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Abstract 18 

Aim 19 

Temporal patterns of community dynamics are drawing increasing interest due to their 20 

potential to shed light on assembly processes and anthropogenic effects. However, interpreting 21 
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such patterns considerably benefits from comparing observed dynamics to the reference of a null 22 

model. For that aim, the cyclic shift permutations algorithm, which generates randomized null 23 

communities based on empirically observed time series, has recently been proposed. This 24 

algorithm, borrowed from the spatial analysis literature, shifts each species time series randomly 25 

in time, which is claimed to preserve the temporal autocorrelation of single species. Hence it has 26 

been used to test the significance of various community patterns, in particular excessive 27 

compositional changes, biodiversity trends and community stability.  28 

Innovation 29 

Here I critically study the properties of the cyclic shift algorithm for the first time. I show 30 

that, unlike previously suggested, this algorithm does not preserve temporal autocorrelation due 31 

to the need to “wrap” the time series and assign the last observations to the first years. Moreover, 32 

this algorithm scrambles the initial state of the community, making any dynamics that results 33 

from deviations from equilibrium seem excessive. I exemplify that these two issues lead to a 34 

highly elevated type I error rate in tests for excessive compositional changes and richness trends. 35 

Conclusions 36 

Caution is needed when using the cyclic shift permutation algorithm and interpreting results 37 

obtained using it. Interpretation is further complicated because the algorithm removes all 38 

correlations between species. I suggest guidelines for using this method and discuss several 39 

possible alternative approaches. The non-preservation of autocorrelation also raises questions 40 

regarding the use of the analogous spatial null model, the torus-translation. 41 

 42 

Keywords: null models, community dynamics, statistical ecology, richness trends, 43 

compositional changes, species richness, cyclic shift, permutations, randomization methods, 44 

torus-translation. 45 

 46 

Introduction 47 

One of the main approaches for the study of community ecology is documenting patterns of 48 

variation in ecological communities and underpinning the mechanistic basis for these patterns 49 
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(Rosenzweig, 1995). Some of the most commonly studied patterns are species-area relationships 50 

(e.g. Preston, 1960; Rosindell & Cornell, 2007), latitudinal diversity gradients (e.g. Hillebrand, 51 

2004; Usinowicz et al., 2017) and productivity-diversity relationships (e.g. Kondoh, 2001; 52 

Tilman & Pacala, 1993). Multiple explanations have been suggested for these patterns and 53 

studying them has shed light on the mechanisms determining species diversity in ecological 54 

communities (e.g. DeMalach, Zaady, & Kadmon, 2017; Usinowicz et al., 2017). 55 

However, all the aforementioned patterns have a thing in common: they are static, 56 

representing “snapshots” or time averages of ecological communities, without any temporal 57 

dimension. While interest in these patterns continues, in recent years there is growing interest in 58 

understanding temporal patterns in communities (Dornelas et al., 2013; Loreau & de 59 

Mazancourt, 2013; Magurran, 2016; McGill, Dornelas, Gotelli, & Magurran, 2015). It is 60 

believed that some of these patterns, that represent community dynamics and assembly “in 61 

action”, may reveal new insights on the processes shaping ecological communities (Chisholm et 62 

al., 2014; Kalyuzhny, Seri, et al., 2014). For example, studies on the scaling of the magnitude of 63 

population fluctuations with abundance revealed the central role of temporal environmental 64 

variability in shaping ecological communities (Chisholm et al., 2014; Jabot & Lohier, 2016; 65 

Kalyuzhny, Schreiber, et al., 2014; Kalyuzhny, Kadmon, & Shnerb, 2015), and studies focusing 66 

on long-term changes in abundance and diversity revealed that population-level regulation is 67 

often weak (Kalyuzhny, Seri, et al., 2014; Knape & de Valpine, 2012; Ziebarth, Abbott, & Ives, 68 

2010), while total-abundance and species diversity are indeed regulated (Brown, Ernest, Parody, 69 

