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Abstract

Climate change may bring about geochemical changes in arctic regions as a result of

increasing thaw depth. In order to better understand current watershed geochemistry

and mineral weathering and provide a basis for predicting the geochemical effects of

active-layer thickness increase, we examined elemental chemistry and 87Sr/86Sr of

streams and sequential and total digests of soils, permafrost, and soil parent

materials from seven glacial deposit surfaces of varying geomorphic ages in arctic

Alaska in the vicinity of the Philip Smith Mountains quadrangle (69uN, 150uW). We

found overall greater exchangeable K concentrations, exchangeable and acid

digestible P and Ca concentrations, acid digestible and total Ca/Na and Ca/Sr,

and lower acid digestible 87Sr/86Sr in permafrost than in active-layer mineral soil. Of

the surfaces with similar parent material, stream and soil data suggest that

weathering has progressively depleted calcium carbonate in the active layer with

increasing surface age. Our results suggest that increasing thaw depth will lead to

increasing carbonate and Ca supply to soils and streams, as well as spatially variable

increases in P and K supply. Geochemical differences between active-layer soil and

permafrost suggest the possibility of using stream geochemistry to detect changes in

active-layer thickness in watersheds.

Introduction

Chemical weathering of minerals is an integral part of soil

formation and is ecologically important as a source of nutrients

such as phosphorus, potassium, and calcium (Schlesinger, 1997);

silicate weathering is geologically important as a sink for

atmospheric carbon in the long-term carbon cycle (Walker et al.,

1981). It is important to understand mineral weathering and

related soil and stream geochemistry in arctic regions because

global climate change may cause changes in both the nature and

extent of mineral weathering in these regions. Continuous

permafrost in arctic regions restricts mineral weathering to the

active (seasonally thawed) layer, and warming climate is likely to

cause increased active-layer thickness (Anisimov et al., 1997).

Increased active-layer thickness will allow minerals previously

contained in permafrost to weather, thereby increasing the total

mineral surface area that is exposed to weathering. Additionally,

permafrost in some areas may contain very soluble minerals that

largely have been removed by weathering in overlying thawed

soils. Thawing and weathering of these minerals could cause

potentially important changes in stream and soil geochemistry for

years to come; the nature of these changes will depend on the

spatial and temporal progression of permafrost degradation.

Much progress has been made toward understanding soil

chemistry and mineral weathering on the North Slope of Alaska.

Soils on the North Slope were classified and physically described

in early work by Tedrow et al. (1958) and in more recent studies by

Ping et al. (1998) and Munroe and Bockheim (2001). In an

investigation of the soil chemistry differences between non-acidic

and acidic tundra, Bockheim et al. (1998) analyzed soil exchange-

able chemistry and other soil characteristics across the Kuparuk

River Basin of the North Slope, an area that overlaps the study

area of this paper and includes loess, till, and colluvium deposits of

different ages. Their study found a relationship between non-

acidic tundra soils and greater amounts of exchangeable base

cations. Munroe and Bockheim (2001) found that among the four

most recently deglaciated surfaces in this region, soil profile

concentrations of weathering products (clay and silt) increased

significantly with age, suggesting that even in areas where

cryoturbation is common, surface age is a factor in mineral

weathering and soil development.

Although cycling of biogeochemically important elements

such as carbon and nitrogen in soils and catchments of the

Alaskan Arctic has been the subject of many studies (e.g. Giblin et

al., 1991; Nadelhoffer et al., 1991; Hobbie et al., 2002; Judd and

Kling, 2002), the geochemistry of other elements including macro-

and micronutrients released by mineral weathering is less well

known. Stutter and Billet (2003) described the stream and soil

chemistry of a Swedish arctic region more recently glaciated than

the study area of this paper, but with similar sedimentary bedrock

(including sandstone and limestone units), and found the system to

be dominated by carbonate dissolution. Kling et al. (1992)

investigated the chemistry of lakes and rivers over a wide region

of the Alaskan North Slope and interpreted the water chemistry in

the region of their study to also be dominated by the products of

carbonate dissolution and related to surface age.

Both terrestrial (Shaver and Chapin, 1995) and aquatic

(Hobbie et al., 1999) ecosystems in this region are nutrient limited,

either by P alone or by N and P. Therefore, enhanced release of

mineral nutrients via weathering of newly thawed minerals may

have an important ecological impact. Hobbie et al. (1999)

measured a twofold increase in P concentrations in a stream

passing through glacial deposits disturbed by construction and

predicted that weathering of thawed permafrost minerals

may increase aquatic P availability, causing bottom-up trophic

effects.

Because of the potential for a unique, permafrost-related

geochemical response of arctic systems to climate change, it is
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important to understand the current mineral weathering processes

and geochemical characteristics of these systems. This study

describes the elemental chemistry of soils and streams in the

central Alaskan North Slope, examines mineral weathering as

a function of surface age, and addresses the geochemical

implications of thaw depth increases brought about by climate

change. We analyzed stream water and several chemical fractions

of soil and bedrock, and used elemental and Sr isotope ratios to

identify the mineral sources of weathering products. These results

will serve to further our understanding of weathering in arctic

regions, as well as provide baseline information for predicting how

warming climate may influence the biogeochemistry of ecosys-

tems.

Study Area

Field research was conducted on the eastern North Slope of

arctic Alaska near the foothills of the Brooks Range (Fig. 1),

primarily in the Philip Smith Mountains quadrangle (69uN,

150uW). The entire region is underlain by continuous permafrost

(Brown and Krieg, 1983). For the years 1990–2000, the mean

active-layer thickness at three sites within the study area (Happy

Valley, Imnavait Creek, and Toolik Lake) ranged from 33 to

60 cm (Brown et al., 2002); the maximum thaw depth we observed

during field work was 80 cm. Mean annual air temperatures on

this part of the North Slope range from 25.9uC in the Brooks

Range to 212.8uC at Prudhoe Bay (Haugen, 1982). The dominant

vegetation types include tussock tundra, wet sedge tundra, and

riparian willow communities (Giblin et al., 1991). The landscape

descends from the steep, rocky foothills of the Brooks Range to

gently rolling tundra with poorly developed drainage and many

kettle and thermokarst lakes.

North of the foothills, the landscape is developed on till and

outwash formed during several glaciations of varying ages, during

which glaciers moved northward from the Brooks Range

(Hamilton, 1978; Brown and Krieg, 1983; Hamilton, 2003). The

oldest and most northerly recognizable glacial deposits resulted

from the Gunsight Mountain (GM) glaciation, which is inferred to

have occurred in the late Tertiary based on the similarity of

erosional features to Pliocene deposits south of the Brooks Range

(Hamilton, 1994). The second oldest glacial deposits resulted from

the Anaktuvuk River (AR) glaciation, which is assigned an early

Pleistocene age by paleomagnetic analysis of overlying sediments

(Hamilton, 1986) and correlations with other Alaskan glacial

sequences (Hamilton, 1994). The next two younger glaciations are

each broken up into separate units consisting of advances and

readvances separated by interglacial periods. The Sagavanirktok

River glaciation is dated broadly to the middle Pleistocene

(780,000–125,000 years B.P.; Hamilton, 2003) based on paleo-

magnetic data and correlation to glaciations elsewhere in Alaska

(Hamilton, 1994), and is separated into two units: Sagavanirktok

River 1 (Sag1) and 2 (Sag2). At least five separate phases of the

Itkillik glaciation have been identified (Hamilton, 2003), but for

the purpose of simplification in this paper we use the three main

phases initially described by Hamilton and Porter (1975) and used

by Hamilton (1986): Itkillik I (It1), Itkillik II (It2), and the latest

Itkillik II re-advance (It3). It1 deposits are beyond the range of

radiocarbon dating (.40 ka) but have an inferred age between 50

and 120 ka; radiocarbon dating suggests ages between approxi-

mately 11.5 and 24 ka for It2 deposits and 11.4 ka and 12.8 for It3

deposits (Hamilton, 1986, 2003). These surfaces have loess cover

ranging from greater than 15 m on the oldest surfaces, through

thin but still continuous cover on intermediate-aged surfaces, to

loess-free moraine crests on the youngest surfaces (Hamilton,

1994, 2003).

The bedrock formations in the Brooks Range foothills, from

which the glacial till is derived, consist primarily of conglomerates,

sandstones, and limestones, with some shale and phyllite (Menzie

et al., 1985; Mull and Adams, 1985). Based on the gentle

topography of the youngest (It3) moraines, Hamilton (2003)

inferred that they contain abundant fine sediments derived from

large nearby lake beds and therefore may be compositionally

different from other glacial deposits.

The soils developed on these deglaciated surfaces are

classified broadly as Gelisols, and more specifically as Turbels

and Orthels, depending on the amount of apparent cryoturbation

(Munroe and Bockheim, 2001). In most areas, the mineral soil is

overlain by a thick (10 or more centimeters) organic horizon. The

soils are characterized by medium texture, poor drainage, and

cryogenic features such as warped horizons and ice lenses (Ping et

al., 1998).

FIGURE 1. Map of study area with locations of soil (triangle)
and stream (square) sampling sites. Glacial deposit and bedrock
boundaries after Hamilton (1978, 2003), Mull and Adams (1985),
and Brown and Krieg (1983).
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Methods

WATER SAMPLING AND ANALYSIS

We sampled small first- or second-order streams in water-

sheds entirely contained within each of the seven glacial surfaces of

different ages in the study area, and within each of the major

bedrock types in the foothills north of the Brooks Range (Fig. 1);

we also sampled the major rivers (up to fourth order) in the study

area. Precipitation samples were collected in acid-washed poly-

ethylene containers. All water samples were filtered through

0.45 mm polypropylene filters into acid-washed polyethylene

bottles in the field, acidified with ultra-pure hydrochloric acid,

and refrigerated at ,10uC until analysis.

