstrap replicates. Because organellar genomic regions are typically analyzed in 

concatenation (i.e., treated as a single locus), we followed that approach here. However, recent 

studies have shown that plastid genomes are not free of gene-tree conflict (e.g., Walker et al. 

2019), suggesting that concatenation approaches may be inappropriate for plastomes, at least in 

some cases (Gonçalves et al., 2019). In light of this, multispecies coalescent (MSC) methods 

have been suggested as an alternative framework for plastome analyses (Gonçalves et al., 2019), 

but the appropriateness of this type of approach for plastid data, both theoretically and 

practically, has not been thoroughly considered. In addition to potential model violations (e.g., 

linkage, selection; Edwards et al., 2016), gene-tree estimation error—which is likely to be 

considerable with plastid genes, given that many of them are short and largely uninformative 

(Walker et al., 2019)—could potentially undermine analyses of the plastome, given that many 

species tree methods are sensitive to such errors (Chou et al., 2015). 
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With these caveats in mind, we also analyzed our plastome data set with ASTRAL 

version 5.6.3 (Zhang et al., 2018), a “species tree” method that infers the maximum quartet 

support species tree (MQSST), given a set of input gene trees. While ASTRAL does not 

explicitly model the MSC, it nevertheless has been shown to be statistically consistent in species 

tree inference from gene trees generated by the MSC process (Mirarab et al., 2014). We reasoned 

that using both of these approaches (concatenation and species tree) might help highlight weakly 

supported (or inaccurate) plastid relationships that may not actually represent true conflicts with 

the nuclear genome, even if both methods, in a sense, constitute model violations (Edwards et al., 

2016). Plastid gene trees for the ASTRAL analysis were inferred using RAxML with the 

GTRGAMMA model and 200 bootstrap replicates. Low-supported branches (<10% bootstrap 

support) in the gene trees were collapsed prior to analysis in ASTRAL, as this has been shown to 

improve species tree inference (Zhang et al., 2017). The ASTRAL analysis, based on 77 plastid 

loci, was implemented with the default settings, resulting in an estimated species tree topology 

with branch lengths and local posterior probabilities (LPPs) as branch support values. 

For the nuclear genome, as above, we inferred phylogenies using both concatenation and 

species tree methods. For the concatenation analysis, we used “pxcat” to concatenate the 

alignments of the 307 genes that passed all filtering steps (described above), and this combined 

set of genes was then analyzed in RAxML, using the same parameters and model partitioning 

scheme noted above. ASTRAL was used to infer an MQSST, with the 307 filtered gene trees 

from above as the input. As above, low-supported branches (<10% bootstrap support) were 

collapsed prior to the analysis, which employed the default settings. 

<h2>Conflict analyses

We used PhyParts (Smith et al., 2015) to examine patterns of gene-tree concordance and conflict 

within the nuclear genome and to reveal subsets of the nuclear genome supporting alternative 

relationships in the plastid topology. We performed these analyses because the characterization 

of patterns of conflict is an important step for identifying areas of a phylogeny that deserve more 

detailed attention and, potentially, additional analyses (e.g., for investigation of ancient 

reticulation). Operationally, PhyParts maps a given set of gene trees on an input species tree to 

determine the number of gene trees that are concordant, conflicting, or uninformative with 

respect to each node in the species tree. Among the conflicting genes, it also determines the 
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number of gene trees supporting a dominant alternative relationship. We performed two PhyParts 

analyses, each with a bootstrap support (BS) threshold of 70, meaning that gene-tree 

branches/nodes with <70% BS were considered uninformative. This BS value has long been 

considered a baseline for strong support (Hillis and Bull, 1993), although this notion has since 

been rightfully challenged (e.g., Soltis and Soltis, 2003). Nevertheless, it is a useful, albeit 

somewhat arbitrary, value for filtering out poorly supported (and possibly spurious) branches, 

thus alleviating noise in the results of the conflict analysis (Smith et al., 2015). 

For the first analysis, we mapped the 307 nuclear gene trees onto the species-tree 

phylogeny (which, as discussed below, is largely consistent with the concatenated nuclear tree in 

major relationships) to characterize gene-tree conflict against the prevailing phylogenetic signal 

from the nuclear genome. In the second analysis, we mapped the 307 nuclear gene trees onto the 

inferred plastome topology to determine if subsets of the nuclear genome support the plastome-

based topology in instances of plastid-nuclear conflict. We were unable to map the nuclear gene 

trees onto the mitochondrial phylogeny using PhyParts because of numerous differences in 

species sampling; instead, we visually inspected the mitochondrial tree to locate well-supported 

major relationships in conflict with the nuclear and plastid topologies. The output of the PhyParts 

analyses was visualized using a Python script by M. Johnson 

(https://github.com/mossmatters/phyloscripts/tree/master/phypartspiecharts). We also visualized 

differences between the nuclear species tree and the plastid phylogeny using the “cophylo” 

function in Phytools (Revell, 2012); this function takes two input phylogenies with identical 

sampling and makes a plot juxtaposing them, with lines connecting each species to its match in 

the alternative phylogeny, thus revealing differences in placement. 

