
A
u

th
or

M
an

u
sc

ri
p

t
He Kevin ORCID iD: 0000-0002-8354-426X

Kalbfleisch John ORCID iD: 0000-0001-9198-9667

The Profile Inter-Unit Reliability

Kevin He1,2, Claudia Dahlerus2, Lu Xia1,2, Yanming Li1,2 and John D. Kalbfleisch1,2,∗

1Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, US
2Kidney Epidemiology and Cost Center, University of Michigan, Ann Arbor, Michigan, US

*email: jdkalbfl@umich.edu

Summary: To assess the quality of health care, patient outcomes associated with medical providers (e.g.

dialysis facilities) are routinely monitored in order to identify poor (or excellent) provider performance. Given

the high stakes of such evaluations for payment as well as public reporting of quality, it is important to assess

the reliability of quality measures. A commonly used metric is the inter-unit reliability (IUR), which is the

proportion of variation in the measure that comes from inter-provider differences. Despite its wide use, however,

the size of the IUR has little to do with the usefulness of the measure for profiling extreme outcomes. A large IUR

can signal the need for further risk adjustment to account for differences between patients treated by different

providers, while even measures with an IUR close to zero can be useful for identifying extreme providers. To

address these limitations, we propose an alternative measure of reliability, which assesses more directly the value

of a quality measure in identifying (or profiling) providers with extreme outcomes. The resulting metric reflects

the extent to which the profiling status is consistent over repeated measurements. We use national dialysis data

to examine this approach on various measures of dialysis facilities.
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1 INTRODUCTION

1. Introduction

Monitoring outcomes of health care providers is an important activity that has received

much attention in the literature (e.g. Normand et al. 1997; Normand and Shahian, 2007;

Jones and Spiegelhalter, 2011; He et al. 2013; Estes et al. 2018). In order to identify

extreme (poor or excellent) performance and to intervene as necessary, outcomes of

patients associated with health care providers are routinely monitored most often by

both government and private payers. This monitoring can help patients make more

informed decisions, and can also aid consumers, stakeholders, and payers in identifying

providers where improvement may be needed, and even closing or fining those with

extremely poor outcomes. Therefore, it is important that the quality measures used for

profiling providers are appropriate and one aspect of this is the measure’s reliability.

To assess the reliability of a quality measure, the inter-unit reliability (IUR) is commonly

used. The IUR specifies the proportion of the total variation in the quality measure that

can be attributed to the between-provider variation. The variation in a specific measure

across health care providers can be viewed as comprising two parts: the between-provider

variation and the within-provider variation. The IUR is then defined as the ratio of the

between-provider variance to the total variance.

Scholle et al. (2008) and Adams (2009) suggested that a quality measure should attain an

IUR of at least 0.7. This work has recently been discussed by the National Quality Forum

(NQF) as suggesting a possible guideline for assessing measure reliability. If the IUR is

large, it is argued that most of the variation observed between health care providers

is driven by systematic differences between the providers and not by the variation in

the outcomes of the patients being treated. Thus, it is argued that the measure gives

a reliable assessment of between-provider differences and could be used for the purpose

of assessing extreme providers. Note, however, that Kalbfleisch et al. (2018) discussed

several drawbacks of using the IUR to characterize the suitability of a measure for

profiling providers. In particular,

(1) The variation between providers may be due to various factors in addition to differ-

ences in the quality of the health care provided. Differences between providers can

also arise because there are important unmeasured characteristics such as patient

comorbidities or patient and provider demographics that are not within the control

of the provider and that differ across providers. Thus, a large IUR can be a signal of

incomplete risk adjustment and may not be much related to quality of care at all.

(2) The IUR may not determine the suitability of a measure for identifying outliers.

This article is protected by copyright. All rights reserved.
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2 PROFILE IUR

Even measures with an IUR close to zero can be very useful for identifying extreme

providers, whose outcomes do not conform to an assumed statistical model.

In this paper, we propose an additional metric of reliability that assesses more directly

the value of a quality measure in identifying providers with extreme outcomes. The

underlying idea is that we should consider a measure to be reliable if, on repeated appli-

cations, it profiles the same providers as being extreme with relatively high probability.

We proceed in two steps: first, we evaluate the ability of a measure to consistently profile

providers with extreme outcomes; second, we use the IUR to calibrate this new metric,

which we call the profile IUR (termed PIUR throughout this paper).

Our paper continues as follows: Section 2 first reviews the IUR for a simple linear model

and then defines the proposed PIUR for normally distributed patient outcomes. Section

3 exemplifies the PIUR for several commonly used profiling methods. In Sections 4 and 5,

we examine the proposed PIUR with simulations and national data on dialysis patients.

