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Abstract
In author name disambiguation, author forenames are used to decide which name

instances are disambiguated together and how much they are likely to refer to the

same author. Despite such a crucial role of forenames, their effect on the perfor-

mance of heuristic (string matching) and algorithmic disambiguation is not well

understood. This study assesses the contributions of forenames in author name dis-

ambiguation using multiple labeled data sets under varying ratios and lengths of

full forenames, reflecting real-world scenarios in which an author is represented by

forename variants (synonym) and some authors share the same forenames (hom-

onym). The results show that increasing the ratios of full forenames substantially

improves both heuristic and machine-learning-based disambiguation. Performance

gains by algorithmic disambiguation are pronounced when many forenames are ini-

tialized or homonyms are prevalent. As the ratios of full forenames increase, how-

ever, they become marginal compared to those by string matching. Using a small

portion of forename strings does not reduce much the performances of both heuris-

tic and algorithmic disambiguation methods compared to using full-length strings.

These findings provide practical suggestions, such as restoring initialized fore-

names into a full-string format via record linkage for improved disambiguation

performances.

1 | INTRODUCTION

In author name disambiguation, author names are the source
of ambiguity: the same names can refer to different authors
(homonym), while an author can be represented by different
name variants (synonym). At the same time, author names
provide clues to solve the ambiguity problem. In disambigua-
tion research, specifically, author names are used to decide
which pairs of instances will be disambiguated together
(blocking). In addition, many disambiguation heuristics and
algorithms rely on author name similarity to reach a decision
of match or nonmatch among blocked name instances. Dur-
ing this process, name instances that share full forenames are
often assumed to represent the same author (for example,
Cota, Ferreira, Nascimento, Gonçalves, & Laender, 2010;
Ferreira, Veloso, Gonçalves, & Laender, 2014; Kim &

Diesner, 2016; Liben-Nowell & Kleinberg, 2007; Onodera
et al., 2011; Xie, Ouyang, Li, Dong, & Yi, 2018).

Such presumed importance of forenames has, however,
been insufficiently evaluated. Many aforesaid studies have
assumed forename matching between name instances as pre-
dictive of the same author identity without empirical valida-
tion. A few studies have attempted to quantify the forename
contributions in heuristic and algorithmic disambiguation
(for example, Louppe, Al-Natsheh, Susik, & Maguire, 2016;
Müller, Reitz, & Roy, 2017; Torvik & Smalheiser, 2009),
but have not provided knowledge about how the contribu-
tion of forename can change in comparison with other fea-
tures such as coauthorship, title, and venue under different
ambiguity settings like varying full forename ratios. As a
result, it is not well known how many performance gains
can be obtained by using forenames in blocking name
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instances and calculating similarity among them. This defi-
ciency of knowledge can be an obstacle to improving future
disambiguation efforts.

The present study tries to address the deficiency by
assessing the contributions of forenames in both heuristic
and algorithmic disambiguation using various labeled data
sets. For this purpose, name ambiguity settings are simulated
in two ways. First, the ratios of full forenames in each data
set are changed from 0% (all initialized) to 100%. Second,
forename strings are stripped into 1 through 10 characters.
These settings reflect the real-world scenario in which an
author can be represented by different forename variants
(synonym) and two or more authors share the same fore-
names (homonym). Next, the performances of simple string-
based matching (heuristic) and machine-learning-based
(algorithmic) disambiguation approaches are evaluated
under each setting. In addition, for algorithmic disambigua-
tion, the forename's feature importance in relation to other
features is measured by the impurity change in Random For-
est. Findings from this study will help us better understand
the effectiveness of forenames in author name disambigua-
tion and provide practical implications for improving future
disambiguation studies. In the following section, related
work is discussed to contextualize this study.

2 | RELATED WORK

A common use of forenames in author name disambiguation
is to collect name instances to be compared for disambigua-
tion into a block (blocking). Many studies have blocked
name instances that share a full surname and the first fore-
name initial, while several others have also used the full
forename + surname for blocking (Cota et al., 2010; Liu, Li,
Huang, & Fang, 2015; Wang, Tang, Cheng, & Yu, 2011;
Zhu et al., 2018). Another use of forenames is to calculate
the forename similarity between a pair of name instances in
a block, whose match or nonmatch is decided heuristically
(for example, match if above a certain threshold; for exam-
ple, Kim & Diesner, 2016; Martin, Ball, Karrer, & Newman,
2013) or by machine-learning algorithms trained on the sim-
ilarity scores of instance pairs labeled “match” or “non-
match” (for example, Louppe et al., 2016; Song, Kim, &
Kim, 2015). Some algorithmic disambiguation studies have
investigated which feature contributes most to disambigua-
tion results. Coauthorship has been reported to be the most
effective (Liu et al., 2014; Onodera et al., 2011; Torvik,
Weeber, Swanson, & Smalheiser, 2005; Wang et al., 2011).
Conversely, affiliation information has been found to be
more important than coauthorship (Song et al., 2015; Wu &
Ding, 2013).

Although various features have been evaluated for their
impact on disambiguation, the effectiveness of forenames

has been insufficiently investigated. Many studies have
assumed that two name instances belong to the same author
if they share a forename (and surname) or assigned to the
pair a higher similarity score than when the pair is similar
over other features (for example, Cota et al., 2010; Ferreira
et al., 2014; Han, Giles, Zha, Li, & Tsioutsiouliklis, 2004;
Kim, 2018; Kim & Diesner, 2016; Onodera et al., 2011; Xie
et al., 2018). However, those studies have not validated such
presumed effectiveness of forename strings using labeled
data, especially in comparison with other features.

