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Purpose: To demonstrate the feasibility of an optimized set of small-tip fast recovery 
(STFR) MRI scans for rapidly estimating myelin water fraction (MWF) in the brain.
Methods: We optimized a set of STFR scans to minimize the Cramér-Rao Lower 
Bound of MWF estimates. We evaluated the RMSE of MWF estimates from the op-
timized scans in simulation. We compared STFR-based MWF estimates (both mod-
eling exchange and not modeling exchange) to multi-echo spin echo (MESE)-based 
estimates. We used the optimized scans to acquire in vivo data from which a MWF 
map was estimated. We computed the STFR-based MWF estimates using PERK, a 
recently developed kernel regression technique, and the MESE-based MWF esti-
mates using both regularized non-negative least squares (NNLS) and PERK.
Results: In simulation, the optimized STFR scans led to estimates of MWF with low 
RMSE across a range of tissue parameters and across white matter and gray matter. 
The STFR-based MWF estimates that modeled exchange compared well to MESE-
based MWF estimates in simulation. When the optimized scans were tested in vivo, 
the MWF map that was estimated using a 3-compartment model with exchange was 
closer to the MESE-based MWF map.
Conclusions: The optimized STFR scans appear to be well suited for estimating 
MWF in simulation and in vivo when we model exchange in training. In this case, the 
STFR-based MWF estimates are close to the MESE-based estimates.
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1  |   INTRODUCTION

Quantitative magnetic resonance imaging (QMRI) is the appli-
cation of MRI to estimate parameters of interest. One QMRI 
application of growing interest is myelin water imaging, 

where one seeks quantitative maps of myelin water fraction 
(MWF).1,2 The MWF is the proportion of MRI signal in a 
given voxel that originates from water bound within the my-
elin sheath. MWF maps are desirable for tracking progression 
of demyelinating diseases,2 for example, multiple sclerosis.3
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The most widely accepted myelin water imaging tech-
niques use the multi-echo spin echo (MESE) MRI scan (or 
variants).3-5 MESE is the standard for clinical MWF imaging 
to which alternative MWF mapping techniques are typically 
compared. However, MESE traditionally suffers from long 
scan times, impeding its routine clinical use. Alternatively, a 
combined gradient and spin echo (GRASE) MRI scan, a vari-
ant of MESE, has been shown to enable whole-brain MWF 
maps in under 8 minutes.6

An alternative to MESE-based myelin water imaging uses 
faster, steady-state MRI scans7 that can acquire whole-brain 
MWF maps in 7 minutes.6 Despite evidence showing that this 
method produces reproducible MWF maps (thus enabling longi-
tudinal studies), there are concerns about overestimating the true 
MWF8,9 and its precision.10 Other steady-state methods have 
also been explored for MWF estimation, such as multi-echo gra-
dient echo (GRE)11-13 and dual-echo steady-state (DESS).14-16

To our knowledge, most of these myelin water imaging tech-
niques ignore potential differences in the effective magnetic 
field experienced by myelin-bound water compared to water 
outside of myelin (an exception being13). However, it has been 
shown that in cerebral white matter (WM), myelin-bound water 
does in fact experience a different effective magnetic field.17

In preliminary work,18 we showed that modeling the ad-
ditional off-resonance experienced by myelin water reduces 
the Cramér-Rao Lower Bound (CRLB) of estimates of MWF 
using small-tip fast recovery (STFR) MRI.19 We showed that 
the STFR sequence is sensitive to the frequency differences, 
suggesting that the difference in off-resonance between myelin 
and non-myelin water is a potentially useful contrast mecha-
nism containing information that can help estimate MWF.18 
Simulations using optimized STFR scan parameters led to 
MWF estimates with lower errors when there was a fixed, non-
zero (but unknown) difference in off-resonance, compared to 
when there was no (still unknown) frequency difference. To 
our knowledge, this work was the first to specifically design 
scans for myelin water imaging that exploit frequency differ-
ences. Because the actual frequency difference is unknown 
and might vary between voxels or disease conditions, the pro-
posed approach treats the difference as an unknown parameter 
that is estimated alongside other unknown parameters like the 
T1 and T2 values of the various tissue compartments.