All water samples were analyzed using a Perkin Elmer

Optima 3300 DV Inductively Coupled Plasma Optical Emission

Spectrometer (ICP-OES) using five- to eight-point calibration

curves for element concentrations (including Ba, Ca, Fe, K, Mg,

Na, S, Si, and Sr). Two High-PurityH standards (Trace Metals in

Drinking Water and River Sediment-B) and one in-house standard

were used for quality control. These standards were analyzed to

within 610% of the known values for Fe and Sr; 617% for S, and

65% for all other elements.

SOIL SAMPLING AND ANALYSIS

During late July and August of 2002 and 2003, two to four

soil sampling pits on each glacial deposit surface were excavated

(Fig. 1), with the exception of the GM surface, on which a single

large trench was excavated and sampled on opposite sides. Sites

were randomly selected on flat (slope ,2u) moraine crests or

shoulders. Vegetation at the pit sites indicated that all of the sites

except one were located on moist acidic tundra; one of the It2 pit

sites was located on non-acidic tundra. Each pit was excavated

through active-layer soil and at least several cm into frozen

ground. Soil profiles and visible horizons were measured and

described, and homogenized samples were taken from each visible

horizon. We took 3–6 horizon samples per pit, usually consisting

of layers designated ‘‘O’’ (peat), ‘‘A’’ (an oxidized layer with live

roots), ‘‘B1’’ (the upper section of a thick gleyed layer), ‘‘B2’’ (the

lower section of the same layer; this division was meant to split the

thick ‘‘B’’ horizon approximately in half in order to look for

differences with depth), ‘‘P1’’ (the first few centimeters of thickly

laminated frozen soil, which may infrequently be part of the active

layer), and ‘‘P2’’ (deeper, thinly laminated sediment in perma-

frost). Several soil profiles contained evidence of cryoturbation

such as irregular horizon boundaries or buried peat inclusions. A

deeper (,3 m) permafrost sample (labeled Sag1-DP on Fig. 1 and

in tables) was obtained from the Sag1 surface from the site of

a thermokarst tundra collapse within a few days of that event.

Soil samples were dried at 35uC, and mineral soils were sieved

to separate the ,2-mm size fraction, which was used for further

analyses. We consider the .2 mm fraction to contribute

a negligible amount to overall mineral weathering of the soil due

to its low ratio of surface area to volume; the .2 mm fraction

appeared to consist mostly of chert pebbles and quartzite cobbles

and was on average less than 35% by mass of each sample. Percent

organic matter was determined for samples from one representa-

tive pit on several surfaces by loss on ignition (LOI) via

combustion at 450uC for 24 h, following the method of Heiri et

al (2001).

Following the methods of Blum et al. (2002), 0.5 g soil

samples were leached and digested sequentially with 5 mL of each

of the following ultra-pure solutions: (1) 1M NH4Cl (pH 5 7) at

room temperature for 20 h to obtain the exchangeable fraction; (2)

1M HNO3 at room temperature for 20 h to dissolve easily soluble

minerals (which in these soils are mostly carbonates but include

minor amounts of phosphate and some sulfides) and to leach

remaining labile elements bound to organics; and (3) concentrated

HNO3 at 150uC for 3 h to partially digest less soluble but still

potentially weatherable minerals such as biotite, plagioclase,

potassium feldspar, sulfides, and some oxides and clays. For

convenience, we will refer to the solutions obtained via the second

and third steps in the sequential digest procedure as the ‘‘cold acid

digestible’’ and ‘‘hot acid digestible’’ fractions, respectively. While

we aim to estimate ‘‘easily weatherable’’ and ‘‘less weatherable’’

fractions of the soil with these sequential digests, these digests are

operationally defined and thus do not represent clearly defined

reservoirs within the soil. Furthermore, while elemental P and S

(possibly occurring as PO4
32 and SO4

22) released by NH4Cl are

not necessarily ‘‘exchangeable,’’ they represent the most labile

fraction of those elements, and for convenience they are referred to

as part of the exchangeable fraction.

To obtain a total digest of mineral soil samples, about 0.1 g of

each sample was fused with 1 g of technical grade LiBO2 in

a graphite crucible at 1100uC, then dissolved in approximately

60 mL of trace metal grade 5% HNO3 and filtered through 25-mm

pore size cellulose fiber paper. Two procedural blanks (LiBO2 with

no sample added) and two U.S. Geological Survey Geochemical

Reference Standards were also digested.

The soil leachate and digest solutions were analyzed for

elemental concentrations by ICP-OES using six- to nine-point

calibration curves. Quality control standards included High-

PurityH ICP–Stock Solution for Si and CRM Soil Solution A

and Trace Metals in Drinking Water for other elements. For the

sequential digest solutions, these standards were analyzed within

67% for Ba, Ca, Fe, K, Na, and Sr; 612% for Si, and 614% for P

and S in the same concentration ranges as the samples. For the

total digests, these standards plus an in-house standard were

analyzed to within 67% for Ba, P, and Si; and 612% for Ca, Fe,

K, Na, S, Sr in the same concentration ranges as the samples.

BEDROCK SAMPLING AND ANALYSIS

Samples of each major rock unit on the eastern North Slope

(Philip Smith quadrangle) were collected during the summer of

2002. Where possible bedrock samples were collected from

outcrops in the same watersheds in which streams were sampled.

Polished thin sections were made of each rock sample, and

mineral constituents were identified visually using a petrographic

microscope or by an energy dispersive spectrometer (EDS) on

a Hitachi S3200N scanning electron microscope (SEM). Sub-

samples of each rock sample were pulverized in a tungsten carbide

ring mill and then subjected to the same sequential leach and

digest procedure described above. After the hot acid digest, the

remaining sample was digested with a mixture of concentrated

ultra-pure HF, HNO3, and HCl until all sample was in solution.

The leachate and digest solution was analyzed by ICP-OES as

described above.

SR ISOTOPIC ANALYSES

Sr was separated from selected water samples and soil and

rock leachate and digest solutions by eluting a subsample through

Eichrom Sr-Spec resin in a quartz cation exchange column. Fifty

to 100 ng of Sr along with 1 mL of H3PO4 were then loaded onto

a tungsten filament with Ta2O5 powder matrix. 87Sr/86Sr was
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determined by multiple-collector thermal ionization mass spec-

trometry (TIMS) on a Finnigan MAT 262. To correct for

instrumental mass bias, 86Sr/88Sr was normalized to 0.1194.

Between 50 and 200 replicate 87Sr/86Sr ratios were measured for

each sample. Internal precision (62s) calculated from these

replicates was generally less than 60.000030; exceptions are noted

in tables and graphs. The Sr standard NBS-987 was analyzed after

every 12 samples with a mean value of 0.710231 6 0.000016 (2s)

during the period of sample analyses.

Results

BEDROCK COMPOSITION AND GEOCHEMISTRY

Based on the location and extent of rock unit outcrops in the

eastern Brooks Range foothills and on cobbles found in soil pits

by us and by Hamilton (2003), we identified six units (as mapped

by Mull and Adams, 1985) likely to comprise the bulk of the

glacial till in the study area: the Devonian Beaucoup phyllite

(Dbs), the Devonian Ear Peak sandstone member of the Kanayut

conglomerate and sandstone (Dke), the Permian–Mississippian

Lisburne limestone (PMl), the Permian Echooka shale (Pe), the

Cretaceous Fortress Mountain conglomerate and sandstone (Kf),

and the Cretaceous Nanushuk sandstone (Kn). Because the Kn

outcrops north of the Sagavanirktok River glacial deposits, it is

likely included only in the older and more northerly Gunsight and

Anaktuvuk glacial deposits.

Visual and SEM thin section analyses suggest that all three

sandstones (Dke, Kf, and Kn) are composed primarily of quartz

and chert and contain minor amounts of biotite/vermiculite,

muscovite, and oxide and sulfide minerals; the Kf and Kn also

contain minor plagioclase and glauconite. The limestone unit

(PMl) appeared chert-rich and argillaceous, which is consistent

with the description of this unit by Moore et al. (1994).

The composition of sequential and bulk digests of these six

units is reported in Table 1. As expected, the limestone had the

lowest 87Sr/86Sr values and highest Ca/Sr of the six units; the

phyllite (Dbs) and the Devonian sandstone (Dke) had the highest

exchangeable and cold acid digestible fraction 87Sr/86Sr values.

The elemental ratios Ca/Na and Ca/Sr are often used as indicators

of calcium carbonate contribution because calcium carbonate has

high Ca but low Na and Sr concentrations, while the reverse is true

for many common silicate minerals. Strontium isotope ratios can

be used similarly because most carbonates have low 87Sr/86Sr while

many silicate minerals have higher 87Sr/86Sr values (e.g. Palmer

and Edmond, 1992). Because the carbonate and silicate rocks in

this area follow these general patterns, we use the elemental

concentration ratios Ca/Na and Ca/Sr and the isotope ratio
87Sr/86Sr as indicators of the calcium carbonate contribution to

soil fractions and stream water solutes.

SOIL GEOCHEMISTRY

Geochemical characteristics of the soil exchangeable fraction,

cold acid digestible fraction, hot acid digestible fraction, and total

soil digests are reported in Tables 2–5. The It2 surface has the

highest exchangeable Ca concentrations, Ca/Na, and Ca/Sr

(Table 2). In the mineral soil of most profiles, there is a trend of

increasing Ca concentrations and Ca/Sr and decreasing 87Sr/86Sr

with depth (Table 2). Statistical tests (ANOVA or Welch ANOVA

where the variances are unequal) were performed on concentration

TABLE 1

Chemistry of local rock units likely incorporated into glacial till deposits. Formation names are defined in the text.