A small number of studies have tested how much the
forename string affects author name disambiguation. For
example, Han et al. (2004) stripped all forenames, keeping
the first three characters left (for example, “Mark E. J. New-
man” ! “Mar Newman”), and found that such stripping
produced a better disambiguation performance than a base-
line in which all forenames were initialized (for example,
“Mark Newman” ! “M Newman”). Another example is
Louppe et al. (2016), who found that full forenames
improved marginally disambiguation results in a data set
where roughly 40% of name instances have full forenames.
Recently, forename string matching has been shown to be
highly accurate in disambiguating names (Backes, 2018;
Müller et al., 2017). These studies, however, analyzed a sin-
gle data set or a specific name ambiguity condition. Thus,
they cannot tell us how their findings hold true for data sets
with different forename conditions such as varying ratios
and lengths of full forenames. Furthermore, forename's con-
tributions in author name disambiguation have rarely been
compared across heuristic and algorithmic approaches.

As such, the effectiveness of forenames in author name
disambiguation is an underresearched topic. Studying the
topic has a potential to provide actionable insights into
improving author name disambiguation. Methodologically, a
proper understanding of forename's impact on disambigua-
tion can lead to developing simpler but more scalable disam-
biguation approaches based on forenames than many current
methods mining multiple features at the expense of a high
computational cost. For example, drawing on the finding
that coauthorship plays an important role in distinguishing
authors, several coauthorship-focused algorithms have been
proposed (for example, Kang et al., 2009; Shin, Kim,
Choi, & Kim, 2014) and implemented on a digital library
scale (for example, Reitz & Hoffmann, 2013).

Another reason to pay attention to forenames in author
name disambiguation is that full forenames in digital librar-
ies keep increasing in number. Figure 1 shows yearly and
cumulative ratios of name instances with full forenames (cir-
cles), as recorded in two bibliographic data sets—
MEDLINE1 (87.4 million name instances) and Microsoft

1ftp://ftp.ncbi.nlm.nih.gov/pubmed/baseline. This study used the 2016
baseline.
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Academic Graph2 (MAG; 294.6 million)—over the
1950–2015 period. The yearly ratios reached roughly 90% in
MEDLINLE and 80% in MAG, while the cumulative ratios
were 46% and to 76%, respectively, in 2015. The abrupt
change around 2002 in MEDLINE is due to the indexing pol-
icy change by the National Library of Medicine to record
author forenames in a full-string format, if available. Contrary
to the trends, many disambiguation studies have focused on
solving ambiguity problems in which initialized forenames
are dominant (Müller et al., 2017) or full forenames are avail-
able for most name instances (see Table 1), constraining the
applicability of their models and findings to disambiguating
names in libraries in which full forenames are becoming dom-
inant, but not complete for all name instances.

For these reasons, this study aims to evaluate the effec-
tiveness of forenames in author name disambiguation by
measuring the performance changes of heuristic and algo-
rithmic methods in three labeled data sets under varying
ratios of full forenames and lengths of forename strings. In
each setting, this study quantifies the relative contributions
of forenames in algorithmic disambiguation in comparison
with other features using the feature importance measure-
ment in Random Forest. In the following section, data sets,
machine-learning setups, and evaluation measures are
explained in detail.

3 | METHODS

3.1 | Data Sets

The impact of forename string on author name disambigua-
tion is measured on four labeled data sets that have been
widely used in many studies, separately or jointly (for
example, Cota et al., 2010; Ferreira et al., 2014; Kim &
Kim, 2018; Momeni & Mayr, 2016; Müller et al., 2017;
Pereira et al., 2009; Santana, Gonçalves, Laender, &
Ferreira, 2017; Shin et al., 2014; Wu, Li, Pei, & He, 2014;
Zhu et al., 2018).

PENN3: Labeled for Han et al. (2004) by researchers
at the Pennsylvania State University, this data set was
originally comprised of 8,453 name instances with their
coauthorship, article title, and venue information. As its
original version contained duplication and labeling errors,
several studies modified the data set before use (for
example, Cota et al., 2010; Kim & Kim, 2018; Santana
et al., 2017; Shin et al., 2014). This study reuses one of
recent revisions by Kim (2018) in which 5,018 name
instances and their associated metadata are linked to
DBLP records after deduplication and verification of
correctness.4

TABLE 1 Summary of labeled data sets

Data Year created
No. of name instances
for disambiguation

No. of name instances
including coauthors

Forename string type (%)

Null All initialized One or more full

PENN 2004 5,018 12,730 9 (0.07) 454 (3.57) 12,267 (96.36)

KISTI 2010 41,673 116,236 12 (0.01) 2,979 (2.56) 113,245 (97.43)

AMINER 2011 7,528 26,560 16 (0.06) 1,127 (4.24) 25,417 (95.70)

GESIS 2015 29,965 112,318 20 (0.02) 1,183 (1.05) 111,116 (98.92)

FIGURE 1 Yearly and cumulative percentage of full forenames in two large-scale bibliographic databases

2https://www.openacademic.ai/oag/. This study used the 2016 release.

3http://clgiles.ist.psu.edu/data/nameset_author-disamb.tar.zip
4https://doi.org/10.6084/m9.figshare.6840281.v2
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KISTI5: This consists of 41,673 name instances of 6,921
authors and their associated information such as
coauthorship, article title, publication year, and venue, which
were extracted from DBLP (Kang, Kim, Lee, Jung, & You,
2011). Name ambiguity was resolved by researchers at the
Korea Institute of Science Technology & Information
(KISTI) and Kyungsung University through combining
Google search results and manual disambiguation outcomes.

AMINER6: This data set was labeled for Wang et al.
(2011) and updated later to train and test disambiguation
algorithms for AMiner, a digital library aggregating publica-
tion records from several computing digital libraries (Tang
et al., 2008). The data set contains 7,528 homonym instances
(of 1,546 authors) that are associated with coauthorship,
affiliation, article title, publication year, and venue.

GESIS7: Created in the GESIS, Leibniz Institute for the
Social Sciences, this labeled data set is a collection of 5,408
authors who have homonyms and their publication records
in DBLP (Momeni & Mayr, 2016). For this study, espe-
cially, 29,965 name instances of 2,580 authors in the Evalua-
tion Set are used. In addition, the original DBLP records
(2015 May version) are linked to the selected name instances
to associate them with title and venue information that is not
recorded in GESIS.

