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Perspective

Artificial Intelligence for Natural Hazards Risk Analysis:
Potential, Challenges, and Research Needs

Seth Guikema∗

Artificial intelligence (AI) methods have seen increasingly widespread use in everything from
consumer products and driverless cars to fraud detection and weather forecasting. The use of
AI has transformed many of these application domains. There are ongoing efforts at leverag-
ing AI for disaster risk analysis. This article takes a critical look at the use of AI for disaster
risk analysis. What is the potential? How is the use of AI in this field different from its use
in nondisaster fields? What challenges need to be overcome for this potential to be realized?
And, what are the potential pitfalls of an AI-based approach for disaster risk analysis that we
as a society must be cautious of?
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1. INTRODUCTION

Natural hazards pose significant risks throughout
the world. They are among the deadliest disasters.
These events cause significant economic damage as
well, with losses from a large tropical cyclone impact-
ing a developed nation approaching or, at times, ex-
ceeding U.S. $100 billion.

Risk analysis is, in broad terms, a systematic pro-
cess aimed at understanding the nature of risk in a
given situation and expressing the risk together with
the underlying knowledge base (SRA, 2018). It is
usually thought of as being comprised of at least risk
assessment, risk management, risk communication,
and risk governance among other aspects. Risk as-
sessment, the process of understanding and charac-
terizing the risk, often mathematically, is the primary
focus of this article. Traditionally, risk assessment is
thought of as answering the following three ques-
tions: (1) What can go wrong? (2) With what likeli-
hood, and (3) with what consequences? (Kaplan &
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Garrick, 1981). More recently, there has been an in-
creasing focus on the background state of knowledge
underlying these assessments and the uncertainty in
these assessments (e.g., Aven, 2013, 2017).

Risk analysis is critical for natural hazards, and
a number of different risk analysis methods exist
for assessing risk to communities from natural haz-
ards. One set of approaches are fragility-based mod-
els such as the widely used HAZUS model that are
based on simulating physical loads to systems, esti-
mating asset-level damage through fragility curves,
and then estimating system performance, losses, and
deaths (e.g., Kircher, Whitman, & Holmes, 2006;
Schneider & Schauer 2006, Winkler, Duenas-Osorio,
Stein, & Subramanian, 2010). A second set of ap-
proaches are based on machine learning and arti-
ficial intelligence methods (e.g., Baroud & Barker,
2018; Guikema et al., 2014; Quiring, Schumacher,
& Guikema, 2014; Shashaani, Guikema, Zhai, Pino,
& Quiring, 2018). These methods will be discussed
more below, but briefly, they use past data and haz-
ard loading information, information about the sys-
tem and antecedent conditions, and other informa-
tion to train a machine learning model that is then
used to estimate system performance or losses for
future events. A third type of approach that has
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seen widespread use in the academic literature, but
less in practice, is network theory-based methods
(e.g., Dueñas-Osorio & Vemuru, 2009; Wang, Hong,
Ouyang, Zhang, & Chen, 2013). These approaches
focus on leveraging the topology of the system to es-
timate performance under hazard loading in a more
computationally efficient manner, though the accu-
racy of the results has been questioned (LaRocca, Jo-
hansson, Hassel, & Guikema, 2015).

The primary focus of this article is on artificial in-
telligence, machine learning, and statistical methods,
referred to as AI methods in the remainder of this
article. These methods are becoming increasingly
used in practice, and significant research advances
have been made. But a critical, foundational look at
these methods and their use for natural hazard risk
assessment is needed. They can be very valuable and
useful, but they are not the panacea some present
them to be.

2. ARTIFICIAL INTELLIGENCE METHODS
AND THEIR EXPANDING REACH

Artificial intelligence, machine learning, and sta-
tistical learning theory are closely related bodies of
knowledge and methods that can be separated into
two separate classes of methods, supervised learn-
ing and unsupervised learning. Supervised learning
seeks to estimate an unknown relationship f() be-
tween a set of explanatory factors, x, and one or
more response variables, y. That is, supervised learn-
ing seeks to estimate the relationship y = f(x). This
relationship is then often used to make predictions
of the value(s) or probability distributions of y’ given
a new set of inputs x’ in some unobserved, likely fu-
ture, situation (e.g., predicting power outages prior
to hurricane landfall as in Guikema et al., 2014).
The learned relationship can also be used to draw
insights into the influence of different explanatory
factors in x on y (e.g., Rivero-Calle, Gnanadesikan,
Del Castillo, Balch, & Guikema, 2015). It should
be noted that supervised learning methods can pro-
duce either point estimates or probability distribu-
tions as predictions, with approaches such as quantile
regression forests (e.g., Kabir, Guikema, & Quiring,
2019) and Bayesian belief networks trained with past
data (e.g., Francis, Guikema, & Henneman, 2014)
being examples of probabilistic methods. Unlike su-
pervised learning, unsupervised learning does not in-
volve y. Instead, it seeks to understand and model the
relationships between the elements of x to provide

insight into the problem or to help support further
analysis.