We conclude with a discussion in Section 6.

2. Profile IUR

2.1 A simple linear model and review of the IUR

Let Y ∗ij represents a continuous outcome for subject j in provider i, where i = 1, . . . ,m

and j = 1, . . . , ni. Here m is the total number of providers and ni is the sample size for

provider i. Consider an underlying linear regression model

Y ∗ij = µ+ αi + XT
ijβ + εij, (1)

where αi∼N(0, σ2
b ) is the provider effect, εij∼N(0, σ2

w) is the random noise, and Xij is

a vector of patient characteristics. The regression coefficients, β, measure the within-

provider relationship between the covariates and the response. Here we assume that large

values of Y ∗ij correspond to poor outcomes.

In model (1), it is common to assume (at least implicitly) that Xij is independent

of αi. However, in practice, patient characteristics can be correlated with provider

attributes (e.g. patients with less favorable health status may be referred to providers

with poorer treatment strategies). In this case, the estimated regression coefficients based

on the usual likelihood analysis of the model (1) are biased. Alternatively, β can be

estimated in a model with fixed effects for provider-specific parameters, which avoids

the aforementioned issues of bias (Kalbfleisch and Wolfe, 2013). The resulting estimate

can then be used as an offset to estimate the remaining parameters and the αi’s.

We note that, in many profiling applications, the number of providers and the number

This article is protected by copyright. All rights reserved.
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2 PROFILE IUR 2.2 Limitations of the IUR

of patients are large so that µ, σb, σw and β can be precisely estimated. To simplify the

notation, we proceed below as though their values are known. Let Yij = Y ∗ij − µ−XT
ijβ

be the risk adjusted response, so that the model (1) becomes

Yij = αi + εij. (2)

An estimate of αi is Y i =
∑ni

j=1 Yij/ni, where Y i ∼ N(0, σ2
b + σ2

w/ni). Here σ2
b is the

between-provider variance, and σ2
w/ni is the within-provider variance.

The IUR for a provider with ni patients is the proportion of the total variation in Y i

that can be attributed to the between-provider variation:

IURi =
σ2
b

σ2
b + σ2

w/ni
,

which is also the square of the correlation between Y i and the true provider effect αi

IURi = Corr2(Y i, αi).

Figure 1 plots the density of an example with two distributions of interest: the distri-

bution of the provider effects, αi, and the distribution of the estimated provider effects,

Y i. The IUR is the ratio of the variances of these two distributions.

To assess the average ability of a quality measure to distinguish between providers,

the overall IUR can be obtained from the decomposition of total variation in a one-

way ANOVA. Recall that the Between Sums of Squares (SSB) is defined as SSB =∑m
i=1 ni(Yi− Y )2 with Y =

∑m
i=1

∑ni

j=1 Yij/
∑m

i=1 ni and E(SSB) = (m− 1)(σ2
w + n′σ2

b ),

where

n′ =
1

m− 1

(
m∑
i=1

ni −
∑m

i=1 n
2
i∑m

i=1 ni

)
.

The overall IUR across providers is then defined with respect to the average provider

size n′:

IUR =
σ2
b

σ2
b + σ2

w/n
′ .

2.2 Limitations of the IUR

The interpretation of the IUR depends on the sources of variation in the provider effects.

The argument that a relatively large value of the IUR is required to justify the use of

a measure for profiling is based on the assumption that the variation in the provider

effects is entirely due to the quality of care (Adams, 2009; Kalbfleisch et al. 2018). That

is, there are no unobserved confounders that are correlated with the outcome of interest

and whose values vary across providers. This assumption, however, is often invalid.

For example, unobserved socio-economic factors, comorbidities and genetic differences

This article is protected by copyright. All rights reserved.
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2.3 A model with outliers and the PIUR 2 PROFILE IUR

of patients may differ substantially across providers and so contribute to the between-

provider variation. Thus, a large IUR can be a signal of incomplete risk adjustment.

Moreover, the IUR indicates the average ability of the measure to distinguish between

providers. In identifying providers that are outliers, however, we are not concerned with

this average, but rather with the measure’s ability to identify providers where outcomes

are extreme. Thus, a measure with a small IUR may still be useful in identifying a

few providers whose outcomes are extreme. These concerns motivate us to propose an

alternative measure of reliability, which emphasizes the identification of outliers.

