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ABSTRACT 

The outbreak of COVID-19 has now become a global pandemic and it continues to spread rapidly 

worldwide, severely threatening lives and economic stability. Making the problem worse, there is 

no specific antiviral drug that can be used to treat COVID-19 to date. SARS-CoV-2 initiates its 

entry into human cells by binding to angiotensin-converting enzyme 2 (hACE2) via the receptor 

binding domain (RBD) of its spike protein. Therefore, molecules that can block SARS-CoV-2 

from binding to hACE2 may potentially prevent the virus from entering human cells and serve as 

an effective antiviral drug. Based on this idea, we designed a series of peptides that can strongly 

bind to SARS-CoV-2 RBD in computational experiments. Specifically, we first constructed a 31-

mer peptidic scaffold by linking two fragments grafted from hACE2 (a.a. 22-44 and 351-357) with 

a linker glycine, and then redesigned the peptide sequence to enhance its binding affinity to SARS-

CoV-2 RBD. Compared with several computational studies that failed to identify that SARS-CoV-

2 shows higher binding affinity for hACE2 than SARS-CoV, our protein design scoring function, 

EvoEF2, makes a correct identification, which is consistent with the recently reported 

experimental data, implying its high accuracy. The top designed peptide binders exhibited much 

stronger binding potency to hACE2 than the wild-type (-53.35 vs. -46.46 EvoEF2 energy unit for 

design and wild-type, respectively). The extensive and detailed computational analyses support 

the high reasonability of the designed binders, which not only recapitulated the critical native 

binding interactions but also introduced new favorable interactions to enhance binding. Due to the 

urgent situation created by COVID-19, we share these computational data to the community, 

which should be helpful to develop potential antiviral peptide drugs to combat this pandemic. 

Keywords: SARS-CoV-2; COVID-19; pandemic; ACE2; peptide binder; peptide design  
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Introduction 

The continuing pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2, previously known as 2019-nCoV) has now 

become an international public health threat, causing inconceivable loss of lives and economic 

instability1. As of March 28, 2020, there have been more than 570000 confirmed cases and over 

26000 deaths caused by COVID-19 worldwide2. Exacerbating the problem, there is no specific 

antiviral medication toward COVID-19, though development efforts are underway3-6. Although 

vaccines are thought to be the most powerful weapon to fight against virus invasion, it may take 

quite a long time to develop and clinically test the safety of a vaccine. Moreover, vaccines are 

usually limited as preventative measures given to uninfected individuals. Thus, as an emergency 

measure, it is desirable to develop effective antiviral therapeutics that can take effect rapidly not 

only to treat COVID-19 and but also to prevent its further transmission. 

It has been confirmed that SARS-CoV-2 initiates its entry into host cells by binding to the 

angiotensin-converting enzyme 2 (ACE2) via the receptor binding domain (RBD) of its spike 

protein7, 8. Therefore, it is possible to develop new therapeutics to block SARS-CoV-2 from 

binding to ACE2. Although small molecule compounds are commonly preferred as therapeutics, 

they are not effective at blocking protein-protein interactions (PPIs) where a deep binding pocket 

may be missing at the interface9. On the contrary, peptide binders are more suitable for disrupting 

PPIs by specifically binding to the interface binding region10. More importantly, small peptides 

have reduced immunogenicity11. These positive features make peptides great candidates to serve 

as therapeutics12, 13. Recently, Zhang et al14 reported that the natural 23-mer peptide (a.a. 21-43) 

cut from the human ACE2 (hACE2) α1 helix can strongly bind to SARS-CoV-2 RBD with a 

disassociation constant (Kd) of 47 nM, which was comparable to that of the full-length hACE2 
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binding to SARS-CoV-2 RBD15; they also showed that a shorter 12-mer peptide (a.a. 27-38) from 

the same helix was not able to bind the virus RBD at all. In an earlier report, Han et al16 performed 