<h2>Coalescent simulations, gene-tree dating, and network analyses

One major instance of incongruence between the nuclear and plastid genomes (concerning the 

placement of Ericales) was revealed in the conflict analyses and was explored further to 

determine whether the observed conflict was likely due to ancient chloroplast capture or ILS, 

although in many cases these are very difficult to tease apart (Pease and Hahn, 2015). Most of 

the informative nuclear genes (i.e., >70% BS for the relevant node) place Ericales sister to 

Cornales (61 genes), while a subset of the nuclear genome (26 genes) and the plastid genome 

place Ericales sister to Gentianidae. 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

To distinguish between chloroplast capture and ILS, following several studies (Folk et 

al., 2017; García et al., 2017; Morales-Briones et al., 2018), we simulated 1000 organellar trees 

under the coalescent using the program DendroPy (Sukumaran and Holder, 2010), with the 

inferred species tree acting as the guide tree. The guide tree (which was inferred from the nuclear 

data set) was scaled by a factor of four to approximate the branch lengths expected from 

organellar inheritance; this was done because the effective population size of the plastome is 

generally expected to be one-fourth that of the nuclear genome given the assumptions of equal 

sex ratios, haploidy (homoplasmic), and uniparental inheritance (McCauley, 1994). This 

approach allowed us to evaluate the plausibility of plastid ILS with respect to this particular 

species tree. The rationale for this approach is that, if the branch subtending the species-tree 

relationship (in this case, Cornales + Ericales) is very short, we would expect to see alternative 

relationships (e.g., Ericales + Gentianidae) with an appreciable frequency among the simulated 

trees due to ILS. However, if this branch is sufficiently long, we should not observe ILS from the 

simulations, suggesting that the actual observed plastid topology (Ericales + Gentianidae) is due 

not to ILS, but rather to a later reticulation event (resulting in chloroplast capture). The clade 

frequencies of the simulated gene trees (with respect to the main alternative topologies: Cornales 

+ Ericales vs. Ericales + Gentianidae) were calculated using PhyParts and visualized using the 

same Python script noted above. 

To further explore this issue, we conducted dating analyses of the plastome phylogeny 

and the individual nuclear gene trees supporting the alternative placements of Ericales. We 

reasoned that, in the case of ILS, the timing of the Ericales + Gentianidae divergences (in the 

plastome tree and the gene trees supporting this relationship) should precede those of Ericales + 

Cornales (in the main/concordant gene set), reflecting that the gene trees supporting Ericales + 

Gentianidae are a consequence of incomplete sorting prior to the Ericales + Cornales split. 

Conversely, in the case of later chloroplast capture, the timing of the Ericales + Gentianidae 

divergences should occur after the Ericales + Cornales divergences. 

We used treePL to date the plastome phylogeny and each individual gene tree, and for 

each we ran cross-validation tests prior to the final analysis to determine the optimal smoothing 

parameters (see configuration files for more details, available from the Dryad Digital Repository: 

https://doi.org/10.5061/dryad.h70rxwdfq [Stull et al., 2020]). Given the difficulty of consistently 

calibrating individual gene trees with differences in both relationships and included species, we 
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employed only two calibrations: (1) one for crown eudicots, with the minimum age set at 125.0 

Ma (corresponding to the first appearance of tricolpate pollen; Doyle et al., 1977; Hughes and 

McDougall, 1990) and the maximum age set at 135.0 Ma (corresponding approximately to the 

oldest reliable fossil evidence of angiosperms; Trevisan, 1988; Brenner, 1996; Friis et al., 2011; 

Coiro et al., 2019); and (2) another for crown Asteridae, with the minimum age set at 115.75 Ma 

(based on the penalized likelihood minimum estimate from 100 ML bootstrap trees in Magallón 

et al., 2015) and the maximum age set at 125.0 Ma (the first fossil appearance of eudicots, the 

broader clade including Asteridae). This more minimal calibration scheme allowed us to 

consistently calibrate nearly all gene trees, while weighting the significance of the eudicot 

calibration, which is generally considered one of the better angiosperm calibration points in that 

it likely captures eudicots relatively close to their actual geologic origin (Friis et al., 2011). 

