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1  | INTRODUC TION

One of the main approaches for the study of community ecol-
ogy is documenting patterns of variation in ecological commu-
nities and underpinning the mechanistic basis for these patterns 

(Rosenzweig, 1995). Some of the most commonly studied pat-
terns are species–area relationships (e.g. Preston, 1960; Rosindell 
& Cornell, 2007), latitudinal diversity gradients (e.g. Hillebrand, 
2004; Usinowicz et al., 2017) and productivity–diversity rela-
tionships (e.g. Kondoh, 2001; Tilman & Pacala, 1993). Multiple 
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Abstract
Aim: Temporal patterns of community dynamics are drawing increasing interest due 
to their potential to shed light on assembly processes and anthropogenic effects. 
However, interpreting such patterns considerably benefits from comparing observed 
dynamics to the reference of a null model. For that aim, the cyclic shift permutations 
algorithm, which generates randomized null communities based on empirically ob-
served time series, has recently been proposed. This algorithm, borrowed from the 
spatial analysis literature, shifts each species time series randomly in time, and this is 
claimed to preserve the temporal autocorrelation of single species. Hence it has been 
used to test the significance of various community patterns, in particular excessive 
compositional changes, biodiversity trends and community stability.
Innovation: Here I critically study the properties of the cyclic shift algorithm for the 
first time. I show that, unlike previously suggested, this algorithm does not preserve 
temporal autocorrelation due to the need to ‘wrap’ the time series and assign the last 
observations to the first years. Moreover, this algorithm scrambles the initial state of 
the community, making any dynamics that result from deviations from equilibrium 
seem excessive. I exemplify that these two issues lead to a highly elevated type I 
error rate in tests for excessive compositional changes and richness trends.
Conclusions: Caution is needed when using the cyclic shift permutation algorithm 
and interpreting results obtained using it. Interpretation is further complicated be-
cause the algorithm removes all correlations between species. I suggest guidelines 
for using this method and discuss several possible alternative approaches. The non-
preservation of autocorrelation also raises questions regarding the use of the analo-
gous spatial null model, the torus-translation.
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explanations have been suggested for these patterns and studying 
them has shed light on the mechanisms determining species diver-
sity in ecological communities (e.g. DeMalach, Zaady, & Kadmon, 
2017; Usinowicz et al., 2017).

However, all the aforementioned patterns have a thing in com-
mon: they are static, representing ‘snapshots’ or time averages of 
ecological communities, without any temporal dimension. While 
interest in these patterns continues, in recent years there has 
been growing interest in understanding temporal patterns in com-
munities (Dornelas et al., 2013; Loreau & de Mazancourt, 2013; 
Magurran, 2016; McGill, Dornelas, Gotelli, & Magurran, 2015). It is 
believed that some of these patterns, which represent community 
dynamics and assembly ‘in action’, may reveal new insights on the 
processes shaping ecological communities (Chisholm et al., 2014; 
Kalyuzhny, Seri, et al., 2014). For example, studies on the scaling 
of the magnitude of population fluctuations with abundance re-
vealed the central role of temporal environmental variability in 
shaping ecological communities (Chisholm et al., 2014; Jabot & 
Lohier, 2016; Kalyuzhny, Kadmon, & Shnerb, 2015; Kalyuzhny, 
Schreiber, et al., 2014), and studies focusing on long-term changes 
in abundance and diversity revealed that population-level reg-
ulation is often weak (Kalyuzhny, Seri, et al., 2014; Knape & de 
Valpine, 2012; Ziebarth, Abbott, & Ives, 2010), while total abun-
dance and species diversity are indeed regulated (Brown, Ernest, 
Parody, & Haskell, 2001; Goheen, White, Ernest, & Brown, 2005; 

Gotelli et al., 2017; Magurran & Henderson, 2018). Moreover, in 
recent years there has been increasing interest in understanding 
richness trends and compositional turnover, partly motivated by 
concerns over the effect of anthropogenic activities on ecological 
communities (Elahi et al., 2015; Magurran et al., 2018; McGill et al., 
2015; Vellend et al., 2013). Several studies have shown that while 
some local communities show richness trends, negative and pos-
itive changes may cancel out in multiple communities worldwide 
(Dornelas et al., 2014; Vellend et al., 2013). Moreover, many eco-
logical communities show large compositional turnover (Dornelas 
et al., 2014; Magurran et al., 2018).