& Haskell, 2001; Goheen, White, Ernest, & Brown, 2005; Gotelli et al., 2017; Magurran & 70 

Henderson, 2018). Moreover, in recent years there is an increasing interest in understanding 71 

richness trends and compositional turnover, partly motivated by concerns over the effect of 72 

anthropogenic activities on ecological communities (Elahi et al., 2015; Magurran et al., 2018; 73 

McGill et al., 2015; Vellend et al., 2013). Several studies have shown that while some local 74 

communities show richness trends, negative and positive changes may cancel out in multiple 75 

communities worldwide (Dornelas et al., 2014; Vellend et al., 2013). On the other hand, many 76 

ecological communities show large compositional turnover (Dornelas et al., 2014; Magurran et 77 

al., 2018).  78 
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This immediately raises the question: what qualifies as a “large” change in richness or 79 

composition? Stochastic community models generally predict that ecological communities would 80 

undergo constant changes at steady state (Lande, Engen, & Saether, 2003), and so do some 81 

deterministic models of nonlinear dynamics (May, 1976). Importantly, these models also predict 82 

that community properties, such as species richness, will have considerable temporal-auto 83 

correlation, which may generate spurious “trends” on decadal time-scales (see Figure 1a,b for an 84 

example). This is true even for the simplest and most minimalistic models of community 85 

dynamics such as the Neutral Theory and Dynamic Equilibrium theory (Hubbell, 2001). 86 

Consequently, and in analogy to null models of community patterns in space, temporal patterns 87 

should be compared to some null model to evaluate whether they deviate from the expectations 88 

under a minimalistic set of mechanisms (Gotelli & Graves, 1996; Gotelli & McCabe, 2002). 89 

Such null models preserve some aspects of the data and randomize others. 90 

A recent suggestion for a null model of community dynamics is the cyclic shift permutations 91 

algorithm (Hallett et al., 2014), originally proposed for spatial analysis (Harms, Condit, Hubbell, 92 

& Foster, 2001). This algorithm gets as an input a matrix of the abundance, presence/absence or 93 

biomass of species by years (or other temporal units). In each realization of the algorithm, the 94 

time series of every species is shifted forwards in time a random number of years y, 95 

independently of other species. The last y data points are then assigned to the first y years, hence 96 

“wrapping” the time series like a loop. For example, two possible resamples of the time series [1 97 

2 3 4 5] could be [5 1 2 3 4] or [3 4 5 1 2] with equal probability. This approach has been 98 

claimed to preserve the autocorrelation structure and the abundance distribution of each species 99 

time series (Hallett et al., 2014; Lamy et al., 2019; Magurran et al., 2018), which results from the 100 

ecological dynamics of this species, while removing all correlations between species. Hence, the 101 

cyclic shift algorithm was designed to test whether patterns of community dynamics differ from 102 

the expectation of an independent-species, temporally-autocorrelated process. 103 

Cyclic shift permutations have been used as a null model for richness and compositional 104 

changes (Demars et al., 2014; Magurran et al., 2018), changes in dominance (Jones & Magurran, 105 

2018), and compensatory dynamics and stability of species diversity and total biomass (Gotelli et 106 

al., 2017; Hallett et al., 2014; Lamy et al., 2019; Magurran & Henderson, 2018). The application 107 
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of the cyclic shift null model is greatly facilitated by the available implementation of this 108 

algorithm within the open source R package Codyn (Hallett et al., 2016). 109 

Here I would like to point out two important issues with the use of cyclic shift permutations 110 

and investigate their implications for statistical tests of temporal patterns. I claim that a) Cyclic 111 

shift permutations do not preserve the autocorrelation structure of single species time series, 112 

especially on the time scales of the length of the time series; and b) cyclic shift permutations 113 

scramble the initial state of the community, making any dynamics that result from initial 114 

deviations from equilibrium seem excessive. See Figure 1 for examples of such deviations and 115 

for the effect of cyclic shifts on them. I show that these two properties lead to seriously inflated 116 

type I error rates when testing for excessive compositional changes and richness trends. 117 