Finally, we inferred species networks using PhyloNet version 3.8.0 (Than et al., 2008; 

Wen et al., 2018; Cao et al., 2019), which models both ILS and gene flow and permits the 

inference of reticulate nodes (hybridization events). For these analyses, we used the set of 307 

nuclear gene trees, with the sampling reduced to a computationally tractable size (i.e., <30 taxa; 

Than et al., 2008; Wen et al., 2018). Specifically, we retained all species of Cornales and 

Ericales present in each gene tree, but reduced the outgroups to a single species and Gentianidae 

to three species (Oncotheca balansae and one species each from the lamiid and campanulid 

clades). The reduced gene trees are available on Dryad 

(https://doi.org/10.5061/dryad.h70rxwdfq). This sampling allowed us to specifically explore the 

processes responsible for the conflicting placements of Ericales. Species networks (with three, 

two, and one maximum reticulations) were inferred under maximum pseudo-likelihood, with 

branches including <70% BS collapsed, and five optimal networks returned for each analysis. 

We additionally inferred a strictly bifurcating species tree as a means of testing whether the best 

network (i.e., the one with the highest log probability) or a strictly bifurcating tree better fits the 

gene trees. The command CalGTProb was used to compute the likelihood scores of the best 

network and the bifurcating phylogeny (inferred using maximum pseudo-likelihood) given the 

set of gene trees, and these were then compared using a likelihood-ratio test. 

<h1>RESULTS

<h2>Nuclear relationships
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The nuclear phylogenomic analyses, using both concatenation and species-tree methods, 

recovered largely congruent relationships among major lineages of Asteridae (Figs. 1 and 2). 

Cornales and Ericales were recovered as sister with maximal support (Figs. 1 and 2), and 

together these were sister to the remaining asterids (= Gentianidae). Oncotheca (of the 

monogeneric Oncothecaceae) was recovered with maximal support as sister to the remainder of 

Gentianidae, which in turn was divided into two major clades corresponding roughly to the 

campanulids and lamiids (sensu APG IV, 2016). However, Aquifoliales (Ilex spp. and 

Helwingia) were recovered within the lamiid clade with maximal support, positioned either as 

sister to Garryales (concatenated phylogeny; Fig. 1 and Appendix S4) or along the backbone 

(species tree; Fig 2 and Appendix S5); Aquifoliales have been conventionally considered a 

member of the campanulid clade, sister to all other campanulid orders (e.g., Tank and Donoghue, 

2010). Icacinaceae sensu Stull et al. (2015) were recovered as monophyletic with the exception 

of Cassinopsis, which was placed sister to Metteniusaceae with strong support (Figs. 1 and 2). 

Icacinaceae (minus Cassinopsis) were placed sister to the core lamiids (LPP = 1.0, BS = 100). 

Within the core lamiids, both analyses recovered Lamiales and Solanales as successively sister to 

Boraginales + Gentianales. Metteniusaceae + Cassinopsis were placed sister to all remaining 

lamiids (Figs. 1 and 2). Within the campanulids, relationships differed slightly between the 

concatenation and species-tree analyses. However, two major clades were recovered, one with 

Pennantiaceae, Escallonia (Escalloniales), and members of Dipsacales (Viburnum and Lonicera), 

and the other with Apiales and Asterales (Figs. 1 and 2). 

<h2>Phylogenomic conflict

Regarding major asterid relationships, the results from the nuclear analyses (Figs. 1 and 2) show 

multiple instances (at least five) of well-supported conflict with those recovered from the plastid 

genome (Fig. 3 and Appendices S6, S7, S8), the latter of which are largely consistent with 

previous plastid and large-scale analyses of asterids (e.g., Stull et al., 2015). Slight differences in 

some relationships were observed between the concatenated and ASTRAL analyses of the plastid 

genes (e.g., the positions of Oncotheca and Garryales; Appendix S8), as described below, but 

these differences are largely confined to areas of poor support, and results from both plastid 

analyses differ consistently in important ways from those of the nuclear genome. 
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Results based on the mitochondrial genome, on the other hand, show areas of agreement 

and conflict with both the nuclear and plastid genomes, but internal support for major 

relationships in the mitochondrial tree is generally low (Appendix S9). The plastome tree, for 

example, places Ericales sister to Gentianidae with maximal support (Fig. 3 and Appendix S8), 

while both the nuclear (Figs. 1 and 2) and mitochondrial (Appendix S9) trees recovered Cornales 

and Ericales as sister (mitochondrial support is very low [BS = 16], while the nuclear support is 

maximal). However, in the nuclear phylogeny, the branch subtending Cornales + Ericales 

exhibits considerable well-supported gene tree conflict (Fig. 2), with 61 gene trees supporting 

this topology while 32 gene trees support conflicting/alternative resolutions; of these conflicting 

gene trees, 26 support the plastid relationship, as revealed by the conflict analysis with the 

nuclear genes mapped on the plastid topology (Fig. 3). This nuclear-plastid conflict, with a 

subset of the nuclear genome supporting the plastid relationship, is suggestive of a possible 

ancient chloroplast capture event. 

