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Abstract 

Introduction: A new age of neuromodulation is emerging: one of restorative neuroengineering 

and neuroprosthetics. As novel device systems move towards regulatory evaluation and clinical 

trials, a critical need arises for evidence-based identification of potential sources of hardware-

related complications to assist in clinical trial design and mitigation of potential risk. 

Objective and Methods: The objective of this systematic review is to provide a detailed safety 

analysis for future intracranial, fully implanted, modular neuroprosthetic systems. To achieve this 

aim, we conducted an evidence-based analysis of hardware complications for the most established 

clinical intracranial modular system, deep brain stimulation (DBS), as well as the most widely 

used intracranial human experimental system, the silicon-based (Utah) array.  

Results: Of 2,328 publications identified, 240 articles met the inclusion criteria and were reviewed 

for DBS hardware complications. The most reported adverse events were infection (4.57%), 

internal pulse generator malfunction (3.25%), hemorrhage (2.86%), lead migration (2.58%), lead 

fracture (2.56%), skin erosion (2.22%), and extension cable malfunction (1.63%). Of 433 
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publications identified, 76 articles met the inclusion criteria and were reviewed for Utah array 

complications.  Of 48 human subjects implanted with the Utah array, 18 have chronic implants. 

Few specific complications are described in the literature, hence implant duration served as a lower 

bound for complication-free operation. The longest reported duration of a person with a Utah array 

implant is 1,975 days (~5.4 years). 

Conclusion: Through systematic review of the clinical and human-trial literature, our study 

provides the most comprehensive safety review to date of DBS hardware and human 

neuroprosthetic research using the Utah array. The evidence-based analysis serves as an important 

reference for investigators seeking to identify hardware-related safety data, a necessity to meet 

regulatory requirements and to design clinical trials for future intracranial, fully implanted, 

modular neuroprosthetic systems. 

 
Keywords: deep brain stimulation, brain machine interface, Utah array, hardware, adverse events  
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Introduction 

A new age of neuromodulation is emerging. Established open-loop neuromodulation 

systems treat a broad range of neurological network disorders, including Parkinson disease, tremor, 

dystonia, obsessive-compulsive disorder, epilepsy and pain. A newly approved closed-loop device 

provides responsive neural control of epilepsy. A growing body of literature suggests promise for 

neuromodulation to treat intractable depression and enhance recovery from spinal-cord injury. 

Experimental neuroprosthetic systems incorporate intracortical silicon-based arrays and 

networked sensing and stimulation modules to allow real-time neuroprosthetic control. As 

technology advances and the number of modular systems grow, a need arises to anticipate the 

potential safety features and shortcomings of future neuroprosthetic systems. Such analysis, based 

upon all available evidence, may be of value in satisfying prerequisites of regulatory requirements, 

formulating clinical-trial design and oversight, and fully informing patient consent.  

The primary aim of this systematic review is to provide a detailed safety analysis to inform 

future intracranial, fully implanted and modular neuroprosthetic systems. To accomplish this aim, 

we examine the safety profiles of the most widespread intracranial clinical system, deep brain 

stimulation, as well as the most widespread intracranial human experimental system, the silicon-

based (Utah) array, to identify safety considerations inherent to emerging modular neuroprosthetic 

systems and to derive the most reliable safety estimates possible for likely future neuroprosthetic 

systems. Our comprehensive and systematic review of the safety literature for deep brain 

stimulation and human trials of the Utah array provides greater detail and scope than many earlier 

This article is protected by copyright. All rights reserved.



 5 

reviews by encompassing all indications for DBS and focusing upon the structural components of 

the DBS system. Detailed safety evaluation of experimental systems, such as the Utah array, has 

been difficult due to the dearth of complications reported in the literature, which focuses upon 

scientific and technological advances. However, indirect indicators exist. For example, we can 

estimate the duration of complication-free Utah array operation from reported periods of implant 

longevity in the literature. As a result, in addition to evaluating the potential safety of future 

modular intracranial device systems, this review also achieves an additional secondary goal of 

providing the most comprehensive safety and longevity review to date of human neuroprosthetic 

research using the Utah array. 

Currently FDA-approved chronically implanted intracranial neuromodulation systems 

include deep brain stimulation (DBS) and responsive neurostimulation (RNS). DBS has been used 

for decades to treat movement disorders 1–3 and, more recently, to treat neuropsychiatric disorders 

and epilepsy 4–6. DBS systems are modular, consisting of a multi-contact lead, an internal pulse 

generator (IPG), and an extension cable. The multi-contact lead is a depth electrode, typically 28 

or 40 cm long, inserted into an intracranial target structure through a burr hole in the skull. The 

lead is secured at the skull entry point via a burr hole cover. The IPG is typically placed 

subcutaneously in the chest region. The extension cable connects the two via subcutaneous 

tunneling along the neck. As a related example, however relatively new and not as widely used, 

the responsive neurostimulation system for epilepsy (RNS, NeuroPace Inc.) is similarly modular, 
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consisting of cortical strip or depth leads connected to a cranially-implantable neurostimulator unit 

7.  