For that aim, I generate synthetic community time series using a flexible multispecies 118 

Ricker model (Kalyuzhny & Shnerb, 2017; Kilpatrick & Ives, 2003) in multiple parameter 119 

regimes under three scenarios assuming that species a) are independent; b) compete neutrally 120 

(i.e. all species are identical) and c) compete and are different. See Figure 2 for examples of 121 

simulated time series. For these synthetic time series, richness trends and compositional changes 122 

are compared to the predictions of cyclic shift permutations. If the cyclic-shift algorithm works 123 

properly, it should generate patterns similar to those of the independent species model (since the 124 

algorithm break intra-specific correlations), and more variable then the model of non-neutral 125 

competition due to its stabilizing processes. While this could lead to acceptable or even reduced 126 

levels of type I errors, the aforementioned methodological issues are prevalent.. 127 

I conclude by discussing the possible applications of the cyclic shift algorithm and other 128 

community null models.  129 

Do cyclic shift permutations preserve temporal autocorrelation? 130 

The most important argument raised for using the cyclic shift permutations algorithm is that 131 

it preserves the temporal autocorrelation of the data (Hallett et al., 2014; Lamy et al., 2019; 132 

Magurran et al., 2018). While this argument is highly intuitive, it ignores a crucial aspect of the 133 

algorithm – the “wrapping” procedure, where the last y data points (where y is the number of 134 

years that the time series has been shifted) are assigned to the first y years.   135 
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Consider the first and last year data points in the resampled time-series. It is highly likely 136 

that in the original time series, those were consecutive years, now maximally separated by the 137 

“wrapping” of the time series. Assuming the original time series had positive short-term 138 

temporal autocorrelation, this results in the last data point in the resample resembling 139 

considerably the first data point. This is generalizable, to some degree, to the first several data 140 

points resembling the final several data points. Moreover, the wrapping “attaches” a pair of years 141 

that were originally maximally separated in time, also distorting autocorrelation at short time-142 

scales. 143 

Given data that were generated by some process, the goal of bootstrap resampling is 144 

generating more data that should resemble new data that would have been generated by repeating 145 

that process. Many ecological models, and the Ricker (for parameter regimes where the 146 

nonlinear effects do not take place) in particular, predict that consecutive time points would be 147 

relatively similar, and as time passes dissimilarity would monotonously increase (Kalyuzhny et 148 

al. 2015). Figure 3 exemplifies this for communities of independent species (Figure 3a), species 149 

that compete neutrally (Figure 3b) and non-neutrally (Figure 3c). In all three cases, time series 150 

resampled using the cyclic shift permutations show a unimodal pattern of Bray-Curtis 151 

dissimilarity, very different from the original time series. Dissimilarity indeed initially increases, 152 

but then, after half the time series duration, begins to symmetrically decrease, so that the last 153 

time-points are quite similar in composition to the first time points. For the first time-points in 154 

the resamples, dissimilarity increases too fast, due to the “attachment” of maximally separated 155 

years. Other parameter regimes and the Jaccard dissimilarity index show similar behaviors 156 

(Figures S1-S2), emphasizing that this is a general issue not limited to a narrow set of conditions 157 

and models. See methods for details about the simulations and the parameter regimes. 158 

I conclude that the “wrapping” of the time series inherently distorts the temporal 159 

autocorrelation structure of ecological processes. This effect is dramatic on time scales that are 160 

on the order of the length of the time series, and less dramatic for shorter time scales. This raises 161 

the question – what are the implications of this, and of the “scrambling” of the initial state that 162 

was mentioned earlier, for the performance of statistical tests? 163 
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Type I errors of richness trends and excessive turnover 164 