The plastid analyses (Fig. 3) place Oncothecaceae in the lamiids either sister to 

Icacinaceae (consistent with Stull et al., 2015) with strong support (BS = 94, concatenated 

analysis; Fig. 3) or unresolved within a clade including Garryales and the core lamiids (ASTRAL 

analysis; Appendix S8). The nuclear analyses place this family sister to the rest of Gentianidae 

(Fig. 1); no nuclear gene trees (with >70% BS) support the plastid topologies (Fig. 3). Although 

the mitochondrial data are consistent with plastid data in placing Oncothecaceae in the lamiids, 

none of the branches subtending this placement are well supported in the mitochondrial tree 

(Appendix S5). Additional instances of nuclear-plastid conflict, in which no or few nuclear genes 

support the plastid relationships, include the placements of Aquifoliales, Icacinaceae, and 

Metteniusaceae. Notably, the plastid trees place Aquifoliales in the campanulid clade, sister to 

the remaining orders with strong support (Fig. 3 and Appendix S8), while the nuclear genome 

places Aquifoliales with maximal support in the lamiids (Figs. 1 and 2); although only six 

nuclear gene trees strongly support Aquifoliales sister to Garryales, the nuclear gene trees in 

general are overwhelmingly concordant in placing Aquifoliales in the lamiid clade (Fig. 2). The 

mitochondrial genome also places Aquifoliales in the lamiids, albeit with weak support (BS = 

28). 

The nuclear placement of Icacinaceae (minus Cassinopsis) sister to the core lamiids, 

although well supported in the concatenation and species-tree analyses, shows notable gene-tree 
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conflict, with 29 gene trees in support of this relationship and 36 in conflict (Fig. 2). Within 

Icacinaceae, generic relationships are largely consistent with previous plastid analyses (e.g., Stull 

et al., 2015). The strongly supported (LPP = 1.0, BS = 98) placement of Cassinopsis sister to 

Metteniusaceae in the nuclear tree (Figs. 1 and 2) is at odds with the plastid placement of this 

genus as sister to the rest of Icacinaceae (BS = 91; Fig. 3 and Appendix S8). In the nuclear trees, 

the position of this clade as a whole (Cassinopsis + Metteniusaceae) is well to poorly supported 

as sister to the remainder of Lamiidae (LPP = 0.93, BS = 33; Fig. 1). The mitochondrial 

phylogeny shows notably different placements for Icacinaceae (sister to the remaining 

Gentianidae) and Garryales (sister to campanulids), but in both instances with weak support 

(Appendix S5); additionally, only two species of Icacinaceae (Icacina mannii and Mappianthus 

iodoides), and none of Metteniusaceae, were available in GenBank for inclusion in the 

mitochondrial analyses. 

Within the core lamiids, there is extensive gene-tree conflict in the nuclear genome 

concerning the relationships among Boraginales, Gentianales, Lamiales, and Solanales (Fig. 2), 

as well as conflict among relationships inferred using the nuclear, plastid, and mitochondrial data 

sets. However, support for core lamiid relationships in the organellar phylogenies (Fig. 3 and 

Appendices S3, S5  S8) was generally low, in contrast to the more strongly supported nuclear 

relationships (Fig. 1). 

<h2>Coalescent simulations, gene-tree dating, and network analyses

When organellar phylogenies were simulated on the scaled species tree under the coalescent, 

considerable gene-tree conflict was recovered at many of the nodes in the species tree conflicting 

with the actual plastid topology, suggesting that ILS is a likely explanation of at least some of the 

observed conflict (Fig. 4). In particular, for Cornales + Ericales, 759 of the simulated gene trees 

(out of 1000) were concordant with this relationship while 241 were in conflict, with roughly 

half of these conflicting genes (124) concordant with the plastid topology (Fig. 4). This suggests 

that the rapidity of the speciation events separating the lineages Gentianidae + (Cornales + 

Ericales) created an opportunity for extensive ILS. If the branches separating the speciation 

events were longer, little or no conflict should be observed in the simulated organellar trees (Folk 

et al., 2017; Morales-Briones et al., 2018). Similarly, conflict among the simulated organellar 
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trees is also appreciable along the backbone of Lamiidae (Fig. 4), where multiple conflicting 

placements were observed (Figs. 1 and 2), suggesting that ILS is likely also at play here.