This immediately raises the question: what qualifies as a ‘large’ 
change in richness or composition? Stochastic community models 
generally predict that ecological communities undergo constant 
changes at steady state (Lande, Engen, & Saether, 2003), and so 
do some deterministic models of nonlinear dynamics (May, 1976). 
Importantly, these models also predict that community properties, 
such as species richness, will have considerable temporal-auto cor-
relation, which may generate spurious ‘trends’ on decadal time-
scales (see Figure  1a,b for an example). This is true even for the 
simplest and most minimalistic models of community dynamics such 
as the Neutral Theory of Biodiversity (Hubbell, 2001). Consequently, 
and in analogy to null models of community patterns in space, tem-
poral patterns should be compared to some null model to evaluate 
whether they deviate from the expectations under a minimalistic set 

F I G U R E  1   The challenges in analysing community time series, as exemplified with species richness through time. In (a), richness in 500 
time steps of a Ricker model at steady state in the default non-neutral competition regime is presented (blue), along with the long-term 
average (red). Note the ‘noisiness’, the degree of temporal autocorrelation and the observation that the system can stay away from the 
equilibrium richness for long times. Zooming in on three sections (b), it is noticeable that some may show spurious ‘trends’, which are solely 
a result of this autocorrelation, as the system is in steady state with fixed parameters. However, time series produced by applying the 
cyclic shift null model to these short time series (five resamples for each time series, presented in (c)) would lack such ‘trends’ and make the 
observations in (b) seem excessive [Colour figure can be viewed at wileyonlinelibrary.com]
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of mechanisms (Gotelli & Graves, 1996; Gotelli & McCabe, 2002). 
Such null models preserve some aspects of the data and randomize 
others.

A recent suggestion for a null model of community dynamics is 
the cyclic shift permutations algorithm (Hallett et al., 2014), origi-
nally proposed for spatial analysis (Harms, Condit, Hubbell, & Foster, 
2001). This algorithm gets as an input a matrix of the abundance, 
presence/absence or biomass of species by years (or other temporal 
units). In each realization of the algorithm, the time series of every 
species is shifted forwards in time a random number of years y, inde-
pendently of other species. The last y data points are then assigned 
to the first y years, hence ‘wrapping’ the time series like a loop. For 
example, two possible resamples of the time series [1 2 3 4 5] could 
be [5 1 2 3 4] or [3 4 5 1 2] with equal probability. This approach 
has been claimed to preserve the autocorrelation structure and the 
abundance distribution of each species’ time series (Hallett et al., 
2014; Lamy et al., 2019; Magurran et al., 2018), which result from the 
ecological dynamics of this species, while removing all correlations 
between species. Hence, the cyclic shift algorithm was designed to 
test whether patterns of community dynamics differ from the ex-
pectations of an independent-species, temporally autocorrelated 
process.

Cyclic shift permutations have been used as a null model for 
richness and compositional changes (Demars et al., 2014; Magurran 
et al., 2018), changes in dominance (Jones & Magurran, 2018), and 
compensatory dynamics and stability of species diversity and total 
biomass (Gotelli et al., 2017; Hallett et al., 2014; Lamy et al., 2019; 

Magurran & Henderson, 2018). The application of the cyclic shift 
null model is greatly facilitated by the available implementation of 
this algorithm within the open source R package Codyn (Hallett 
et al., 2016).

Here I would like to point out two important issues with the use 
of cyclic shift permutations and investigate their implications for 
statistical tests of temporal patterns. I claim that (a) cyclic shift per-
mutations do not preserve the autocorrelation structure of single 
species’ time series, especially on the time-scales of the length of 
the time series; and (b) cyclic shift permutations scramble the initial 
state of the community, making any dynamics that result from initial 
deviations from equilibrium seem excessive. See Figure 1 for exam-
ples of such deviations and for the effect of cyclic shifts on them. I 
show that these two properties lead to seriously inflated type I error 
rates when testing for excessive compositional changes and richness 
trends.