Table 1 reports the number of name instances in each
data set and the ratios of full forenames that are counted
from author names to be disambiguated and their coau-
thors. If a name instance has no forename, “Null” is
assigned. According to the table, about 96–97% of name
instances in each data set are recorded with one or more full
forenames.8 Reflecting a real-world scenario in which fore-
names are recorded in an initialized-string (for example, C.
Brown) or a full-string (Charles Brown) format, this study
differentiates the ratios of full forenames in each data set
from zero to 100% of name instances that have full fore-
names with a 10% increment. For example, if 10% of name
instances are chosen to be with full forenames, the fore-
names of the remaining name instances (90%) are initial-
ized by keeping only the first forename initial. During this
process, some name instances of an author may be initial-
ized, while others are not. This selection of 10–90% of
name instances in each data set is conducted randomly and
repeated 10 times.

3.2 | Machine-Learning Setups

Blocking: Only name instances that match on a full surname
and the first forename initial are compared pair-wisely for dis-
ambiguation. This blocking method has been commonly used
in disambiguation studies because it can improve computa-
tional efficiency by reducing the number of comparable pairs
among name instances. For example, if we want to disambig-
uate 1,000 name instances, we need to compare 499,500 pairs
without blocking, but 49,500 pairs (≈ 1/10) with 10 blocks
each containing 100 comparable name instances. Blocking
can miss instance pairs that refer to the same author but
belong to different blocks. Misidentification of authors due to
this problem is, however, acceptable with, for example, 1.2%
of errors (Torvik & Smalheiser, 2009).

Pairwise Similarity Calculation: Four features—fore-
name, coauthor, title, and venue—are used for similarity cal-
culation between name instances because they are common
to all our data sets and have been used in many disambigua-
tion studies (Schulz, 2016; Song et al., 2015). Two name
instances in a block are compared for similarity over these
four features as follows. Each name string is lower-cased,
converted into ASCII format, and segmented into an array of
2–4-gram, following several studies (Han, Xu, Zha, & Giles,
2005; Kim & Kim, 2018; Kim, Kim, & Owen-Smith, 2019;
Louppe et al., 2016; Treeratpituk & Giles, 2009). For exam-
ple, “Mark” is converted into a list of “ma,” “ar,” “rk,”
“mar,” “ark,” and “mark.” Then a cosine similarity of the
term frequency (TF) between the 2–4-gram lists of two name
instances is calculated as a forename similarity score for the
instance pair. The series of character conversion, n-gram
segmentation, and TF-based cosine similarity calculation are
applied to other features. For title words, stop-words9 are fil-
tered and each remaining word is stemmed by Porter's algo-
rithm (Porter, 1980)10 before similarity calculation.

Algorithmic Model Learning: Both blocking and feature
similarity calculation are conducted on name instances in
two subsets—training and test (validation) sets—that are
randomly split (50–50%) from each data set with different
ratios (0–100%) of full forenames. The similarity scores
among name instance pairs over four features are fed into
five algorithms—Random Forest, Naïve Bayes, Logistic
Regression, Support Vector Machine, and Gradient Boosting
Trees—that have been used as baselines or the best classi-
fiers in many disambiguation studies (for example, Han
et al., 2004, 2005; Kim et al., 2019; Kim, Sefid, Weinberg, &
Giles, 2018; Levin, Krawczyk, Bethard, & Jurafsky, 2012;
Louppe et al., 2016; Santana et al., 2017; Song et al., 2015;
Torvik & Smalheiser, 2009; Treeratpituk & Giles, 2009;
Wang et al., 2012). Each algorithm learns disambiguation

5http://www.lbd.dcc.ufmg.br/lbd/collections/disambiguation/DBLP.tar.gz/
at_download/file
6http://arnetminer.org/lab-datasets/disambiguation/rich-author-
disambiguation-data.zip
7https://doi.org/10.7802/1234
8Surname and forename parts of an author name instance are already
distinguished in PENN, KISTI, and AMINER, but not in GESIS. After a
name instance in GESIS is separated by spaces, its last token (unless it is
one-character long or contains suffices like Jr, II, etc.) is assumed as a
surname and remaining tokens as forenames in this study.

9https://github.com/stanfordnlp/CoreNLP/blob/master/data/edu/stanford/nlp/
patterns/surface/stopwords.txt
10https://tartarus.org/martin/PorterStemmer/
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patterns using the feature similarity scores generated above
for name instance pairs labeled as match (positive pairs) or
nonmatch (negative pairs). To reduce computational burden
from running Support Vector Machine, 10–20% of pairs are
randomly selected for training.

Prediction and Clustering: Based on disambiguation models
learned from training data, each algorithm assigns a “match”
probability score (ranging from 0 to 1) to instance pairs in test
data. This prediction score is used as a similarity distance
between the pair to be fed into a hierarchical agglomerative
clustering algorithm, which groups name instances into a clus-
ter if their distances are above a certain threshold. Following
previous studies (Kim & Kim, 2018; Levin et al., 2012; Liu
et al., 2014; Louppe et al., 2016; Torvik & Smalheiser, 2009),
this threshold is decided by trying various distance values
between 0 and 1 in each block and choosing one that produces
the best clustering result (measured by B-Cubed F1 explained
below) for the block.11 Meanwhile, to evaluate how a heuristic
performs in comparison with algorithmic disambiguation,
name instances in test data that match on all available name
(surname + forename) strings are assumed to refer to the same
author. This string-based matching of authors has been domi-
nantly used as a heuristic disambiguation method in
bibliometrics (for details, see Kim and Diesner [2016]).