Fm.

name Rock type Fraction

Ba

(mmol/g)

Ca

(mmol/g)

Fe

(mmol/g)

K

(mmol/g)

Mg

(mmol/g)

Na

(mmol/g)

P

(mmol/g)

S

(mmol/g)

Si

(mmol/g)

Sr

(mmol/g)

Ca/Na

(molar)

Ca/Sr

(molar) 87Sr/86Sr

Dbs phyllite/slate exch. 0.051 25.3 1.22 6.92 13.6 2.64 ,0.09 1.77 0.83 0.110 9.6 230 0.727052

Dke ss/cong. exch. 0.031 2.94 0.63 9.68 4.12 1.59 ,0.09 0.15 0.30 0.020 1.8 147 0.723253

PMl limestone exch. 0.009 132 0.28 1.19 2.63 0.40 0.23 ,0.08 0.36 0.092 326 1430 0.708986

Pe shale exch. 1.35 30.9 1.28 12.7 10.9 0.53 ,0.09 0.42 4.79 0.097 58.7 319 0.715667

Kf sandstone exch. 2.57 11.9 0.14 20.4 19.4 4.50 ,0.09 0.40 0.64 0.052 2.6 227 0.717860

Kn sandstone exch. 0.277 35.1 0.47 6.46 12.3 4.35 ,0.09 4.13 ,0.06 0.066 8.1 533 0.713092

Dbs phyllite/slate cold dig. 0.016 660 348 4.17 314 0.62 20.4 54.6 60.4 0.831 1060 793 0.725383

Dke ss/cong. cold dig. 0.085 12.3 67.5 6.12 6.73 0.47 2.88 ,0.08 39.2 0.029 26.3 425 0.719324

PMl limestone cold dig. 0.044 5970 1.02 1.01 35.9 0.09 17.1 ,0.08 6.66 1.69 64000 3530 0.708058

Pe shale cold dig. 2.97 55.4 80.6 8.29 71.3 ,0.073 2.01 1.74 44.6 0.103 .758 540 0.714122

Kf sandstone cold dig. 2.49 45.7 141 12.5 97.5 3.12 21.2 2.71 97.3 0.096 14.7 477 0.712404

Kn sandstone cold dig. 0.415 85.1 127 2.69 62.4 ,0.073 15.8 23.7 84.5 0.122 .1160 695 0.713419

Dbs phyllite/slate hot dig. ,0.001 15.1 518 13.2 252 ,0.073 ,0.09 19.2 350 0.060 .207 251 0.731134

Dke ss/cong. hot dig. ,0.001 ,0.04 229 20.1 8.04 ,0.073 2.30 0.15 150 0.060 — ,0.59 0.723511

PMl limestone hot dig. 0.019 534 2.38 1.19 2.17 ,0.073 1.37 0.18 14.0 0.099 .7310 5380 0.713099

Pe shale hot dig. 0.097 ,0.04 365 51.5 196 ,0.073 ,0.09 1.29 184 0.022 — ,1.60 0.753962

Kf sandstone hot dig. 1.52 ,0.04 189 57.1 127 11.1 3.73 2.50 281 0.031 ,0.003 ,1.11 0.735151

Kn sandstone hot dig. 0.610 5.67 334 41.9 210 1.27 0.37 6.44 495 0.057 4.5 100 0.727727

Dbs phyllite/slate res. dig. 2.66 ,0.04 91.3 452 1.32 290 0.28 1.48 1090 0.263 .0.0001 ,0.13 0.740233

Dke ss/cong. res. dig. ,0.001 ,0.04 109 27.8 6.26 ,0.073 0.95 ,0.08 1560 0.208 — ,0.17 0.714283

PMl limestone res. dig. 0.035 1.23 0.17 0.50 ,0.0001 ,0.073 ,0.09 0.47 547 0.007 .16.4 168 0.708846

Pe shale res. dig. 1.22 ,0.04 259 583 41.2 91.3 0.22 1.25 780 0.412 ,0.0003 ,0.085 0.741406

Kf sandstone res. dig. 2.30 ,0.04 26.9 50.7 29.2 95.1 0.29 1.82 939 0.162 ,0.0004 ,0.22 0.715210

Kn sandstone res. dig. 4.31 5.83 91.9 319 44.2 273 1.65 1.00 926 0.638 0.02 9.1 0.723082

PMl elemental data and cold digestible 87Sr/86Sr represent a mean of data from 5 samples of the PMl from different locations and members; other PMl 87Sr/86Sr data

and data for all other units are from one representative sample. Errors for elemental data and 87Sr/86Sr reported in text. Exch. 5 exchangeable fraction; cold dig. 5 cold

acid digestible fraction; hot dig. 5 hot acid digestible fraction; res. dig. 5 residual (HF) digestible fraction.
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data for select elements that were log-transformed to induce

normal distribution. Although data sets for individual surfaces are

not large enough to test reliably, statistical analyses of data from

all surfaces combined show some significant (p , 0.05) differences

between permafrost and active-layer mineral soil chemistry:

exchangeable fraction Ca, K, and P concentrations are signifi-

cantly greater in the permafrost (all ‘‘P’’ horizons) than in active-

layer mineral soil (all ‘‘A’’ and ‘‘B’’ horizons). Despite these

overall statistically significant differences, the magnitudes of

within-surface differences between permafrost and active-layer

mineral soil exchangeable fraction elemental concentrations vary

substantially among surfaces (Table 2).

The cold acid digestible fractions of the It2, AR, and GM soil

profiles have greater Ca concentrations and Ca/Sr and lower
87Sr/86Sr than those of the other surfaces (Table 3). The cold acid

digestible fraction of the mineral soil shows a general pattern across

all surfaces of increasing Ca concentrations and Ca/Sr and

decreasing 87Sr/86Sr with depth, and on some surfaces P concentra-

tions also increase with depth. Both Ca and P cold acid digestible

fraction concentrations are significantly (p # 0.05) greater in the

permafrost than in the active-layer mineral soil when data from all

surfaces are analyzed, and the differences in cold acid digestible

fraction K concentrations are nearly significant (p 5 0.06). These

differences between active-layer mineral soil and permafrost vary by

TABLE 2

Mean exchangeable soil fraction (per gram dry soil). Surface and horizon names are defined in the text.

Surface Horizon

Depth

(cm)

Ba

(mmol/g)

Ca

(mmol/g)

Fe

(mmol/g)

K

(mmol/g)

Na

(mmol/g)

P

(mmol/g)

S

(mmol/g)

Si

(mmol/g)

Sr

(mmol/g)

Ca/Na

(molar)

Ca/Sr

(molar) 87Sr/86Sr**

It3 (n 5 4) O 0–7 0.163 92.0 3.31 7.12 0.22 0.58 0.91 2.49 0.087 420 1062 0.713660

A 7–19 0.296 7.29 0.80 1.42 0.10 0.02 0.07 1.05 0.011 70.4 687 0.720245*

B1 19–39 0.374 6.55 0.98 1.49 0.12 0.03 0.14 0.60 0.011 55.8 577 0.720483

B2 39–60 0.518 7.27 0.87 2.61 0.11 0.02 0.19 0.41 0.013 63.6 543 0.719548

P 62–71 0.779 13.1 3.64 4.62 0.16 0.10 0.47 1.87 0.027 84.1 490 0.716431

It2 (n 5 3) O 0–16 0.448 174 1.63 1.12 0.34 0.43 2.88 0.80 0.109 509 1596 0.709544

A 18–29 0.700 52.7 2.31 0.81 0.11 0.12 0.11 1.75 0.041 489 1282 0.710457

B1 29–46 0.753 57.9 1.99 1.65 0.15 0.08 0.48 1.92 0.040 395 1450 0.709485

B2 46–62 0.428 83.3 3.95 2.14 0.20 0.15 2.82 3.05 0.060 425 1397 0.709496*

P 66–73 0.302 88.5 1.85 2.47 0.55 0.10 4.74 1.12 0.071 162 1244 0.709585

It1 (n 5 3) O*** 0–7 0.384 20.5 2.69 7.10 0.20 0.18 1.41 0.44 0.033 105 627 0.721412*

A 8–23 0.296 4.71 1.03 0.64 0.06 0.02 0.12 0.31 0.007 78.1 657 0.718664

B1 23–40 0.373 5.48 0.60 0.69 0.06 0.04 0.11 0.22 0.009 93.2 642 0.718510*

B2 35–49 0.552 6.80 1.50 0.75 0.10 0.05 0.07 0.82 0.010 65.5 701 0.717530

P1 49–60 0.501 7.38 2.98 0.96 0.10 0.07 0.10 1.60 0.009 75.5 797 0.715944

P2 62–69 0.489 34.7 0.42 1.76 0.10 0.04 0.14 0.28 0.037 359 951 0.711278

Sag2 (n 5 3) O 0–8 0.242 32.0 2.72 6.55 0.34 0.68 1.49 0.91 0.048 93.7 670 0.716872

A 8–25 0.409 4.77 0.58 0.85 0.10 0.05 0.15 0.35 0.009 47.9 541 0.720050

B1 25–42 0.861 14.2 1.93 1.43 0.23 0.06 0.09 1.52 0.023 61.8 612 0.720851*

B2 38–55 0.365 3.05 1.52 0.66 0.15 0.04 0.11 1.33 0.006 19.9 504 0.717221

P1 55–69 0.495 5.39 0.95 1.24 0.15 0.02 0.08 0.49 0.011 35.2 486 0.715970

P2 71–75 0.861 21.5 1.41 2.43 0.20 0.06 0.14 0.78 0.030 105 709 0.716069*

Sag1 (n 5 2) O 0–13 0.543 30.6 3.13 3.56 0.29 0.21 1.18 0.65 0.044 106 696 0.717314

A 13–22 0.611 12.3 1.76 1.22 0.14 0.08 0.34 1.20 0.018 88.0 668 0.717041

B1 22–40 0.580 5.89 0.45 0.82 0.15 0.04 0.10 0.37 0.009 39.0 635 0.719167

B2 35–50 0.727 7.17 0.85 1.29 0.16 0.03 0.15 0.54 0.011 44.3 630 0.717241*

P 50–58 0.680 7.24 2.85 1.62 0.17 0.07 0.20 1.84 0.011 41.5 656 0.716745*

Sag1-DP P (deep) 200–300 0.340 79.4 0.74 1.74 ,0.04 0.10 5.88 1.85 0.102 .1980 780 0.713109

AR (n 5 3) O 0–11 0.116 68.6 0.78 4.56 0.26 0.87 1.20 0.48 0.070 269 980 0.708721

