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ABSTRACT 

Background 

We sought to leverage data routinely collected in electronic health records (EHRs), with the 

goal of developing patient risk stratification tools for predicting risk of developing AD.  

 

Method 

Using EHR data from the University of Michigan hospitals (UM) and consensus-based 

diagnoses from the Michigan Alzheimer‟s Disease Research Center, we developed and 

validated a cohort discovery tool for identifying patients as AD. Applied to all UM patients, 

these labels were used to train an EHR-based machine learning model for predicting AD 

onset within 10 years.  

 

Results 

Applied to a test cohort of 1,697 UM patients, the model achieved an area under the receiver 

operating characteristics curve of 0.70 (95% CI=0.63-0.77). Important predictive factors 

included cardiovascular factors and laboratory blood testing.  
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Conclusion 

Routinely collected EHR data can be used to predict AD onset with modest accuracy. Mining 

routinely collected data could shed light on early indicators of AD appearance and 

progression.  

 

Word Count: 150/150 

1. INTRODUCTION 

Research in Context (149/150) 

 

Systematic Review: We searched the literature for reports on predictive modeling and 

cohort discovery in AD. Previous research has analyzed data not routinely collected in 

clinical care, has focused on relatively short prediction horizons (e.g., 3 years) or is limited in 

the scope of EHR (electronic health record) data considered. 

 

Interpretation: We developed and validated an EHR-based cohort discovery tool for AD 

patients. This tool facilitates analyses of EHR data without requiring manual chart review. 

Using this tool, we developed and validated an EHR-based model for predicting AD onset up 

to 10 years. Covariates associated with the outcome align in part with the AD literature. 

Novel associations included forms of healthcare utilization and urine tests. Such findings can 

be used to stimulate hypothesis generation and/or aid in longitudinal study recruitment.  

 

Future Directions: Associations identified by our model require further investigation. Model 

performance could be improved with additional longitudinal data. 

 

Alzheimer‟s disease (AD), the most common form of dementia1, affects approximately 5.8 

million Americans1, and that number is expected to more than double by 20501. The 

physiological changes in the brain associated with AD, including β-amyloid and tau buildup, 
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are currently suspected to take place at least 20 years before symptom onset1. Earlier 

identification of at-risk individuals could lead to earlier and more effective treatment.  

Predictive modeling for AD risk has focused on AD-specific biomarkers such as 

cerebrospinal fluid (CSF), neuropsychological test scores, and complex medical imaging2-16. 

These are not routinely collected in clinical care, and thus apply to only to a subset of 

individuals for which these data are available. Importantly, because collection of these 

biomarkers can be invasive or involve significant cost/logistics, they are rarely obtained 

during the pre-clinical stage, limiting current predictive ability of these biomarkers to short-

term horizons (e.g., 2-4 years)2-5,10-13. In contrast, we aimed to leverage existing databases 

of routinely collected electronic health record (EHR) data to develop predictive models for 

AD that can identify at-risk individuals up to a decade in advance.    

EHRs often contain decades of longitudinal clinical data (e.g., medications) for thousands of 

patients17. However, these data have been largely underutilized in studying pre-clinical signs 

of AD progression18-21. The ability to automatically identify signs of AD patients using 

available data in EHRs would increase the feasibility of downstream computational analyses 

on large-scale datasets without the need for labor-intensive chart review. To this end, we 

first developed and validated a cohort discovery tool that can be applied to EHR data for 

automatic classification of AD individuals. Second, we applied this tool to a large cohort of 

patients and used machine learning techniques to develop and validate a model for 

estimating patient risk of developing AD within a 10-year prediction horizon. Applied more 

broadly, such an approach could help in identifying risk factors that arise well in advance of 

clinical symptoms. 
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2. METHODS 

We describe the inclusion/exclusion criteria that were applied to two datasets to obtain our 

study cohorts, one for building the cohort discovery tool and another for building the 

predictive model.  