3.3 | Performance Evaluation

As a result of the algorithmic and heuristic disambiguation
above, name instances decided to refer to the same author
are gathered into a cluster. These clusters predicted by a dis-
ambiguation method from a test data set are compared to
truth clusters that are generated from labels of name
instances in the same test data set. Disambiguation perfor-
mance is evaluated by B-Cubed (B3), following previous
studies (Delgado, Martínez, Montalvo, & Fresno, 2017;
Kim & Kim, 2018; Levin et al., 2012; Louppe et al., 2016;
Momeni & Mayr, 2016; Müller et al., 2017; Qian, Zheng,
Sakai, Ye, & Liu, 2015). This measure consists of three
parts—B3 Recall (R), B3 Precision (P), and B3 F (F)—
defined as follows (Levin et al., 2012):

R=
1
N

X

t2T

P tð Þ\T tð Þj j
T tð Þj j ð1Þ

P=
1
N

X

t2T

P tð Þ\T tð Þj j
P tð Þj j ð2Þ

F =
2×R×P
R+P

ð3Þ

Here, t is a name instance in truth clusters T. N is the num-
ber of all name instances in truth clusters (T). T(t) is a truth
cluster that contains a name instance t, while P(t) a
predicted cluster that contains the name instance t. B3 mea-
sure is calculated using the fast algorithm proposed in
Kim (2019).

3.4 | Feature Importance Measure

To assess each feature's contribution in algorithmic disam-
biguation, the feature importance measure in Random Forest
is used because it provides more stable results than the
sequential-forward/backward-elimination method (Guyon &
Elisseeff, 2003; Saeys, Abeel, & Van de Peer, 2008). When
implemented on training data, Random Forest calculates
how much the tree nodes that use a specific feature—one of
forename, coauthor, title, and venue—reduce on average
impurity across all trees in the forest.12 If a feature decreases
mean impurity more than other features, the feature is con-
sidered more important than others. Mean impurity scores
reduced by each feature are scaled so that the sum of all fea-
tures' scores equals one, and each feature is assigned the
rescaled score as its feature importance score.

3.5 | Name Ambiguity Type

To see how changing full forename ratios affects the compo-
sition of name ambiguity in each data set, four name ambi-
guity types are counted per instance pair. The four types
include: homonym (same name strings representing different
authors), synonym (different name strings representing same
authors), SN-SA (same name strings representing same
authors), and DN-DA (different name strings representing
different authors; Louppe et al., 2016). Note that ambiguity
type is decided for an instance pair because the feature simi-
larity calculation in algorithmic disambiguation is conducted
at an instance-pair level within a block in this article.

4 | RESULTS

Figure 2 reports the performance results by heuristic and
algorithmic disambiguation in PENN. The results by simple
string matching are shown in circles (String), while those by

11All classifiers were implemented using Scikit-learn packages. An optimal
threshold for a hierarchical agglomerative clustering was decided by
implementing the code at https://github.com/glouppe/paper-author-
disambiguation (Louppe et al., 2016).

12The 500 trees were used after a grid search for Random Forest. Gini
Impurity was chosen for split quality measure. Other notable settings
include: L2 Regularization with class weight = 1 for Logistic Regression,
Gaussian Naïve Bayes with maximum likelihood estimator for Naïve Bayes,
Linear Kernel for SVM, and 500 estimators (max depth = 9; learning
rate = 0.125) for Gradient Boosting.
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algorithmic disambiguation are in x-crosses for Logistic
Regression (LR), squares for Naïve Bayes (NB), triangles
for Random Forest (RF), dashed lines for Support Vector
Machine (SVM), and crosses for Gradient Boosting Trees
(GB). Full forenames in each data set are randomly initial-
ized with varying ratios between 0% and 100%. Then each
data set is randomly divided into equal-sized training and
test (validation) sets for machine learning. Clustering out-
comes by heuristic and algorithmic disambiguation are eval-
uated on test sets. The procedure of randomized forename-
initialization and data-split is repeated 10 times per full fore-
name ratio, which changes incrementally by 10%. All data
points in Figure 2a–c represent B-cubed precision, recall,
and F1 scores averaged over these 10 iterations per ratio.
Standard deviations are not reported, as they are negligible
(less than 2% of errors).

4.1 | Heuristic Disambiguation

The circles in Figure 2 represent the performance of heuristic
disambiguation in PENN which is evaluated by precision
(Figure 2a), recall (Figure 2b), and F1 (Figure 2c). In
Figure 2a, precision hits below 0.1 when all forenames are

initialized (x = 0%), meaning that the heuristic method
incorrectly decides name instances to refer to the same
author in most cases. In contrast, such an initialization of all
forenames leads to an almost perfect recall (0.99 in
Figure 2b), meaning that name instances referring to the
same authors are almost always found in the same clusters.
But this low-precision and high-recall results in a low F1
score (harmonic mean of precision and call) around 0.2 in
Figure 2c.

As full forename ratios increase, however, mean preci-
sion scores by heuristic disambiguation increase almost line-
arly up to 0.94 in Figure 2a. This means that PENN name
instances sharing full forenames tend to represent the same
author (≈ true-positives) and thus, as more name instances
have full forenames, overall precision of heuristic disambig-
uation also increases. In contrast, recall shows a U-shaped
curve in Figure 2b. Let us assume that 10 exactly same
names of an author are being disambiguated. If forenames of
five instances are intact and the remaining's forenames are
initialized, string matching will divide the truth cluster
(10 instances) into two predicted clusters of the same size,
comprised of instances that share full forenames and initial-
ized forenames each. If initialized forenames increase from

FIGURE 2 (a–c) Performance of heuristic and algorithmic disambiguation, (d) feature importance, and (e) pairwise ambiguity types per full
forename ratio for PENN
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this equilibrium, the size of a cluster where name instances
share the same initialized forename will increase, producing
higher recall (more true-positives included in the larger clus-
ter) with low precision (more false-positives included, too).
This explains the left side of the U-shaped curve. In contrast,
if full forenames increase from this equilibrium, the size of a
cluster where name instances share the same full forename
will increase, producing higher recall but accompanied by
high precision (fewer false-positives). This explains the right
side of the U-shaped curve. The U-shaped curve in
Figure 2b results from this process happening across blocks
in PENN. Importantly, this U-shaped curve in conjunction
with the upper-right moving precision plot in Figure 2a indi-
cates that many authors in PENN are distinguishable by their
full forename strings: the simple heuristic using full fore-
names can achieve high mean precision (0.94) and recall
(0.95) scores.