To monitor and record brain electrical activity for neuroprosthetic applications, the 

commercially available Utah array (NeuroPort, Blackrock Microsystems, Inc.) is FDA approved 

for human implantation up to 30 days, or longer with an investigational device exemption. The 

NeuroPort Array consists of a 4.0 mm x 4.0 mm silicon-based microelectrode (Utah) array with 

96 electrodes, extending 1.0 to 1.5 mm, and a wire bundle connecting the array to a pedestal 

(Figure 1). The pedestal penetrates the skin to provide electrical connectivity. A cable carries 

signals from the pedestal to front-end amplifiers and, ultimately, to a computer-based signal 

acquisition system for recording and decoding 8,9. Currently, the major limitation of the NeuroPort 

system is that tethering the pedestal to external hardware impedes mobility, constraining array use 

to laboratory settings. In addition, the transcutaneous pedestal violates the barrier integrity of the 

skin, potentially raising the risk of infection. Any clinically adopted neuroprosthetic system will 

require the Utah array to be connected to a fully implanted modular actuator system with the ability 

to record and respond to stimuli, similar to closed-loop DBS or RNS.  

An example of such a system is the Networked Neural Prosthesis (NNP). The NNP is a 

fully implantable, modular functional electrical stimulation (FES) system which, in conjunction 

with implanted Utah arrays, could form a fully-implanted future neuroprosthetic system. The 

current NNP consists of multiple interconnected modules each with their own functionality 

responsible for recording myoelectric activity, providing intramuscular stimulation, and power. 
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Combinations of these modules can be distributed around the body to assist in a variety of functions 

lost by individuals due to spinal cord injury 10,11. The current-version NNP only records residual 

myoelectric activity, but it may be possible to add a neural recording module to record directly 

from the brain and facilitate cortical-controlled FES. Hence, a combined Utah Array-NNP system 

becomes a useful exemplar system for safety analysis. An overview of the exemplar, prototypical 

fully implantable, modular, neuromodulation system is shown in Figure 1B.  

To understand potential hardware complications for such emerging systems, we have 

performed a systematic review focused on the hardware mechanisms of DBS failure as well as 

longevity or safety of the Utah array in humans. DBS is a well-established, fully implantable 

system that is similarly modular to our exemplar prototypical neuroprosthetic system. However, 

the electrode lead used in DBS is not directly comparable. Hence, major safety concerns and 

potential failure modes of the Utah Array-NNP system are hypothesized to be similar to those 

documented in both DBS systems and the Utah Array. 

Materials and Methods 

Search Strategy 

A systematic review was conducted to identify the relevant literature on hardware 

complications of DBS, by searching the electronic databases: Pubmed, Embase, ClincalTrials.gov, 

Scopus, and Cochrane’s Library. The search was broken down into two concepts; device and risks. 

A comprehensive list of keywords was generated to capture all synonyms of DBS and risks, 

including both general terms and potential risks specific to DBS. This list was then optimized by 
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removing additional keywords that resulted in search results captured by the larger umbrella of 

another keyword.  All device related keywords were grouped together by an OR operator and the 

same was done for the risk keywords. The device and risk groups were then merged with the AND 

operator to identify all articles with mention of DBS and some form of risk or complication in the 

title or abstract (Table 1). 

A similar approach was taken to identify all articles including the use of the Utah array in 

humans in the title or abstract. The search was again separated into two concepts: device and 

patient, where a comprehensive list of all synonyms describing Utah arrays and humans was 

generated. Each separate concept group was combined through the OR operator and then together 

with the AND operator. In addition, a list of known principal investigators who have conducted 

experiments with humans implanted with Utah arrays were identified. This was incorporated at 

the end with the AND operator to help refine the search results (Table 2). 

Study Selection 

The search results were critiqued through a two-reviewer process. Each reviewer 

independently read the title and abstract of articles to screen for relevance. They were classified as 

either possibly relevant or clearly irrelevant. Articles deemed as clearly irrelevant by both 

reviewers were immediately excluded, and articles classified as possibly relevant by both 

reviewers were immediately included. The articles where the reviewers disagreed were reviewed 

again, discussed, and then resolved.  
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Predefined inclusion and exclusion criteria were created to further refine our search results to 

include only the papers within the scope of the review, shown in Figure 2. Selected articles were 

required to have clinical data from a primary study, report on bleeding, infection, or hardware 

complications related to DBS, and include a quantification of risk. Articles not reporting data on 

hardware complications, and articles reporting data solely on revision procedures were excluded, 

as well as case studies, review articles, and editorial letters. Only full-length articles available in 

English or easily translatable that met all criteria were eligible for inclusion. Two reviewers (AB 

and JL) independently read the full-length articles and assessed against the inclusion criteria. 