A 11–27 0.458 67.1 3.29 1.34 0.21 0.19 0.35 2.10 0.076 322 880 0.708773

B1 27–50 0.549 73.7 1.38 1.38 0.23 0.09 0.06 1.94 0.080 318 925 0.708416

B2 45–75 0.616 78.2 1.89 1.50 0.21 0.12 0.00 1.61 0.084 367 931 0.708313*

P1 70–80 0.691 75.7 1.29 1.56 0.27 0.07 0.08 0.87 0.075 282 1010 0.708253

P2 85–93 0.688 68.6 4.42 1.55 0.19 0.15 0.01 2.76 0.073 356 942 0.708296

GM (n 5 2) Oe 0–13 0.185 38.5 1.87 5.93 0.31 0.73 0.86 0.77 0.053 125 731 0.710621*

B1 13–35 0.755 28.5 1.95 1.10 0.39 0.02 0.24 0.61 0.042 73.1 673 0.711741*

B2 38–44 0.828 39.0 5.19 1.17 0.42 0.08 0.20 3.16 0.057 92.2 690 0.710258

IIOa 44–55 0.431 105 3.16 1.04 0.26 0.23 1.21 0.76 0.112 405 937 0.710080

P1 50–54 0.327 82.8 3.23 1.11 0.19 0.23 0.88 2.17 0.099 425 833 0.709814*

IIB 57–90 0.278 150 2.28 1.93 0.36 0.16 0.74 1.64 0.145 421 1040 0.709412

P2 100–110 0.289 85.0 0.59 1.90 0.73 0.05 1.61 0.59 0.155 116 548 0.710615

Errors for elemental data and 87Sr/86Sr as reported in text, with the following exceptions:

* Error (2s) greater than 0.000030 but less than 0.000075.

** n 5 1 for all 87Sr/86Sr data.

*** n 5 2 for It1 O horizon.
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surface: all surfaces have higher permafrost concentrations of Ca;

all surfaces except the GM and It2 have higher permafrost

concentrations of K; and cold acid digestible fraction P concentra-

tions are higher in the permafrost on four of the surfaces.

The hot acid digestible fractions of mineral soil horizons on

all surfaces contain some Ca, but have lower Ca/Sr and higher
87Sr/86Sr than either the exchangeable or cold acid digestible

fractions (Table 4). This suggests that the majority of carbonate

was dissolved before this step in the sequential digest procedure

and that the Ca in this fraction is largely the result of silicate

mineral dissolution.

The total digests of the mineral soil (Table 5) show that Ca

generally increases with depth on each surface. The It2, AR, and

GM surfaces have the highest Ca concentrations. On average,

SiO2 comprises approximately 80% of the total mineral soil mass.

For a few samples, elemental concentrations from the acid digests

sum to slightly more than the total digest concentration. These

values are within analytical errors propagated through the sum in

all except for the Ca values for the Sag1 deep permafrost sample.

This discrepancy is likely the result of sample heterogeneity.

STREAM GEOCHEMISTRY

In streams on glacial deposit surfaces, dissolved Ca concen-

trations ranged from 12 mmol L21 on the Sag1 surface to

594 mmol L21 on the It2 surface. Streams draining only limestone

bedrock had Ca concentrations up to 1606 mmol L21 (Table 6).

Dissolved P concentrations were generally less than 1 mmol L21,

but several streams on the It2 surface had concentrations greater

than 10 mmol L21. Dissolved Si concentrations were less than

TABLE 3

Mean cold acid digestible soil fraction (per gram dry soil). Surface and horizon names are defined in the text.

Surface Horizon

Depth

(cm)

Ba

(mmol/g)

Ca

(mmol/g)

Fe

(mmol/g)

K

(mmol/g)

Na

(mmol/g)

P

(mmol/g)

S

(mmol/g)

Si

(mmol/g)

Sr

(mmol/g)

Ca/Na

(molar)

Ca/Sr

(molar) 87Sr/86Sr*

It3 (n 5 4) O 0–7 0.682 183 57.3 3.97 0.45 5.12 0.58 29.4 0.144 405 1270 0.713346

A 7–19 0.123 7.77 147 1.41 0.29 2.06 0.68 42.1 0.011 26.7 681 0.713351

B1 19–39 0.191 8.54 173 1.46 0.28 1.82 0.58 44.7 0.013 30.6 660 0.714043

B2 39–60 0.189 8.76 157 1.80 0.28 3.05 0.75 44.7 0.013 31.4 672 0.713707

P 62–71 0.399 12.6 285 2.46 0.44 8.31 1.25 51.7 0.014 28.9 875 0.713848

It2 (n 5 3) O 0–16 2.17 360 53.8 1.01 0.56 4.70 5.90 11.9 0.218 646 1650 0.710522

A 18–29 1.09 60.7 119 1.35 0.39 11.3 2.47 59.8 0.070 156 864 0.710246

B1 29–46 1.34 62.4 122 1.79 0.46 11.2 4.05 68.8 0.072 136 869 0.709875

B2 46–62 2.17 122 117 1.99 0.41 12.2 7.12 72.2 0.118 297 1040 0.709850

P 66–73 2.39 257 125 1.97 0.42 9.76 4.01 66.9 0.195 610 1320 0.709610

It1 (n 5 3) O* 0–7 0.350 10.4 68.1 3.64 0.18 3.73 1.19 18.8 0.017 59.3 627 0.720647

A 8–23 0.152 6.03 125 0.95 0.10 2.04 0.34 28.5 0.009 62.5 702 0.713331

B1 23–40 0.180 8.67 121 1.04 0.10 3.23 0.39 32.1 0.012 88.3 729 0.712963

B2 35–49 0.186 7.23 124 1.14 0.13 3.10 0.19 39.2 0.011 57.6 658 0.712858

P1 49–60 0.136 6.28 95.7 1.11 0.13 2.41 0.31 31.9 0.009 47.8 685 0.712326

P2 62–69 0.423 79.8 125 1.40 0.09 5.60 0.64 42.2 0.052 929 1540 0.710896

Sag2 (n 5 3) O 0–8 0.537 28.1 52.1 2.91 0.44 5.93 1.33 13.2 0.039 64.6 714 0.715214

A 8–25 0.182 6.84 92.0 1.01 0.13 2.36 0.33 31.1 0.009 50.9 758 0.712909

B1 25–42 0.414 7.99 138 1.52 0.14 2.71 0.86 45.1 0.011 57.5 703 0.713031

B2 38–55 0.079 4.04 60.5 0.94 0.18 3.05 0.15 26.9 0.006 22.3 672 0.712395

P1 55–69 0.128 5.99 65.4 1.25 0.18 2.44 0.38 28.1 0.009 33.1 655 0.712871

P2 71–75 0.493 12.2 95.4 1.57 0.11 2.18 0.70 37.0 0.015 114 807 0.712010

Sag1 (n 5 2) O 0–13 0.677 22.6 85.8 3.28 0.40 3.03 1.56 23.2 0.030 57.1 749 0.715044

A 13–22 0.272 4.0 133 1.29 0.23 1.54 0.66 34.4 0.006 17.0 669 0.713519

B1 22–40 0.147 2.65 104 1.26 0.26 1.36 0.28 35.9 0.004 10.1 649 0.713252

B2 35–50 0.186 3.29 115 1.34 0.27 1.84 0.34 39.1 0.005 12.0 602 0.713607

P 50–58 0.235 6.16 166 1.53 0.31 4.38 0.45 41.4 0.008 20.0 738 0.713144

Sag1-DP P (deep) 200–300 1.75 244 236 1.46 18.8 21.5 9.08 169 0.279 13.0 874 0.711083

AR (n 5 3) O 0–11 0.391 166 37.1 4.89 0.40 6.33 1.82 16.3 0.154 418 1080 0.708762

A 11–27 0.727 82.7 171 1.97 0.73 19.7 1.66 65.2 0.164 113 503 0.709060

B1 27–50 0.726 183 137 2.37 0.63 20.3 0.90 85.9 0.213 288 857 0.708580

B2 45–75 0.446 280 70.8 2.16 0.49 13.2 0.01 66.4 0.250 573 1120 0.708235

P1 70–80 0.777 423 142 2.59 0.80 20.8 0.12 92.8 0.353 530 1200 0.708352

P2 85–93 0.740 320 94.2 2.45 0.58 19.0 0.01 84.3 0.309 549 1040 0.708425

GM (n 5 2) Oe 0–13 0.394 54.8 29.4 6.32 0.34 5.52 1.21 7.06 0.075 160 729 0.710627

B1 13–35 0.310 14.1 162 3.18 1.21 4.66 3.19 62.6 0.029 11.6 490 0.711870

B2 38–44 0.467 18.3 286 1.86 0.39 3.20 1.72 57.0 0.034 47.3 538 0.711035

IIOa 44–55 1.10 186 241 3.73 1.24 7.52 5.48 44.0 0.219 150 849 0.710836

P1 50–54 0.811 101 131 1.96 0.34 6.93 2.43 36.7 0.132 295 762 0.709522

IIB 57–90 1.05 342 139 4.22 1.34 9.92 3.85 64.0 0.313 255 1090 0.709681

P2 100–110 1.07 1220 177 3.21 1.37 13.9 2.55 72.4 0.850 891 1440 0.709076

Errors for elemental data and 87Sr/86Sr as reported in text; maximum error (2s) for any 87Sr/86Sr value used in calculating means is 0.000068.

* For 87Sr/86Sr, n 5 3 for It3, n 5 1 for AR and GM; for other surfaces, n is as reported.
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1 mmol L21 in two streams that were lake outlets, but other Si

concentrations ranged from 10 to 87 mmol L21. 87Sr/86Sr ranged

from 0.71023 to 0.71881 in streams draining glacial deposit

surfaces and from 0.70847 to 0.71989 in streams draining bedrock

surfaces.

Discussion

ANALYSIS OF SOIL PARENT MATERIAL VARIABILITY

Before we can evaluate whether geochemical patterns are

dependent on varying degrees of weathering on geomorphic

surfaces of different ages, we must ascertain the degree of

variability of the composition of the glacial till soil parent among

the surfaces. Figure 2 shows a comparison of the 87Sr/86Sr of the

hot acid digestible fractions of the soil profiles on each surface.