4.2 | Algorithmic Disambiguation

Meanwhile, the performance scores of algorithmic disambigu-
ation in PENN increase as more full forenames become avail-
able (while other features are the same), across precision,
recall, and F1. This is represented by five plots of x-crosses
(LR), squares (NB), triangles (RF), dashed lines (SVM), and
crosses (GB) moving toward the upper-right corner in
Figure 2a–c. For example, mean precision scores hover
around 0.6–0.7 when all forenames are initialized but rise up
to 0.94 (LR, RF) and 0.81 (NB) when all forenames are in a
full-string format (Figure 2a). Also, mean recall scores start
below 0.6 but increase above 0.95 (LR, RF, SVM, and GB)
and 0.86 (NB) as full forename ratios increase (Figure 2b).
These observations mean that full forenames are beneficial to
algorithmic disambiguation in PENN.

Such results can be better characterized when compared
to the performance of heuristic disambiguation. Regarding
precision (Figure 2a), especially, machine learning performs
better than the heuristic when many forenames are initial-
ized. This indicates that algorithms learn the patterns of true-
positive matching effectively using other features such as
coauthorship, title, and venue. If most forenames are in a
full-string format, however, the heuristic method achieves
high precision similar to that achieved by algorithmic disam-
biguation, even defeating NB after the 60% ratio. This is
shown in Figure 2a by the decreasing gaps (y-axis) between
data points of String (circles) and those of LR (x-crosses),
NB (squares), RF (triangles), and GR (crosses) over the
increasing full forename ratios (x-axis). This implies that
precision gains by algorithmic disambiguation when com-
pared to the heuristic can be substantial under scarcity of full
forenames but become smaller with the increasing full fore-
name ratios in the case of PENN.

Regarding recall, algorithmic disambiguation splits many
name instances of an author into different clusters (≈ false-
negatives) when initialized forenames are prevalent. As full
forenames increase, however, algorithmic disambiguation
improves in recall, surpassing the heuristic after the 50%
ratio (except NB). This shows that increasing full forename
ratios is also beneficial to algorithms in terms of recall.
When precision and recall are considered together
(Figure 2c), more full forenames are good for both heuristic
and algorithmic disambiguation; their performance plots all
move toward the upper-right corner. Such a favorable impact
becomes more pronounced for the heuristic method because
its performance almost pars the algorithmic methods when
many forenames are in a full-string format.

4.3 | Feature Importance

The aforesaid observations imply that when full forenames
are prevalent in PENN, features other than forename may
not improve substantially machine-learning performances.
To check whether this proposition is true, the importance of
each feature is evaluated using RF. Figure 2d reports the
evaluation results (y-axis) for forename (black), coauthor
(dotted), title (diagonal), and venue (gray) across varying
full forename ratios (x-axis). This evaluation is conducted on
the same training data sets for Figure 2a-c, and data points
are mean scores.

Figure 2d shows that when all forenames are initialized
(x = 0%), the feature importance of forename is zero. This is
expected. As matched (positive) and nonmatched (negative)
name instance pairs all share the same initialized forename in a
block, forenames cannot provide any distinctive information.
Meanwhile, title (0.42) contributes the most to disambiguation
performance, followed by coauthor (0.35) and venue (0.22).
As the full forename ratios increase, however, forename also
increases in importance, surpassing venue, title, and coauthor
one by one when the full forename ratios reach 70%, 80%, and
90%, respectively. This confirms the proposition above that
the relative contribution of features other than forename
decreases when the full forename ratios increase.

4.4 | Name Ambiguity Type

Figure 2e presents how name ambiguity types in PENN
change over the ratios of full forenames. For this, one of four
ambiguity types is assigned to a pair of name instances
within a block and the ratios of each type over the total of
instance pairs are reported after averaged over 10 iterations
per full forename ratio. According to the figure, most name
instances in PENN are homonymous (black bar) when all
forenames are initialized (0%). This is anticipated because
every instance pairs in a block will have identical initialized
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forename strings regardless of whether they refer to the same
or different authors. As there is no string variation for initial-
ized forenames within a block, synonym and DN-DA types
do not exist. As the ratios of full forenames increase, the
ratios of SN-SA and DN-DA also increase, while homony-
mous and synonymous pairs decrease in number. This
means that many instance pairs become unambiguous (that
is, if they have identical name strings, they refer to the same
author, and if not, they do not) as more forenames are
recorded in a full-string format. This also supports the obser-
vation above that string-based matching of authors could
perform well with increased full forenames.

4.5 | Cases of KISTI, AMINER, and GESIS

Figure 3 reports disambiguation performance, feature impor-
tance, and ambiguity type composition for KISTI. Overall,
the results for KISTI are almost the same as those for PENN.
Increasing the full forename ratios improves both heuristic
and algorithmic disambiguation performances. The feature
importance of forenames also increases with larger full fore-
name ratios. The U-shaped recall curve by the heuristic
matching shows that full forenames can detect almost all

(≈ high recall) and only (≈ high precision) name instances
of distinct authors in most cases. Like PENN, as the full
forename ratios increase, unambiguous instance pairs (SN-
SA and DN-DA) increase, too.