The plastome and nuclear gene-tree dating analyses (Fig. 5 and Appendix S10) showed 

overlapping age ranges for the alternative topologies, making it difficult to distinguish between 

the alternative scenarios (ILS vs. hybridization) presented above. The divergences of Ericales + 

Gentianidae in the plastid tree (114.5 Ma) and in nuclear gene trees supporting this topology 

(median age = 112.5 Ma, range: 108.8–114.2) mostly preceded the divergences of Cornales + 

Ericales in the main nuclear gene set (median age = 109.8 Ma, range: 84.491–114.5), but with 

notable overlap. 

From the PhyloNet analyses, the inferred network with the highest log probability 

(−7185.1706) included a single reticulation, with the lineage Ericales descending from a 

reticulate node involving Cornales and Gentianidae (Fig. 5). This model (a network with one 

reticulation) was found to be significantly better (P = 0.0001) than a simpler alternative (a 

strictly bifurcating tree) based on the likelihood-ratio test. The CalGTProb command was used to 

compute the likelihood scores for these alternatives (−1070.2706, −1062.7161) given the set of 

gene trees; these scores were used for the likelihood-ratio test. 

<h1>DISCUSSION

<h2>Novel insights into asterid phylogeny

Our results provide important new insights into relationships among major asterid lineages, 

highlighting multiple instances of well-supported conflict between the nuclear and plastid 

genomes (cytonuclear discordance). Some of these points of conflict pertain to areas of asterid 

phylogeny that have long been problematic—for example, the relationships among basal lamiid 

lineages (Stull et al., 2015) and the core lamiid orders (Refulio-Rodriguez and Olmstead, 2014). 

Others, however—for example, the positions of Aquifoliales and Ericales—had seemed firmly 

settled, based on well-supported placements in phylogenies inferred from plastid or primarily 

plastid data (Soltis et al., 2018a). These findings have important implications beyond 

relationships in Asteridae. Our results underscore the importance of reevaluating broad-scale 

angiosperm phylogeny, as well as green-plant phylogeny in general, with more extensive 

evidence from the nuclear genome, because many other “accepted” relationships inferred from 

the plastome may be incorrect or incompletely understood due to evolutionary processes such as 
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ILS or organellar capture via hybridization. Unfortunately, our results from the mitochondrial 

analyses were largely unresolved/poorly supported, suggesting that the slowly evolving 

mitochondrial genome may generally hold little promise for examining instances of deep 

cytonuclear discordance. Nevertheless, our results show that conflict analysis of the nuclear and 

plastid genomes alone is useful for characterizing deep cytonuclear discordance, which can be 

explored further using simulations, gene-tree dating, network analyses, or other approaches (e.g., 

Folk et al., 2017; García et al., 2017; Morales-Briones et al., 2018) to help elucidate the 

underlying biological causes. 

Our analyses showed that perhaps both ancient reticulation and ILS were at play in the 

initial radiation of Asteridae. The network analyses inferred Ericales to be a reticulate lineage 

formed by hybridization between Cornales and Gentianidae. However, the organellar 

simulations indicated that, with the rapidity of speciation events at the base of Asteridae, 

extensive ILS should have been common as well. Furthermore, results from the gene-tree dating 

analyses were largely overlapping and therefore plausibly consistent with either scenario. 

Teasing apart ILS from hybridization in ancient radiations is a challenging task (Morales-Briones 

et al., 2019), in part because rapid radiations create ample opportunity for both of these 

evolutionary processes (Fontaine et al., 2015; Pease and Hahn, 2015), and additionally because 

phylogenetic signal is often eroded over long periods of evolutionary time (Smith et al., 2019), 

reducing our ability to infer any type of evolutionary process. However, it is noteworthy that the 

observed conflict coincides with inferred WGDs for Asteridae and for Ericales + Cornales 

(Landis et al., 2018); this provides additional potential evidence for reticulation in early asterid 

diversification. We elaborate on the potential significance of these WGD events below. 

The processes responsible for the different placements of Aquifoliales are less clear, as 

the considerable phylogenetic distance between the alternative positions makes it more difficult 

to evaluate alternative scenarios. Nevertheless, the nuclear genome overwhelmingly supports the 

placement of this order in the lamiid clade, whereas our plastid analyses as well as earlier plastid 

results (e.g., Moore et al., 2010, 2011; Tank and Donoghue, 2010) place the order with strong 

support as sister to all other campanulids. This nuclear-based placement is actually more 

consistent with morphological data and traditional classifications, given that Aquifoliales (and 

specifically Cardiopteridaceae and Stemonuraceae) include numerous genera of what was 

formerly Icacinaceae s.l. (Kårehed, 2001). 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

<h2>Implications for character evolution

Aquifoliales, Icacinaceae, and Metteniusaceae (which also include genera of Icacinaceae s.l.) are 

all generally woody, evergreen plants, mostly of tropical habitats, with alternate, exstipulate 

leaves (although minute stipules are present in Aquifoliaceae), relatively inconspicuous flowers 

with free to slightly fused petals, superior ovaries, and drupaceous fruits (Stull et al., 2018). 