AI and related methods have proliferated in
practice across many fields, including, among others,
credit card fraud detection (e.g., Chan & Stolfo 1998,
Maes, Tuyls, Vanschoenwinkel, & Manderick, 2002),
automated vehicle control (e.g., Burton, Gauerhof, &
Heinzemann, 2017; Pomerleau & Jochem, 1996), and
climate science (Badr, Zaitchik, & Guikema, 2014;
Rivero-Calle et al., 2015; Tripathi, Srinivas, & Nan-
jundiah, 2006). The use of these methods in practice
has also increased dramatically with many compa-
nies, from start-ups to long-established companies
branding or rebranding themselves as data science or
AI companies. These methods have found significant
success in prediction in many of these fields.

Why have AI and related methods become so
widely used? Underlying their explosive growth have
been a rapid proliferation of data, the development
of efficient computational hardware that can now
handle large data volumes together with complicated
models, and demonstrated success of these methods
in application domains for which large financial out-
comes are at stake such as credit card fraud detection.
Many of the most successful application domains can
be characterized as situations in which there is a
large amount of data from repeated occurrences of
the same or at least highly similar situations. Con-
sider the challenge of recognizing stop signs algo-
rithmically based on sensors in an automated vehi-
cle, an area where AI models have had success (e.g.,
Huang, Yu, Gu, & Liu, 2016). It is relatively easy to
construct a large training set of stop signs as viewed
by the vehicle’s sensors under different weather and
lighting conditions. Stop signs do not change over
time, so if a sufficiently diverse training set can be
created, one would reasonably expect AI methods
to work well for this problem. Similarly, credit card
fraud detection has been a successful application of
AI and statistical models because (1) large training
sets of transactions, labeled as fraudulent or not, can
be created and (2) these data are representative of
future data streams that will be evaluated. These
two characteristics, a large corpus of diverse training
data and future conditions that are well represented
within the training data, are critical to the success
of AI methods (Guikema, 2009). If these two crite-
ria are not met, the trained AI model(s) are being
asked to do something they have not been trained
to do—make predictions for a situation for which
they have no representative data on which to make a
prediction.
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3. AI FOR NATURAL HAZARDS RISK
ANALYSIS

AI methods have been used in both research and
practice for natural hazards risk assessment. This ex-
isting work has generally focused on estimating one
or more of the following: (1) the physical loading due
to the hazard given occurrence of the hazard or (2)
physical damage or loss of system functionality given
hazard loading. Examples of each are provided be-
low. The intention is not to be exhaustive but to give
representative examples.

One example of the use of AI for estimating
properties of the physical hazard itself is in the area
of flood modeling. Several start-ups are now working
on approaches that ingest weather forecasts and
predict the timing and extent of riverine flooding on
fine spatial scales across watershed-scale domains
using a combination of physical models and validated
AI methods. A similar example is recent research
that aims to estimate flooding without the use of
computationally expensive fluid dynamics models
(e.g., Liong & Sivapragasam, 2002; Mosavi, Ozturk,
& Chau, 2018). Often physical models are used to
develop a training data set and then AI methods are
trained and validated to predict what the flood map
would look like given information about the storm
and the geographic area. Models such as these that
aim to predict hazard loading are, by themselves, not
a full risk assessment. However, they can provide
valuable information for a risk assessment by esti-
mating physical hazards in a more computationally
efficient manner.

The area where AI methods have had their
largest use in natural hazards risk assessment is in
estimating either damage or loss of system function
given hazard loading. For example, my collabora-
tors and I have developed AI-based methods for es-
timating the spatial distribution and total number of
power outages due to adverse weather events based
on weather forecasts (e.g., Guikema et al., 2014; Han
et al., 2009). AI-based models have similarly been de-
veloped to estimate building damage given the oc-
currence of an earthquake (e.g., Suryanita & Adnan,
2012). These types of models take as input a spatial
field of hazard loading (e.g., maps of predicted wind
speeds, soil moisture levels, and other loading mea-
sures for a hurricane or a map of a ground motion
measure for an earthquake) together with a set of in-
formation about the system, the area, and preevent
conditions. The model then estimates a spatial field
of impacts (e.g., a map of power outages due to the

approaching hurricane or a map of building damage
states due to an earthquake). Again, these models
are not, by themselves, a full risk assessment, but, like
the hazard loading predictions, provide critical infor-
mation for a full risk assessment.