2.3 A model with outliers and the PIUR

It is convenient to extend the model (1) to include contamination with outliers. Such a

model is considered by Efron (2013) for large-scale hypothesis testing. Suppose that the

provider effects are either from the null normal distribution, N(0, σ2
b ) with probability

π0 or from a distribution of outliers with probability π1 = 1 − π0. Thus, we generalize

model (1) by taking

f(αi) = π0f0(αi) + π1f1(αi), (3)

where f0(α) is the N(0, σ2
b ) density and f1(α) is a density for outliers with support on

the region α > C for some specified C > 0, say C = 2σb.

For provider profiling, it is natural to consider a quality measure as reliable if it is able

to reliably identify the same providers as extreme. Thus, we might assess a measure by

its propensity to identify the same providers as extreme when the data are replicated.

Replication is not possible in practice, so we consider a sample-splitting approach as

follows: Randomly divide each providers patients into two nearly equal-sized subgroups.

For a given threshold, determine whether each provider is identified as extreme in the

first and the second subgroups. Repeat this process a large number of times to estimate

the empirical probability that a provider is profiled in the second subgroup given that

it is profiled in the first. This empirical reflagging rate is then put on the IUR scale, by

determining the IUR that would yield this reflagging rate in the absence of outliers. The

difference between the PIUR and the IUR indicates the extent to which the measure

identifies outliers.

More specifically, given a data set, a quality measure and a profiling method, PIUR is

determined as follows:

Algorithm 1 (Definition of the PIUR)

(1) Randomly divide each provider’s patients into two nearly equal-sized sub-groups,

e.g. groups A and B.

This article is protected by copyright. All rights reserved.
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3 PROFILING METHODS

(2) For a given threshold p and profiling method, determine whether the provider is

flagged based on data in groups A and B.

(3) Repeat this process a large number of times, and estimate the probability that a

provider is flagged in group B given that it is flagged in group A. This estimate is

the empirical reflagging rate θ̂B|A.

(4) Under the assumption that the data arise from the model (2) with no outliers, let

G(R) = Pr(provider is flagged in group B | provider is flagged in group A, IUR=R).

(5) The PIUR at level p is R̃ where G(R̃) = θ̂B|A.

As defined, the PIUR is on the same scale as the IUR, but with emphasis on the ability

of quality measures to consistently identify outliers. For example, for a given empirical

reflagging rate θ̂B|A, we solve the equation G(R) = θ̂B|A and find the R that leads to

the empirical reflagging rate θ̂B|A. The values of the PIUR, compared with the IUR, are

influenced by the proportion of outliers and their magnitude. That is, a higher PIUR

compared to the IUR indicates the presence of outlier providers, which is not captured

in the IUR itself.

3. Profiling Methods

In this section, we briefly review several commonly used profiling methods for flagging

extreme providers. We show that considering the provider-specific IUR provides a simple

theoretical justification for estimating the proposed PIUR for various profiling methods.

That is, assuming that the data arise from the model (2), the conditional probability for

the ith provider, Gi(R), depends only on the IURi.

3.1 Provider effects due entirely to variation in the quality of care

In these cases, it is natural to consider tests of sharp null hypotheses about the provider

effects. Generally one of two methods is used: fixed effects (FE) and random effects

(RE).

Under the linear model, the fixed effects Z-score for a test of αi = 0 is

ZFE,i = Y i/(σw/
√
ni).

Based on fixed effects, the ith provider is flagged as worse than expected if ZFE,i > zp,

where zp is the upper pth quantile of the standard normal distribution, say for p = 0.05

or 0.025.

Let Z
(A)
FE,i and Z

(B)
FE,i be the FE-based Z-scores for the randomly chosen groups A and

B within provider i. For a given IURi = R, Z
(A)
FE,i and Z

(B)
FE,i are bivariate normal

This article is protected by copyright. All rights reserved.
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3.2 Provider effects are due to incomplete risk adjustment3 PROFILING METHODS

with variance 1/(1 − ρ) and correlation ρ = R/(2 − R). The corresponding conditional

probability is summarized in Proposition 1.

Proposition 1 Under the linear model (2) with IURi = R and p ∈ (0, 1),

GFE,i(R) = Pr(Z
(B)
FE,i > zp | Z(A)

FE,i > zp, IURi = R) =
Φ2,ρ (s1, s1)

Φ (s1)
,

where s1 = −zp
√

1− ρ, Φ and Φ2,ρ are the cumulative distribution functions of the

standard normal distribution and a bivariate normal distribution with variation 1 and

correlation ρ, respectively; e.g.,

Φ2,ρ (s1, s1) =

∫ s1

−∞

∫ s1

−∞

1

2π
√

1− ρ2
exp

{
−u

2 − 2ρuv + v2

2(1− ρ2)

}
dudv.