 

2.1. Study Cohorts 

Our analyses relied on two study cohorts i) the cohort discovery tool–cohort and ii) the risk 

stratification model–cohort. These cohorts were extracted from the Michigan Alzheimer‟s 

Disease Research Center (Michigan-ADRC) and the University of Michigan‟s Research Data 

Warehouse (RDW). The Michigan-ADRC, which focuses on memory and aging research, 

contains data for 789 participants from ~2005–2019. All participants received a consensus-

based clinical diagnosis using the National Alzheimer‟s Coordinating Center Uniform Dataset 

criteria22,23. The RDW contains records of patient encounters (defined as inpatient and 

outpatient visits) with Michigan Medicine for over 4 million patients dating from ~2000–2019. 

These data consist of all clinical data associated with the encounter (e.g., medications). This 

study was approved by the Institutional Review Board at the University of Michigan. 

 

The first cohort discovery tool-cohort, included all Michigan-ADRC participants with at least 

one RDW encounter at or after the age of 65 years. Only this age group was considered, 

since most cases of AD occur in that population1. Our second cohort, the risk stratification 

model-cohort, included patients with at least one RDW encounter between the ages of 68-72 

years who had at least 10 years of follow-up or who converted to AD within 10 years. This 

age range allowed for a relatively large study population. We excluded patients with an AD 
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diagnosis before 68 years. Here, AD refers to probable AD, since AD cannot be officially 

diagnosed until after death and because this diagnosis was commonly used throughout this 

period.  

 

2.2 Cohort Discovery Tool 

Using diagnoses provided by the Michigan-ADRC, we investigated the accuracy of different 

EHR-based rules for identifying AD patients in RDW. Each rule aimed to identify RDW 

encounters associated with patients with an AD diagnosis and was based on EHR variables 

related to AD: diagnosis codes for AD, medications for AD, procedure codes for 

psychological/cognitive testing, and procedure codes involving moderate to high complexity 

medical decision making (details in Appendix 1 (A1)). For example, one rule labeled RDW 

encounters with a current or previous AD diagnosis code and prescription to an AD-

associated medication as AD. We also evaluated an existing tool from the Phenotype 

Knowledge Base (PheKB)20, which labeled those with at least five encounters with a 

dementia diagnosis code or prescription for an AD-associated medication as AD. Applied to 

a set of encounters in RDW for a patient, the first encounter that met the EHR-based criteria 

was labeled as „AD‟ by the cohort discovery rule. Since AD is currently irreversible1, we 

labeled subsequent encounters as „AD‟.  

 

The labels produced by each EHR-based rule were compared to the Michigan-ADRC 

diagnoses at the patient level. Michigan-ADRC participants are followed longitudinally, and 

thus may have multiple timestamped diagnoses (e.g., cognitively normal, mild cognitive 

impairment, AD). As ground truth, we labeled the six months preceding the first AD 
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diagnosis in the Michigan-ADRC and anytime thereafter as AD.  Prior study has shown that 

clinical diagnoses of AD have good diagnostic accuracy to histopathology-confirmed AD24. If 

a patient was never diagnosed with AD, then we considered them „not AD‟ until six months 

after their last Michigan-ADRC diagnosis. Using these time frames as ground truth, 

comparisons to the corresponding RDW encounters were made as follows (Figure 1). Only 

those whose RDW and ground truth time windows overlapped were included while counting. 

If at least one AD-diagnosed RDW encounter was within the Michigan-ADRC-defined AD 

window, the patient was considered to have been correctly identified by the EHR-based rule 

(true positive). False positives were counted as those with at least one AD-diagnosed RDW 

encounter but no Michigan-ADRC diagnosis for AD within the Michigan-ADRC-defined AD 

time window. True negatives were counted as those not identified by the EHR-based rule 

and never received a Michigan-ADRC diagnosis for AD. False negatives were counted as 

those not identified by the EHR-based rule, but had a Michigan-ADRC diagnosis for AD. 

 

Results were summarized by the true positive rate (sensitivity), 1-false positive rate 

(specificity), positive predictive value (PPV), and F1 score (F1). We measured a population-

adjusted PPV since the Michigan-ADRC dataset is enriched compared to the general 

population (details in A2).   