Articles that met all criteria according to both reviewers were included in this review. Articles that 

both reviewers agreed did not meet one or more of the criteria were excluded. The remaining 

articles where the reviewers disagreed were reviewed again, discussed, and then resolved. 

Data Extraction 

To avoid extraction errors, two reviewers independently extracted data from the eligible 

articles and any discrepancies were discussed and resolved. Infection, hemorrhage, skin erosion, 

and hardware failures related to malfunctions of the extension cable and IPG, and fracture or 

migration of the DBS electrode were the primary complications focused on in this review. For 

each eligible article the following data were extracted about the adverse event: incidence rate, 

location, the time of occurrence post initial surgery, if additional surgery was required, and if it 

resulted in a total explant of the system. Because there are relatively few centers hosting these 

clinical trials, publications often have studies with overlapping patients and multiple complications 
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occurring in the same patient. Articles with overlapping patients were identified and these patients 

were only counted once. Per patient data was extracted for each complication, therefore if one 

patient experienced more than one complication (i.e. infection and hemorrhage) both were 

accounted for. However, we did not use multiple occurrences of the same complication in one 

patient (i.e. reoccurring infections).  

Results 

DBS Search Results and Study Characteristics  

Our initial database search yielded 2,328 DBS publications that contained our keywords 

and MeSH terms in either the title or abstract. After screening titles and abstracts, 479 potentially 

relevant articles were identified, and the full text was assessed against the inclusion criteria. 

Finally, 240 articles were chosen to be included in this meta-analysis 12–124,124–249 (Figure 2). The 

remaining 239 articles were excluded for the following reasons: not DBS or related (n= 47), no 

quantification of risk (n=15), secondary revision procedures (n= 16), case studies, review articles, 

or editorial letters (n=145), not published in English (n= 5), full-length article unavailable (n=21). 

A total of 34,089 patients across articles were included in this analysis.  Notably, only 7 hardware 

related deaths occurred within these patients. The per patient incidence rates of all complications 

and subgroups of their locations are reported in Table 3. Unfortunately, due to the lack of a 

comprehensive or standardized reporting system for complications there is missing information 

within the literature. All papers that reported complications did not also report details on the 
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location. In addition, complications experienced at multiple locations per patient have been 

accounted for. The results presented in Table 3 are a reflection of thus mentioned. 

Hemorrhage 

Bleeding is always a major concern when implanting electrodes into the brain. Hemorrhage 

during and after surgery can lead to neurological damage and even death in severe cases. Of all 

the articles included in the study, 133 consisting of 19,389 patients reported on hemorrhage. The 

overall incidence rate was 2.86%. Out of all the papers in the literature that reported information 

on the location of hemorrhages, 86.9% of those were intracerebral hemorrhages (ICH), the most 

common during the duration of the implanted system.  While hemorrhage is most likely to occur 

in the brain for these procedures, it also occurred in other areas throughout the body as well: at the 

site of the IPG (8.13 %) and along the extension cable (1.62 %). When a bleed occurs, it is usually 

reported to happen intraoperatively or within a few days of the surgery. Bleeding should always 

be taken seriously, however the risk posed by the reported hemorrhage ranged in severity and the 

action taken to resolve it. Some hemorrhages resolve on their own without any external 

intervention, while others are more serious and may require additional surgeries or other 

procedures. For the purpose of this review, any adverse events that required an additional surgery 

were deemed as serious adverse events. In serious cases, the device is normally explanted. Usually 

bleeds that occur outside of the brain can be resolved and then hardware can be re-implanted.  In 

all the studies, there were only 6 reported deaths due to ICH (0.02%).  
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Infection 

Second to bleeding, infection is often considered the next most dangerous adverse event to 

be cautious of in any surgical procedure, especially when there are foreign objects introduced 

inside the body, particularly the brain. With future modular systems expected to incorporate 

multiple implantable devices around the body, this is of major concern. There were 174 articles 

consisting of 27,072 patients that reported data on infection. It was the most frequently occurring 

adverse event, with an incidence rate 3.79% and was the main reason for ultimate device 

explanation. This is on par with other implantable devices such as the heart pacemaker. According 

to a systematic review by Persson et al., infections of cardiac implanted electrical devices range 

from 0.2 to 3.7%250. However, this incidence rate varies largely across studies making the true 

incidence rate hard to establish due to the lack of standard methods for reporting incidences. 