Alternatively, the RE approach is based on the best linear unbiased predictor (BLUP) or

empirical Bayes estimate arising from the “posterior” distribution of αi given the data.

The estimate of αi then is α̂RE,i = IURiY i, which has a posterior variance IURiσ
2
w/ni.

Thus, the corresponding RE-based z-score is then given by

ZRE,i =
√

IURiZFE,i.

Here IURi plays the role of a shrinkage factor.

Let Z
(A)
RE,i and Z

(B)
RE,i be the RE-based Z-scores for groups A and B within provider i.

Note that Z
(A)
RE,i and Z

(B)
RE,i are bivariate normal with variance ρ/(1− ρ) and correlation

ρ.

Proposition 2 Under the linear model (2) with IURi = R, for a fixed p ∈ (0, 1),

GRE,i(R) = Pr(Z
(B)
RE,i > zp | Z(A)

RE,i > zp, IURi = R) =
Φ2,ρ (s2, s2)

Φ (s2)
,

where s2 = s1/
√
ρ, and ρ is the same as in Proposition 1.

3.2 Provider effects are due to incomplete risk adjustment

If quality of care is not the main source of variation in the provider effects, the random

variation accounted for in σb should be incorporated in the profiling method. The

approach based on fixed effects with random intercept (FERE) (Jones and Spiegelhalter,

2011; Kalbfleisch et al. 2018) utilizes fixed-effects estimates but judges their values with

reference to the marginal distribution, including the between-provider variation. The

Z-score can be constructed as

ZFERE,i =
√

1− IURiZFE,i =
Y i√

σ2
b + σ2

w/ni
.

This article is protected by copyright. All rights reserved.
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3 PROFILING METHODS 3.3 Empirical null approach

One may flag provider i if ZFERE,i > zp. This approach is based on the assumption

that most of the between-provider variation is due to unobserved characteristics that

are outside the control of the provider. Thus, the FERE approach only flags a provider

if its outcome is extreme with reference to the total variation. This approach is useful

for identifying providers that are outliers or do not follow the assumed model.

Let Z
(A)
FERE,i and Z

(B)
FERE,i be the FERE-based Z-scores for groups A and B in provider i.

Note that Z
(A)
FERE,i and Z

(B)
FERE,i are bivariate normal with variance 1 and covariance ρ.

Proposition 3 Under the linear model (2) with IURi = R and p ∈ (0, 1), the conditional

probability for the FERE approach is

GFERE,i(R) = Pr(Z
(B)
FERE,i > zp | Z(A)

FERE,i > zp, IURi = R) =
Φ2,ρ(s3, s3)

Φ(s3)
,

where s3 = −zp.
Note that Propositions 1-3 are based on provider-specific IUR. To assess the average

ability of a quality measure to consistently identify outliers across providers, we extend

the PIUR based on the overall IUR. Numerical evaluations for the proposed methods

are provided in Section 4.

3.3 Empirical null approach

The empirical null approach is based on work of Efron (2004, 2013) who defined the

empirical null and used it in problems of assessing false discovery rates. Kalbfleisch and

Wolfe (2013) proposed the use of the empirical null in profiling health care providers.

We suppose first that all providers are approximately of the same size so that ni ≈ n for

all i. In the empirical null approach, a normal distribution is fitted to the central part

of the distribution of the fixed effects Z-scores, ZFE,i, i = 1, . . . ,m. This can be done

using robust methods that are not influenced by values in the tail of the distribution.

For example, one might use M-estimation or maximum likelihood approaches based

on a truncated normal model (e.g. Efron, 2013). The resulting estimates of the mean

and variance are µ̂M and σ̂2
M , and the empirical null distribution is N(µ̂M , σ̂

2
M). This

distribution, instead ofN(0, 1) is used as the null hypothesis with which to assess extreme

values of the FE-Z-scores. More specifically, the ith provider is flagged as worse than

expected if ZFE,i > µ̂M + zpσ̂M , where zp is the upper pth quantile of the standard

normal distribution.