a study to identify the critical determinants on hACE2 for SARS-CoV entry, and they found that 

two natural peptides from hACE2 (a.a. 22-44 and 22-57) exhibited a modest antiviral activity to 

inhibit the binding of SARS-CoV RBD to hACE2 with IC50 values of about 50 μM and 6 μM, 

respectively, implying that the peptide composed of residues 22-57 had stronger binding affinity 

for SARS-CoV RBD. They also generated a hybrid peptide by linking two discontinuous 

fragments from hACE2 (a.a. 22-44 and 351-357) with a glycine, and this 31-mer exhibited a potent 

antiviral activity with an IC50 of about 0.1 μM, indicating that this artificial peptide had much 

stronger binding affinity for SARS-CoV RBD than the peptides composed of residues 22-44 or 

22-57. Due to the high similarity of the binding interfaces between SARS-CoV RBD/hACE2 and 

SARS-CoV-2 RBD/hACE2, we think that this artificial peptide may also bind to SARS-CoV-2 

more strongly than the peptide 21-43 tested by Zhang et al14, which is similar to the peptide 22-44 

from Han et al16. Although the natural peptides are promising, it has been argued that the sequence 

of hACE2 is suboptimal for binding the S protein of SARS-CoV-217. Therefore, further redesign 

of the natural peptides may significantly enhance its binding affinity to the virus RBD and the 

improved peptide binders may have the potential to inhibit SARS-CoV-2 from entering human 

cells and hinder its rapid transmission. 

In this work, we computationally designed thousands of peptide binders that exhibited stronger 

binding affinity for SARS-CoV-2 than the natural peptides through computational examination. 

Based on the crystal structure of the SARS-CoV-2 RBD/hACE2 complex, we constructed a hybrid 

peptide by linking two peptidic fragments from hACE2 (a.a. 22-44 and 351-357) with a glycine. 

Starting from the peptide-protein complex, we used our protein design approaches, EvoEF218 and 
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EvoDesign19, to completely redesign the amino acid sequences that match the peptide scaffold 

while enhancing its binding affinity to SARS-CoV-2. We have selected dozens of designed 

peptides for wet-lab experimental validation and the experiments are ongoing. Although our 

experimental results are not available yet, we have performed extensive computational benchmark 

tests to show the reasonability of the computationally designed peptide binders. Due to the urgent 

situation caused by COVID-19 and the limited resources in our own laboratory, we share these 

computational data to the scientific community and hope researchers can work together to test 

them and to identify potential antiviral peptide therapeutics to combat this pandemic. 

Methods 

Initial peptide scaffold construction 

Several experimental SARS-CoV-2 RBD/hACE2 complex structures have been reported20-22, 

and deposited in the Protein Data Bank (PDB)23. Specifically, PDB ID 6m17 is a 2.9 Å structure 

of the SARS-CoV-2 RBD/ACE2-B0AT1 complex determined using the cryogenic electron 

microscopy (Cryo-EM) technique22. Furthermore, PDB ID 6m0j is a 2.45 Å X-ray crystal structure 

of SRRS-CoV-2 RBD/hACE220, while 6vw1 is a 2.68 Å X-ray structure of SARS-CoV-2 chimeric 

RBD/hACE221, where the chimeric RBD is comprised of the receptor binding motif (RBM) from 

SARS-CoV-2 S and the core from SARS-CoV, with the mutation N439R. The three experimental 

complex structures are quite similar to each other in terms of global folds (Figure 1A). Since 6vw1 

does not contain the wild-type SARS-CoV-2 RBD, we did not use it as template. Based on a 

preliminary examination, we found that structure quality of 6m0j was better than 6m17 (see 

Results and Discussion), and therefore we only considered 6m0j as the template complex. 