 

When evaluating EHR-based rules against each other, we prioritized maximizing the F1 

score to balance the population-adjusted PPV and sensitivity. In the case of ties, we 

considered the adjusted PPV, unadjusted PPV, specificity, and sensitivity, in that order.  
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Given the rule with highest F1 score, we evaluated when patients received the diagnosis 

within RDW relative to the Michigan-ADRC, by measuring the time from the first AD 

Michigan-ADRC diagnosis to the first AD-labeled encounter in RDW. We also examined our 

ability to identify AD at the encounter level. Using the ground truth labels outlined earlier, a 

confusion matrix was constructed to show the number of encounters (AD/not AD) that were 

correctly and incorrectly identified by the EHR-based rule. Results are reported as the 

median with an empirical 95% confidence interval over 1,000 bootstrapped samples. 

 

2.3 Predictive Model 

In the following sections, we frame the problem of predicting AD over a 10-year horizon 

using EHR-extracted data. We describe feature engineering, including which EHR 

components were used, and model training. We then describe model evaluation in terms of 

predictive performance and influential features. 

 

2.3.1 Outcome 

To control for the effect of age on risk of developing AD, we aligned patients in our risk 

stratification cohort (Section 2.1) based on their earliest visit between 68-72 years. Patients 

were labeled according to the cohort discovery tool (Section 2.2) as converting to AD within 

10 years or not. The date of conversion was defined as the date of the first encounter 

meeting the cohort discovery tool‟s criteria. Patients were labeled positive if they converted 

within 10 years of alignment and negative otherwise.  

 



 

 

 

This article is protected by copyright. All rights reserved. 

9 

2.3.1 Variable Extraction 

Given the „alignment‟ visit, each patient was represented by a high-dimensional feature 

vector summarizing all encounters in the 1,000 days before alignment. A look-back period of 

1,000 days was chosen based on the median length of available history. We extracted data 

pertaining to diagnoses (ICD9 (international classification of disease) codes), procedures 

(CPT (current procedural terminology) codes), medications (medication name, ingredient 

name, and VA class code), laboratory results (LOINC (Logical Observation Identifiers 

Names and Codes) and result values), vital sign data (e.g., temperature), healthcare 

utilization (e.g., encounter types), and demographic information (e.g., race).  Features were 

categorized as “time-invariant” or “time-dependent”. Time-invariant features were patient 

characteristics that do not change over time (e.g., race), and time-dependent features were 

those associated with a specific encounter or timestamp (e.g., diagnoses). Data were pre-

processed with FIDDLE (FlexIble Data-Driven pipeLinE)25, using a time window of 250 days, 

a pre- and post-filter threshold of 0.0003, and a frequency threshold of 1.0. Feature vectors 

for each patient were formed from FIDDLE‟s output by concatenating their time invariant 

data to their time-dependent data up to 1,000 days before alignment. 

 

2.3.2 Model Training  

Data were split using an 80%-20% training-test random stratified split. Using the training 

data, we performed model selection. Minimizing the L2-regularized hinge loss, we trained a 

linear-support vector machine to predict AD onset for patients aligned between 68-72 years 

over a 10-year horizon. The amount of regularization was tuned using five-fold cross-

validation on the training set, sweeping C=[0.001-1,000] on a logarithmic scale.  Analyses 

were performed in Python 3.6 using SciKitlearn26.  
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2.3.3 Model Evaluation 

Overall performance of our predictive model was measured using the area under the 

receiver operating characteristics curve (AUROC) and a confusion matrix measuring 

sensitivity, specificity, positive predictive value, and accuracy based on a threshold at the 

65th percentile on the held-out test set. We measured model calibration using the Brier 

score27 (details in A3). Additionally, we examined the model‟s ability to classify AD 

converters among patients with memory impairments, reporting the AUROC and confusion 

matrix (details and results in A9). We report all model evaluation results as empirical 95% 

confidence intervals generated using 1,000 bootstrapped samples unless otherwise stated.  