I exemplify the consequences of these properties for the testing of two fundamental patterns 165 

of community dynamics – temporal trends in diversity and compositional turnover. These are 166 

quantified by calculating the linear regression slope of a) species richness and b) the dissimilarity 167 

of species composition of each year w.r.t the initial year; both versus time. These patterns have 168 

been studied in various communities and compared to the expectations under cyclic shift 169 

permutations to test for significance (Demars et al., 2014; Magurran et al., 2018). To examine the 170 

performance of the cyclic shift permutations null model I generated 104 synthetic communities 171 

under several parameter regimes using the Ricker model, assuming one of three modes of inter-172 

specific interactions: a) no interactions; b) neutral competition and c) non-neutral competition. I 173 

then applied the cyclic shift algorithm 500 times to each community and compared the observed 174 

compositional and richness slopes in the time series generated by the model to the distribution of 175 

slopes under the cyclic shift algorithm. This allows me to calculate the significance of the 176 

observed slopes for each community. 177 

Since simulations began at steady state, and since the parameters of the simulations remain 178 

fixed, there are no real trends in species richness (beyond the spurious trends generated by 179 

temporal autocorrelation, see Figure 1a,b). For this reason, detected trends are false-positive 180 

results (type I errors), and their percent should be close to 0.05 if the null model is appropriate. 181 

This is particularly true for the non-interacting species case, since the breaking of correlations 182 

imposed by cyclic shift permutations should have no effect. However, I found that for both 183 

models and under all parameter regimes, type I errors were considerably inflated (Figure 4). 184 

Type I errors for compositional changes were very high (0.15 – 1) under all parameter 185 

regimes, interaction types and using either the Jaccard or Bray-Curtis indices (yellow and blue, 186 

respectively, in Figure 4a). These results are the consequences of the unimodal pattern of 187 

dissimilarity with time that is generated by cyclic-shift permutations (Figure 3). The distribution 188 

of linear slopes fitted to this unimodal pattern is very different from the slope of the actual data, 189 

leading inevitably to a strong inflation of type I errors. In several cases it appears that type I 190 

errors increase with the number of species, leading to communities with more immigration and 191 

less environmental stochasticity having less errors. However, this also depends on the shape of 192 

the dissimilarity vs. time curve, which is more complex. 193 
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Regarding richness trends, communities starting at the equilibrium species richness had 194 

elevated type I errors (0.08 - 0.14, Figure 4b). However, the most pronounced result is that 195 

communities whose richness in the first year deviated from equilibrium, even by a few species, 196 

had a much higher type I error probability, reaching 0.3 – 0.7 in some parameter regimes. 197 

Moreover, type I error probabilities increased sharply with the magnitude of the initial deviation 198 

from equilibrium. It is important to emphasize that I did not intentionally initiate the 199 

communities at a deviation from equilibrium richness. Rather, deviations were a result merely of 200 

stochastic dynamics at steady state. These results hold under all parameter regimes and 201 

interaction modes, implying that such deviations, and the resulting inflation in type I errors, are 202 

to be expected in natural ecological communities.  203 

The sharp increase in type I error rate as initial community richness moves away from 204 

equilibrium is a result of the “scrambling” of the initial state. Fairly generally for communities in 205 

steady state, if some community property (richness, in this case, but without loss of generality) 206 

has an equilibrium value, and we find it initially at a different value, it is expected to return to 207 

that equilibrium. However, the cyclic-shift permutation eliminates the initial state of the 208 

community, and as a result any trend towards equilibrium would seem excessive. Figure 1 shows 209 

how the spurious trends that result from the autocorrelation and from beginning not at 210 

equilibrium (Figure 1b) are eliminated by the cyclic shift randomization (Figure 1c).  211 