One limitation of our previous work was its tissue model. 
In18 we assumed a 2-compartment, non-exchanging model 
for simplicity in computing the STFR signal. However, ne-
glecting exchange can lead to biases in MWF estimates.20 
Therefore, the method proposed in this paper uses a  
3-compartment model. The 3 compartments are myelin water, 
non-myelin water, and a macromolecular pool; myelin water 

and non-myelin water are in exchange, while myelin water 
exchanges with the macromolecular pool.21

We previously estimated MWF from optimized STFR 
scans using parameter estimation via regression with kernels 
(PERK), a recently developed learning-based technique for 
parameter estimation in MRI that uses kernel ridge regression 
at its core.18,22 One alternative method for MWF estimation 
is non-linear least squares, which requires iterative methods 
for solving and can get stuck in a local minimum. Another 
alternative is dictionary search, which requires evaluating the 
STFR signal model on a discretized grid of the signal model 
parameters, which is impractical when the number of param-
eters exceeds 3 or 4. Yet another alternative is to use a neural 
network. While neural networks can lead to good parameter 
estimates, they require a lot of training data and long training 
time. In contrast, PERK trains quickly and avoids the other 
problems associated with non-linear least squares and dictio-
nary search. Therefore, this work again uses PERK.

This paper substantially builds upon our previous work. 
First, we re-optimize the STFR scan parameters to model 
variations of bulk off-resonance and to account for 2 spoiled 
gradient-recalled echo (SPGR) scans that are used for sepa-
rate bulk off-resonance estimation. Next, we compare STFR-
based MWF estimates to MESE-based MWF estimates in 
simulation. In particular, we estimate MWF from the opti-
mized STFR scans with PERK22 using a 3-compartment tis-
sue model with exchange. Finally, we compare our proposed 
STFR-based MWF estimation method to MESE-based MWF 
estimation in vivo. Figure 1 illustrates the proposed approach.

The organization of this paper is as follows. Section 1.1  
provides background information on the scans used in this 
work (STFR and MESE), the scan design process, and PERK. 
Section 2 outlines our experiments, both for the STFR scan 
design and for MWF estimation in simulation and in vivo. 
Section 3 reports the experimental results. Section 4 dis-
cusses our results. Section 5 gives concluding remarks.

1.1  |  Background

1.1.1  |  STFR

One repetition of STFR19 begins with an initial tip-down exci-
tation with flip angle α. Then there is time Tfree during which 
free precession occurs, after which there is a tip-up excitation 
(“fast recovery”) where magnetization is rotated up toward the 
+z-axis with flip angle β and phase ϕ. Finally, there is gradient 
spoiling for time Tg. For a single compartment, the signal ob-
tained at a given spatial location from a STFR scan is given by23 

(1)

s1 (M0, T1, T2,Δ�, �, Tfree, Tg, �, �,�) =

M0 sin (��)
[
e−Tg∕T1

(
1−e−Tfree∕T1

)
cos (��)+

(
1−e−Tg∕T1

)]
e−Tfree∕(2T2)e−iΔ�Tfree∕2

1−e−Tg∕T1 e−Tfree∕T2 sin (��) sin (��) cos (Δ� ⋅Tfree−�)−e−Tg∕T1 e−Tfree∕T1 cos (��) cos (��)
,
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where M0 is the equilibrium magnetization, T1 and T2 are the 
spin-lattice and spin-spin time constants, respectively, Δω is the 
off-resonance frequency, and κ is a flip angle scaling constant 
(to account for differences between the prescribed and actual 
flip angles). Note that approximating flip angle error as a scale 
factor is accurate for the small flip angles used in this work, but 
typically inaccurate at larger flip angles. STFR with β = 0 is the 
same as SPGR with TR = Tfree+Tg.