Two peptide fragments (a.a. 22-44 and 351-357) from hACE2 (6m0j, chain A) were extracted 

because they were in extensive contact with SARS-CoV-2 RBD (6m0j, chain E). The positions 44 
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and 351 were chosen because the distance between their Cα atoms was only 5.5 Å, and therefore 

only one residue was required to link them. To reduce the interference to the surrounding amino 

acids, the linker residue was initially chosen as glycine. The small loop, 44S-glycine-351L, was 

then reconstructed using MODELLER24, while the other parts of the whole peptide were kept 

constant; five similar loop conformations were produced and the one with the best DOPE score 

was selected. For the sake of simplifying the discussion, the initial hybrid peptide constructed in 

this manner was denoted as the wild-type (note that it was not a truly native peptide), and the 

complex structure of SARS-CoV-2 RBD/hACE2 hybrid peptide was used as the template for 

computational peptide design (Figure 1B). 

 

Figure 1. Comparison of the SARS-CoV-2 RBD/hACE2 complex structures (A) and the 

constructed SARS-CoV-2 RBD/hACE2 peptide complex (B). The superposition of the three 

complex structures was performed using MM-align25; the TM-score26 between each complex pair 

was >0.98. 

Peptide design procedure 

Based on the constructed protein-peptide complex structure (SARS-CoV-2 RBD/hACE2-22-

44G351-357), we performed 1000 independent design trajectories individually, using (1) 

EvoEF218, a physics- and knowledge-based energy function specifically designed for protein 
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design and (2) a new version of EvoDesign19, which combines EvoEF2 and evolutionary profiles 

for design scoring. A simulated annealing Monte Carlo (SAMC)27 protocol was used to search for 

low total energy sequences as previously described18. For each trajectory, only the single lowest 

energy in that design simulation was selected, and therefore 1000 sequences each were collected 

from the EvoEF2 and EvoDesign designs. The EvoEF2 and EvoDesign designs were separately 

analyzed to determine the impact of the physics- and profile-based scores. Since SAMC is a 

stochastic searching method, some of the 1000 sequences were duplicates and thus excluded from 

analysis. The backbone conformations of the hACE2 peptide and SARS-CoV-2 RBD were held 

constant during the protein design simulations, all the residues on the peptide were redesigned, 

and the side-chains of the interface residues on the virus RBD were repacked without design. The 

non-redundant designed peptides are listed in Supplementary Tables S1-S5, and the raw data are 

freely available at https://zhanglab.ccmb.med.umich.edu/EvoEF/COVID-19/. 

Evolutionary profile construction 

To construct reliable structural evolutionary profiles, we used the hACE2 protein structure 

instead of the hybrid peptide to search structural analogs against a non-redundant PDB library. 

Only structures with a TM-score ≥0.7 to the hACE2 scaffold were collected to build a pairwise 

multiple sequence alignment (MSA). A total of nine structural analogs were identified. The 

corresponding alignment for residues 22-44 and 351-357 were directly extracted from the full-

length MSA and combined to build an MSA for the hybrid peptide. Since an arbitrary glycine was 

used to link positions 44 and 351, a gap ‘-’ was inserted in the peptide MSA for the glycine position. 

The peptide MSA constructed in this manner is described in Supplementary Figure S1. The peptide 

MSA was used to construct the evolutionary profile position-specific scoring matrix (PSSM) as 

previously described28. 
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In previous studies, we also proposed incorporating protein-protein interface evolutionary 

profiles to model PPIs19, 29, 30. However, no interface structural analogs were identified from the 

non-redundant interface library (NIL)30, and no interface sequence analogs were found from the 

STRING31 database with a PPI link score ≥0.8. Therefore, the interface evolutionary profile 

scoring was excluded from design. 

Results and Discussion 

Evaluation of EvoEF2 score on experimental complexes 

At the very beginning of the outbreak of SARS-CoV-2, to determine its relative infectivity, many 

computational studies were performed to compare the binding affinity of SARS-CoV-2 RBD for 

hACE2 with that of SARS-CoV RBD for hACE2 based on homology modeling structures; all 

these studies came up with the conclusion that SARS-CoV-2 showed much weaker binding affinity 

to hACE2 than SARS-CoV and SARS-CoV-2 might not be as infectious as SARS-CoV32-34. 