Additionally, there was only one reported death related to an untreated infection. The infections 

observed varied widely in their location, time of incidence relative to the initial surgery, and 

severity. Of the 104 papers that reported the location of where infections occurred,  44.2% were 

located at the site of the IPG, followed by the scalp or burr hole (17.8%), the connector and 

extension cable (13.6 %), and in the brain along the electrode lead (11.1 %). Of the 49 studies who 

reported time, infections are observed within the first 30 days of surgery (10.2%), however it can 

also occur months thereafter. Most cases of infections in the brain were reported early, within days, 

whereas infections that occurred around hardware outside of the brain took longer to appear. The 

majority of the reported infections were classified as severe, meaning they resulted in the patient 
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having additional surgery. However, although additional surgery was required, in 35.9% of cases 

the infection was resolved, and the hardware was ultimately re-implanted allowing DBS therapy 

to continue. Depending on the location of the infection only a subset of the system would be 

explanted and re-implanted. It was rare that the entire system had to be explanted and then re-

implanted. However, if the infection was extremely severe and widespread the entire system would 

be permanently explanted (20.7%). This was typically seen in instances of infection that had 

tracked along the DBS electrode.  

Skin Erosion 

Skin erosion is defined here as any place where there was a breakage of the skin due to 

implanted hardware nearby.  Erosion of the skin is most commonly seen over the IPG and on the 

scalp at the site of the burr hole or the connector where the extension cable and electrode meet. 

This was reported in a total of 2.46% of cases and was very commonly associated with infection. 

In 62.6% of cases where skin erosion was reported there was also a case of infection reported near 

the site of erosion. An additional surgery or procedure was required in 25 % of cases with skin 

erosion. Typically, wound debridement or surgical closure was used to repair skin erosion, 

however some instances required revisions and re-implantation of hardware. The more severe 

cases stemmed from erosion around the burr hole or the connector site and, where the electrode 

lead or extension cable was replaced. There were only 18 cases of skin erosion (9%) that led to the 

permanent explant of the entire system. 
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Other Hardware Failures 

In addition to the previously mentioned hardware failures, there were also malfunctions of 

the extension cable and IPG, and fracture or migration of the DBS electrode. This includes most 

of the complications due to DBS hardware that are potentially relevant to future chronic tethered 

devices. Overall, IPG malfunction occurred 2.33% of the time, extension cable malfunction 

occurred 1.95% of the time, lead fracture occurred 2.53% of the time, and lead migration occurred 

3.49% of the time. These are typically not dangerous in and of themselves, though in a single case, 

a patient was electrically shocked due to the malfunction of the IPG123. In most cases however, 

these are complications that usually require additional routine surgeries, which do have their own 

associated risks. In 22.6 % of reported cases (including the electrical shock incident), they were 

able to revise and fix. In only 2 cases was a complete explantation necessary. 

Utah Array Search Results and Study Characteristics 

Our initial search identified 433 articles, which resulted in 76 articles after screening where 

humans had been implanted with the Utah array (Figure 3). The Utah array, a 96-channel 

microelectrode array (Blackrock Microsystems), has been implanted intracortically in a total of 48 

subjects as of September 2018. This consists of patients implanted for epilepsy and other 

intraoperative opportunities where tissue would have been ablated, and patients with paralysis. 

The demographic of Utah array implants is dominated by acute cases, usually to study epilepsy, 

anesthesia, or cognition, memory or language. A smaller subset of the cases are chronic implants, 

used to study brain machine interfaces for motor control of prosthesis and stimulation for sensory 
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mapping. Of the 48 people implanted with the Utah array, 30 were implanted for less than 30 days 

and 18 people were implanted chronically for more than 30 days 8,9,251–295. We have identified all 

the senior authors and the sites, to our knowledge, involved in studies with human implants in 

Table 4. 

The longest reported duration of a person with a Utah array implant is at least 1,975 days 

(~5.4 years), shown in Figure 4 and Table 5. S3, a participant in the BrainGate2 pilot clinical trial, 

was first implanted November 30, 2005, and while it has not been reported that her array has 

actually been explanted, it was documented that she completed her enrollment in the BrainGate2 

clinical trial 259. Of the chronic cases, there was only one report of an explanted Utah array in the 

literature. Participant S1 at the University of Pittsburgh was implanted for 987 days and then 

explanted due to skin retraction around the pedestals. However, it was reported that there was no 

sign of infection. The only other mention of the safety of the Utah array implant was with 

participant EGS at California Institute of Technology. They reported that there was no device 

related adverse events to occur throughout their study 278,296. Table 5 shows the breakdown of 

chronic patients across different studies and the lengths of reported implantation. The end of the 

reported duration of the implant does not mean that the Utah array has failed, however just the last 

reported published date for that participant. There have been a reported 9,254 of total published 