 

We also assessed the model‟s ability to predict over the 10-year horizon by examining the 

number of correctly predicted converters with respect to their time to conversion (time 

between alignment and first AD diagnosis). Since the model outputs a continuous risk score, 

we classified patients as „high risk‟ if their risk score was above the 65th percentile and as 

low-risk otherwise. We examined five non-overlapping conversion windows, reporting the 

sensitivity for each. 

 

Beyond model performance, we examined which categories of EHR information (e.g., 

diagnoses vs. procedures) were the most informative for prediction by comparing the 

AUROCs on models trained with different subsets of features (e.g., training only on 

diagnosis features or training only on procedural features).  
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We also analyzed the model‟s most important features using permutation importance28, 

where any decrease in AUROC was measured by permuting all patient values within a 

feature or group of correlated features (R≥|0.7|). The most important features were 

identified as those with the largest drop in AUROC, taken as the median over 100 

permutations and whose lower bound on an empirical 95% confidence interval was above 

zero.  

 

3. RESULTS 

In the following sections, we identify the best EHR-based rule for cohort discovery. We then 

summarize performance of the predictive model in terms of AUROC, calibration, and learned 

risk factors. 

 

3.1. Cohort Discovery Tool 

 From 789 Michigan-ADRC volunteers, 624 (79%) volunteers 65 years and older had 

encounters with Michigan Medicine (details in A4). 24.8% of the 624 volunteers converted to 

AD. 

 

Among several cohort discovery rules (Figure 2), the one that best identified AD patients 

included those with a diagnosis code for AD (Table A.1) (median F1-score=0.73 (95% 

CI=0.68-0.78), median adjusted PPV=0.77 (95% CI=0.71-0.82), median sensitivity=0.70 

(95% CI=0.65-0.74)). The PheKB tool20 performed significantly worse in terms of median F1-
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score=0.55 (95% CI=0.48-0.62 p<0.05) and median sensitivity=0.45 (95% CI=0.31-0.51 

p<0.05). Significance was determined by whether the upper bound of the 95% CI for the F1 

score was below the lower bound F1 score of the best rule. 

 

Among the true positives identified by our best rule, the first RDW diagnosis occurred 177 

days before (95% CI=278 before-68 days after) the first AD Michigan-ADRC diagnosis. At 

the encounter level, this rule yielded a median PPV of 0.59 (95% CI=0.56-0.63) and a 

median sensitivity of 0.82 (95% CI=0.72-0.83) (details in A5). 

 

3.2. Predictive Model 

Applying the cohort-discovery rule with the highest F1-score to RDW (Figure 3) yielded a 

study population of 8,474 patients, where 4.14% converted to AD within 10 years from 

alignment (Table 1). 268 time-invariant features and 3,963 time-dependent features per time 

window across four time windows were used for prediction (feature breakdown in A6). The 

training and test sets consisted of 6,777 and 1,697 patients, respectively. 

 

On the test set, we achieved an AUROC of 0.70 (95% CI=0.63-0.77) (Figure A2.a) and a 

Brier score of 0.028 (95% CI=0.025-0.029) (Figure A.1). Thresholding at the 65th percentile, 

we achieved a sensitivity of 0.62 (95% CI=0.60-0.63), a specificity of 0.66 (95% CI=0.65-

0.66), and a positive predictive value of 0.07 (95% CI=0.05-0.09), for an overall accuracy of 

0.66 (95% CI=0.65-0.66) (Table A.5). 
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The model predicted AD onset over long and short prediction horizons with high sensitivity 

(Figure A.3); though, performance generally decreased as the prediction horizon increased. 

87% patients who converted within 2.5 years of alignment were correctly predicted, while 

only 53% of patients who converted within 8.4-10 years of alignment were correctly 

predicted. The distribution of time to conversion was left skewed, with most patients 

converting more than 6 years post-alignment. 

 

Overall, data on laboratory test results, procedures, and healthcare utilization had the most 

predictive power (Figure 4a, Figure A.2b). Predicting using laboratory test results alone was 

able to achieve an AUROC of 0.62 (95% CI=0.55-0.69). However, the best performance was 

achieved when all categories were combined. Using longitudinal data from all previous 

encounters up to 1,000 days prior to alignment also improved performance, compared to 

when data from only the encounter of alignment was used AUROC=0.54 (95% CI=0.47-

0.61) (Figure 4b). The top 10 important features pertained to healthcare utilization, 

procedures involving laboratory blood testing, and cardiovascular risk factors (Figure 4c, 

Table 2), with the median drop in AUROC between 0.002-0.040.  