However, the recent biochemical studies demonstrated that SARS-CoV-2 exhibited much stronger 

binding affinity to hACE2 than SARS-CoV3, 15, 21, implying that the homology models may not 

have been sufficiently accurate for binding affinity assessment based on atomic-level scoring 

functions, although the global folds of these models were correct. 

Here, we used the EvoEF2 energy function to evaluate the binding affinity of SARS-CoV and/or 

SARS-CoV-2 (chimeric) RBD for hACE2 based on the experimental structures described above. 

As shown in Table 1, SARS-CoV-2 RBD showed stronger binding potency (lower EvoEF2 scores 

indicate stronger binding affinity) to hACE2 than SARS-CoV based on the calculations performed 

on two X-ray crystal structures (PDB IDs: 2ajf and 6m0j), regardless of whether or not the residues 

at the protein-protein interfaces were repacked; the computationally estimations were consistent 

with the experimental results (Table 1). However, the EvoEF2 binding scores calculated using the 
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Cryo-EM structure (i.e. 6m17) were much higher than those obtained from the X-ray structure 

6m0j, suggesting that the Cryo-EM structure might not be as high quality as its X-ray counterparts. 

In fact, we manually inspected 6m0j and 6m17 and found that significantly more steric clashes 

were present in 6m17 (data not shown). Moreover, Shang et al21 demonstrated that the artificial 

SARS-CoV-2 chimeric RBD showed improved binding affinity to hACE2, compared to the wild-

type SARS-CoV-2, and this improvement was also somewhat captured by EvoEF2 (Table 1). Thus, 

out of the two wild-type SARS-CoV-2 RBD/hACE2 structures (6m0j and 6m17), only 6m0j was 

used as a template structure for the peptide design study because it was better refined. 

 

Table 1. Comparison of binding affinities for different PPIs. 

PPI Experiment Kd EvoEF2 score (EEU) EvoEF2 score (EEU) 

Interface not repacked Interface repacked 

SARS-CoV RBD/hACE2 325.8 nM15 

185 nM21 

-40.73 (2ajfAE) -51.12 (2ajfAE) 

SARS-CoV-2 RBD/hACE2 14.7 nM15 

44.2 nM21 

-49.95 (6m0jAE) 

-19.84 (6m17BE) 

-19.84 (6m17DF) 

-55.67 (6m0jAE) 

-30.50 (6m17BE) 

-30.50 (6m17DF) 

SARS-CoV-2 chimeric RBD/hACE2 23.2 nM21 -53.15 (6vw1AE) -58.81 (6vw1AE) 

EEU stands for EvoEF2 energy unit. 

 

Peptide design results and computational analyses 

Eight out of the 1000 low-energy sequences that were designed using the EvoEF2 energy 

function were duplicates, resulting in 992 non-redundant designs. The EvoEF2 total energy values 

of the designed protein complex structures ranged from -829 to -816 EvoEF2 energy unit (EEU), 

the majority of which varied from -827 to -822 EEU (Figure 2A). The EvoEF2 binding energies 

of the 992 designed peptides to SARS-CoV-2 RBD ranged from -53 to -40 EEU, centering around 

-50 to -47 EEU (Figure 2B). The sequence identities between the designed peptides and the wild-

type peptide was diversely distributed, varying from 15% to 50% and centering around 37% 
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(Figure 2C), which was much higher than the sequence recapitulation rate obtained for the protein 

surface residues during the benchmarking of EvoEF218. Although the peptide residues were 

considered to be highly exposed, the high sequence identity revealed that a large number of critical 

binding residues should be correctly predicted, indicating that the designed peptides are reasonable.  
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Figure 2. Overview of the characteristics of the EvoEF2 designs. (A) Distribution of total energy, 

(B) distribution of binding energy, (C) distribution of sequence identity, (D) binding energy as a 

function of total energy, (E) binding energy as a function of sequence identity, and (F) distribution 

of secondary structure match rate. 