Many of these features, however, are likely ancestral for Gentianidae or Asteridae as a whole 

(Stull et al., 2018) and therefore do not necessarily offer morphological support for the 

placement of Aquifoliales in the lamiids, although they also do not contradict it. Nevertheless, 

the position of Aquifoliales in lamiids, as opposed to campanulids, might help clarify the 

reconstructions of several morphological characters (e.g., ovary position, fruit type) in the latter 

clade. For example, inferior ovaries likely would be reconstructed as ancestral for campanulids 

(see Stull et al., 2018), as would capsular fruits (see Beaulieu and Donoghue, 2013). 

The placement (and slightly revised circumscription, see below) of Icacinaceae based on 

the nuclear data set also has several broader implications for character evolution. Previously, 

unilacunar nodes and simple perforation plates were considered likely synapomorphies for the 

subclade of Icacinaceae excluding Cassinopsis (Stull et al., 2015). However, these 

morphological features also characterize the core lamiids, to which Icacinaceae (minus 

Cassinopsis) appear to be sister; therefore, these features may be synapomorphic for this broader 

clade instead. The possible placement of Oncotheca as sister to the rest of Gentianidae would 

also be consequential for understanding broader patterns of character evolution in Gentianidae 

and Asteridae, although this phylogenetic position for Oncotheca deserves further scrutiny. It is 

noteworthy that Oncotheca has five carpels while Gentianidae more broadly are characterized by 

only two or three; perhaps carpel reduction in Gentianidae occurred after the divergence of 

Oncotheca. However, carpel number is ambiguous in Icacinaceae, Metteniusaceae, and 

Aquifoliales, where pseudomonomery seems to predominate (Engler, 1872; Baillon, 1874; 

Sleumer, 1942; González and Rudall, 2010; Tobe, 2012; Kong et al., 2014), and the genus 

Emmotum (Metteniusaceae) is notable for having a pseudotrimerous gynoecium of five carpels 

(Endress and Rapini, 2014). Thus, more detailed developmental studies of asterid gynoecia, in 

addition to further phylogenetic investigation, will be necessary to resolve these questions. 
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<h2>Phylogeny and circumscription of Icacinaceae and Metteniusaceae

The placement of Cassinopsis in Icacinaceae was questioned in earlier phylogenetic studies (e.g., 

Kårehed, 2001), although analyses of the plastid genome (Stull et al., 2015; present study) have 

supported its inclusion in Icacinaceae as sister to the rest of the family. Morphologically, 

however, it is isolated from the other members of Icacinaceae—for example, it differs from other 

genera of Icacinaceae in having scalariform perforation plates, multilacunar nodes, opposite 

leaves, and occasional axillary thorns (Potgieter and Duno, 2016). Several of these features 

(scalariform perforation plates and multilacunar nodes) are shared with Metteniusaceae, although 

not necessarily synapomorphic. The nuclear analyses presented here suggest that Cassinopsis is 

indeed phylogenetically isolated from Icacinaceae and more closely related to Metteniusaceae, 

and should perhaps be included within a slightly expanded circumscription of the latter family. 

For Icacinaceae, the absence of Cassinopsis thus renders the family more morphologically 

coherent (Kårehed, 2001; Stull et al., 2015). Excluding Cassinopsis, the circumscription of 

Icacinaceae would thus include 23 genera: all those listed in Stull et al. (2015) plus Vadensea, a 

genus recently established to accommodate the continental African species of Desmostachys 

(Jongkind and Lachenaud, 2019), which was previously shown to be polyphyletic (Byng et al., 

2014; Stull et al., 2015). 

<h2>Ancient hybridization and whole-genome duplication in Asteridae

Recent analyses of transcriptome and genome data (e.g., Cannon et al., 2014; Landis et al., 2018; 

Smith et al., 2018; Yang et al., 2018; Larson et al., 2019; One Thousand Plant Transcriptomes 

Initiative, 2019) have greatly expanded our understanding of the extent of paleopolyploidy (or 

WGD) in the evolutionary history of green plants, and especially of angiosperms. These studies 

indicate that polyploidy played an important role in the early evolution of Asteridae, with WGD 

events inferred in the common ancestor of Asteridae as a whole and in the common ancestor of 

Cornales + Ericales. There also appears to be a WGD event in the early diversification of 

Ericales (Larson et al., 2019), as well as in numerous other, more nested areas of asterid 

phylogeny (Landis et al., 2018; One Thousand Plant Transcriptomes Initiative, 2019; see also 