implant days. 
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Discussion 

The safety surrounding neuromodulation technology is a critical question for both 

established and emerging systems. Hardware-related complications can result in potential injury 

to the patient, repeated surgical procedures, and reduced clinical efficacy. In this comprehensive, 

systematic review we found that DBS had an incidence rate of 19.04% for total hardware related 

complications. The most common adverse events were infection, followed by lead migration, lead 

fracture or failure, hemorrhage, skin erosion, IPG malfunction, and malfunction of the extension 

cable. The rates of complications reported here are similar to those found in prior studies and other 

notable systematic reviews 290,297–301. The most recent and closely related DBS review of hardware 

complications by Jitkritsadakul et al., investigated the differences in incidence rates across 

indications for DBS. They used this information to identify patients more at risk based on their 

indication in order to inform them prior to surgery290. While we have similar rates of 

complications, our review did not focus on specific indications.  As a result, our search structure 

consisted of different keywords and more databases. Therefore, we were able to include many 

more papers in our analyses, which offered more data points for a more comprehensive review. 

Another recent review of DBS complications done by the Neurostimulation Appropriateness 

Consensus Committee (NACC), developed recommendations to improve patient safety and reduce 

the risk of injury associated with neuromodulation devices297. This review focused on DBS as a 

subset of many other neurostimulation therapies. Although we experienced slightly higher 
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incidence rates than reported here, according to this review we are still within accepted rates of 

invasive brain procedures. It is also unclear how many patients were included in this review.  

Using the information about DBS hardware complications, we are able to infer potential 

safety challenges that future intracranial, fully implanted and modular neuroprosthetic systems 

may face and begin the discussion on how to plan for and mitigate these risks when developing a 

clinical trial. We have identified the following adverse events to be potentially most salient to 

emerging systems: hemorrhage, infections, skin erosions, and malfunctions of the extension cable. 

Hemorrhage 

Based on this review, bleeding in the brain during or immediately after the surgery is the 

most critical adverse event that can risk the safety of the patient. In the DBS cases reporting ICH, 

the clot most often tracked along the lead and extended into the brain. Bleeding was not typically 

seen on the surface of the brain. The biggest difference between DBS and future neural implants 

is the type of electrode used. Since the Utah array is currently the only device used chronically in 

humans, and one of the arrays most likely to be incorporated into future modular devices, we will 

focus on this array. While a DBS lead extends several centimeters into the brain, the Utah array is 

much shallower, inserting only 1.5 mm into the brain. Therefore, if most of the bleeds that occur 

in DBS are not on the surface, it is likely that the DBS lead is perturbing blood vessels  deeper in 

the brain that the Utah array would miss 302. It is possible that the incidence rate of ICH experienced 

in DBS could be an overestimate of what we would see in future intracranial, modular 

neuroprosthetic systems. In the case of both DBS and the Utah array for future devices, additional 

This article is protected by copyright. All rights reserved.



 18 

action can be taken to help possibly reduce the incidence rate. Studies that experienced lower ICH 

rates attributed it to physicians’ cautious and proper use of the equipment and insertion of 

electrodes, avoiding major vasculature on the brains’ surface. Imaging can also be performed post-

surgery as a means of proactive monitoring to detect any small or asymptomatic ICHs 303. While 

bleeds can be very serious, they are expected, and protocols have been established to manage them. 

Infection 

Infections pose the highest risk for terminal explantation of the DBS entire system (20.7%). 

Reported infections were predominantly found at the site of the IPG, followed by the burr hole, 

and then the extension cable. While in DBS there is only one IPG, in the case of the NNP and other 

future modular systems, there will be many more “IPGs” and extension cables routed throughout 

the body. This has the potential to increase the rate at which infections arise and possibly affect 

their ability to spread throughout the body. Infections in DBS are typically managed with 

antibiotics, or portions of the system may be explanted while antibiotics is administered and then 

successfully re-implanted. Re-implantation is the main treatment for infection in such systems. 

While they are categorized as serious adverse events, they are very common. Future modular 

systems may have the potential for increased incidence of infection due to the rise in the amount 

of modular devices that can be implanted in a single system. However, while some infections may 

be inevitable, it is important to note that this does not necessarily have to be a failure of the system. 

As seen in DBS, revision procedures occur frequently without ultimately ending the therapy. 

Understanding where the infections are most likely to occur and a potential time frame in which 
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they occur more frequently relative to the initial surgery allows for management protocols to be 

developed within a clinical trial. Physicians can anticipate these complications and monitor 

patients more closely in areas more predisposed to infection as well as search for symptoms more 

deliberately time periods where infections typically spike. While this may not necessarily reduce 

the overall infections rate, being proactive may reduce the rate at which infection leads to system 

explant or a more sever complication. Studies have also been performed to investigate different 

antibiotics and the administration of them at different time points throughout the lifetime of the 

implant to reduce the infection rate 304–306.  