 

4. DISCUSSION 

Research in predicting AD risk2-16 has focused on datasets specifically curated for the 

purpose of studying AD (e.g., ADNI)29. While such studies can be used to identify predictors 

of disease progression, many of the studied variables, e.g., CSF composition, are not 

collected during routine clinical care, especially in the decades before symptom onset. 

Moreover, because of the costs associated with such data collection, study populations are 
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relatively small (~1,700 patients) and prediction horizons relatively short (2-4 years). In 

contrast, EHR data consist of routinely collected data, have been collected for over a decade 

at some institutions, and are available for a large portion of the population, as highlighted by 

Stephan et al.30. Given this potential, we sought to explore the utility of EHRs in modeling the 

progression of AD 10 years before clinical diagnosis. We developed an automated EHR-

based cohort discovery tool for identifying AD patients and then applied this tool to a large 

cohort of patients aligned between 68-72 years. Using these data and machine learning 

techniques, we developed a model for predicting AD conversion within 10-years.  

 

While EHR data have been leveraged to model other conditions31-34, they have been largely 

underutilized in modeling AD progression. Most related studies focus on cohort 

discovery18,20,35, characterizing the incidence of AD19, and modeling the risk of dementia 

more generally while controlling for age to a lesser extent36,37. We differ from previous work 

in that we focus on only AD while prior work has focused on AD and related dementias. We 

chose to focus on AD alone, since it is the most common form of dementia. Previously 

proposed identification rules required at least five encounters with a dementia diagnosis 

code or AD associated medication20. On RDW, this rule had a lower F1 score than our best 

labeling rule.  In addition we differ from previous risk stratification models in that we consider 

AD specifically36,37, use a 10 year horizon instead of five years or less21,36, and focus on a 

wider set of input covariates or potential risk factors21,36,37. We also control for age to a larger 

extent, as it has been demonstrated that previous models performed similarly to predicting 

on age alone37,38. 
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Compared to curated datasets like ADNI, EHR data present additional challenges. In the 

context of AD, EHRs do not have a set of ground truth diagnoses. We relied on the fact that 

a subset of individuals in RDW were also volunteers in the Michigan-ADRC for whom we 

had ground truth diagnoses. In addition, data from prospective studies such as ADNI are 

collected at fixed time intervals, while EHR data are irregularly sampled.  

 

Despite these challenges, there are many advantages in working with EHR data. First, EHR 

data may contain more longitudinal data per patient than ADNI. For example, 25% of ADNI 

participants had more than 10 encounters, compared to over 50% in our study population. 

This allowed us to predict AD onset over longer horizons (10 years) with modest 

performance. Approximately half of the patients who converted between 8.4-10 years after 

alignment were correctly predicted to convert, demonstrating the possibility of early 

detection. The ability to predict over longer horizons could be crucial, as the physiological 

changes in the brain are suspected to take place at least 20 years before symptom onset1. 

Over time, as more EHR data are collected, we may be able to improve model performance 

and investigate longer time horizons. Second, study populations from ADNI are highly 

enriched with AD individuals and AD-specific data, while EHR-derived study populations are 

more likely to represent the general population and the types of data routinely available. Our 

predictive model was able to identify laboratory tests and procedures associated with AD 

onset up to 10 years in advance. While identification of EHR variables known to be 

associated with AD for model building is useful, EHR variables with no known association to 

AD could lead to the discovery of unknown biological mechanisms, interactions and novel 

biomarkers. Similarly, an EHR-based predictive tool may be used in a cost-effective strategy 
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to screen which at-risk patients should undergo testing using more invasive (e.g., CSF fluid) 

or imaging-based established biomarkers, at earlier time-points than currently practiced. 