Barker et al., 2008). Notably, the most prominent genomic conflict we observed in our analyses 

seems to coincide with these deep asterid WGD events. Namely, the earliest divergences in 

asterid phylogeny—those of Gentianidae + (Cornales + Ericales)—exhibit well-supported 
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conflict both between the nuclear and plastid genomes and within the nuclear genome. This 

suggests that these deep WGD events were significantly involved in the initial radiation of 

asterids. While the relationship between WGD and diversification remains unclear, or perhaps 

idiosyncratic (e.g., Vamos and Dickinson, 2006; Tank et al. 2015; Kellogg, 2016; Landis et al., 

2018), the potential for WGD to contribute directly to evolutionary novelty—in terms of 

biochemistry, physiology, morphology, or ecological niche—has long been recognized (e.g., 

Stebbins, 1950; Roose and Gottleib, 1976; Levin, 1983; Edger et al., 2015; Soltis and Soltis, 

2016; Van de Peer et al., 2017; Baniaga et al., 2020). It is therefore possible that these WGD 

events played a role in the evolution of major asterid innovations, such as iridoid production; 

integument, nucellus, and endosperm type; and sympetaly (Stull et al., 2018). This hypothesis 

deserves further study. 

The methods used to detect WGDs include examination of Ks plots—that is, the 

distribution of synonymous substitutions per site (Ks) between paralogs in a genome (Lynch and 

Conery, 2000; Cui et al., 2006; One Thousand Plant Transcriptomes Initiative, 2019); a spike of 

many paralog pairs with a similar level of divergence in the plot suggests a simultaneous point of 

origin stemming from a WGD event. Because autopolyploidy results in extra alleles (not 

duplicate genes) across homologous chromosomes with polysomic inheritance, we would not 

necessarily expect Ks plots to capture autopolyploidy events, or at least not as distinctly as they 

should capture allopolyploid events. Consequently, WGDs inferred, at least in part, using Ks 

plots are perhaps more likely to be the result of allopolyploidy. Given these considerations—as 

well as the patterns of genomic conflict observed here (Figs. 2 and 3) and the results of our 

phylogenetic network analyses (Fig. 5)—the WGD event detected in the common ancestor of 

Ericales + Cornales (e.g., Landis et al., 2018; Larson et al., 2019; One Thousand Plant 

Transcriptomes Initiative, 2019) might therefore have resulted from a reticulation event 

involving the ancestors of Cornales and Gentianidae. This possibility deserves further scrutiny, 

as identifiability of sources of conflict is generally low (Morales-Briones et al., 2019), and other 

types of data (e.g., complete genomes) would be useful to fully resolve this question. 

In contrast to most major asterid groups, Cornales and Ericales both have an extensive 

Cretaceous fossil record tracing roughly to the Turonian-Coniacian boundary, ~90 mya (e.g., 

Crepet et al., 2013, 2018; Atkinson, 2018; Atkinson et al., 2019). These fossil reports, along with 

various molecular dating analyses (e.g., Wikström et al., 2001; Bremer et al., 2004; Bell et al., 
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2010; Magallón et al., 2015), indicate that Cornales and Ericales were actively diversifying in the 

early part of the Upper Cretaceous—perhaps spurred, at least in part, by these WGD events 

(Landis et al., 2018). Backbone relationships in both Cornales (e.g., Xiang et al., 2002; 2011; 

Atkinson, 2018; Fu et al., 2019) and Ericales (e.g., Schönenberger et al., 2005; Rose et al., 2018; 

Larson et al., 2019) have been notoriously difficulty to resolve, which likely reflects the rapid 

(and ancient) diversification of these lineages. Ericales also seem to share an additional WGD in 

their early evolutionary history, shortly after divergence of the crown node (Landis et al., 2018; 

Larson et al., 2019; One Thousand Plant Transcriptomes Initiative, 2019). Collectively, these 

lines of evidence reveal a complex early evolutionary history for asterid angiosperms. 

<h1>FUTURE DIRECTIONS

While this study provides important initial insight into asterid phylogeny based on the nuclear 

genome, additional sampling is necessary to further clarify some relationships. For example, 

greater sampling of Aquifoliales, Metteniusaceae (including Cassinopsis), and Icacinaceae for 

transcriptome or target-capture sequencing would more firmly resolve major lamiid relationships 

and perhaps help elucidate the biological processes underlying this complex radiation. In 

addition to the deepest asterid WGD events, described above, there appear to be multiple WGD 

events early in the diversification of both lamiids and campanulids (Landis et al., 2018). 