In both of these types of applications of AI
methods for natural hazards, the goal is to improve
predictive accuracy and/or reduce computational
burden relative to more traditional physics-based
and engineering-based models. These models have
seen use in practice recently. For example, a large
portion of electric power utilities report the use of
some type of power outage prediction model, and
some states have required power utilities in their
state to have an outage prediction model. Start-ups
such as One Concern, Inc. have built businesses
on providing predictions of hazard events. Clearly
emergency managers, utility managers, and policy
makers see value in AI-based models for natural
hazards.

4. CHARACTERISTICS OF SETTINGS IN
WHICH AI METHODS HAVE BEEN
SUCCESSFUL

Across many domains, there are three key char-
acteristics that have been critical to the success of AI
methods. These are:

(1) Large training sets exist with clearly labeled
classes (for classification) or clearly measur-
able outcomes (for regression).

(2) The training data used to train the model are
representative of the future situations in which
the model will be used to make predictions.

(3) The relationships between the feature space
(explanatory variables) and the response vari-
able are the same in the future situations as in
the training set.

Each of these will be discussed briefly below.
AI methods require large data sets to learn

relationships between variables. This is true for
models as diverse as single regression trees, en-
sembles such as random forests, and deep learning
methods, though the data size considered large
enough depends on the type of model with more
complex models generally requiring more training
data. These types of models are highly flexible,
which is part of their appeal. However, this flexibility
means that there are many different parameters of
the model that must be fit to a given data set. If the
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available data are insufficient for the model structure
used, insufficient learning will occur, leading to poor
predictive accuracy. For example, AI methods have
proven successful in detecting potentially fraudulent
credit card transactions in part because of the exten-
sive data sets available to credit card companies to
use in training models. There is an important caveat
needed here. Large data sets and models with com-
plicated structures and many free parameters can
lead to overfitting. In these cases, the many degrees
of freedom of the model allow it to match variations
in input and noise in relationships, patterns that may
not be present in future situations. This then leads to
reduced accuracy in future settings. Careful model
validation and regularization are needed to reduce
these problems. This is an especially important
problem when the data are unbalanced, that is, when
there are a far more zero (nonevent) records than
can be represented by standard distributions. I will
return to these points in the discussion of validation
testing of models.

Even if models are trained and validated prop-
erly, extensive data alone are not sufficient for an
AI model to accurately predict outcomes in a future
situation. The training data must also be represen-
tative of the future situation for which predictions
are to be made. There are many dimensions to this.
First, the future situation must be within the domain
of the training data. For example, a model predict-
ing flooding from hurricanes trained on data only
from weak hurricanes cannot be expected to offer
accurate predictions for a strong Category 5 storm.
Similar, a building damage model trained on dam-
age date from only weak and moderate earthquakes
should not be trusted to yield good predictive accu-
racy for strong earthquakes. In applications such as
image recognition and credit card fraud, this criteria
is relatively easy to meet, provided a diverse enough
set of training instances is used. This, however, may
pose significant challenges for nature hazards. Strong
events are thankfully rare for many types of haz-
ards, limiting the training data available for the
types of events we typically are most concerned
with.

Even extensive training data representative of
future conditions may be insufficient if the rela-
tionship between the explanatory features and the
response variable is not static. That is, if the relation-
ship between x and y that is learned by the model is
not the relationship that will exist in the future, the
model should not be expected to offer accurate pre-
dictions. A critical clarification is needed here, espe-