Discussion 212 

The cyclic shift algorithm is a generalistic and easy to apply null model, making it an 213 

appealing approach for testing a variety of different patterns. However, as I have shown, this 214 

approach has two fundamental undesired properties. First, it distorts the autocorrelation structure 215 

so that the end of the resampled time series for each species closely resembles its beginning. The 216 

short-term autocorrelation (for the first several years, less than half the length of the time series) 217 

is also affected, but to a lesser degree. Moreover, the cyclic shift randomization “scrambles” the 218 

initial state of the community, making any dynamics that results from properties of this initial 219 

state seem unlikely. I have further exemplified that these fundamental limitations have severe 220 

consequences for type I error rates in tests for trends in species richness and excessive 221 

compositional changes under a broad set of parameters, emphasizing the generality of the results. 222 

I believe that the fundamental nature of the issues with the cyclic shift null model would have 223 
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negative consequences for tests that may be developed for other patterns as well. For this reason, 224 

I recommend using this null model with extra cation.  225 

Another aspect that must be considered carefully before using the cyclic shift algorithm is 226 

the implications of removing the correlations between species. If the goal of the analysis is 227 

testing for the significance of such correlations (e.g. Hallett et al., 2014) then using a null with no 228 

correlations definitely makes sense. However, other aspects of the dynamics, such as temporal 229 

changes in diversity, composition and dominance, may very well be affected by correlations 230 

between species. These correlations could be caused by biotic interactions or responses to 231 

environmental changes, and the interpretation of finding excessive changes compared to such a 232 

null of independent species should be carefully considered. Even more so, one should be 233 

cautious about using cyclic-shift permutations on data that is available at a resolution of less than 234 

a year (e.g. Magurran et al., 2018; Magurran & Henderson, 2018). In such data, correlation 235 

between species may be the result of seasonality, and randomly shifting each species 236 

independently of other species removes its effect. Consequently, the likely strong effects of 237 

seasonality on community composition will be detected as excessive changes. 238 

These issues do not lessen, however, the need that led to the development of the cyclic shift 239 

algorithm. Indeed, I believe that the interest in temporal patterns will continue to grow, along 240 

with the need for a null model to serve as reference for them. I would like to suggest several 241 

possible directions for addressing this need. 242 

An alternative approach that has been suggested as a null model for community dynamics is 243 

neutral models (Dornelas et al., 2014; Gotelli & McGill, 2006; Hubbell, 2001), whose predicted 244 

dynamics has been compared to observed dynamical patterns on decadal (e.g. Dornelas et al., 245 

2014; Kalyuzhny et al. 2015) or paleobiological time scales (e.g. Clark & McLachlan, 2003; 246 

McGill, Hadly & Maurer, 2005). However, the dynamic predictions of neutral models are quite 247 

sensitive to the level of immigration (e.g. Hubbell 1997; Dornelas et al. 2014) and temporal 248 

resolution (Tomasových & Kidwell, 2010; Kalyuzhny et al. 2015), which are often unknown. 249 

Furthermore, it has been shown that neutral models where stochastic events affect individuals 250 

independently (known as “demographic stochasticity” or “ecological drift”), such as the classical 251 

Unified Neutral Theory of Biodiversity and Biogeography (Hubbell, 2001), predict considerably 252 

smaller changes then observed in multiple communities (Dornelas et al., 2014; Kalyuzhny, 253 
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Schreiber, et al., 2014; Kalyuzhny, Seri, et al., 2014). It has been shown that this is the result of 254 

ignoring environmental fluctuations, which affect the growth rate of entire populations 255 

synchronously (Chisholm et al., 2014; Fung, O'Dwyer, Rahman, Fletcher, & Chisholm, 2016; 256 

Jabot & Lohier, 2016; Kalyuzhny et al., 2015). Hence, a neutral model with environmental 257 

fluctuations would be a much more appropriate null (Jabot & Lohier, 2016; Kalyuzhny et al., 258 