A few differences between KISTI and PENN are worth
noting. First, both heuristic and algorithmic disambiguation
results show higher mean precision (Figure 3a), recall
(Figure 3b), and F1 (Figure 3c) than those for PENN when
all forenames are initialized. In addition, the performance
gaps between the heuristic and algorithmic methods are
smaller than those for PENN at the 0% of full forename level
regarding both precision and recall. These observations indi-
cate that when blocked (x = 0%), name instances in KISTI
are less ambiguous than those in PENN. This is confirmed
from Figure 3e, where with all forenames initialized, almost
40% of name instance pairs in a block belong to the ambigu-
ity type of SN-SA, in contrast to the case of PENN, where
the SN-SA type makes up less than 5% of all pairs with the
0% full forenames in Figure 2e. Regarding feature impor-
tance (Figure 3d), forename in KISTI becomes more impor-
tant than other features at lower full forename ratios than
PENN: when compared by bar length, forename surpasses
venue in relative importance at 20% ($ 70% in Figure 2d),
title at 60% ($ 80%), and coauthor at 60% ($ 90%). This

FIGURE 3 (a–c) Performance of heuristic and algorithmic disambiguation, (d) feature importance, and (e) pairwise ambiguity types per full
forename ratio for KISTI
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means that full forenames in KISTI are more effective in
algorithmic disambiguation than those in PENN.

Unlike PENN and KISTI, however, the results for
AMINER in Figure 4a show that increasing full forenames
barely improves the string matching performance (circles
moving flat), meaning that the forename string difference
does not distinguish most name instances in AMINER. This
is expected because AMINER is designed for homonym dis-
ambiguation: most name instances in a block share the same
name string. Thus, two name instances may or may not refer
to the same author regardless of whether they match on fore-
names, which makes the string-based matching ineffective
in identifying matched instances. This is also supported by
the composition of ambiguity types in Figure 4e. Even if the
ratios of full forenames increase, the ratios of unambiguous
pairs (SN-SA and DN-DA) do not change much, which is
contrasted with the dramatic increase of the two types in
PENN and KISTI.

Full forename ratios, however, affect the recall of heu-
ristic disambiguation by dividing a truth cluster into two
disambiguated clusters (one containing instances with ini-
tialized forenames and the other with full forenames), gen-
erating a U-shaped recall curve as observed in Figures 2b
and 3b. Due to this U-shaped recall curve (circles) in
Figure 4b, the F1 plot (circles) in Figure 4c contains a

slightly downward curvature, although the precision plot
(circles) in Figure 4a is nearly flat. In relation to the U-
shaped curve, Figure 4e shows that as full forenames
increase, the ratios of synonyms also increase, reaching a
peak when the full forename ratio is 50%, and then begin
to decrease. This makes sense because at the peak point
(50% of full forenames), an author's name instances are
likely to be randomized into two halves with full or initial-
ized forenames, creating the largest number of synony-
mous instance pairs (which leads to the lowest recall in
Figure 4b).

The homonym-centric name composition in AMINER
also affects the performance of algorithmic disambiguation:
they do not change much over various full forename ratios.
This is visualized by plots of LR, NB, RF, SVM, and GB
that move horizontally without fluctuation. In addition, the
mean precision, recall, and F1 scores of heuristic and algo-
rithmic disambiguation do not converge even when all fore-
names are in a full-string format, and the plots of
algorithmic disambiguation appear mostly above those of
the heuristic method. This means that in homonym disam-
biguation, algorithmic methods can bring substantial contri-
butions to disambiguation results even when full forenames
are abundant. A practical implication follows that effective-
ness of forename in author name disambiguation should be

FIGURE 4 (a–c) Performance of heuristic and algorithmic disambiguation, (d) feature importance, and (e) pairwise ambiguity types per full
forename ratio for AMINER
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understood in conjunction with the characteristics of name
ambiguity to be solved by a proposed method.

The feature importance evaluation reported in Figure 4d
shows that when 50–60% of forenames are in a full-string
format, Forename (black bar) reaches the highest (0.25)
level of importance and its importance decreases regardless
of whether the ratios decrease or increase from the 50–60%

ratio point. This might be because at these full forename
ratios, training instance pairs have the largest variations of
similarity over forename, which makes learning by RF
more sensitive to them than when the algorithm is trained
on pairs with smaller forename similarity variations.
Despite such variations, however, forename brings null or
small contributions to disambiguation results, which are
mostly affected by other features (coauthor, title, and
venue) combined.

This observation is also explicable by Figure 4e. As full
forename ratios increase, synonymous pairs increase, too.
This means that name variants matter for algorithms to learn
disambiguation patterns. The combined ratios of ambiguous
instance pairs (homonyms + synonyms), however, are
almost constant, which seems to set performance bounds of
algorithmic disambiguation. This is contrasted with the cases
of PENN and KISTI: as the ratios of synonymous pairs
change over full forename ratios, the combined ratios of
homonyms and synonyms decrease greatly.

In Figure 5, another homonym-centric data set, GESIS,
shows similar patterns as AMINER. Algorithmic disambigu-
ation performance does not change dramatically over full
forename ratios, while heuristic disambiguation shows the
U-shaped recall performance (Figure 5a–c). The feature

FIGURE 5 (a–c) Performance of heuristic and algorithmic disambiguation, (d) feature importance, and (e) pairwise ambiguity types per full
forename ratio for GESIS

FIGURE 6 Cumulative ratio of name instances with max N-gram
forename
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importance of full forenames is limited, recording below
20% at best (Figure 5d). A major difference between GESIS
and AMINER lies in that, for GESIS, the ratios of ambigu-
ous name pairs decrease substantially (72% ! 45%) with
increased full forenames (0% ! 100%) compared to
AMINER in Figure 5e. This may explain why both heuristic

and algorithmic disambiguation performs better when more
full forenames become available.13

FIGURE 7 Performance of heuristic and algorithmic disambiguation per forename N-gram

13This study compares instance pairs within a block where they match on
full surnames and initialized first forenames, following the common practice
in disambiguation research. Although AMINER and GESIS were created to
disambiguate names that match on full names, the blocking also compares
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4.6 | Performance Evaluation on Forename n-
grams

So far, this study shows that full forenames can be effective in
disambiguating author names heuristically and algorithmically
by varying the full forename ratios in labeled data sets.
Another setting of interest is to change the lengths of forename
strings to see how incompletely recorded forenames can affect
disambiguation performance (for example, Charles Charlie
Brown, Charles Brown, and Charles C. Brown). For this, the
lengths of forename characters are counted in each data set.
Nonalphabetical characters (for example, space, period, apos-
trophe, and dash) are deleted before counting. Figure 6 reports
the cumulative ratios (y-axis) of name instances with n-gram
forename strings (x-axis) in each data set. For example, in
AMINER, about 52% (0.5161 on y-axis) of name instances
have forenames with five or fewer alphabetical characters
(max 5-gram on x-axis). Half or more name instances have six
or fewer characters in PENN, KISTI, and GESIS.