cially in the context of natural hazards. What needs to
be stationary is f(x), that is, the relationship between
x and y. The phenomenon, represented by x, does not
necessarily need to be static, as long as f(x) is. For ex-
ample, consider the problem of predicting power out-
ages due to hurricane. The characteristics of the hur-
ricane that impact the power system are described by
x. An AI model learns the relationship, f(x) between
x and y. As long as the first two conditions are met
and the model achieves sufficient accuracy, it should
work in future situations as long as f(x) has not
changed, even if the hazard itself is not stationary. The
critical point here is that f(x) must be stationary, not x
itself. The hazard, x, may not be stationary (e.g., due
to climate change) even while f(x) is stationary. How
would f(x) not be stationary? If the system changed
significantly, f(x) would not be stationary. For
example, if an electric power utility buried many of
their power lines or significantly strengthened their
utility poles, a model trained with prechange data
would not offer accurate predictions for postchange
data because f(x) changed. On the other hand, if the
system had not changed substantially, f(x) may still
be stationary, even if climate change is leading to
changes in the frequency or intensity of storms; what
is needed is that the response of the system to a given
storm is stationary, not that storms themselves are
stationary. As a corollary to this, climate change may
differentially affect different aspects of x. For exam-
ple, climate change may increase soil moisture levels
(one set of variables in x in our prediction models)
more than wind speeds. This is still fine for the use of
AI methods as long the changes in x stay within the
range of the training data and as long as there is suf-
ficient training data available to represent the range
of x experience in the future in the training of the
model.

All sustained, successful uses of AI, in the sense
that the model repeatedly makes accurate predic-
tions, have met these three criteria. Lucky outcomes
with one-off accurate predictions certainly occur. But
for a model to have sustained accuracy, the condi-
tions above are necessary.

5. CHALLENGES IN USING AI METHODS
FOR NATURAL HAZARDS RISK
ANALYSIS

The three characteristics above (sufficient data,
data representative of future scenarios, and a station-
ary response relationship) pose significant challenges
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for the use of AI methods for natural hazards risk
analysis.

The first and most obvious challenge is obtaining
a sufficiently large and representative set of training
data. For very rare hazards (e.g., strong solar storms
that impact the power system), it may not be possi-
ble to assemble a data set that is large enough and
contains a diverse enough set of events to support
the use of AI methods. A variant of this problem
that is more subtle is the case where there is a large
set of training data, but the data set lacks diversity
in terms of hazard characteristics. Consider a case in
which one seeks to develop an AI-based approach
for estimating earthquake damage to drinking water
systems in the United States. There are quite a few
weak earthquakes for which one could conceivably
gather water system damage and asset data. How-
ever, there are very few strong earthquakes in re-
cent history from which one might be able to ob-
tain data. The data set would be skewed toward
weak events and only a small subset of the possible
strong events would be covered. An AI-based ap-
proach would likely not be able to consistently offer
strong predictive accuracy for strong events unless
they were similar to the few in the training data set
in terms of ground motions, depths, and other similar
characteristics.

A second key challenge is the issue of validation,
and this issue is related to the first. The traditional
way to validate AI models is through holdout valida-
tion testing. A portion of the data are set aside, the
model is trained on the remaining data, and then the
model is tested on the held-out portion. The details
can differ. In some cases there is a three way split,
and in other a two way split. Some use k-fold cross
validation while others use repeated random cross
validation.

The main point of doing this type of validation
is to help find the model that best balances the bias–
variance trade-off to give the most accurate predic-
tions possible in future applications of the model.
This bias–variance trade-off is critical in predictive
modeling. Prediction error in future applications of
the model is comprised of three components—bias,
variance, and irreducible randomness. Too simple of
model will have high bias but low variance in future
applications. In the extreme, consider an intercept-
only linear regression model. It will have zero vari-
ance in future predictions but high bias. At the other
extreme, an overfit version of highly complex model
such as a principal pursuit regression or neural net-
work may have very low bias but very high variance,

also leading to poor prediction accuracy in the future.
The “goldilocks” point is where the sum of bias and
variance is minimized for future applications of the
model. However, we do not know what model cor-
responds to this point. Holdout testing is the main
approach we have for trying to estimate where this
point is.

Standard holdout validation approaches work
well when the full data set is sufficiently large and
diverse that the cases in the hold out samples rep-
resent future conditions. However, if the data set is
not representative of future hazards, the results of
hold-out testing can be very misleading. Consider our
example of predicting water system damage due to
earthquakes. Hold-out testing may suggest that the
out of sample prediction errors are small enough to
be acceptable. However, this is really a conditional
statement. The error estimates are conditioned on
the data available for training and testing. If a fu-
ture event is substantially different from what is in
the data used to train and test the AI model(s), the
errors may be much higher, making the hold out
test results misleading about actual future model per-
formance. This is particularly critical if the training
set does not contain high-intensity hazard events. In
this case, strong holdout results can be very mislead-
ing if the model is later applied to a stronger event.
Great care must be taken in interpreting the results
of holdout testing as they can be misleading if the
training and testing data is not representative of future
conditions.