However, among the basal lamiids especially, poor transcriptomic sampling has made it difficult 

to pinpoint the precise locations of several WGD events. For example, Pyrenacantha malvifolia 

(Icacinaceae) shows signatures of a WGD in its history (Landis et al., 2018), but in the absence 

of transcriptomes from close relatives, it is difficult to say if a WGD event is limited to this 

species or occurred deeper in the evolutionary history of Icacinaceae. A similar situation is 

evident for Ilex paraguariensis (Landis et al., 2018). Increased sampling is essential for 

accurately determining the number and locations of WGDs within a clade (Yang et al., 2018). 

This issue is demonstrated by comparing analyses of dense (Yang et al., 2018) and sparse 

(Landis et al., 2018) samplings of the clade Caryophyllales; the former provides a much more 

nuanced picture of the extent of WGD in this clade. 

Future nuclear phylogenomic studies of asterids will continue to illuminate the complex 

evolutionary history of this important clade. We anticipate that similar reinvestigations of other 

major groups—not only angiosperms, but other lineages of green life—will reveal other 
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unexpected nuclear-cytoplasmic discordances that will ultimately enrich our understanding of 

evolutionary history. Although the generation of new sequence data will remain important, we 

are quickly approaching a time when some of the most significant new insights about the Tree of 

Life and the complexities of genome history will likely result from careful reanalysis of existing 

data. 
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Appendix S5. Species tree, inferred by ASTRAL from the 307 nuclear genes, including 

outgroup species, branch lengths, and local posterior probability values at each node. This tree 

was used for the first PhyParts analysis and to make Figure 2.

Appendix S6. Tree from the concatenated maximum likelihood RAxML analysis of 

the 77 plastid genes, including outgroup species, branch lengths, and bootstrap support at each 

node. This tree was used for the second PhyParts analysis and to make Figure 3. 

Appendix S7. Plot juxtaposing the nuclear species tree and the plastid tree, generated using the 

“cophylo” function in Phytools, to highlight major topological differences between the trees. 

Note that the degree of conflict concerning the placement of Dillenia is exaggerated because of 

how the trees are rotated; in both trees (nuclear and chloroplast), this genus has a deep, isolated, 

and poorly resolved/supported position. 

Appendix S8. Species tree, inferred by ASTRAL from the 77 plastid genes, including branch 

lengths and local posterior probability values at each node. 

Appendix S9. Tree from the concatenated maximum likelihood RAxML analysis of 

the 35 mitochondrial genes, including branch lengths and bootstrap support at each node. 

Appendix S10. Summary results from the gene-tree dating analyses implemented in treePL. 
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FIGURE 1. Tree from the concatenated maximum likelihood RAxML analysis of the 307 

nuclear genes, including relationship support from this analysis (bootstrap values) as well as 

from the species-tree analysis of the 307 nuclear gene trees (local posterior probability values). 

All branches received 100% support from both analyses unless otherwise indicated. A 

relationship in the concatenated phylogeny not present in the species tree is denoted by a hyphen. 

FIGURE 2. Species tree topology, inferred by ASTRAL from the 307 nuclear genes, showing 

patterns of gene-tree concordance and conflict based on the PhyParts analysis. The pie charts at 

each node show the proportion of genes in concordance (blue), conflict (green = a single 

dominant alternative; red = all other conflicting trees), and without information (gray). The 

numbers above and below each branch are the numbers of concordant and conflicting genes at 

each bipartition, respectively. 

FIGURE 3. Plastid topology, from the concatenated ML analysis of the 77 plastid genes, 

showing subsets of the nuclear genome in concordance and conflict with the plastid 

relationships, based on the PhyParts analysis of the 307 nuclear gene trees mapped against this 

tree. The pie charts at each node show the proportion of genes in concordance (blue), conflict 

(green = a single dominant alternative; red = all other conflicting trees), and without information 

(gray). The numbers above and below each branch are the numbers of concordant and conflicting 

genes at each bipartition, respectively.
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FIGURE 4. Summary of the organellar phylogenies simulated under the coalescent, obtained by 

mapping the simulated trees against the guide tree (i.e., the nuclear species tree) using PhyParts. 

The pie charts show the proportion of simulated trees concordant (blue) and conflicting (green = 

a single dominant alternative; red = all other conflicting trees) with each node; the numbers 

above and below each pie chart are the numbers of concordant and conflicting trees, respectively. 

FIGURE 5. (A) The optimal phylogenetic network inferred using PhyloNet, depicting Ericales 

as a reticulate lineage formed by hybridization between Cornales and Gentianidae. The 

inheritance probabilities (IP) are shown for each hybrid branch. (B) The dated nuclear gene trees 

(with ages estimated using treePL) visualized using DensiTree (Bouckaert and Heled, 2014). The 

time scale spans from 150 million years ago to the present. 
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