Next, every forename string in each data set is truncated
into 1 to 10-gram, if available. For example, a name string
“Charles Charlie Brown” is stripped into “c brown” (1-gram),

“ch brown” (2-gram), “cha brown” (3-gram) … “charles cha
brown” (10-gram). Then each data set is randomly split into
training and test sets 10 times per n-gram. Figure 6 shows the
performance results (y-axis) by heuristic (circles) and algorith-
mic (triangles) disambiguation evaluated on 10 test sets per n-
gram (x-axis) for each data set. Each row consists of three
subfigures reporting mean precision, recall, and F1. For sim-
plicity, only RF results are reported for algorithmic disambig-
uation. On x-axes, “ALL” means forename strings are used
without any truncation, which corresponds to the cases where
all available forenames have full strings (x = 100%).

According to Figure 7, the performances of both heuristic
and algorithmic methods tested on PENN and KISTI
improve as the number of forename characters increases. For
example, in subfigures for PENN, mean precision scores by
the heuristic method (String) start below 0.1 with 1-gram,
but increase up to 0.93 with 10-gram. Here, the case of all
forenames being 1-gram (x = 1) corresponds to the case
where all forenames are initialized. An exception to this
increasing trend by the heuristic disambiguation is its recall
results: 1-gram segmentation (= all forenames initial-
ized = blocking) produces the highest recall scores, which
decrease very slightly as the n-gram size increases. This is
because small numbers of authors in each data set are origi-
nally recorded in different forename formats; forename

name instances with different full forenames if they share the full surname
and initialized forenames, generating DN-DA instance pairs in AMINER
and GESIS.

FIGURE 8 Feature importance of
algorithmic disambiguation per forename
N-gram
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matching cannot achieve a perfect recall. Heuristic and algo-
rithmic disambiguation contributes little or slightly to disam-
biguation results for AMINER and GESIS, regardless of
forename lengths. This is in line with the observations in
Figure 4 and Figure 5. As most name instances in a block
share forenames, truncating their forename strings for an n-
gram always results in the same situation where most name
instances in a block have the same forenames.

The most notable observation in Figure 7 is that the effect
of forename strings shows saturation roughly after 5-gram
for KISTI and 6-gram for PENN. In other words, the perfor-
mances of heuristic and algorithmic disambiguation methods
do not improve much with longer forename strings once the
maximum lengths of forenames reach 5-gram (KISTI) and
6-gram (PENN). This means that we need part of the fore-
name strings to achieve disambiguation performances similar
to those obtainable with full-length forenames. Also, note
that roughly half of all names instances in each data set have
forenames with five or fewer (KISTI) and six or fewer
(PENN) characters (see Figure 6). These two observations
imply that if a majority of name instances in KISTI and
PENN are recorded correctly within their first five or six
forename characters, the remaining forename characters,
however complete they are, do not affect much disambigua-
tion results. Feature importance evaluation in Figure 8 sup-
ports this implication, showing that with the increased
lengths, the Forename's feature importance (represented by
black bars) increases greatly in PENN and KISTI, but mini-
mally after the saturation point of 5-gram (KISTI) and
6-gram (PENN). In addition, the ratios of ambiguity types in
Figure 9 corroborate this finding by showing that after those

n-grams, unambiguous name pairs (SN-SA and DN-DA)
constitute most of name instance pairs in KISTI and PENN.

5 | CONCLUSION AND DISCUSSION

This study evaluated how the ratios of full forenames affect
the performances of string-based matching (heuristic) and
algorithmic disambiguation methods. Using four labeled data
sets (PENN, KISTI, AMINER, and GESIS) in which full
forenames were initialized with varying ratios, this article
showed that increasing the full forename ratios improves
greatly the performances of both heuristic and algorithmic
methods (PENN and KISTI), but hardly does so for the spe-
cial cases where most name instances in a block have the
same forenames (AMINER and GESIS). The performance
improvement by full forenames in PENN and KISTI was
confirmed by the boosted feature importance of forenames
with increased full-string forenames. In addition, this study
showed that such effectiveness of full forenames is obtain-
able using 5–6 characters of forename strings.

These findings provide practical implications about how
to improve author name disambiguation. First, as seen in
Figures 2 and 3 name instances can be difficult to disambig-
uate when their forenames are initialized, but less challeng-
ing when full forenames are available for many instances.
This implies that disambiguation performance can be
enhanced by restoring initialized forenames into a full-string
format. For example, MEDLINE name instances in pre-
2002 publications in Figure 1 would be disambiguated better
if many initialized forenames were replaced by full

FIGURE 9 Ratio of pairwise ambiguity types per
forename N-gram

KIM AND KIM 851



forenames by, for example, linking MEDLINE records to
external data sources that may contain full forenames.
Appendix A1 demonstrates this potential.

Another implication from Figures 2 and 3 is that perfor-
mance gains from algorithmic disambiguation can become less
substantial compared to simple string-based matching as full
forename ratios increase. This suggests that the impact of fore-
names on disambiguation results needs to be evaluated before
a disambiguation study claims methodological improvements
from complicated algorithms or elaborately engineered fea-
tures. For this, a new disambiguation method may be evalu-
ated under initialized versus full forename settings followed
by feature importance assessment or in comparison with
results disambiguated by string-based matching. Especially,
the latter suggestion supports the idea that string-based
matching results need to be baselines in evaluating author
name disambiguation (Backes, 2018).