If the model (2) is exactly true for all providers, the empirical null approach and the

FERE approach give essentially the same solution. This follows from the results of

Andrews et al. (1972) and Huber (1964, 1973), which can be used to show that µ̂M → 0

This article is protected by copyright. All rights reserved.
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4 NUMERICAL EVALUATION

in probability, and σ̂2
M is a consistent estimate of σ2

b + σ2
w/n as the number of providers

m→∞. More generally, however, the empirical null approach also applies to the model

(3) where it gives asymptotically correct results, whereas FERE will result in potentially

biased estimates of the intercept and σ2
b . As a consequence of the asymptotic equivalence

of the empirical null approach and the FERE approach when the model (2) is exactly

true, the PIUR of the empirical null approach can be computed by referring the empirical

reflagging rate to GFERE(R). The dependence of the empirical null on sample size can be

handled by stratifying the facilities into relatively homogeneous strata as in Kalbfleisch

and Wolfe (2013) and He et al. (2013). In addition, we have been developing smoothed

estimates of the mean and variance of the Z-scores as a function of sample size so that

each provider has an individualized empirical null distribution.

One major advantage of the empirical null approach over FERE or RE is that it

generalizes relatively easily to other non-linear examples where the FE-based Z-scores

are approximately normal for relatively large ni. Thus, this approach can be used for

example in situations where the response is binary as in He et al. (2013) and Estes et

al. (2018) or a failure time as in Kalbfleisch and Wolfe (2013) and in our example in

Section 5.

4. Numerical Evaluation

In this section, we examine the properties of the proposed PIUR through numerical

evaluation. We consider the FERE-based Z-scores for an one-sided test with a significance

level p = 0.025. We consider the linear model (2) with σ2
T = σ2

b + σ2
w/n

′ = 1. We

vary the magnitude of the between-provider variance, σ2
b , such that ordinary IUR takes

values 0.00, 0.25 and 0.50. We assume that the provider effects are either from the null

normal distribution N(0, σ2
b ) with probability π0, or from a distribution of outliers with

probability π1 = 1 − π0. We vary the value of π1 from 0.00, 0.01, 0.02 and 0.05. The

magnitude for these outlier provider effects are fixed taking values γ times σT , where

γ = 2, 3 or 4 and σT = 1.

Table 1 shows the theoretical values of the PIUR for various values of IUR, where the

theoretical values are calculated based on the assumed distribution. For example, for

a given value of IUR, the corresponding conditional probabilities for the FERE-based

Z-scores can be computed as

Pr(Z
(B)
FERE,i > zp | Z(A)

FERE,i > zp, IURi = R) =
π0Φ2,ρ(−zp,−zp) + π1Φ

2 (s)

π0Φ(−zp) + π1Φ(s)
,

This article is protected by copyright. All rights reserved.
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5 APPLICATION

where

s = − zp√
1− ρ

+
γ√

2− 2R
.

The results shown in Table 1 suggest that, even when the IUR is small, relatively high

PIUR can occur for settings including contamination with outliers. For example, even

when the IUR= 0.00, if the proportions of outliers are set at 5% with the magnitude

for these outlier provider effects taking values 2, 3 or 4 times σT , the corresponding

FERE-based PIURs are 0.56, 0.81 and 0.93, respectively.

We next consider a linear model framework with 1, 000 providers and ni = 100 patients

per provider. The continuous outcome, Yij, is generated from the linear model (2) with

σ2
w = 1. The magnitude for these outlier provider effects are fixed taking values γ times

σT , where γ = 4. The remaining set ups are the same as those in Table 1. Table 2 shows

that the empirical values of the profile IUR are close to the corresponding theoretical

values.

To assess the proposed methods in settings with various sample sizes across providers,

we consider a linear model framework with 1, 000 providers and ni generated from a

normal distribution with mean 100 and standard deviation 50 and then rounded to the

nearest integer values. To avoid extremely small provider sizes, we set ni as 10 if the

rounded integer value is less than 10. Table 3 shows that the empirical values of the

profile IUR are close to the corresponding theoretical values.

5. Application

In 2016, more than 120,000 patients were diagnosed with end-stage renal disease (ESRD)

(Saran et al. 2018), with kidney dialysis as the most common treatment option. In order

to monitor the performance of dialysis facilities, several risk-adjusted quality measures

have been implemented by the Centers for Medicare and Medicaid Services (CMS) on

the Dialysis Facility Compare (DFC) site and in the ESRD Quality Incentive Program,

which is a CMS value-based purchasing program. In this section, we apply the PIUR to

two quality measures that are reported on the DFC site.

5.1 Standardized Mortality Ratio

The Standardized Mortality Ratio (SMR) is a risk-adjusted measure that is used to

evaluate whether facility-specific mortality rates are in line with the national average

across all Medicare certified US dialysis facilities. The SMR for facility i is defined as

SMRi = Oi/Ei, where Oi is the observed number of deaths in facility i, and Ei is the

This article is protected by copyright. All rights reserved.
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5.1 Standardized Mortality Ratio 5 APPLICATION

corresponding expected number of deaths for patients in this facility computed under

a population norm. An SMR less (greater) than 1 indicates that the facility’s observed

death rate is less (greater) than expected based on overall national rates with adjustment

for the measured characteristics of patients in this facility.