2015). Furthermore, neutral theories impose compensatory dynamics, or negative correlations, 259 

between species, which stem from the zero-sum assumption. This makes them not necessarily 260 

the best choice as a null model (Gotelli & McGill, 2006). Overall, using neutral theories as a 261 

dynamic null model involves multiple non-trivial challenges. Another alternative would be to try 262 

to fit multispecies autoregressive models (Ives, Dennis, Cottingham, & Carpenter, 2003). This 263 

framework is more flexible, and one may decide to preserve (or not to preserve) multiple 264 

properties such as the autocorrelation structure of the data, the magnitude of fluctuations, the 265 

correlations between species and the initial state of the community. This approach has not been 266 

studied much as a null model to this day. 267 

Finally, a null model for presence-absence data named Presence-Absence Resampling 268 

wIthin periodS (PARIS) has recently been suggested as a methodology to generate synthetic 269 

communities where each species independently undergoes colonization and extinction dynamics 270 

at fixed rates (Kalyuzhny, Flather, Shnerb & Kadmon, 2019). While this approach imposes the 271 

autocorrelation structure of a Poisson process and species independence, it preserves the initial 272 

state of the community and has recently been shown to have excellent statistical properties: 273 

acceptable type I error rates, robustness to problems in the data and statistical power under 274 

alternative assumptions (Kalyuzhny et al., 2019). PARIS is also very easy to apply to ecological 275 

time series because, like the cyclic-shift algorithm, it is a randomization-based methodology with 276 

publicly available code. 277 

It is noteworthy that the cyclic shift algorithm was initially borrowed from the literature on 278 

spatial analysis (Harms et al., 4003, named “torus-translation”), where the preservation of 279 

autocorrelation argument was initially raised. Since its proposition, tests based on this torus-280 

translation have been published in dozens of works (e.g. Hall, McKenna, Ashton & Gregoire, 281 

2004; Yamada et al., 2007; Lan et al., 2012). The finding that the temporal analogue, the cyclic 282 

shift algorithm, does not preserve temporal autocorrelation, implies that the torus-translation 283 
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does not preserve spatial autocorrelation as well. This casts doubt on the justification for the 284 

torus-translation. I hope future works will examine the implications of this non-preservation of 285 

autocorrelation to the performance of statistical tests using the torus-translation as a spatial null 286 

model. 287 

Overall, I believe that studying temporal patterns has great promise to shed light on the 288 

processes shaping ecological communities. This promise is amplified by the increasing 289 

availability of extensive datasets of temporal community dynamics (Dornelas et al., 2018). 290 

However, more research is required on how to appropriately analyze such data, and in particular 291 

on the best practices for applying null models of community dynamics. I hope this work will 292 

reduce the improper application of such null models and help guide the use and development of 293 

more appropriate null models for temporal community dynamics. 294 

Methods 295 

Models 296 

I have studied the statistical performance of the cyclic shift permutations algorithm by 297 

applying it to synthetic time series generated using a discrete-time multispecies Ricker model (298 

 Kalyuzhny & Shnerb, 2017; Kilpatrick & Ives, 2003), whose flexibility allows generating 299 

a variety of dynamic regimes. 300 

In the multispecies Ricker model, the expected population of species i at time t+1,       , in 301 

the absence of immigration is: 302 

(eq. 1)                                                    , 303 

where    and    are the growth rate and carrying capacity of species i, respectively,     is the 304 

per capita effect of an individual of species j on the growth of species i, representing inter-305 

specific interactions, and      represents stochastic fluctuations in growth rate due to 306 

environmental changes.      is normally distributed with a mean of 0 and variance of    . 307 