Here I point out two issues, I generate synthetic community 
time series using a flexible multispecies Ricker model (Kalyuzhny 
& Shnerb, 2017; Kilpatrick & Ives, 2003) in multiple parameter re-
gimes under three scenarios assuming that species (a) are inde-
pendent; (b) compete neutrally (i.e. all species are identical) and (c) 
compete and are different. See Figure 2 for examples of simulated 
time series. For these synthetic time series, richness trends and 
compositional changes are compared to the predictions of cyclic 
shift permutations. If the cyclic shift algorithm works properly, it 
should generate patterns similar to those of the independent spe-
cies model (since the algorithm breaks intraspecific correlations), 

F I G U R E  2   Examples of time series of species richness and abundance under the default parameter regime with the three interactions 
modes—independent species, neutrally competing species and non-neutrally competing species. The abundances presented below are of 
the three most common species and the three species around the 75th percentile of abundance. Time series produced under this (and other) 
parameter regimes were used for testing trends and excessive compositional changes in this work. Since these models are stationary, none 
of these ‘trends’ result from real changes in the communities, but are only a result of the autocorrelation of the process. See Methods for 
details about the simulations and their parameter regimes. The species pool has 100 species in all cases [Colour figure can be viewed at 
wileyonlinelibrary.com]
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and more variable than  those of the non-neutral competi-
tion model due to its stabilizing processes. While this could lead to 
acceptable or even reduced levels of type I errors, the aforemen-
tioned methodological issues are prevalent.

I conclude by discussing the possible applications of the cyclic 
shift algorithm and other community null models.

2  | DO CYCLIC SHIF T 
PERMUTATIONS PRESERVE TEMPOR AL 
AUTOCORREL ATION?

The most important argument raised for using the cyclic shift per-
mutations algorithm is that it preserves the temporal autocorrelation 
of the data (Hallett et al., 2014; Lamy et al., 2019; Magurran et al., 
2018). While this argument is highly intuitive, it ignores a crucial as-
pect of the algorithm—the ‘wrapping’ procedure, where the last y 
data points (where y is the number of years that the time series has 
been shifted) are assigned to the first y years.

Consider the first and last year data points in the resampled 
time series. It is highly likely that in the original time series, those 
were consecutive years, now maximally separated by the ‘wrap-
ping’ of the time series. Assuming the original time series had pos-
itive short-term temporal autocorrelation, this results in the last 
data point in the resample resembling considerably the first data 
point. This is generalizable, to some degree, to the first several 
data points resembling the final several data points. Moreover, 
the wrapping ‘attaches’ a pair of years that were originally max-
imally separated in time, also distorting autocorrelation at short 
time-scales.

Given data that were generated by some process, the goal of 
bootstrap resampling is generating more data that should resemble 
new data that would have been generated by repeating that pro-
cess. Many ecological models, and the Ricker (for parameter regimes 

where nonlinear effects do not take place) in particular, predict that 
consecutive time points will be relatively similar, and as time passes 
dissimilarity will monotonously increase (Kalyuzhny et al., 2015). 
Figure  3 exemplifies this for communities of independent species 
(Figure 3a) and for species that compete neutrally (Figure 3b) and 
non-neutrally (Figure 3c). In all three cases, time series resampled 
using the cyclic shift permutations show a unimodal pattern of 
Bray–Curtis dissimilarity, very different from the original time se-
ries. Dissimilarity indeed initially increases, but then, after half the 
time-series duration, begins to symmetrically decrease, so that the 
last time points are quite similar in composition to the first time 
points. Moreover, For the first time points in the resamples, dissim-
ilarity increases too fast, due to the ‘attachment’ of maximally sep-
arated years. Other parameter regimes and the Jaccard dissimilarity 
index show similar behaviours (Supporting Information Figures S1–
S2), emphasizing that this is a general issue not limited to a narrow 
set of conditions and models. See Methods for details about the sim-
ulations and the parameter regimes.

I conclude that the ‘wrapping’ of the time series inherently dis-
torts the temporal autocorrelation structure of ecological processes. 
This effect is dramatic on time-scales that are on the order of the 
length of the time series, and less dramatic for shorter time-scales. 
This raises the question—what are the implications of this, and of the 
‘scrambling’ of the initial state that was mentioned earlier, for the 
performance of statistical tests?