A particular variation of the holdout testing
challenge that requires particular attention is the
case of zero-inflated data. Zero-inflation occurs in
a data set when there are substantially more ze-
ros, no damage events in a natural hazards setting,
than what standard distributions and models can ac-
count for. If standard error metrics such as mean
absolute error or mean squared error are used with
highly zero-inflated data, the “best” model (by those
metrics) is usually one that is heavily skewed to-
ward predicting zero in nearly all settings. Indeed,
the “best” model by these metrics in many zero-
inflated cases is the model that always estimates
zero impacts. This is useless in practice. Error met-
rics, model training, and holdout testing approaches
must be adapted to handle zero-inflation. Error met-
rics that weight errors in the nonzero class higher
(e.g., Shashaani et al., 2018) can help. Recent re-
search has also found that multistage predictive mod-
els explicitly modeling the zero-class can offer im-
proved predictive accuracy. Traditional approaches
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for addressing unbalanced data focus on rebalanc-
ing approaches in which the training data are mod-
ified to be more balanced through undersampling
the nonzero records, replicating some subset of the
zero records, generating new zero-value records, or
some combination of these. These approaches can
be useful (e.g., Kabir et al., 2019), but the chal-
lenges with traditional error metrics driving model
selection toward those biased toward predicting zero
remain.

A third key challenge comes when the model re-
sults are conveyed to decision makers. It is difficult
to convey model accuracy and the uncertainty that is
inherent in any AI model output to decision makers
in a way that they (1) will understand and (2) can use
to improve decision making. Point estimates, while
commonly provided, are misleading because they do
not convey the often considerable degree of uncer-
tainty in the predictions. At the same time, stating
that a model is X% accurate (e.g., 95% accurate) is
a meaningless statement unless the error metric on
which the statement is based is clearly conveyed and
agreed upon by the model users.

From a technical point of view, moving to prob-
abilistic models (e.g., Kabir et al., 2019) is a signif-
icant improvement. Probabilistic models capture at
least some of the uncertainty inherent in predictions,
and this should improve the information basis for risk
management decision making. However, we have
found that it is problematic in practice to commu-
nicate the results of probabilistic models to decision
makers in ways that they will actually understand.
Consider, for example, a model that estimates the cu-
mulative density function (CDF) of the number of
person-hours needed for power restoration from a
storm. We have found that providing the full CDF
to decision makers often leads to confusion and that
using summary measures such as confidence inter-
vals leads to misinterpretation and the loss of much
of the probabilistic information. With some decision
makers we have had success by communicating the
probability of exceeding specified thresholds (e.g.,
P(required hours > 1,000)). However, significant re-
search gaps remain in the understanding of how prac-
tical decision makers interpret and understand dif-
ferent approaches for communicating uncertainty in
predictions.

Overall, great care must be taken in communi-
cating the results of an AI model so that those using
the model understand what the results really mean
and not be misled into a false sense of precision and
certainty in the predictions.

6. MOVING FORWARD WITH AI FOR
NATURAL HAZARD RISK ANALYSIS

AI methods are of critical importance for natu-
ral hazards risk analysis, and the field will continue
develop and use these methods. However, we must
take care that we avoid the pitfalls associated with
the use of AI methods for natural hazards risk
analysis. These problems, discussed above, can lead
to false confidence in model output and mislead
decision makers. However, not using AI methods
deprives decision makers of an important set of
tools for better leveraging large, complex data sets
to gain enhanced insights and improve their decision
making.

While AI methods are already important for
natural hazards risk analysis in both practice and
research, more research is needed to improve AI
methods and how they are used in risk analysis.
Better methods for validating models and stress-
testing model in a way that better aligns with the
requirements of natural hazards risk analysis are
needed. In particular, better methods are needed for
situation in which the training data do not contain
events as strong as those for which the model will
be used in the future. We also need to continue to
develop improved methods for modeling based on
zero-inflated data. Due to the nature of the events
that we model as risk analysts, zero-inflation is com-
mon in natural hazards risk analysis. We also need to
develop better ways of communicating the results of
models, including their limitations and uncertainties,
so that decision makers better understand and
appreciate both the predictions and the limitations
of these predictions. And, we need to ensure that
predictive models used to support natural hazard
risk analysis are subjected to rigorous, independent
peer review to maintain high standards of technical
rigor.

AI methods have an important role to play in
natural hazards risk analysis, and risk analysis re-
searchers must help develop these methods and their
use in a way that best meets the challenges of our
field.
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