Because easily weathered material has already been removed from

this fraction by previous steps in the sequential digest procedure,

we make the assumption that the chemistry of this fraction reflects

minerals that would only be affected by intense weathering,

making them unlikely to have been significantly affected yet by

weathering in this arctic region. Therefore, the 87Sr/86Sr and

elemental ratios of this fraction should be very similar for soils

with similar parent material, regardless of their age. We used

TABLE 4

Mean hot acid digestible soil fraction (per gram dry soil). Surface and horizon names are defined in the text.

Surface Horizon

Depth

(cm)

Ba

(mmol/g)

Ca

(mmol/g)

Fe

(mmol/g)

K

(mmol/g)

Na

(mmol/g)

P

(mmol/g)

S

(mmol/g)

Si

(mmol/g)

Sr

(mmol/g)

Ca/Na

(molar)

Ca/Sr

(molar) 87Sr/86Sr***

It3 (n 5 4) O 0–7 0.309 51.2 196 5.42 16.7 13.0 26.2 10.5 0.045 3.07 1150 0.714412

A 7–19 0.125 2.44 359 8.40 12.9 5.56 3.09 49.3 0.015 0.19 168 0.731134

B1 19–39 0.145 2.37 409 10.1 13.0 6.74 3.77 44.2 0.014 0.18 173 0.732188

B2 39–60 0.183 2.17 441 14.3 12.9 8.67 5.75 68.2 0.019 0.17 113 0.733771*

P 62–71 0.253 4.38 263 9.05 17.0 7.22 10.6 4.12 0.010 0.26 436 0.730624

It2 (n 5 3) O 0–16 0.949 87.9 95.1 .78 16.7 15.4 101 9.41 0.056 5.27 1570 0.709652*

A 18–29 0.284 3.91 298 5.22 11.5 6.81 13.6 87.8 0.009 0.34 429 0.720106

B1 29–46 0.342 4.10 342 7.61 11.5 4.55 14.6 102 0.012 0.36 340 0.720671*

B2 46–62 0.353 7.20 341 10.5 11.2 7.20 24.5 47.9 0.015 0.64 485 0.725481

P 66–73 0.324 13.2 395 4.94 8.34 8.20 27.1 50.9 0.019 1.58 710 0.715267

It1 (n 5 3) O**** 0–7 0.296 6.06 317 9.33 17.2 23.2 25.9 15.4 0.012 0.35 526 0.724344

A 8–23 0.107 1.76 330 5.85 12.1 5.35 2.54 60.4 0.008 0.15 231 0.727602*

B1 23–40 0.103 1.69 285 6.82 12.5 4.53 2.45 81.9 0.009 0.14 191 0.730939

B2 35–49 0.191 2.46 399 7.38 18.4 8.26 2.41 3.19 0.010 0.13 254 0.731677

P1 49–60 0.192 2.70 394 8.64 17.9 7.61 1.98 4.57 0.010 0.15 275 0.732349

P2 62–69 0.160 2.77 411 15.0 12.0 6.70 8.16 114 0.017 0.23 163 0.733956

Sag2 (n 5 3) O 0–8 0.238 11.8 156 5.12 17.5 17.5 23.9 8.03 0.016 0.67 752 0.720922*

A 8–25 0.126 2.14 283 5.86 12.0 5.98 3.10 45.3 0.007 0.18 295 0.722058

B1 25–42 0.231 2.38 343 9.99 11.9 7.13 6.14 54.2 0.012 0.20 190 0.722017

B2 38–55 0.187 3.45 216 4.52 18.3 2.95 1.38 4.15 0.009 0.19 394 0.723151

P1 55–69 0.191 3.08 386 4.25 17.5 7.44 3.01 4.87 0.007 0.18 465 0.721817*

P2 71–75 0.209 2.10 386 8.62 12.0 5.38 5.55 67.8 0.010 0.17 206 0.723476

Sag1 (n 5 2) O 0–13 0.363 7.92 176 8.86 17.1 21.5 27.5 2.43 0.019 0.46 409 0.722149**

A 13–22 0.307 4.20 459 10.1 18.2 12.1 6.59 4.87 0.018 0.23 227 0.723068

B1 22–40 0.247 4.30 364 7.33 17.8 7.31 1.91 4.88 0.016 0.24 274 0.722645**

B2 35–50 0.248 3.88 371 7.76 18.4 7.16 1.56 0.94 0.016 0.21 250 0.723827

P 50–58 0.274 5.15 302 7.92 16.6 5.88 2.30 5.19 0.014 0.31 369 0.725281

Sag1-DP P (deep) 200–300 0.257 12.7 435 9.86 18.1 4.10 6.02 3.51 0.041 0.70 309 0.726095

AR (n 5 3) O 0–11 0.348 70.0 136 4.30 16.0 20.9 58.4 19.8 0.069 4.36 1020 0.708900*

A 11–27 0.394 14.4 385 3.26 8.52 19.7 20.4 9.08 0.036 1.68 397 0.713011**

B1 27–50 0.450 14.7 535 7.76 17.6 11.3 8.80 5.44 0.027 0.84 538 0.711376

B2 45–75 0.359 18.9 502 6.69 16.6 9.57 3.99 2.67 0.027 1.14 708 0.713535

P1 70–80 0.402 20.1 508 8.50 17.8 8.94 4.06 3.25 0.028 1.13 723 0.711658

P2 85–93 0.386 9.08 491 7.97 17.2 9.73 4.64 1.91 0.022 0.53 407 0.716740*

GM (n 5 2) Oe 0–13 0.457 48.1 68.9 5.85 15.9 21.7 38.7 16.2 0.062 3.02 781 0.712801**

B1 13–35 0.297 5.67 234 6.72 17.5 7.95 9.44 5.31 0.019 0.32 300 0.713987*

B2 38–44 0.360 5.84 460 8.00 17.1 9.02 8.52 5.91 0.021 0.34 283 0.714585*

IIOa 44–55 0.438 60.6 204 4.96 16.4 15.9 48.5 16.1 0.066 3.68 919 0.713590*

P1 50–54 0.428 25.2 189 8.38 17.7 11.5 36.1 19.2 0.042 1.43 604 0.713149*

IIB 57–90 0.463 58.4 209 14.4 18.1 8.30 46.1 12.6 0.066 3.22 890 0.712507**

P2 100–110 0.340 31.7 211 14.0 18.8 5.23 23.2 4.57 0.046 1.69 684 0.714035**

Errors for elemental data and 87Sr/86Sr as reported in text, with the following exceptions:

* Error (2s) greater than 0.000030 but less than 0.000075.

** Error (2s) greater than 0.000075 but less than 0.000211.

*** n 5 1 for all 87Sr/86Sr data.

**** n 5 2 for It1 O horizon.
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87Sr/86Sr rather than elemental ratios as an indicator of differences

in parent material because different parent materials of the same

type (e.g. different sandstone units) may have very similar

elemental ratios due to similar mineralogical compositions, but

because of their unique protoliths, they are more likely to have

detectable differences in 87Sr/86Sr. We examined the 87Sr/86Sr of

the hot acid digestible fraction with respect to depth, to account

for any minor effects of weathering or addition of new material

(e.g. eolian loess) to the soil profile.

Overall the composition of the parent material has low

variability but showed some grouping among the different

surfaces. The GM and AR profiles have significantly lower mean
87Sr/86Sr than the other surfaces (Fig. 2; p , 0.05). This suggests

that the AR and GM soils are derived from different parent

material than the other surfaces. Differences in parent material

may be explained by the incorporation of various rock units in

different proportions based on different surface expressions of

these units at the time of the glacial advances. Additionally, rock

units (the Kn and three minor units not analyzed here) that

outcrop north of the Sag1 surface may have been incorporated

into the GM and AR parent till. It is also possible that long-term

eolian loess deposition has contributed to these differences in soil

composition. The 87Sr/86Sr of the hot acid digestible fraction of the

It1, It2, It3, Sag1, and Sag2 soil profiles is similar, suggesting that

these surfaces have similar parent material, although the 87Sr/86Sr

of the upper part of the It3 profile is slightly higher than that of

the other surfaces. This is consistent with the suggestion by

Hamilton (2003) that the It3 surface was derived from slightly

different parent material than the It1 and It2 surfaces, based on

surficial geomorphology. For the purposes of further analyses

TABLE 5

Total soil digest chemistry (per gram dry soil). Surface and horizon names are defined in the text.

Surface Horizon

Depth

(cm)

Ba

(mmol/g)

Ca

(mmol/g)

Fe

(mmol/g)

K

(mmol/g)

Na

(mmol/g)

P

(mmol/g)

Si

(mmol/g)

Sr

(mmol/g)

Ca/Na

(molar)

Ca/Sr

(molar)

Fraction

(,2 mm)

LOI

(%)