3  | T YPE I  ERRORS OF RICHNESS TRENDS 
AND E XCESSIVE TURNOVER

I exemplify the consequences of these properties for the testing 
of two fundamental patterns of community dynamics—temporal 
trends in diversity and compositional turnover. These are quanti-
fied by calculating the linear regression slope of (a) species richness 

F I G U R E  3   Comparison of Bray–Curtis community self-dissimilarity with time between ‘empirical’ simulated time series and their 
resamples, obtained using the cyclic shift algorithm. For each scenario [independent species (a), neutral competition (b) and non-neutral 
competition (c)], 104 synthetic time series were generated and Bray–Curtis compositional dissimilarity was computed between every 
year and the initial year for the empirical communities and resamples. For every empirical time series, 500 resamples were calculated and 
the results are averaged over the time series and resamples for every time point. The differences between the empirical and resampled 
average patterns is highly significant for every point but the middle and zero (t test, p < 10−9). While the ‘default’ parameter regime is 
presented, other regimes and the Jaccard index (Supporting Information Figures S1–S2) show similar results [Colour figure can be viewed at 
wileyonlinelibrary.com]
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and (b) the dissimilarity of species composition of each year with re-
spect to the initial year; both versus time. These patterns have been 
studied in various communities and compared to the expectations 
under cyclic shift permutations to test for significance (Demars et al., 
2014; Magurran et al., 2018). To examine the performance of the 
cyclic shift permutations null model I generated 104 synthetic com-
munities under several parameter regimes using the Ricker model, 
assuming one of three modes of interspecific interactions: (a) no in-
teractions; (b) neutral competition and (c) non-neutral competition. I 
then applied the cyclic shift algorithm 500 times to each community 
and compared the observed compositional and richness slopes in 
the time series generated by the model to the distribution of slopes 
under the cyclic shift algorithm. This allows me to calculate the sig-
nificance of the observed slopes for each community.

Since simulations began at steady state, and since the param-
eters of the simulations remain fixed, there are no real trends in 
species richness (beyond the spurious trends generated by temporal 
autocorrelation, see Figure  1a,b). For this reason, detected trends 
are false-positive results (type I errors), and their proportion should 
be close to .05 if the null model is appropriate. This is particularly 
true for the non-interacting species case, since the breaking of cor-
relations imposed by cyclic shift permutations should have no ef-
fect. However, I found that under all parameter regimes, type I errors 
were considerably inflated (Figure 4).

Type I errors for compositional changes were very high (.15–1) 
under all parameter regimes, interaction types and using either 

the Jaccard or Bray–Curtis indices (yellow and blue, respectively, 
in Figure 4a). These results are the consequences of the unimodal 
pattern of dissimilarity with time that is generated by cyclic shift 
permutations (Figure  3). The distribution of linear slopes fitted to 
this unimodal pattern is very different from the slope of the actual 
data, leading inevitably to a strong inflation of type I errors. In sev-
eral cases it appears that type I errors increase with the number 
of species, leading to communities with more immigration and less 
environmental stochasticity having more errors. However, this also 
depends on the shape of the dissimilarity versus time curve, which 
is more complex.

Regarding richness trends, communities starting at the equilib-
rium species richness had elevated type I errors (.08–.14, Figure 4b). 
However, the most pronounced result is that communities whose 
richness in the first year deviated from equilibrium, even by a few 
species, had a much higher type I error probability, reaching .3–.7 
in some parameter regimes. Moreover, type I error probabilities in-
creased sharply with the magnitude of the initial deviation from equi-
librium. It is important to emphasize that I did not intentionally initiate 
the communities at a deviation from equilibrium richness. Rather, 
deviations were a result merely of stochastic dynamics at steady 
state. These results hold under all parameter regimes and interaction 
modes, implying that such deviations, and the resulting inflation in 
type I errors, are to be expected in natural ecological communities.

The sharp increase in type I error rates as initial community rich-
ness moves away from equilibrium is a result of the ‘scrambling’ of 