Skin Erosion 

Skin erosion, while occurring less frequently, commonly occurs with infection. When there 

is erosion or breakage of the skin the area becomes susceptible and leads to infection of the area. 

Since skin erosion was most likely to occur over the IPG, a modular system with multiple IPGs, 

as proposed with the NNP and potential future devices, may experience an increased incidence 

rate than reported in DBS. Knowing this we can begin to investigate surgical procedures for the 

best placement of these IPGs or modular devices throughout the body and how to implant them 

deeper as to reduce the risk of erosion. Similar to infection, cases of skin erosion are also 

categorized as serious, requiring a surgical revision. This may be treated with wound debridement 

but is most likely to lead to explantation of a portion or the whole system. 
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Extension Cable Malfunctions 

Although there was a low incidence rate of extension cable malfunctions in comparison to 

the other adverse events in DBS, this is vital information. The addition of a wire to connect the 

Utah array to an implantable module is where most of the uncertainty lies with the safety of future 

intracranial, modular devices. Malfunctions of the extension cable usually involve Twiddler’s 

syndrome or bowstringing which can lead to fracture of the cable or displacement of the electrode. 

One of the biggest risks with future Utah array tethered devices is that tension on the extension 

cable has the potential to dislodge the implanted array. However, of all the reported extension 

cable malfunctions, none led to the displacement of a DBS electrode, likely due to anchoring at 

the burr hole. All complications were due to breakage of the cable, which were then replaced. Most 

of the complications with the extension cable occur in the neck, however with future Utah array 

tethered devices the module directly connected to the Utah array will be secured to the skull. This 

smaller device may decrease the risk for potential electrode array dislodgement. 

Utah Array Safety and Longevity 

Utah arrays have been implanted in substantially fewer individuals, for shorter duration, 

and the literature does not contain much about the safety of these implants as compared to DBS, 

which has a sufficiently large population to reveal rare safety events. Since there has been no 

publication to date that explicitly discusses the risks or adverse events that occur in chronic human 

implants, we systematically reviewed all the published literature to address this topic. We 

identified 48 individuals implanted with a Utah array and determined the duration of implantation 
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at the time of the study. This represents a starting point for a safety dataset of all FDA monitored 

studies. Acute studies are more common and have been the dominant contributor to the population 

of subjects with Utah arrays. While long-term effects are not observed in these subjects, 

observations from short term studies help to estimate intracerebral hemorrhage, although not 

explicitly mentioned or discussed in any papers we reviewed. Infection typically prompts 

explantation of the array, so array longevity provides a lower bound on the period of time without 

serious infection or other adverse event. The mean number of days of Utah array implantation 

across all participants was 578. This underestimates implant time. With the exception of one paper, 

no study reported array explantation. In the absence of complication, participants typically remain 

implanted following the conclusion of the study.  

Because DBS systems are clinically available and have been implanted in many patients, 

incidence rates of DBS adverse events serve as a risk profile benchmark for future Utah array 

modular systems. Understanding the potential risks and failure modes of a device and how many 

people must be observed to witness such risks could be useful information when designing a 

clinical trial. For example, we conducted a power analysis to estimate the number of patients 

implanted with the Utah array needed to see similar incidence rates as DBS. We found that it would 

take a very large amount of people within a clinical trial before we would begin to see 

complications with similar incidence rates as DBS systems. By contrast, if Utah array tethered 

devices introduced 5x the risk of DBS we would be able to see it much earlier and with fewer 

people (Table 6). Given the low incidence rate of infection in DBS, we would not have expected 
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to see any complications in cases with as few as 18 chronically implanted Utah arrays. It is also 

notable that these Utah arrays were all percutaneous and would likely have a higher infection rate 

than a fully implanted system.  

The large number of people needed to do a true safety study is far off. However, few 

individuals are required to demonstrate the efficacy of neuroprosthetic systems. Efficacy may 

therefore have to be established before safety studies can begin. Early feasibility human trials 

would be beneficial in not only moving the needle in technology surrounding the future of 

implantable intracortical devices, but also helping to increase the population of people with these 

devices for a comprehensive understanding of safety over time. 