It3 (n 5 4) O 0–7 — — — — — — — — — — — —

A 7–19 3.01 20.5 547 282 128 12.73 13600 0.583 0.017 35.2 76% 5%

B1 19–39 3.50 19.9 685 325 129 14.68 14100 0.624 0.018 31.9 76% 7%

B2 39–60 3.51 19.7 644 327 122 16.77 12800 0.585 0.019 33.7 80% 8%

P 62–71 4.66 35.1 730 383 128 23.84 13200 0.643 0.023 54.6 63% —

It2 (n 5 3) O 0–16 — — — — — — — — — — — —

A 18–29 4.77 124 504 213 151 22.23 13900 0.577 0.023 214 65% 12%

B1 29–46 5.32 113 565 271 155 19.90 14000 0.591 0.023 192 52% 20%

B2 46–62 5.73 202 606 265 141 23.04 12400 0.626 0.024 323 59% 8%

P 66–73 6.67 330 831 335 168 27.77 11800 0.759 0.021 434 82% 7%

It1 (n 5 3) O* 0–7 — — — — — — — — — — — —

A 8–23 2.65 18.2 541 251 148 12.80 15300 0.508 0.019 35.8 49% 5%

B1 23–40 2.85 18.7 484 262 118 15.31 15400 0.526 0.019 35.5 57% 8%

B2 35–49 3.30 20.4 638 286 108 17.46 15100 0.562 0.020 36.3 54% —

P1 49–60 3.24 19.9 586 304 112 15.13 17200 0.555 0.020 35.9 53% —

P2 62–69 3.45 108 653 305 117 16.98 15100 0.635 0.020 170 71% 10%

Sag2 (n 5 3) O 0–8 — — — — — — — — — — — —

A 8–25 2.66 19.4 466 197 101 14.25 15600 0.466 0.021 41.6 66% 7%

B1 25–42 4.37 30.1 705 315 124 20.55 13500 0.517 0.024 58.3 79% 23%

B2 38–55 2.61 23.8 343 195 115 8.60 16100 0.505 0.019 47.1 69% —

P1 55–69 2.55 22.5 514 179 93.5 14.53 15200 0.454 0.021 49.4 61% —

P2 71–75 3.82 37.5 743 265 112 17.95 13400 0.432 0.026 86.8 77% 22%

Sag1 (n 5 2) O 0–13 — — — — — — — — — — — —

A 13–22 3.67 29.3 565 236 137 17.1 14000 0.560 0.023 52.3 69% 15%

B1 22–40 3.55 26.6 519 229 157 12.36 14000 0.548 0.023 48.5 65% 7%

B2 35–50 4.08 26.8 586 264 167 13.29 14400 0.576 0.024 46.5 58% —

P 50–58 3.77 25.9 525 243 140 13.79 14200 0.570 0.024 45.4 61% 7%

Sag1-DP P (deep) 200–300 7.13 255 896 675 153 29.46 13400 1.14 0.019 224 88% —

AR (n 5 3) O 0–11 — — — — — — — — — — — —

A 11–27 4.13 138 581 200 181 30.1 11900 0.589 0.021 234 46% —

B1 27–50 5.34 270 631 267 239 31.6 13500 0.797 0.019 339 40% —

B2 45–75 4.58 428 529 255 199 26.89 11900 0.858 0.017 498 30% —

P1 70–80 5.45 483 593 268 235 32.41 13000 0.915 0.020 528 41% —

P2 85–93 5.25 612 596 277 227 48.97 13700 1.27 0.019 480 37% —

GM (n 5 2) Oe 0–13 — — — — — — — — — — — —

B1 13–35 4.47 67.6 475 259 222 20.99 13200 0.685 0.023 98.7 47% —

B2 38–44 4.37 75.7 845 209 183 20.33 12600 0.682 0.024 111 76% —

IIOa 44–55 3.16 289 379 128 95.5 28.8 5860 0.614 0.032 471 69% —

P1 50–54 3.65 219 336 164 126 24.9 8240 0.659 0.028 333 57% —

IIB 57–90 4.60 593 396 249 203 25.30 10600 0.982 0.020 604 79% —

P2 100–110 4.82 1320 452 283 208 27.27 11400 1.63 0.011 814 57% —

Errors for elemental data as reported in text. LOI 5 loss on ignition.
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with respect to surface age, we will consider only the It1, It2, Sag1,

and Sag2 to be derived from similar parent material.

Besides these overall differences among the profiles from each

surface, each individual profile shows a pattern of increasing hot

acid digestible fraction 87Sr/86Sr with increasing depth within the

active layer (down to approximately 50 cm; Fig. 2). The most

likely explanation for this is eolian deposition of a weathering-

resistant mineral, with lower 87Sr/86Sr than the soil parent

material, which is mixed down through the active layer by

cryoturbation or water movement. Such dust could be derived

from the Dke sandstone or resistant minerals in the PMl (Table 1),

or from sediments outside the study region. This dust may also

have a carbonate component that contributes to the exchangeable

and cold acid digestible fractions. However, the effects of this

input as shown by increasing 87Sr/86Sr with depth seem to be of

similar magnitude in the hot acid digestible fraction, so we can

assume that age comparisons between these surfaces based on the

other fractions are not substantially affected. An alternate

explanation for the pattern of increasing 87Sr/86Sr with depth in

the active layer could be removal by weathering of a resistant

mineral with relatively high 87Sr/86Sr (such as biotite) in the upper

part of the active layer, but this seems unlikely due to the low

weathering intensity of this environment as evidenced by the

relatively slow carbonate weathering described in the next section.

TABLE 6

Water chemistry for streams on different glacial deposit and bedrock surfaces. Surface names are defined in the text.

Surface Stream name

Date

sampled

Ba

(mmol/L)

Ca

(mmol/L)

Fe

(mmol/L)

K

(mmol/L)

Mg

(mmol/L)

Na

(mmol/L)

S

(mmol/L)

Si

(mmol/L)

Sr

(mmol/L)

Ca/Na

(molar)

Ca/Sr

(molar) 87Sr/86Sr

It3 (1) It 3 stream 7/29/02 0.08 551.3 3.88 2.3 104.9 36 20.8 67.6 0.740 15 745 0.710391*

(2) Island Lake outlet 8/2/02 0.13 522.0 ,0.08 10.3 183.5 77 20.7 85.9 0.736 6.8 709 0.710234

It2 (outwash) (3) I minus outlet 6/27/02 0.10 219.6 1.03 8.3 61.5 16 20.8 78.2 0.760 14 289 0.713132

(4) I minus inlet 6/27/02 0.07 136.3 2.26 4.8 37.9 13 20.8 78.8 0.766 11 178 0.712971

(5) TW stream

(lower)

7/21/02 0.10 269.2 0.96 1.0 57.6 7 20.8 77.9 0.761 40 354 0.713314

(6) Milky Way

(upper)

8/10/02 0.12 255.4 1.56 2.3 62.7 27 18.4 40.3 0.205 9.4 1244 0.712085*

It2 (till) (7) N1 inlet 7/11/02 0.09 543.5 0.64 1.2 117.5 13 20.8 80.3 0.752 42 722 0.710600*

(8) I1 outlet 8/7/02 0.03 123.1 1.34 6.4 36.5 14 8.1 0.9 0.102 8.8 1204 0.715188**

(9) I4 outlet 8/7/02 0.05 104.9 2.65 5.0 34.7 13 8.5 ,0.4 0.096 7.8 1093 0.715593

(10) I2 outlet 8/7/02 0.07 129.7 4.61 6.7 50.5 14 6.8 10.4 0.131 9.4 988 0.716473*

It1 (11) I6 HW inlet 8/8/02 0.08 594.3 9.20 1.0 97.9 20 6.4 34.6 0.404 30 1471 0.711281

(12) I8 Headwater 6/26/02 0.06 168.1 2.32 2.8 52.7 13 20.8 78.8 0.764 13 220 0.713464*

(13) It 1 stream 7/15/02 0.25 440.6 ,0.08 2.5 73.4 19 20.8 76.2 0.746 23 590 0.710995

Sag2 (14) E5 inlet S 7/30/02 0.07 44.2 6.37 0.7 20.2 11 3.1 37.2 0.046 4.0 958 0.716328

(15) E5 inlet W 8/13/02 0.09 19.7 2.02 0.3 12.2 13 8.5 43.6 0.025 1.6 796 0.718806

Sag1 (16) Imnavait (weir) 8/1/

2002

0.08 28.1 13.55 0.6 14.2 4 1.2 20.2 0.036 7 777 0.716905

(17) Toolik R. trib. 8/16/02 0.06 11.7 8.36 0.5 10.9 4 2.6 29.0 0.018 3 654 0.717341

AR (18) Anaktuvuk

stream

8/15/03 0.08 78.2 4.55 0.6 18.3 12 2.3 47.1 0.079 6.7 990 0.712417

GM (19) Gunsight stream 8/16/03 0.07 165.8 5.62 ,0.3 44.2 9 3.5 58.7 0.148 20 1120 0.711356

Multiple

surfaces

(20) Kuparuk R. 8/7/02 0.28 199.1 0.37 6.6 71.2 78 20.8 65.3 0.745 2.6 267 0.707878**

(21) Sagavanirktok R. 7/31/02 0.22 924.3 ,0.08 8.9 282.5 80 20.7 76.8 0.635 12 1456 0.710453

Carbonate

bedrock

(22) Atigun R. trib. 7/29/02 0.26 1559.1 ,0.08 13.3 287.4 97 20.6 80.2 0.678 16 2301 0.710550*

(23) Kayak Creek 8/7/02 0.13 1605.7 ,0.08 7.5 166.3 20 20.8 80.9 0.569 79 2821 0.708469

(24) Aufeis stream 7/31/02 0.35 1226.5 ,0.08 5.4 272.0 21 20.8 71.0 0.707 58 1736 0.708802

Mixed

bedrock

(25) Trevor Creek 8/7/02 0.30 706.7 ,0.08 10.5 264.2 94 20.7 83.6 0.704 7.5 1003 0.714855*

(26) Atigun R. 7/29/02 0.18 691.1 ,0.08 12.2 324.6 122 20.7 80.8 0.697 5.67 991 0.714458

(27) Bad Idea stream 8/18/03 0.18 866.5 ,0.08 14.8 167.5 169 397.0 34.7 1.495 5.14 580 0.711382

(28) Holden Creek 8/18/03 0.09 569.4 0.14 8.6 102.4 88 122.5 21.2 1.212 6.4 470 0.709772

(29) Roche

Moutonee Cr.

8/18/03 0.12 372.6 0.16 9.9 110.1 56 83.0 24.0 0.465 6.7 802 0.713843

Silicate

bedrock

(30) Atigun R.

headwater

8/7/02 0.07 570.4 ,0.08 12.2 395.8 271 20.7 77.5 0.686 2.11 832 0.719655*

(31) Underwillow

stream

8/18/03 0.27 254.5 0.30 22.7 194.9 296 318.6 31.6 0.502 .86 507 0.719893

Precipitation field station precip. 1 8/5/02 ,0.01 102.2 ,0.08 83.5 4.4 218 20.8 92.3 0.770 0.47 133 0.709485**

field station precip. 2 8/6/02 0.03 84.9 ,0.08 19.0 2.1 57 20.8 92.0 0.772 1.5 110 0.708781*

Errors for elemental data and 87Sr/86Sr as reported in text, with the following exceptions:

* Error (2s) greater than 0.000030 but less than 0.000051.