While eq. 1 represents the expected population of species i at time t, the actual population 308 

size is drawn from a Poisson distribution:                          . This introduces 309 

demographic stochasticity, that is, random variation between individuals in demography, as well 310 

as the discreteness of individual, which allows species to go stochastically extinct. Finally, after 311 
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the local demography step described above, A Poisson distributed number of immigrants (with 312 

mean I, representing immigration rate) are introduces and are chosen uniformly from the Sreg 313 

species available in the species pool. 314 

The Flexibility of the Ricker model allows considering multiple parameter regimes and 315 

modes of interspecific interactions. I have used three such general modes of interactions: First, to 316 

be as consistent as possible with the properties of the cyclic shift algorithm, I considered 317 

communities of non-interacting species by setting all    s to zero. I further assumed that the   s 318 

of species are lognormally distributed with mean of 1000 and SD of 2000, the   s are 319 

exponentially distributed with mean 0.1. To resemble neutral models, which are also used as null 320 

models, I have assumed all     = 1, all    = 1000 and all    = 0.1. In this case, all the species are 321 

identical, subject to one community-wide carrying capacity       and to demographic and 322 

possibly environmental stochasticity. Hence, this model is analogous to classic neutral theory, 323 

but with the community carrying capacity subject to fluctuations rather then being a fixed 324 

number. Finally, to generate more complex and realistic dynamics I considered non-neutrally 325 

competing species. In this case, I assumed that the    s are gamma distributed with mean and SD 326 

of 0.1, and the Kis and ris are distributed similarly to the case of independent species.  327 

In all three modes of interactions, I considered five parameter regimes. Under the baseline 328 

regime, I = 1 and    = 0.2. Under the high immigration and low immigration regimes, I was set 329 

to 0.2 and 10, respectively, and under the low stochasticity and high stochasticity    was set to 0 330 

and 0.5, respectively. Communities were initiated with each species at it’s carrying capacity   , 331 

or at   /Sreg in the neutral interactions regime and were given 20*Sreg/I time steps to equilibrate 332 

before being recorded for 20 time steps (unless otherwise presented). This approach comes to 333 

allow 20 immigration events (on average) for each species before I consider the community as at 334 

steady state.  335 

For all models, I considered two levels of Sreg, 20 and 100 species. The results were 336 

qualitatively similar but more pronounced for the 100 species (because there are more changes 337 

overall), so I present the result for Sreg = 100 in all cases.  Examples of time-series generated 338 

under the models in the three interaction modes are given in Figure 1 339 
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Statistical tests 340 

I am interested in examining the performance of tests for excessive compositional turnover 341 

and richness trends. For compositional turnover, I computed the Jaccard and Bray-Curtis 342 

dissimilarity indices of every year with respect to the initial year (as in Figure 3) and used the 343 

linear slope of dissimilarity vs. time as the test statistic. For richness trends, I computed the slope 344 

of the regression of richness vs. time. For every synthetic community generated by the 345 

multispecies Ricker model I calculated these two test statistics, generated 500 resampled 346 

communities by applying cyclic shift permutations to the original data, and then compared the 347 

observed statistics to their distribution in the resampled communities using a two-sided test. This 348 

gave the P value of both statistics for every community. This procedure is in line with the 349 

approach of Magurran et al. (2018). 350 

To evaluate the performance of the statistics, I calculated the proportion of cases falling in 351 

the tails (using α = 0.05). Since I expect no excessive changes, this proportion can be thought of 352 

as type I error rate, which should not exceed α. For examining the tests of compositional change 353 

(Figure 4a), the proportion was calculated over all 104 synthetic communities in a given 354 

parameter regime. For examining the tests of richness trends, I first assigned the communities to 355 

bins according to their initial deviation from equilibrium richness. Equilibrium richness was 356 

calculated as the average richness in the 20 year data for the sake of simplicity and resemblance 357 

to empirical analyses, where the real equilibrium is unknown. The bins that were used were D ≤ -358 

7, -2 < D ≤ -4, -4 < D ≤ -2, -2 < D ≤  -1, -3 < D ≤ 3, 3 < D ≤ 2, 2 < D ≤ 4, 4 < D ≤ 2, 2 < D, 359 

where D is initial deviation from richness equilibrium. In each bin, I calculated the average D 360 

(presented on the X axis), and the proportion of false positive results among the communities in 361 

the bin (presented on the Y axis). Bins with less than 10 communities were discarded.  362 