Study Limitations 

This review focused primarily on the Utah array, using the existing intracranial DBS 

system as a benchmark for safety data of future implantable neuroprostheses systems that will 

employ the Utah array for BMI applications. However, reviews of other existing intracranial 

neuromodulation devices such as the responsive neurostimulation (RNS) system may add value as 

well.  In addition, there is currently no standardized method for reporting adverse events related to 

DBS hardware or Utah array safety, thus this review is incomplete. There were some DBS articles 

that contained data on hardware-related complications that were excluded because either the 

information was too general (i.e. grouping infections and skin erosions and other skin 

complications together) or the data was per electrode lead and not per patient. Papers also generally 

lacked the time in which adverse events took place. In addition, papers discussing human research 
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with the Utah array did not disclose any adverse events and some lacked important details such as 

the implantation date. Due to the lack of data reported in literature discussing human research 

using the Utah array, we determined in order to continue to establish a database of safety data for 

future and emerging neuromodulation technologies we need to be gathering detailed information 

about the implantations during experiments such as implant and explant dates, detailed per patient 

adverse events, the time frame in which adverse events occurred, as well as the responsive action. 

Access to a detailed database of adverse events involving intracranial, modular systems will not 

only influence the design of future devices, but also serve as a reliable reference for investigators 

seeking to successfully advance their device through the regulatory process towards a clinical trial.  

As a result of the poor structure and overall lack of reported complications across the field, 

we focused on the hardware-related complications that could provide the most data in order to 

produce a reliable review and serve as a benchmark to infer the most about future intracranial, 

modular devices. We identified hemorrhage, infection, skin erosion, and other malfunctions, 

however these are certainly not the only safety risks future devices have the potential to face. 

Safety of future devices cannot be fully assessed by looking at the incidence rate of these categories 

alone, yet this is a quantifiable starting point.  

When implanting electrodes in the brain there is always a risk of neurological damage or 

neurobehavioral effects experienced by the patient. Neurobehaviroal effects reported with DBS 

are most often linked to the stimulation, therefore not directly comparable to the Utah array, which 

would be used for recording. However, these risks persist with the Utah array as well. Implanted 
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Utah arrays are known to result in reactive tissue responses including inflammation, glial scarring, 

and neuronal death or migration near the site of the electrode, seen in the histological data307–312. 

It is possible that this histological response could potentially result in functional deficits, however, 

because current chronic studies with these arrays include patients already with severe loss of motor 

functions, we are unable to measure any unintended damage to physiological functions in these 

patients. There has been very little research done to investigate the potential motor deficits caused 

by the implantation of chronic intracortical electrodes in motor cortex. In a study done by Goss-

Varley et al., it was shown that healthy rats implanted with chronic microelectrodes in the motor 

cortex resulted in deficits effecting fine motor function 313. Implanted animals performed the ladder 

task significantly slower with an increased number of paw slips than the non-implanted control 

animals. It was reported that while graphically significant, visually watching the animals yielded 

less conclusive results. Contrarily, many able-bodied rhesus macaques have been implanted for 

research and shown no signs of any motor deficits. This behavioral response has also been shown 

in studies investigating neuronal death from moderate traumatic brain injury and resection in rats 

and similarly in humans, where moderate motor deficits recovered over time or were unnoticeable 

314–316.  There are considerable complexities of the brain, therefore ultimately, safety questions will 

be best addressed in a sufficiently powered, prospective clinical trial. In the meantime, pilot studies 

will continue to contribute valuable data points over time by including implant and explant dates, 

the time frame of experiments as well as any physiological and neurobehavioral effects. 
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Conclusion 

 
We identify and quantitatively summarize the hardware-related complications of deep brain 

stimulation that can be used to estimate potential safety risks of future modular, implantable 

neuroprosthetic systems. In addition, we collect longevity data for human Utah array implants. 

The evidence-based analysis serves as an important benchmark for investigators seeking safety 

data on intracranial, modular systems. As new devices are developed this information can be used 

to identify and assess potential hardware failures in advance. These complications can ultimately 

compromise the safety of the patient, therefore anticipating future risks allows physicians and 

engineers to develop specific surgical and risk mitigation protocols within their clinical trials. In 

addition, this safety data is essential to the FDA and should be included to develop a strong 

portfolio to the meet regulatory requirements and help progress towards clinical trials. 
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TABLES 

Table 1: Keywords and search structure for hardware complications in DBS 

DBS Synonyms Risk Synonyms 

Deep brain stimulation, Thalamic stimulation 

Hematoma, bleed*, “short circuit”, fracture, breakage, 
migration, infection, erosion, revision, risk, safety, 
adverse event*, “adverse effects”, complication*, 
hardware failure 

[DBS OR DBS synonym…] AND [ risk OR risk synonym…] 

(*) symbol at the end of a word to include other terms that begin with the root word (i.e. –ing, -s). 