F I G U R E  4   Proportion of false positive tests (at α = .05) for excessive compositional changes (a) and richness trends (b) for data 
generated by the multispecies Ricker model. 104 synthetic time series were generated for each parameter regime and mode of interspecific 
interactions. For each time series, the slopes versus time of compositional dissimilarity compared to the first year and of specie richness 
were calculated. They were then compared with the distributions of slopes for 500 resamples (using the cyclic shift algorithm and a two-
sided test) of the synthetic time series to obtain a p value. The parameter regimes are denoted as ‘B’ or orange × for baseline; ‘I-’ or orange 
○ for low immigration, ‘I+’ or orange + for high immigration; ‘σ-’ or blue × for no environmental stochasticity, and ‘σ+’ or yellow × for high 
environmental stochasticity. In (a) Jaccard (yellow) and Bray–Curtis (blue) dissimilarity were calculated. In (b) communities were assigned to 
bins based on the deviation of initial richness from equilibrium, and the proportion was calculated in each bin. The dashed grey line marks a 
proportion of .05 [Colour figure can be viewed at wileyonlinelibrary.com]
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the initial state. Fairly generally for communities in steady state, if 
some community property (richness, in this case, but without loss of 
generality) has an equilibrium value, and we find it initially at a differ-
ent value, it is expected to return to that equilibrium. However, the 
cyclic shift permutation eliminates the initial state of the community, 
and as a result any trend towards equilibrium would seem exces-
sive. Figure 1 shows how the spurious trends that result from the 
autocorrelation and from beginning not at equilibrium (Figure 1b) are 
eliminated by the cyclic shift randomization (Figure 1c).

4  | DISCUSSION

The cyclic shift algorithm is a generalistic and easy to apply null 
model, making it an appealing approach for testing a variety of dif-
ferent patterns. However, as I have shown, this approach has two 
fundamental undesired properties. First, it distorts the autocorrela-
tion structure so that the end of the resampled time series for each 
species closely resembles its beginning. The short-term autocorrela-
tion (for the first several years, less than half the length of the time 
series) is also affected, but to a lesser degree. Moreover, the cyclic 
shift randomization ‘scrambles’ the initial state of the community, 
making any dynamics that result from properties of this initial state 
seem unlikely. I have further exemplified that these fundamental 
limitations have severe consequences for type I error rates in tests 
for trends in species richness and excessive compositional changes 
under a broad set of parameters, emphasizing the generality of the 
results. I believe that the fundamental nature of the issues with the 
cyclic shift null model would have negative consequences for tests 
that may be developed for other patterns as well. For this reason, I 
recommend using this null model with extra caution.

Another aspect that must be considered carefully before using 
the cyclic shift algorithm is the implications of removing the cor-
relations between species. If the goal of the analysis is testing for 
the significance of such correlations (e.g. Hallett et al., 2014) then 
using a null with no correlations definitely makes sense. However, 
other aspects of the dynamics, such as temporal changes in diver-
sity, composition and dominance, may very well be affected by 
correlations between species. These correlations could be caused 
by biotic interactions or responses to environmental changes, and 
the interpretation of finding excessive changes compared to such 
a null of independent species should be carefully considered. Even 
more so, one should be cautious about using cyclic shift permuta-
tions on data that are available at a resolution of less than a year 
(e.g. Magurran et al., 2018; Magurran & Henderson, 2018). In such 
data, correlation between species may be the result of seasonality, 
and randomly shifting each species independently of other species 
removes its effect. Consequently, the likely strong effects of sea-
sonality on community composition will be detected as excessive 
changes.

These issues do not lessen, however, the need that led to the 
development of the cyclic shift algorithm. Indeed, I believe that the 
interest in temporal patterns will continue to grow, along with the 

need for a null model to serve as a reference for them. I would like to 
suggest several possible directions for addressing this need.

An alternative approach that has been suggested as a null model 
for community dynamics is neutral models (Dornelas et al., 2014; 
Gotelli & McGill, 2006; Hubbell, 2001), whose predicted dynamics 
have been compared to observed dynamical patterns on decadal 
(e.g. Dornelas et al., 2014; Kalyuzhny et al., 2015) or palaeobiological 
time-scales (e.g. Clark & McLachlan, 2003; McGill, Hadly & Maurer, 
2005). However, the dynamic predictions of neutral models are 
quite sensitive to the level of immigration (e.g. Dornelas et al., 2014; 
Hubbell, 1997) and temporal resolution (Tomašových & Kidwell, 
2010; Kalyuzhny et al., 2015), which are often unknown or difficult 
to parameterize. Furthermore, it has been shown that neutral mod-
els where stochastic events affect individuals independently (known 
as ‘demographic stochasticity’ or ‘ecological drift’), such as the 
classical Unified Neutral Theory of Biodiversity and Biogeography 
(Hubbell, 2001), predict considerably smaller changes than observed 
in multiple communities (Dornelas et al., 2014; Kalyuzhny, Schreiber, 
et al., 2014; Kalyuzhny, Seri, et al., 2014). It has been shown that 
this is the result of ignoring environmental fluctuations, which affect 
the growth rate of entire populations synchronously (Chisholm et al., 
2014; Fung, O'Dwyer, Rahman, Fletcher, & Chisholm, 2016; Jabot & 
Lohier, 2016; Kalyuzhny et al., 2015). Hence, a neutral model with 
environmental fluctuations would be a much more appropriate null 
(Jabot & Lohier, 2016; Kalyuzhny et al., 2015). Furthermore, neutral 
theories impose compensatory dynamics, or negative correlations, 
between species, which stem from the zero-sum assumption. This 
makes them not necessarily the best choice as a null model (Gotelli 
& McGill, 2006). Overall, using neutral theories as a dynamic null 
model involves multiple non-trivial challenges. Another alternative 
would be to try to fit multispecies autoregressive models (Ives, 
Dennis, Cottingham, & Carpenter, 2003). This framework is more 
flexible, and one may decide to preserve (or not to preserve) multi-
ple properties such as the autocorrelation structure of the data, the 
magnitude of fluctuations, the correlations between species and the 
initial state of the community. This approach has not been studied 
much as a null model to this day.