For practical implementation, the SMR is computed from a two-stage model: In the

first stage, a Cox model stratified by facilities is used to estimate regression parameters

associated with patient characteristics. This model assumes that the hazard function

is λij(t) = λ0i(t) exp{XT
ijβ}, where λ0i is the facility-specific baseline hazard. This

stratified approach avoids any problems that might arise when patient characteristics

are correlated with facility effects. In the second stage, the regression parameters are

used as an offset in an unstratified Cox model to estimate the baseline failure rate at

the “average” facility. The expected number of events for the jth patient in the ith

facility, denoted by Eij, is calculated as Eij =
∫ τ
0
Rij(t) exp{XT

ijβ̂}dΛ̂0(t), where τ is

the maximal follow-up time, XT
ijβ̂ is treated as an offset with β̂ estimated from stage 1,

Λ̂0(t) is the “population-average” cumulative baseline hazard, and Rij(t) is the at-risk

process. The expected number for facility i is then computed as Ei =
∑ni

j=1Eij. The

corresponding p-value can be computed using a Poisson approximation under which the

Oi, under the null hypothesis that the facility’s death rate is the same as the population

average, follows a Poisson distribution with mean Ei.

We use SMR data collected from the four year period (2013-2016). Methods of profiling

are based on the empirical null approach. A total of 5,965 facilities are included in the

analysis, after excluding facilities with fewer than 3 expected deaths. The number of

observed deaths per facility ranges from 0 to 418, and the number of expected deaths

ranged from 3 to 309. Figure 2a shows a histogram of the SMR.

The IURs for SMR were computed based on the approach proposed by He et al. (2019).

Based on one-year data, the IURs had a range of 0.22 − 0.25, which indicates that

about one-fourth of the variation in the SMR can be attributed to the between-facility

differences and about three-fourths to within-facility variation. Based on four years of

data (2013-2016), the IUR for SMR increased to 0.53, which indicates that about half

of the variation in the measure can be attributed to the between-facility differences and

about half to within-facility variation. In comparison, with p-value of 0.025 and using

the empirical null approach, the estimated conditional probability of being flagged again

is θ̂B|A = 0.22, and the corresponding PIUR is R̃ = 0.62, which is computed based on

the tabular theoretical values; e.g. GFERE(R̃) = 0.22, where GFERE(R̃) is defined in

Proposition 3. Note that in Table 1, when the IUR= 0.50, if the proportions of outliers

This article is protected by copyright. All rights reserved.
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5 APPLICATION 5.2 Standardized Readmission Ratio

are set at 2% with the magnitude for these outlier provider effects taking values 2 times

σT , the corresponding PIUR is also 0.62. Thus, when there are outlier facilities, the

PIUR tends to be larger than the IUR.

5.2 Standardized Readmission Ratio

An unplanned hospital readmission is defined as any unplanned hospital admission that

occurs within 30 days of discharge from a previous admission. Readmissions are expen-

sive. High readmission rates are indicators of poor care, leading to patient morbidity

and poor quality of life, and can be prevented through effective post-discharge early

intervention and care coordination (Chan et al. 2009). The standardized readmission

ratio (SRR) is a measure of dialysis facility-level hospital readmission among ESRD

dialysis patients. It is computed as SRRi = Oi/Ei, where Oi =
∑ni

j=1 Yij is the number

of observed readmissions, and Ei =
∑ni

j=1Eij is the expected number in facility i. Here

Yij is the observed outcome for the jth discharge in facility i, and Eij denotes the cor-

responding model-based expected outcome, accounting for patient-level characteristics

and assuming the facility-specific event rate equals the population rate. Specifically,

readmission rates are modeled using a logistic model:

logit(Pij) = log(Pij/(1− Pij)) = αi + XT
ijβ, (4)

where Pij = P (Yij = 1|αi,Xij), the parameters αi correspond to the fixed facility effect

and β is a vector of regression parameters. The expected number is computed as

Eij = Pij(α̂M , β̂) =
exp(α̂M + XT

ijβ̂)

1 + exp(α̂M + XT
ijβ̂)

,

where β̂ is the estimate of β and α̂M denotes the median of all estimated facility effects.