All analyses were performed in Matlab 2016a with the full code supplied in supporting 363 

information S2. 364 
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Figure 1: 521 

 522 

Figure 1 – The challenges in analyzing community time series, as exemplified with species 523 

richness through time. In (a), richness in 500 time steps of a Ricker model at steady state in the 524 

default non-neutral competition regime is presented (blue), along with the long-term average 525 

(red). Note the “noisiness”, the degree of temporal autocorrelation and the observation that the 526 

system can stay away from the equilibrium richness for long times. Zooming in on three sections 527 

(b), it is noticeable that some may show spurious “trends”, which are solely a result of this 528 

autocorrelation, as the system is in steady state with fixed parameters. However, time series 529 

produced by applying the cyclic-shift null model to these short time-series (five resamples for 530 

each time series, presented in c) would lack these “trends” and make them seem excessive.  531 

 532 

Figure 2: 533 
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 534 

Figure 2 - Examples of time series of species richness and abundance under the default 535 

parameter regime with the three interactions modes – independent species, neutrally competing 536 

species and non-neutrally competing species. The abundances presented below are of the three 537 

most common species and the three species around the 75th percentile of abundance. Time series 538 

produced under this (and other) parameter regimes were used for testing trends and excessive 539 

compositional changes in this work. Since these models are stationary, none of these “trends” 540 

result from real changes in the communities, but are only a result of the autocorrelation of the 541 

process. See methods for details about the simulations and their parameter regimes. The species 542 

pool has 100 species in all cases.  543 

 544 
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 546 

Figure 3 – Comparison of Bray-Curtis community self-dissimilarity with time between 547 

“empirical” simulated time series and their resamples, obtained using the cyclic shift algorithm. 548 

For each scenario (independent species (a), neutral competition (b) and non-neutral competition 549 

(c)), 104 synthetic time series were generated and Bray-Curtis compositional dissimilarity in 550 

every year was compared with the initial year for the empirical communities and resamples. For 551 

every empirical time series, 500 resamples were calculated and the results are averaged over the 552 

time series and resamples for every time point. The differences between the empirical and 553 

resampled average patterns is highly significant for every point but the middle and zero (t-test, P 554 

< 10-9). While the “default” parameter regime is presented, other regimes and the Jaccard index 555 

(Figures S1-S2) show similar results. 556 
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 558 

Figure 4 – Proportion of false positive tests (at α = 0.05) for excessive compositional 559 

changes (a) and richness trends (b) for data generated by the multispecies Ricker model. 104 560 

synthetic time series were generated for each parameter regime and mode of interspecific 561 

interactions. For each time series, the slopes versus time of compositional dissimilarity w.r.t the 562 

first year and of specie richness were calculated. They were then compared with the distributions 563 

of slopes for 500 resamples (using the cyclic shift algorithm and a two-sided test) of the synthetic 564 

time series to obtain a P value. The parameter retimes are denoted as “B” or orange X for 565 

baseline; “I-“ or orange O for low immigration, “I+” or orange + for high immigration; σ- or blue 566 

X for no environmental stochasticity and σ+ or yellow X for high environmental stochasticity.  567 

In (b) communities were assigned to bins based on the deviation of initial richness from 568 

equilibrium, and the proportion was calculated in each bin. In (a). Jaccard (yellow) and Bray-569 

Curtis (blue) dissimilarity were calculated. The dashed grey line marks a proportion of 0.05. 570 
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Supplementary Materials 572 

Figure S1 – Comparison of Bray-Curtis community self-dissimilarity with time between 573 

“empirical” simulated time series and their resamples, obtained using the cyclic shift algorithm. 574 

 575 

Figure S2 – Comparison of Jaccard community self-dissimilarity with time between “empirical” 576 

simulated time series and their resamples, obtained using the cyclic shift algorithm. 577 

 578 

SI S2 – code appendix. 579 
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