The wild-type peptide showed an EvoEF2 binding energy of -46.3 EEU, whereas the total energy 

of the wild-type peptide/SARS-CoV-2 RBD complex was -802 EEU (Figure 2D). 757 out of the 

992 designs exhibited better binding affinities to SARS-CoV-2 RBD and showed lower total 

energies than the wild-type, and some designs showed good binding and stability simultaneously 

(Figure 2D), indicating that the wild-type peptide could be improved through design. Figure 2E 

illustrates the binding energy as a function of sequence identity for the designed peptides; it 

illustrates that a majority of the designs showed weaker binding affinity to SARS-CoV-2 than the 

wild-type peptide when the sequence identity was <25%, whereas most of the designs with 

sequence identities >35% exhibited stronger binding to SARS-CoV-2. These results suggest that, 

in general, low sequence identity designs may not be as good as high sequence identity designs. 

However, we can also see from Figure 2E that it does not necessarily mean that higher sequence 

identity always ensures better designs, since the two designs with the highest sequence identity 

(15/31=48.4%) did not always show stronger binding than those around 35%. Thus, the results 

suggest that good binders showed a high similarity to the wild-type, but the similarity should not 

be too high in order to leave room for the designs to be improved. This is in line with the common 

thinking that the critical binding residues (i.e. hot spot residues) should be conserved while some 

other residues can be mutated to enhance binding. Note that the wild-type peptide was comprised 

of a helix (a.a. 22-44) and a short loop (a.a. 351-357) with a glycine linker. To ensure good binding 

to SARS-CoV-2 RBD, the designed peptides should be able to preserve the secondary structure of 
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this motif. To check this point, we used an artificial neural network-based secondary structure 

predictor28 implemented in EvoDesign to predict the secondary structure of the designed peptides; 

the predictor that we used here was much faster than some other state-of-the-art predictors, e.g. 

PSIPRED35 and PSSpred36, but showed similar performance28. To quantify the similarity between 

the secondary structure of a designed peptide and that of the wild-type, we calculated the secondary 

structure match rate, which was defined as the ratio of the number of residues with correctly 

assigned secondary structure elements (i.e. helix, strand and coil) to the total number of residues 

(i.e. 31). As shown in Figure 2F, 892 out of the 992 designed peptides had >90% secondary 

structure elements predicted to be identical to that of the wild-type peptide, indicating the high 

accuracy of the designs, although the EvoEF2 scoring function does not include any explicit 

secondary structure-related energy terms18. 

We used WebLogo37 to perform a sequence logo analysis for the 992 designed sequences to 

investigate the residue substitutions and the results are shown in Figure 3A. 16 residues from the 

initial peptide scaffold were at the protein-peptide surface in contact with residues from SARS-

CoV-2 RBD; these residues were Q24, T27, F28, D30, K31, H34, E35, E37, D38, F40, Y41, Q42, 

K353, G354, D355 and R357. Of these residues, Q24, D30, E35, E37, D38, Y41, Q42 and K353 

formed hydrogen bonds or ion bridges with the binding partner (i.e. SARS-CoV-2 RBD) and the 

designed residues at these positions maintained favorable binding interactions. As shown in Figure 