 
Table 2: Keywords and search structure for Utah arrays in humans 

Utah Array Synonyms Human Synonyms Senior Authors 

96 channel microelectrode array*, 
96 channels electrode array*, 
microelectrode array*, intracortical 
microelectrode array*, intracortical 
brain computerinterface*, 
Neuroport array* 

Human, subject*, patient*, 
tetraplegic*, quadriplegic*, person, 
people 

Donoghue, Hochberg, Kirsh, 
Henderson, Shenoy, Greger, 
Normann, House, Cash, Jang, 
Zaghloul, Salas, Andersen, 
Schwartz, Rezai, Collinger, Scheon, 
Truccolo 

[Utah array OR Utah array synonym…] AND [human OR human synonyms…] AND [senior author OR senior 
author…] 

(*) symbol at the end of a word to include other terms that begin with the root word (i.e. –ing, -s). 

 
Table 3: DBS Hardware Related Adverse Events 

Complication  Incidence (%) No. of patients reported 

Infection 3.79 1028 (27072) 

     IPG 

     scalp/burr hole 

     extension cable 

     lead 

44.2 

17.8 

13.6 

11.1 

265 (599) 

107 (599) 

82 (599) 

67 (599) 

Lead migration 3.49 139 (3977) 

Lead fracture or failure 2.53 208 (8214) 

Hemorrhage 2.49 483 (19389) 

     intracerebral (ICH) 86.9 374 (430) 
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     IPG 

     extension cable 

8.13 

1.62 

35 (430) 

7 (430) 

Skin erosion 2.46 206 (8347) 

IPG malfunction 2.33 101 (4320) 

Tethering of extension cable 1.95 103 (5279) 

Total Overall Complication 7.68 2098 (27299) 

 
 

Table 4: Human Utah Array Implantation Sites and Senior Author Involvement 

Chronic/Acute Site Senior Authors No. of Implants 

Chronic 

University of Pittsburgh 
Collinger JL 

2 Schwartz AB 

 Gaunt RA 

California Institute of Technology, Rancho Los 
Amigos National Rehabilitation Hospital (RLA) Andersen RA 3 

Brown University, Massachusetts General 
Hospital 

Donoghue JP 

12 

Hochberg LR 

Stanford University 
Henderson JM 

Shenoy KV 

Case Western Reserve University 
Kirsch RF 

Ajiboye AB 

Ohio State University 
Rezai AR 

1 
Sharma G 

Total Chronic Implants 18 

Acute 
University of Utah Health Sciences Center 

House PA 
2 

Greger B 

Normann RA 6 

Columbia University Medical Center Schevon CA 6 
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Massachusetts General Hospital 
Cash SS 3 

Truccolo W 7 

National Institute of Health 

Zaghloul KA 

6 

 

Total Acute Implants 30 

Total Human Utah Array Implants 48 
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Table 5: Reported Duration of Chronic Human Implanted Utah Arrays 

Location  Participant Implantation Date Reported 
Duration* 

Adverse Events 

University of 
Pittsburgh 

S1 

S2 

Feb 10,2012 

- 

987 

673 

S1 explanted due to skin 
retraction around the pedestals, 
no sign of infection 

California Institute 
of Technology 

EGS 

NS 

FG 

- 

- 

- 

630 

- 

56 

 

 

 

 

 

BrainGate2 

 

 

 

 

 

 

S1 

S3 

A1 

T1 

T2 

T5 

T6 

T7 

T8 

T9 

T10 

MN 

- 

Nov 30, 2005 

 Feb 2006 

- 

Jun 2011 

Aug 2016 

Dec 7, 2012 

Jul 30, 2013 

Dec 1, 2014 

- 

- 

Jun 2004 

90 

1975 

239 

270 

474 

70 

837 

548 

928 

- 

33 

300 

 

 

 

 

 

T7 death unrelated to research 

Ohio State 
University 

S1 - 1144  

*Reported duration is not equivalent to Utah array failure 

 

Table 6: Example Power Analysis 

Complication Sample size needed to reject Null    Power (1-β) α 

1.5x 2x 5x 

Infection 602 167 15 .80 .05 

Skin erosion 692 193 18 .80 .05 

Hemorrhage 956 267 25 .80 .05 

Extension cable malfunctions 1555 435 41 .80 .05 
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Figure Legends 

Figure 1. Intracranial Neuroprosthetic Systems. A) An overview of the standard brain machine 

interfaces set up. An electrode is implanted in the brain and percutaneous connections are made 

between the patient and a series of computers. This particular example is of brain-controlled 

FES317. B) An example of a potential future brain machine interface set up using a modular 

network. An electrode is implanted in the brain and connected to an implantable module for 

processing instead of a series of computers. This portrays the potential for a fully implantable 

brain-controlled FES system using the NNP.  

Figure 2. Flow diagram of the study selection for DBS hardware complications based on 

inclusion and exclusion criteria. 

Figure 3. Flow diagram of the study selection for Utah arrays based on inclusion and exclusion 

criteria. 

Figure 4: Length of chronic human implants reported in literature across clinical study sites. 
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