Finally, a null model for presence–absence data named Presence-
Absence Resampling wIthin periodS (PARIS) has recently been sug-
gested as a methodology to generate synthetic communities where 
each species independently undergoes colonization and extinction 
dynamics at fixed rates (Kalyuzhny, Flather, Shnerb & Kadmon, 
2019). While this approach imposes the autocorrelation structure of 
a Poisson process and species independence, it preserves the initial 
state of the community and has recently been shown to have excel-
lent statistical properties: acceptable type I error rates, robustness 
to problems in the data and statistical power under alternative as-
sumptions (Kalyuzhny et al., 2019). PARIS is also very easy to apply 
to ecological time series because, like the cyclic shift algorithm, it 
is a randomization-based methodology with publicly available code.

It is noteworthy that the cyclic shift algorithm was ini-
tially borrowed from the literature on spatial analysis (Harms 
et al., 2001, named ‘torus-translation’), where the preservation 
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of autocorrelation argument was initially raised. Since its propo-
sition, tests based on this torus-translation have been published 
in dozens of works (e.g. Hall, McKenna, Ashton, & Gregoire, 2004; 
Lan et al., 2012; Yamada et al., 2007). The finding that the tem-
poral analogue, the cyclic shift algorithm, does not preserve tem-
poral autocorrelation, implies that the torus-translation does not 
preserve spatial autocorrelation as well. This casts doubt on the 
justification for the torus-translation. I hope future works will ex-
amine the implications of this non-preservation of autocorrelation 
for the performance of statistical tests using the torus-translation 
as a spatial null model.

Overall, I believe that studying temporal patterns has great 
promise to shed light on the processes shaping ecological commu-
nities. This promise is amplified by the increasing availability of ex-
tensive datasets of temporal community dynamics (Dornelas et al., 
2018). However, more research is required on how to appropriately 
analyse such data, and in particular on the best practices for apply-
ing null models of community dynamics. I hope this work will reduce 
the improper application of such null models and help guide the use 
and development of more appropriate null models for temporal com-
munity dynamics.

5  | METHODS

5.1 | Models

I studied the statistical performance of the cyclic shift permutations 
algorithm by applying it to synthetic time series generated using a 
discrete-time multispecies Ricker model (Kalyuzhny & Shnerb, 2017; 
Kilpatrick & Ives, 2003), whose flexibility allows generating of a va-
riety of dynamic regimes.

In the multispecies Ricker model, the expected population of 
species i at time t + 1, Ni,t+1, in the absence of immigration is:

where ri and Ki are the growth rate and carrying capacity of 
species i, respectively, �ij is the per capita effect of an individual of 
species j on the growth of species i, representing interspecific inter-
actions, and �i,t represents stochastic fluctuations in growth rate due 
to environmental changes. �i,t is normally distributed with a mean of 
0 and variance of �2

e
.

While Equation (1) represents the expected population of spe-
cies i at time t, the actual population size is drawn from a Poisson 
distribution: Ni,t+1∼Poisson

(

E
(

Ni,t+1

))

. This introduces demo-
graphic stochasticity, that is, random variation between individu-
als in demography, as well as the discreteness of individual, which 
allows species to go stochastically extinct. Finally, after the local 
demography step described above, a Poisson distributed num-
ber of immigrants (with mean I, representing immigration rate) 

are introduces and are chosen at random with equal probability 
from among the Sreg species available in the species pool.