** error (2s) greater than 0.000051 but less than 0.000165.
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CARBONATE WEATHERING AND ITS RELATIONSHIP TO

SURFACE AGE

Calcite depletion via weathering in the active layer is indicated

on every surface, by decreasing 87Sr/86Sr and increasing Ca/Na and

Ca/Sr with depth (Fig. 3), and by greater Ca concentrations in

permafrost than in active layer mineral soil as described in the

results section. These geochemical trends suggest increasing

carbonate mineral concentration in the soil with depth, as frequency

of thaw and hence weathering intensity decreases. These results may

explain the findings of Everett et al. (1989), who monitored the

seasonal geochemistry of the Imnavait stream on the Sag1 surface

and found that streamwater Ca concentrations were greatest in the

late summer, corresponding to deep seasonal thaw.

When considering only the surfaces with similar parent

material (It1, It2, Sag1, and Sag2), some patterns related to

surface age become apparent. The mean 87Sr/86Sr values of the

active-layer cold acid digestible fraction are lowest on the youngest

surface (It2) and highest on the oldest (Sag1), with overlapping

values for the two other surfaces (Fig. 3c). The decrease in mean

cold acid digestible fraction 87Sr/86Sr between the permafrost and

the ‘‘A’’ horizon is least on the youngest surface. The youngest

surface also has the highest exchangeable, acid digestible, and total

Ca concentrations and Ca/Sr (Tables 2, 3, and 5). These data

suggest that weathering has progressively depleted the calcite in

the active layer over time on these surfaces. Furthermore, mean

cold acid digestible fraction 87Sr/86Sr values for shallow perma-

frost (‘‘P’’ samples from within soil pits, excluding the Sag1 deep

permafrost sample) increase with surface age among the four

surfaces derived from similar parent material (Fig. 3c, Table 3).

This trend suggests that the currently frozen soil has been

episodically thawed during past intervals of warmer climate and

has undergone some weathering or was mixed with weathered

material via cryoturbation during these intervals.

Both stream and soil geochemistry suggest that differences in

carbonate weathering drive not only depth-related geochemical

differences within individual soil profiles, but also age-related

differences in whole watershed geochemistry. Simple chemical

mixing lines drawn between end-members formed by the cold acid

digestible fractions of the PMl limestone (high Ca/Sr, low

87Sr/86Sr), Dke sandstone (low Ca/Sr, high 87Sr/86Sr), and Kf

sandstone (low Ca/Sr, low 87Sr/86Sr) represent the expected

composition of waters containing easily weathered solutes derived

from these units based on varying proportional contributions from

each unit by mass (Fig. 4). These mixing lines define a range

containing 7 out of 15 streams draining watersheds developed on

different glacial till surfaces. Streams draining PMl-based water-

sheds have a lower mean Ca/Sr and very slightly higher mean
87Sr/86Sr than the cold acid digestible fraction of PMl samples

(Fig. 4, hatched line end-members). This may be explained by

a greater influence of precipitation on these watersheds, or

a fraction of the PMl which is more soluble under natural

conditions and differs chemically from the fraction digestible with

stronger acid in the laboratory, or both. The slightly higher Ca/Sr

and 87Sr/86Sr of streams draining Dke sandstone and undifferen-

tiated Kanayut conglomerate (MDk) bedrock may be explained

FIGURE 2. Hot acid digestible fraction 87Sr/86Sr of soil horizon
samples vs. mean horizon depth. 87Sr/86Sr analytical errors are
reported in Table 4.

FIGURE 3. Cold acid digestible (a) Ca/Na, (b) Ca/Sr, and (c)
87Sr/86Sr of soil horizon samples vs. mean sample depth. Elemental
ratios are molar. Analytical errors are reported in the text.
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by contributions from other members of the MDk, as well as the

slightly higher 87Sr/86Sr of the exchangeable fraction of the Dke.

Simple chemical mixing lines drawn between the mean Ca/Sr

and 87Sr/86Sr of precipitation samples, streams draining PMl

limestone bedrock, and streams draining Dke/MDk bedrock

(Fig. 4, hatched lines) represent the expected composition of

waters containing solutes derived from a combination of inputs

based on the solutes measured in unit-specific streams and

precipitation. All but one of the 15 glacial till surface streams

sampled are contained within these mixing lines (Fig. 4). The

reasons that these end-members predict water composition more

accurately than the range defined by the cold acid digestible

fraction of rock units are likely that (1) the effects of precipitation

and other members of the MDk are incorporated, and (2) they are

based on weathering in natural settings, rather than on an

operationally defined laboratory cold acid digest.

Within the ranges defined by both sets of mixing lines, most

streams on younger (It3, It2, and It1) surfaces have 87Sr/86Sr ratios

similar to those of streams draining limestone bedrock and the

cold acid digestible fraction of limestone, but lake outlet streams

on the It2 surface have higher 87Sr/86Sr. The Ca/Sr ratios of these

streams vary widely, perhaps reflecting varying effects of pre-

cipitation in different watersheds or at the different times when the

streams were sampled. The effects of precipitation on the 87Sr/86Sr

of these streams would be nearly undetectable because the

difference between the 87Sr/86Sr of precipitation and streams

draining PMl watersheds is less than 0.0002. Streams on older

(Sag2 and Sag1) surfaces have Ca/Sr and 87Sr/86Sr ratios similar to

those of streams draining Dke/MDk bedrock and the cold acid

digestible fraction of Dke sandstone, suggesting much less

carbonate influence on these surfaces than on younger surfaces.

Streams on very old (AR and GM) surfaces have Ca/Sr and
87Sr/86Sr which fall very close to the Kf-PMl mixing line,

suggesting that the weathering products dissolved in these streams

are primarily derived from these two end-members, or perhaps an

end-member with similar chemistry such as the Kn (Table 1). The

chemistry of the GM and AR streams suggests little input of the

Dke/MDk end-member, consistent with the differences in parent

material between these and younger surfaces discussed above.

The effects of weathering on shallow mineral soils of different

ages was examined by plotting cold acid digestible Ca/Sr vs.

87Sr/86Sr for soil ‘‘A’’ horizon samples from all glacial deposit

surfaces along with the mixing lines from the cold acid digestible

fraction rock unit end-members described above (Fig. 5). Ca/Sr

and 87Sr/86Sr for the GM, AR, and It2 surfaces fall outside and

below the range defined by the mixing lines, suggesting that their

chemistry has been influenced by input from precipitation, or

low-87Sr/86Sr loess deposition, or both. Data from the It3, It1, and

Sag2 surfaces overlap, consistent with the overlapping 87Sr/86Sr

values for It1 and Sag2 soils in Figure 3, but despite the clear

differences in the stream water Ca/Sr vs. 87Sr/86Sr for these

surfaces (Fig. 4). This may be because, as discussed above, the

cold acid digestible fraction represents an estimate of potentially

‘‘easily weatherable’’ minerals, but does not necessarily reflect

what is actually being weathered. Therefore, the It3, It1, and Sag2

surfaces could have similar reservoirs of ‘‘easily weatherable’’

minerals as estimated by the digest, yet release into streams very

different weathering products that represent the most soluble part

of the ‘‘easily weatherable’’ fraction. Cryoturbation may also play

a role in keeping the cold acid digestible fraction similar in soils

close in age (like the It1 and Sag2) via the upward mixing of less-

weathered minerals from deeper, less frequently thawed layers.

Despite the overlapping values of data from the It3, It1, and

Sag2 surfaces, samples from the youngest (It2) of the four surfaces

with similar parent material generally have the highest Ca/Sr and

lowest 87Sr/86Sr, while samples from the oldest (Sag1) of these four

surfaces have the lowest Ca/Sr and highest 87Sr/86Sr, plotting near

the Dke digest end-member. These data suggest that carbonate

weathering causes detectable geochemical differences to develop in

the cold acid digestible fraction of shallow mineral soil over

hundreds of thousands of years. Additional research will be

necessary to explore the relationship between the time scale at

which the effects of weathering are apparent and the rate of

cryoturbation.

These results show that carbonate content decreases in soils

and carbonate weathering products decrease in streams with

increasing surface age, but the carbonate weathering regime is still

generally dominant even on older surfaces. This interpretation is

consistent with previous studies of aquatic and soil chemistry in

this region (Kling et al., 1992) and similar arctic regions (Stutter

and Billet, 2003). The decrease in carbonate weathering over time

(driven by a depletion of carbonate minerals via weathering) that

FIGURE 4. 87Sr/86Sr vs. Ca/Sr
of stream water samples from
glacial deposit surfaces. Dashed
lines connecting the cold acid
digestible fraction values of PMl,
Dke, and Kf rock units (see
Table 1) represent simple chemi-
cal mixing lines for these end-
members. Hatched lines connect-
ing the mean values for precipita-
tion and streams draining PMl
and Dke/MDk units represent
simple chemical mixing lines for
these end-members. Ca/Sr is a mo-
lar ratio. Error bars represent
propagated Ca/Sr analytical er-
rors; 87Sr/86Sr errors are smaller
than the symbol size and are
reported in Table 6. Rock unit
abbreviations are explained in
the text.
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we interpret from these data is similar to changes that take place in

a much shorter time (thousands rather than hundreds of

thousands of years) in tropical and temperate climates (e.g.

Lichter, 1998). Despite the extended timeframe, this change in the

carbonate content of soils with time supports the suggestion of

Munroe and Bockheim (2001) that the traditional soil chronose-

quence model relating age to soil properties is applicable even in

cryoturbated soils.

SILICATE WEATHERING

The presence of dissolved Si in low but detectable levels in

streams on almost every geomorphic surface in our study area

suggests that some silicate weathering is occurring; the range of

dissolved streamwater Si concentrations in this study is similar to

those reported for streams in similar arctic and subarctic systems

with sedimentary or mixed bedrock influences (Huh et al., 1998;

Millot et al., 2003; Stutter and Billet, 2003; Humborg et al., 2004).