 

Many of the features identified as important matched the literature. However, causal 

relationships between them and AD progression cannot be inferred from our study alone. In 

particular, features related to healthcare utilization appeared to be strong predictors. This 

has been supported by previous work that showed an increase in healthcare utilization one 

year before AD diagnosis39,40. In addition, many of the important features related to 

laboratory blood tests have been previously associated with AD. Specifically, Chen et al. and 

Winchester et al. found that changes in blood cell composition may be associated with AD 

development41,42. Wang et al. found an association between vitamin B12 and AD 

development43.  In line with Cao et al. and Le Page et al., we identified immune system 

biomarkers as beneficial in early detection44,45. In terms of comorbidities we identified as 

associated with increased risk, hypertension has previously been identified46. In addition, 

urine tests are associated with diabetes testing47, another related risk factor48. In terms of 

procedures, mastoid procedures could act as a possible surrogate for hearing loss, which 

has been suspected to be associated with AD49. Correlated to mastoid procedures were 

vaccinations. This may because at-risk patients are in an overall poorer state of health, 

making them more susceptible to infection and disease. As a result, clinicians may have 

been more inclined to vaccinate. 

 

Our study is not without limitation. We relied on imperfect labels from our cohort discovery 

tool. As a result, the model may not generalize to predicting the full spectrum of patients that 

convert to AD. Even with perfect performance from the model (AUROC=1), reliance on the 



 

 

 

This article is protected by copyright. All rights reserved. 

17 

cohort discovery tool limits us to an AUROC of 0.85 relative to the ground truth. In addition, 

inaccuracies in labeling the date of AD onset may introduce additional noise to the labels. 

Another limitation stems from our decision to exclude censored patients. We excluded 

censored patients since they did not have sufficient follow-up to assign a label. Going 

forward, approaches for incorporating censored patients could increase the size of the study 

population. Furthermore, although we aligned patients between 68-72 years to control for the 

effects of age on our prediction task, age appeared as an important predictor. Though 

aligning patients at a single age (e.g., 68 years) could have mitigated this effect, this 

ultimately would have decreased the size of the study population.  

 

In summary, we demonstrated the potential for EHRs as a novel source of data for 

developing models that characterize AD progression. Going forward, such analyses could be 

applied to other EHRs to generate hypotheses regarding novel early predictors and 

mechanisms of AD. In addition, longitudinal clinical studies involving early interventions may 

selectively target recruitment efforts toward „at-risk‟ patients well before symptom onset.  
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FIGURE LEGENDS 

 

Figure 1: Comparing Michigan-ADRC and RDW encounters for a sample patient. Each row 

represents a timeline for the respective dataset, and encounters are indicated with squares. 

Shading along the Michigan-ADRC timeline indicates consensus-based diagnoses. A true 

positive is counted if at least one identified AD RDW encounter overlaps with the Michigan-

ADRC defined AD window (e.g., the encounters in the blue circles). 

 

Figure 2: Cohort Discovery Results. Comparison of results from cohort discovery tools 

which tested a single EHR component, were previously published, or whose F1 score was 

greater than 0.5. Each color corresponds to the identification tool indicated in the figure 

legend. Complexity in medical decisions was measured by the amount and variety of patient 

data examined by a physician, patient risk, and treatment options. A „*‟ in the figure legend 

denotes criteria whose F1 score was significantly worse than the best cohort discovery tool.  
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Figure 3: Applying Inclusion/Exclusion Criteria. We begin with all patients in Michigan 

Medicine‟s Research Data Warehouse (RDW). Numbers in each box correspond to the 

number of patients included/excluded.  
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Figure 4: Comparison of EHR data contributions.  (a) Analysis of Individual EHR Data 
Fields. Comparison of model performance when trained with specific fields of EHR data. In 
this experiment, all data prior to alignment were used. Error bars represent 95% confidence 
intervals. 