Similar to the interpretation of SMR, an SRR less (greater) than 1 indicates that the

facility’s observed readmission rate is less (more) than expected based on national rates.

Figure 2b shows the histogram of SRRs for 5,740 dialysis facilities in 2016. The IUR

had a value of 0.49, which indicates that about half of the variation in the SRR can be

attributed to the between-facility differences and about half to within-facility variation.

In contrast, with p-value of 0.025 and using the empirical null approach, the profile IUR

is 0.74, which indicates the existence of outlier facilities. For example, in Table 1, when

the IUR= 0.50, if the proportions of outliers are set at 5% with the magnitude for these

outlier provider effects taking values 2 times σT , the corresponding PIUR is 0.70. Thus,

the difference between the PIUR and the IUR indicates the presence of outlier providers
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6 DISCUSSION

and, hence assesses more directly the ability of a quality measure for identifying outlier

providers.

Note that although the IUR (0.53) for the SMR based on four years of data is larger than

the IUR (0.49) for the SRR based on one year of data, the difference between the PIUR

and the IUR for SRR is larger than that for SMR. This indicates a larger proportion

and/or higher magnitudes of outliers providers for SRR, which is not captured in the

IUR itself.

6. Discussion

The IUR is a metric that specifies the proportion of variation in the quality measure

that is due to the between-provider variation. If all between-provider variation is due

to quality of care and all patients and providers follow the assumed linear model, the

IUR may be a reasonable signal to noise metric for a quality measure. However, in

settings where the main source of between-provider variation is due to incomplete risk

adjustment or the main focus of the provider profiling is to identify outliers, the role

of the IUR is limited. In fact, the IUR is based on the whole distribution of provider

effects, and can be a poor indicator to assess the ability of a measure to identify outliers

(Staggs, 2017; Staggs and Cramer, 2016; Kalbfleisch et al. 2018). Given that, the IUR

may not be an appropriate metric for assessing the performance of a quality measure.

In other words, the value of the IUR may not determine the suitability of a measure for

identifying outliers; even measures with a small IUR can be very effective for identifying

extreme providers, while a large IUR can be a signal of incomplete risk adjustment.

In this paper we assume that one main purpose of reporting quality measures is to

reliably identify very good and very poor providers. To address the problems associated

with the IUR, we propose an additional measure of reliability. The proposed PIUR is not

designed to address the problem of “no unobserved confounders.” Instead, it is designed

to assess the ability of quality measures to consistently identify outliers. Whether there

are unobserved confounders or not, the values of the PIUR, compared with the IUR, are

influenced by the proportion of outliers and their magnitude.

As proposed, the scale of the IUR is used to quantify the proposed PIUR, while the PIUR

takes into account the providers with extreme outcomes. We have shown that the PIUR

can be effective at assessing whether a quality measure reliably profiles outlier providers,

even under low values of the IUR. If there are no outliers, one should expect the PIUR to

be the same as the IUR. In cases where there are outlier providers, even measures with

an IUR close to 0 can have relatively high PIUR and can be very useful for identifying
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6 DISCUSSION

extreme providers. Therefore, when the emphasis is on identifying “extreme” providers,

the difference between the proposed PIUR and the IUR indicates the usefulness of the

measure for profiling. In contrast, the size of the IUR or the PIUR value alone may not

be a reasonable indicator of the use of a quality measure for identifying very good or

poor providers. Therefore, we do not recommend a threshold for IUR or PIUR.

The values of the PIUR depend on the profiling method for flagging extreme providers.

Both the commonly used FE and RE approaches assume that the provider effects are the

consequence of variation in the quality of treatment and are under the full control of the

providers. As a result, they will tend to identify as worse than expected, large providers,

even when their true effect is not extreme. In contrast, the FERE approach is based

on the assumption that most of the between-provider variation is due to unobserved

characteristics that are outside the control of the provider. Both of these extreme

assumptions are typically invalid, and the provider effects correspond to a combination of

quality of care and incomplete risk adjustment. Unfortunately, the source of the provider

effect cannot be identified on the basis of the data alone and can only be estimated based

on expert opinion. The article, Kalbfleisch et al. (2018) gives some discussion of how the

various methods depend on the source of the variation. The empirical null approach

has the advantage of leading to robust estimates of the between-provider variance by

limiting the influence of extreme observations. Additional discussion on this point can

be found in Kalbfleisch and He (2018) and a working manuscript by Xia et al. (2019).