The flexibility of the Ricker model allows the  consideration of 
multiple parameter regimes and modes of interspecific interactions. 
I have used three such general modes of interactions: First, to be 
as consistent as possible with the properties of the cyclic shift al-
gorithm, I considered communities of non-interacting species by 
setting all �ijs to zero. I further assumed that the Kis of species are 
lognormally distributed with mean 1,000 and SD of 2,000, and the 
ris are exponentially distributed with mean 0.1. To resemble neutral 
models, which are also used as null models, I assumed all �ij = 1, all Ki 
= 1,000 and all ri = 0.1. In this case, all the species are identical, sub-
ject to one community-wide carrying capacity K=Ki and to demo-
graphic and possibly environmental stochasticity. Hence, this model 
is analogous to classic neutral theory, but with the community carry-
ing capacity subject to fluctuations rather than being a fixed number. 
Finally, to generate more complex and realistic dynamics I consid-
ered non-neutrally competing species. In this case, I assumed that 
the �ijs are gamma distributed with mean and SD of 0.1, and the Kis 
and ris are distributed similarly to the case of independent species.

In all three modes of interactions, I considered five parameter 
regimes. Under the baseline regime, I = 1 and σe= 0.2. Under the high 
immigration and low immigration regimes, I was set to 0.2 and 10, 
respectively, and under the low stochasticity and high stochastic-
ity regimes �e was set to 0 and 0.5, respectively. Communities were 
initiated with each species at its carrying capacity Ki, or at Ki/Sreg in 
the neutral interactions regime and were given 20*Sreg/I time steps 
to equilibrate before being recorded for 20 time steps (unless oth-
erwise presented). This equilibration time is meant to allow 20 im-
migration events (on average) for each species before I consider the 
community as at steady state.

For all models, I considered two levels of Sreg, 20 and 100 spe-
cies. The results were qualitatively similar but more pronounced 
for the 100 species (because there are more changes overall), so I 
present the result for Sreg = 100 in all cases. Examples of time series 
generated under the models in the three interaction modes are given 
in Figure 1

5.2 | Statistical tests

I am interested in examining the performance of tests for excessive 
compositional turnover and richness trends. For compositional turn-
over, I computed the Jaccard and Bray–Curtis dissimilarity indices of 
every year with respect to the initial year (as in Figure 3) and used 
the linear slope of dissimilarity versus time as the test statistic. For 
richness trends, I computed the slope of the regression of richness 
versus time. For every synthetic community generated by the multi-
species Ricker model I calculated these two test statistics, generated 
500 resampled communities by applying cyclic shift permutations 
to the original data, and then compared the observed statistics to 
their distribution in the resampled communities using a two-sided 
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test. This gave the p value of both statistics for every community. 
This procedure is in line with the approach of Magurran et al. (2018).

To evaluate the performance of the statistics, I calculated the 
proportion of cases falling in the tails (using α =  .05). Since I ex-
pect no excessive changes, this proportion can be thought of as 
the type I error rate, which should not exceed α. For examining 
the tests of compositional changes (Figure 4a), the proportion was 
calculated over all 104 synthetic communities in a given parame-
ter regime. For examining the tests of richness trends, I first as-
signed the communities to bins according to their initial deviation 
from equilibrium richness. Equilibrium richness was calculated as 
the average richness in the 20-year data for the sake of simplicity 
and resemblance to empirical analyses, where the real equilibrium 
is unknown. The bins that were used were D  ≤  −7, −7  <  D  ≤  −4, 
−4 < D ≤ −2, −2 < D ≤ −1, −1 < D ≤ 1, 1 < D ≤ 2, 2 < D ≤ 4, 4 < D ≤ 7, 
7  <  D, where D is initial deviation from richness equilibrium. In 
each bin, I calculated the average D (presented on the x axis), and 
the proportion of false positive results among the communities in 
the bin (presented on the y axis). Bins with fewer than 10 commu-
nities were discarded.

All analyses were performed in Matlab 2016a (The Mathworks, 
Inc., Natick, Massachusetts) with the full code supplied in Supporting 
Information Appendix S1.
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