Third, name instances may be blocked based on fore-
name's n-gram strings. In Figure 7, using a small portion of
forename strings produced decent-to-high precision and
recall even by the heuristic method in PENN and KISTI.
This implies that the n-gram-based matching can be used as
a blocking method that can achieve good precision and
recall, while reducing the size of large blocks, which are
computationally burdensome (Kim, Sefid, & Giles, 2017). A
caveat is, however, that such benefits will be fully realized
when many name instances in a target data set have full fore-
names. In addition, n-gram-based blocking will lead to recall
loss, asking for an additional high-recall solution.

Last, disambiguation studies need to properly characterize
name ambiguity in data that they attempt to disambiguate.
For data sets like PENN and KISTI, in which authors are dis-
tinguishable by full forenames in many cases, sophisticated
string-matching techniques may produce decent performance,
although they cannot defeat feature-based machine learning.
In contrast, for others, like AMINER and GESIS, in which
distinct authors tend to have the same full forenames (hom-
onyms), relying heavily on name strings can lead to inaccu-
rate disambiguation, while algorithmic disambiguation can
contribute substantially to the task. For this, more effort
should be made to study name ambiguity itself, which can be
quite challenging, as reported in Ackermann and Reitz
(2018) where the authors attempt to detect homonym cases in
a digital library.

A few limitations of this study are worth noting to direct
future studies on this topic. First, although this study
addressed the synonym case where an author is represented
by initialized and full forenames or by varying lengths of
forenames, other types of synonyms (for example, different
by edit-distance, flipped ordering of forename tokens, and so
on) are not considered. Such synonym cases are reported to
be infrequent (Torvik & Smalheiser, 2009), but their impact
on name disambiguation may not be negligible for certain

groups of authors whose names are susceptible to such varia-
tions (for example, German, Hispanic, and Slavic names).
Second, this study implemented the commonly used hierar-
chical agglomerative clustering for which the similarity dis-
tance among instances is predicted by popular classifiers. As
a heuristic disambiguation method, name instances that
match all available forename strings were assumed to refer
to the same author. However, there are a variety of string-
based matching methods. The evaluation results reported in
this study may be different if our data sets were evaluated by
different algorithmic and heuristic methods. To assist valida-
tion and comparative studies, the data sets that are split into
training and test sets with varying forename ratios and
lengths are available upon request.

Despite the limitations, this study provides empirical
findings suggesting that author name disambiguation studies
need to consider the effect of forenames on disambiguation
performance. Depending on the magnitude of full forename's
impact, major methodological changes may follow, as illus-
trated above. These changes are expected to improve practi-
cally disambiguation performance in evolving digital
libraries in which author names with full forenames keep
increasing in number and are posing new challenges to
efforts trying to disambiguate author names at scale.
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APPENDIX A1

This section demonstrates how initialized forenames can be
restored into full ones via record linkage and how such res-
toration can affect both algorithmic and heuristic disambigu-
ation. First, 543,205 paper records in MEDLINE for the
1992–2001 (10 years) period were selected and matched
through title words (lower-cased and ASCII-converted) to
publication records in Microsoft Academic Graph (MAG).
After excluding matching results for short titles (fewer than
five words) and duplicates, a total of 395,466 (72.80%)
MEDLINE records were linked to MAG. Among 1,584,023
name instances (95.75% have initialized forenames) in the
MEDLINE-MAG linked data, 85.52% of them were restored
from initialized forenames into full ones.

Second, the 1.58 M instances were matched to author pro-
files in ORCID data,14 resulting in 100,383 ORCID-linked
instances. Among them, 3,188 ambiguous name instances of

236 blocks (associated with five or more unique ORCIDs in the
original MEDLINE records) were selected as labeled data. The
data were randomly split 10 times into training and test data sets
for before- and after-restoration situations, respectively. Then
the same heuristic and algorithmic disambiguation procedures
described in theMethods were applied. FigureA1 shows disam-
biguation performance of the string-based matching heuristic
(HEUR) and the Random Forest (ALGO) tested on data sets
with initialized forenames (INI) and restored ones (FULL).

According to the figure, adding full forenames improves
substantially both heuristic and algorithmic disambigua-
tion results. Specifically, the heuristic matching produces
mean B3–F scores increased from 0.48 (INI-HEUR) to 0.92
(FULL-HEUR) with added full forenames. The algorithmic
disambiguation produces mean B3-F scores improved from
0.90 (INI-ALGO) to 0.97 (FULL-ALGO).

APPENDIX A2

This section explores how feature similarity measures can
affect the performance of an algorithmic disambiguation.
The cosine similarity of n-gram's Term-Frequency was used
over all features in this article (All N-Gram). For compari-
son, two combinations of commonly used similarity mea-
sures were tested. Distinct1 consists of n-gram's TF cosine
(author name), Jaro-Winkler (coauthorship), and token-
based cosine (title and venue). Distinct2 consists of Jaro-
Winkler (author name and coauthorship) and token-based
Jaccard (title and venue). Figures A2 and A3 report the dis-
ambiguation performance of Random Forest and feature
importance assessed for the three similarity calculation
methods (All N-Gram, Distinct1, and Distinct2) applied to
KISTI and AMINER

FIGURE A1 Disambiguation performance of heuristic and
algorithmic disambiguation on MEDLINE-ORCID linked labeled data

14https://figshare.com/articles/ORCID_Public_Data_File_2018/7234028
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According to the figures, the feature similarity calcula-
tion approach of this article (solid line) performs slightly
better than the other two alternatives (dashed and dotted
lines). Although the contributions of forenames do not

change much per method, those of coauthorship increase a
lot when Distinct1 and Distinct2 are applied. But such an
increase comes at a decrease of contributions by title and
venue.

FIGURE A2 Disambiguation performance and feature importance of three similarity calculation methods for KISTI

FIGURE A3 Disambiguation performance and feature importance of three similarity calculation methods for AMINER
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