3A, the native residue types at these positions were top ranked out of all 20 canonical amino acids, 

suggesting that these residues may play critical roles in binding. For the nonpolar residues that 

were originally buried in the hACE2 structure (e.g. A25, L29, F32, L39, L351 and F356), they 

were likely to be mutated into polar or charged amino acids (Figure 3A), because they were largely 
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exposed to the bulk solvent. The three glycine residues, including the one that was artificially 

introduced, were conserved probably due to the narrow space at these positions.  
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Figure 3. Sequence logo analysis of 992 unique peptide binders designed by EvoEF2 (A) and 

favorable interactions introduced in the top binder (B and C). In figure (A), the interface residues 

on the wild-type peptide are marked with ‘:’ if hydrogen bonds or ion bridges exist, or ‘.’ otherwise; 

non-interface residues are marked with ‘^’. In figures (B) and (C), the residues on the wild-type 

and designed structures are colored in cyan and magenta, respectively; interface and non-interface 

residues on the peptide are shown in ball-and-stick and stick models, respectively, while residues 

on SARS-CoV-2 RBD are shown in lines. Hydrogen bonds and/or ion bridges are shown using 

green-dashed lines.  

To further examine what interactions improved the binding affinity of most designs, we carried 

out a detailed examination of some designed structures. We found that favorable hydrogen bonds 

or hydrophobic interactions were introduced in the binder that had the lowest EvoEF2 binding 

score (Figure 3B-C); the amino acid sequence of this binder was 

“EQEERIQQDKRKNEQEDKRYQRYGRGKGHQP”. For this design, T27 was mutated to 

isoleucine (Figure 3B). In the wild-type structure, the threonine was enveloped by four 

hydrophobic residues on SARS-CoV-2 RBD (i.e. Y489, F456, Y473 and A475), but its hydroxyl 

group did not form any hydrogen bond with the hydroxyl group of either Y489 or Y473, and the 

mutation enhanced the favorable burial of nonpolar groups. The interface residue H34 was 

substituted for asparagine (Figure 3B), introducing a hydrogen bond to Y453 on SARS-CoV-2 

RBD. Additionally, two mutations, F28Q and Q24E, simultaneously formed hydrogen bonds with 

the amide group of N487 from SARS-CoV-2 RBD (Figure 3C). Although the mutation D355H 

did not form hydrogen bonds with any residues from SARS-CoV-2, it simultaneously formed two 

hydrogen bonds with the hydroxyl group of Y41 and the main-chain carbonyl group of G45 on the 

peptide, which may help stabilize the loop region (a.a. 351-357). 
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In previous studies, we found that evolutionary information can facilitate the design of proteins, 

improving their ability to fold into desired structures28, 38. To examine whether the evolutionary 

profile is important for peptide design here, we also performed four sets of designs with different 

weight settings for the evolution energy; for each design set, 1000 independent design simulation 

trajectories were carried out and the unique sequences out of the 1000 lowest energy designs were 

analyzed  (Table 2). In general, giving a higher weight to the evolutionary energy facilitated the 

convergence of the design simulations, as indicated by the fewer unique designed sequences. It 

also helped identify sequences that were closer to the wild-type peptide as demonstrated by the 

higher sequence identities and the lower average evolutionary energy, which were both much more 

similar to those of the wild-type than the designs created using the physical score alone. We also 

found that incorporation of the profile energy moderately increased the ability of the designed 

sequences to maintain the original secondary structure. However, despite these improvements, 

giving a higher value to the profile weight clearly hindered the identification of binders that 

exhibited better binding energy than the wild-type.  

 

Table 2. Summary of evolution-based peptide design results. 

Comparison items a Weight of evolutionary profile energy 

 0.00 0.25 0.50 0.75 1.00 

Number of unique designs 992 991 966 877 695 

Number of better binders b 757 636 392 340 226 

EvoEF2 binding energy -48.1±2.5 -47.2±2.2 -46.1±1.7 -45.8±1.6 -45.5±1.6 

EvoEF2 total energy -824.6±2.0 -823.4±2.2 -818.4±2.3 -813.3±1.9 -809.7±2.3 

Profile energy c 6.7±2.7 -0.8±3.6 -13.3±3.3 -21.6±2.0 -25.6±1.6 

EvoEF2+profile energy -824.6±2.0 -823.6±1.8 -825.0±1.4 -829.5±1.2 -835.3±1.4 
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Sequence identity (%) 33.7±5.6 39.1±5.5 44.2±5.1 46.2±5.6 48.3±6.0 

Sec. Str. match rate (%) d 95.7±3.3 96.2±3.0 97.5±2.7 97.5±2.5 97.7±2.4 

a The units for the EvoEF2 and profile energies is EEU. b The EvoEF2 binding energy of the 

wild-type peptide binder was -46.46 EEU; this row shows the number of designed peptide binders 

with EvoEF2 binding energies lower than -46.46 EEU. c The profile energy of wild-type peptide 

binder was -22.2 EEU. 