The inference that silicate minerals are weathering is consistent

with the observed lower concentrations of K in the cold acid

digestible fraction of active-layer mineral soil compared to

permafrost on six out of the seven surfaces examined in this

study. At least some of this K is likely derived from the most

soluble silicate minerals contained in parent material sandstones,

which have from 2 to 10 times the amount of cold acid digestible

fraction K than the limestone unit (Table 1).

NUTRIENT RELEASE VIA MINERAL WEATHERING

The ecological influence of weathering in this region is

reflected in the exchangeable fraction of soils. Exchangeable
87Sr/86Sr and cold acid digestible fraction 87Sr/86Sr for each soil

horizon are well correlated (R2 5 0.74) across all surfaces in this

study. This suggests that locally derived mineral weathering

products are the primary source of exchangeable Sr, and therefore

probably also the source of ecologically important elements like

Ca, P, and K to the watersheds on these surfaces.

We did not perform soil extractions specifically designed to

determine the reservoirs of P in these soils. However, the ratio of

Ca to P in the cold acid digestible fraction of active-layer mineral

soil samples on all surfaces is consistently greater than or equal to

1.67 (Fig. 6), which is the Ca/P of apatite [Ca5(PO4)3(F,Cl,OH)],

the major P-bearing mineral in rocks. Ca/P is lowest and nearest to

1.67 in Sag1 soils, which have the least carbonate content as

determined by Ca/Sr and 87Sr/86Sr. Only 3 out of 52 active-layer

mineral soil samples with measurable cold acid digestible fraction

P have a Ca/P ratio less than 1.67 (lower by at most only 26%),

suggesting that apatite is the primary source of P in this fraction.

High Fe concentrations in the hot acid digestible fraction suggest

the possibility that some of the P in this fraction is bound to Fe

hydroxide species. However, P and Fe concentrations in this

fraction are poorly correlated, so it is likely that P in this fraction

is bound in other (e.g. organic) forms as well.

GEOCHEMICAL IMPLICATIONS OF INCREASING

THAW DEPTH

Our results suggest several possible geochemical consequences

of increased active-layer thickness brought about by warming

climate. The most conspicuous is increasing carbonate and Ca

supply to soil and stream water with increasing active-layer

thickness. This change would be ubiquitous across the study area,

FIGURE 5. Cold acid digest-
ible fraction 87Sr/86Sr vs. Ca/Sr
of soil ‘‘A’’ horizon samples from
glacial deposit surfaces. Dashed
lines connecting the cold acid
digestible fraction values of PMl,
Dke, and Kf rock units (see
Table 1) represent simple chemi-
cal mixing lines for these end-
members, as in Figure 4. Ca/Sr is
a molar ratio. Error bars repre-
sent propagated Ca/Sr analytical
errors; 87Sr/86Sr errors are smal-
ler than the symbol size and are
reported in Table 3. Rock unit
abbreviations are explained in
the text.

FIGURE 6. Cold acid digestible fraction Ca (mmol g21) vs. cold
acid digestible fraction P (mmol g21) in active-layer mineral soil
samples from different glacial surfaces. The dashed line represents
the Ca/P of apatite (1.67). Analytical errors are reported in the text.

K. KELLER ET AL. / 95

Downloaded From: https://bioone.org/journals/Arctic,-Antarctic,-and-Alpine-Research on 05 May 2020
Terms of Use: https://bioone.org/terms-of-use



as all profiles exhibit geochemical indicators of increasing calcite

content with depth, and analysis of data from all surfaces shows

that cold acid digestible fraction Ca concentrations are significantly

higher in the permafrost than in the active layer. The increased

carbonate in soils brought about by calcite dissolution may lead to

increased pH of acidic tundra, and potentially related changes in

vegetation (Bockheim et al., 1998), but these changes would happen

concurrently with and could be mitigated by changes in organic

matter decomposition and organic acid production that may

accompany warmer conditions and deeper thaw.

In addition to increasing carbonate dissolution and general

base cation release, our measurements suggest that increased

active-layer thickness may increase mineral weathering release of

two important nutrients, P and K. On all surfaces there were

significantly greater concentrations of exchangeable K in the

permafrost than in the active-layer mineral soil. Both exchange-

able and cold acid digestible fraction P concentrations were

significantly greater in the permafrost than in the active-layer

mineral soil overall. The mean increase in P between these layers

was 28% for the exchangeable fraction and 61% for the cold acid

digestible fraction. The deep permafrost sample from the Sag1

surface was enriched in cold acid digestible fraction P compared to

active-layer soil (including ‘‘O’’ horizons) or shallow permafrost

on any surface. Despite these mean differences in K and P between

permafrost and active-layer mineral soil, the surface-specific

differences between active-layer mineral soil and permafrost

concentrations of these elements are variable. For example, the

It2 surface has active-layer mineral soil concentrations of cold acid

digestible fraction P that are actually higher than shallow

permafrost concentrations, whereas the It3 and Sag1 surfaces

have shallow permafrost concentrations of cold acid digestible

fraction P that are more than double the concentrations found in

active-layer mineral soil.

These data support the predictions of Hobbie et al. (1999)

that thawing of permafrost could increase P availability to

ecosystems and provide more information regarding possible

mechanisms. Because the permafrost contains small but signifi-

cantly greater concentrations of exchangeable P than the active

layer, increases in available P may occur concurrently with

permafrost thawing. Subsequent to initial thaw depth increases,

a larger increase in newly available P may occur gradually as

previously frozen minerals weather. Based on the differences in

exchangeable and cold acid digestible P concentration profiles

between surfaces, it is reasonable to expect that different

geographic areas or watersheds may undergo different degrees of

increased P availability. Some areas, such as those with already

high cold acid digestible fraction P in the active layer (It2 and AR)

or those where past weathering of currently frozen soil has

depleted P in the first few centimeters of permafrost (Sag2), may

change little in P availability until large increases (tens of

centimeters) in thaw depth occur. Thaw-depth driven increases

in K availability are also likely to be spatially variable, based on

differences in the exchangeable and cold acid digestible fraction K

depth profiles among surfaces.

Sulfur concentrations in soil show no statistically significant

increase from the active-layer mineral soil to the permafrost across

all surfaces for any fraction, but several individual surfaces have

higher S concentrations in the permafrost than in the active-layer

mineral soil in either the exchangeable (It3, It2, GM), cold acid

digestible (It3, It1), or hot acid digestible (It3, It2, It1) fractions

(Tables 2, 3, and 4). The Sag1 deep permafrost sample has

exchangeable and cold acid digestible fraction S concentrations

100% and 25% greater, respectively, than any active-layer sample

from any surface, including O horizon samples. Our analyses do not

distinguish whether the S in these soils is inorganically or organically

bound, but both forms are likely because the soils are organic rich

and the sandstone units of the parent material contain accessory

sulfide minerals. Sulfur may be an important control on Hg

methylation via sulfate-reducing bacteria (Compeau and Bartha,

1985; Gilmour et al., 1992); methylation of Hg in high arctic

wetlands is an important step in Hg bioaccumulation in arctic food

chains, although soils there appear to have low levels of sulfate-

reducing bacteria (Loseto et al., 2004). Further study of the forms

and concentrations of S in the permafrost may shed light on how

increased thaw depth will influence SO4 concentrations in arctic

surface waters, potentially affecting Hg methylation pathways.

USE OF STREAM GEOCHEMISTRY AS A MONITOR OF

THAW DEPTH

The geochemical profiles of soils on the central North Slope

described in this study may provide a useful tool for qualitatively

detecting watershed-scale changes in thaw depth. We hypothesize

that in watersheds which have sufficient changes in soil geo-

chemistry with depth, such as the 87Sr/86Sr or Ca/Sr trends

described in this study (Fig. 3), stream geochemistry may reflect

increases in thaw depth. Specifically, we predict that as thaw depth

increases in this study area, more carbonate weathering products

will be dissolved in late summer streamwater and will be detectable

as increases in streamwater elemental ratios such as Ca/Sr and

decreases in streamwater 87Sr/86Sr over periods of many years. On

some surfaces with very pronounced geochemical differences

between active-layer mineral soil and permafrost, such as the It1

surface, regular analysis of stream geochemistry may signal

watershed-scale permafrost degradation before it is detectable by

traditional physical (e.g., steel probe) methods of measuring thaw

depth. Even in permafrost regions with non-carbonate-dominated

soil parent material, less intensely weathered soil at depth may

provide a geochemical signature as soils thaw more deeply.

Conclusions

Analysis of stream and soil geochemistry on arctic Alaskan

glacial till deposits of varying ages indicates that carbonate

weathering is the major controlling factor of geochemical trends

related to soil depth and surface age. Carbonate minerals have

been depleted by weathering in the active layer on every

geomorphic surface, and on the four surfaces with similar parent

material, stream and soil geochemistry suggests progressive

carbonate depletion with time over hundreds of thousands of

years. Dissolved Si concentrations in streams are similar to those

in other arctic watersheds, suggesting that silicate weathering is

also occurring on these surfaces, but at a much slower rate than

carbonate weathering.

Compared to active-layer mineral soils, permafrost has

overall greater exchangeable K concentrations, exchangeable and

acid digestible P and Ca concentrations, and carbonate content.

Some glacial deposit surfaces also have higher S concentrations in

permafrost than in active-layer soils. The magnitude of the

geochemical differences between permafrost and active-layer soils

varies among different surfaces. The results of this study suggest

that increasing thaw depth brought about by climate change will

lead to overall (albeit spatially variable) increases in carbonate,

Ca, P, K, and S supply to soils and streams. This increase may

occur concurrently with increased maximum thaw as the

exchangeable fraction becomes available, and then progressively

as soluble minerals begin to weather. The nature of these
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geochemical changes will depend on the rate of thaw; changes are

likely to be gradual overall but could be locally abrupt in areas of

rapid thermokarst formation. Based on geochemical differences

between active-layer soil and permafrost, stream geochemistry

may be a useful qualitative monitor of watershed-scale changes in

thaw depth.
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