The covariates in our motivating settings are patient-level, not provider level. However,

a covariate may have both a between-provider component, which we might summarize in

terms of X i, the provider-specific mean for provider i, and a within-provider component

Xij −X i. This leads to differing within-provider and between-provider covariate effects

as is discussed in Neuhaus and Kalbfleisch (1998). When provider effects are correlated

with covariates, it should also be noted that use of a random effects model can yield

a biased estimate of β (Pan, 2002; Kalbfleisch and Wolfe, 2013). The β that we are

adjusting for is the within-provider effect; one way to estimate that is to use a fixed

effects model.

As illustrated in Section 5, the proposed method can also be applied to complex quality

measures used in non-linear models. Specifically, He et al. (2019) have developed methods

to extend the IUR to such models. The empirical null approach described in Section 3.3

has been generalized to binary logistic model (He et al. 2013) and the Cox proportional

hazards model (Kalbfleisch and Wolfe, 2013). Thus, the empirical null-based PIUR can

be easily computed to such non-linear examples.
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Figure 1: The solid line is the distribution of the true provider effect, αi, and the dotted
line is the distribution of the estimated provider effect, Y i, in the example with σw =
10, σb = 0.5 and ni = 100. The IUR compares the variance of the former distribution
to that of the latter.
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6 DISCUSSION

(a)

(b)

Figure 2: Histograms of SMR and SRR; the SMR figure is based on 5,965 dialysis
facilities with expected deaths greater than or equal to 3; the SRR figure is based on
5,740 facilities with numbers of index discharges greater than 10.
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Outliers
IUR=0.00 IUR=0.25 IUR=0.50

2σT 3σT 4σT 2σT 3σT 4σT 2σT 3σT 4σT

0% 0.00 0.25 0.50
1% 0.27 0.55 0.71 0.41 0.64 0.77 0.57 0.75 0.83
2% 0.39 0.73 0.83 0.49 0.79 0.87 0.62 0.83 0.90
5% 0.56 0.81 0.93 0.61 0.86 0.94 0.70 0.91 0.97

Table 1: Profile IUR (PIUR) with various percentages of outliers; the magnitude for
these outlier provider effects are fixed taking values γ times σT , where γ = 2, 3 or 4; the
results are based on p-value of 0.025 using the FERE approach.
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True IUR Outliers Total-ÎUR EN-ÎUR PIUR FERE-P̂IUR EN-P̂IUR

0.25

0% 0.25 0.21 0.25 0.26 0.28
1% 0.35 0.23 0.77 0.79 0.76
2% 0.42 0.23 0.87 0.89 0.87
5% 0.57 0.25 0.94 0.96 0.94

0.50

0% 0.50 0.47 0.50 0.51 0.52
1% 0.56 0.49 0.83 0.85 0.83
2% 0.61 0.49 0.90 0.93 0.90
5% 0.71 0.50 0.97 0.98 0.97

Table 2: Profile IUR (PIUR) with various percentages of outliers; same sample size

across providers; Total-ÎUR: estimated IUR based on total between-provider variation;
EN-ÎUR: estimated IUR based on the estimated null distribution; PIUR: True PIUR;

FERE-P̂IUR: using the FERE approach; EN-P̂IUR: using the empirical null approach;
based on p-value of 0.025.
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True IUR Outliers Total-ÎUR EN-ÎUR PIUR FERE-P̂IUR EN-P̂IUR

0.25

0% 0.24 0.22 0.25 0.23 0.29
1% 0.34 0.24 0.77 0.79 0.77
2% 0.41 0.25 0.87 0.89 0.86
5% 0.57 0.25 0.94 0.95 0.94

0.50

0% 0.50 0.48 0.50 0.50 0.59
1% 0.56 0.49 0.83 0.84 0.83
2% 0.61 0.50 0.90 0.92 0.90
5% 0.71 0.49 0.97 0.98 0.97

Table 3: Profile IUR (PIUR) with various percentages of outliers; various sample size

across providers; Total-ÎUR: estimated IUR based on total between-provider variation;
EN-ÎUR: estimated IUR based on the estimated null distribution; PIUR: True PIUR;

FERE-P̂IUR: using the FERE approach; EN-P̂IUR: using the empirical null approach;
based on p-value of 0.025.
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Measure Year ÎUR P̂IUR Number of facilities

SMR 2013 0.24 0.36 5,424
2014 0.25 0.39 5,585
2015 0.22 0.42 5,770
2016 0.23 0.38 5,963

2013-2016 0.53 0.62 5,965

SRR 2016 0.49 0.74 5,740
Table 4: Estimated IUR and Profile IUR (PIUR) for SMR and SRR; with p-value of
0.025; and using the empirical null approach.
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