 

(b) Analysis of Longitudinal Data. Comparison of model performance when trained on 
information from all encounters up to 1,000 prior to alignment versus training on information 
from up to 500 days before alignment and information from alignment only. In this 
experiment, data from all EHR components were used. Error bars represent 95% confidence 
intervals. The black dashed line represents the ROC curve for random predictions. 
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(c) Analysis of Individual Features. Broad categories in which the features from Table 2 

can fall. Number correspond to those found in Table 2. 
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Table 1. Select characteristics of study cohort 

Patient Demographics RDW 

N=8,474 

Number of encounters per patient pre-alignment (IQR) 11 (4-25) 

Number of encounters per patient post-alignment (IQR) 84 (36-172) 

Female (%) 54.94 

Clinical Characteristics  

Most common co-morbidity Essential hypertension 

Most common procedure Laboratory tests related to hematology 

and coagulation 

Most common medication Morphine 

AD conversion within 10 years (%) 4.14 

 

 Obtained from the inclusion/exclusion criteria in Figure 3. RDW: Michigan Medicine‟s 

Research Data Warehouse, IQR: interquartile range, AD: Alzheimer‟s disease 
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Table 2. Important features 

Feature Group Description Drop in AUROC 
(95% CI) 

1. Age between 59-68  Maximum age between 59-68 

 Age between 59-68 

0.0400 

(0.0251-0.0675) 

2. Visit type – outpatient between 250-500 
days before alignment 

 Patient has an outpatient visit 

 Time between visits is in (0, 2] 
days 

0.0180 

(0.0060-0.0360) 

3. Age between 71-72  Maximum age between 71-72 

 Age between 71-72 

0.0070 

(0.0015-0.0161) 

4. Religion value NON Patient does not report a religious 
association 

0.0047 

(0.0015-0.0128) 

5. Lab test  

32623-1 with value in (5.30, 7.4] 

21000-5 with value in (11.099, 12.9] 

4544-3 with value in (16.799, 36.8] 

777-3 with value in (25.999, 190.0] 

785-6 with value in (15.699, 29.5] 

786-4 with value in (29.799, 33.7] 

787-2 with value in (52.499, 86.3] 

789-8 with value in (2.149, 4.09] 

between 750-1000 days of alignment 

Blood measurements of  

 platelet mean volume 

 erythrocyte distribution 

 hematocrit 

 erythrocyte mean corpuscular 
hemoglobin 

0.0041 

(0.0026-0.0074) 

6. Laboratory test  

736-9 with value in (0.399, 16.6] 

5905-5 with value in (0.099, 6.1] 

Blood measurements of  

 lymphocytes 

 monocytes 

0.0037 

(0.0005-0.0093) 
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704-7 with value in (0.000, 0.7] 

731-0 with value in (0.099, 1.1] 

742-7 with value in (0.000, 0.4] 

751-8 with value in (0.099, 3.0] 

between 500-750 days of alignment 

 basophils 

 neutrophils 

7. Diagnosis code V04.8 along with 
procedures 9065x and G000x between 
250-500 days before alignment 

 Vaccines for influenza, 
pneumococcal disease 

 Revision mastoidectomy 

 Injection of samarium 
lexidrona 

0.0028 

(0.0006-00073) 

8. Non-invasive systolic blood pressure in 
(127, 136] between 500-750 days before 
alignment 

Elevated blood 
pressure/hypertension 

0.0023 

(0.0004-0.0041) 

9. Procedure 8260x and lab test 2132-9 
with value in (89.999, 382.8] between 0-
250 days before alignment 

Measurements of 

 blood cyanide 

 vitamin B12 

 transcobalamin  

0.0021 

(0.0012-0.0031) 

10. Laboratory test  

50557-8 with value negative 

27297-1 with value negative 

50561-0 with value negative 

50563-6 with value < 1mg/dl 

53327-3 with value negative 

53328-1 with value negative 

57747-8 with value negative 

between 250-500 days of alignment 

Urine measurements of  

 ketones  

 leukocyte esterase 

 protein  

 urobilinogen  

 total bilirubin  

 glucose 

 erythrocytes 

0.0021 

(0.0009-0.0044) 

Summary of the top 10 most important feature groups, as determined by permutation 
importance. The letter “x” is used to denote any character. Laboratory tests, diagnoses, and 
procedures are represented as LOINC, ICD9, and CPT codes respectively. CI: confidence 
interval 
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