 

We performed sequence logo analyses of the four sets of designs obtained from the evolution-

based method and the results are illustrated in Figure 4. Overall, the evolutionary profile did not 

have a dramatic effect on most interface residues (e.g. Q24, K31, H34, E35, E37, D38, Y41, Q42 

and K353), because the dominating residue types identified in the EvoEF2-based designs were 

also top ranked (Figure 3A and Figure 4). However, some interface residues were indeed 

influenced. For instance, T27 could be substituted for either lysine or isoleucine without evolution 

(Figure 3A), but it was only mutated to lysine when the evolutionary weight was ≥0.75 (Figure 

4C-D). Additionally, without evolutionary profiles, F28 preferred glutamine over all other residues 

(Figure 3A), but it was conserved as phenylalanine when the evolutionary weight was ≥0.5 (Figure 

4B-D). The naturally occurring residues, glutamic acid and arginine never appeared at positions 

335 and 337, respectively, without evolutionary profile-guided design (Figure 3A); however, both 

of them were ranked second when a weight of 1.0 was given to the profiles. The residues that were 

most affected by evolution were those nonpolar residues that were not at the interface (e.g. A25, 

L29, F32, A36, L39, L351 and F356); without the evolutionary profile, polar or charged residue 

types were preferred at these positions (Figure 3A), while nonpolar residues were more frequently 

chosen for most of them when the weight of the profile energy was high (Figure 4B-D). As 

discussed above, most of these residues were buried in the original hACE2 structure, but they were 

solvent exposed in the peptide, and therefore it might not be necessary to maintain the hydrophobic 

nature at these positions. 
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Figure 4. Sequence logo analysis of the evolution-based design results. Four sets of profile energy 

weight were used: 0.25 (A), 0.50 (B), 0.75 (C) and 1.00 (D). 
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In summary, detailed computational analyses showed that the designed peptide binders were 

quite reasonable, as indicated by the recapitulation of critical binding interactions at the protein-

peptide interface and the introduction of new favorable binding interactions, as well as the 

preservation of secondary structures to maintain these interactions. We have selected dozens of 

designed peptides (with/without evolutionary information) that had good EvoEF2 binding energy 

to SARS-CoV-2 RBD to perform wet-lab experimental validation on. Specifically, we are carrying 

out in vitro experiments to determine their binding affinity and inhibitory potency, as well as in 

vivo experiments to examine their potential to disrupt the binding of SARS-CoV-2 to hACE2. Due 

to the urgent situation caused by COVID-19 worldwide, we would like to share our computational 

data to the scientific community so that researchers can work together to test them. Although we 

do not have experimental data yet, we believe that our computational results are well examined 

and reasonable, and these data may help favorably combat the COVID-19 pandemic. 

 

Conclusion 

We designed a series of peptide binders that showed enhanced binding affinity to the SARS-

CoV-2 RBD in computational experiments. Structural bioinformatics and sequence logo analyses 

indicated that the good binders to a high extent recapitulated the critical residues that contributed 

significantly to binding. Detailed inspection confirmed this point and also revealed that some extra 

favorable interactions were introduced to enhance binding in the top designed binders. Moreover, 

the designs were predicted to maintain the secondary structure of the motif, which was important 

for facilitating the protein-peptide binding interaction. Although our experimental results are not 

available yet, we would like to share these useful data to the community so that people can work 

together to test them, which should help to develop new antiviral drugs to combat COVID-19. 
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