For myelin water imaging, more than 1 compartment 
must be modeled. In a 2-compartment model, 1 compartment 
consists of spins within myelin (myelin water), and the other 
compartment consists of other spins (non-myelin water). If 
one neglects exchange, then the STFR signal at a given spa-
tial location is the weighted sum of the single-compartment 
STFR signals of the individual compartments: 

where the weight ff is the MWF, T1,f and T2,f are the T1 and T2 
time constants for the fast-relaxing, myelin water compartment,  
T1,s and T2,s are the T1 and T2 time constants for the slow- 
relaxing, non-myelin water compartment, and Δ�f is the addi-
tional off-resonance that is experienced only by myelin water.17

Although (2) has a convenient analytical expression, a 
more accurate tissue model for cerebral WM consists of 3 
compartments (non-myelin water, myelin water, and a mac-
romolecule water pool) with exchange between the non- 
myelin and myelin water compartments and from the myelin 
water compartment to the macromolecule compartment.21 
In this case, the STFR signal is also a function of the mac-
romolecule compartment volume fraction fm, the macro-
molecule compartment T1,m and T2,m, the residence time 
for exchange from myelin water to non-myelin water �f→s,  
and the residence time for exchange from myelin water to 
the macromolecule compartment �f→m, in addition to the 
previously mentioned parameters. We assume the myelin 
water and non-myelin water compartments are in chemi-
cal equilibrium, which means that ff�s→f = (1− ff− fm)�f→s,  

(2)

s2(M0, ff, T1, f , T1,s, T2, f , T2,s,Δ�f,Δ�, �, Tfree,Tg,�,�,�)

= ff ⋅ s1(M0, T1, f , T2, f ,Δ�+Δ�f, �,Tfree, Tg, �, �,�)

+ (1− ff) ⋅ s1(M0, T1,s, T2,s,Δ�, �, Tfree, Tg, �, �,�),

F I G U R E  1   Workflow of the proposed 
methods. We first optimized a set of STFR 
scan parameters by minimizing a Cramér-
Rao Lower Bound, then acquired data 
using those scans, as well as Bloch-Siegert 
(BS) scans. Two of the STFR scans were 
equivalent to SPGR scans, so were used to 
estimate Δω, and the BS scans were used to 
estimate κ. These parameters were treated as 
known values in the MWF estimation step. 
We then generated noisy training data using 
an STFR signal model. Finally, we passed 
the training data, acquired STFR images, 
and known parameters to PERK to estimate 
MWF voxel-by-voxel
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and we assume there is no other exchange, that is, 
�m→f = �s→m = �m→s = ∞.21 Because of exchange, the 
STFR signal no longer has an analytical expression and 
must be computed using the Bloch-McConnell equation.24

1.1.2  |  MESE

One repetition of MESE25 consists of an initial excitation 
with flip angle �ex (typically 90◦) followed by a sequence of 
Nref refocusing excitations with flip angle �ref (typically 180◦).  
The signal is sampled at times TE, 2TE, … , NrefTE after the 
initial excitation, resulting in Nref images in 1 MESE scan. 
The repetition time TR is typically chosen to be long enough 
so that the net magnetization of the spins is in equilibrium 
prior to each repetition. Thus, the MESE signal is a function 
of �ex, �ref, TE, and TR, as well as the same tissue parameters 
as the STFR signal; but if TR is sufficiently long there is lit-
tle dependence on T1 (of any compartment). Additionally, for 
myelin water imaging using MESE, normally the acquired 
MESE signal is modeled as a weighted sum of MESE signals 
from individual compartments, ignoring exchange between 
compartments. When ignoring exchange, we computed 
the MESE signal using the extended phase graph (EPG) 
method.26 When accounting for exchange, we used Bloch-
McConnell simulation.

1.1.3  |  Scan design using the CRLB

MR image data for a single voxel in a single scan are often 
modeled as 

where f (x, �, p)∈ℂ is the MR signal that is a function of un-
known parameters x, known parameters ν, and scan parame-
ters p; and �∼ℂ (0, �2) is additive complex Gaussian noise. 
When there are D scans then the data for a single voxel across 
each scan is collected into a vector: 

where y∈ℂ
D, f(x, �, P) = [f1(x, �, p1), … , fD(x, �, pD)]T,  

fd is the signal given by the dth scan for d  =  1,  …,  D, 
P = (p1, … , pD) denotes the collection of all scan parameters, 
and the noise vector is �∼ℂ (0,�). We assume that each scan 
has noise independent of the other scans, and we assume that 
each scan has the same noise variance �2; thus � = �2ID, where 
ID is the D × D identity matrix.

For simplicity in computing the Fisher information matrix 
(see below), we further assume that the MR signal model f 
is real-valued. We also take the magnitude of the received 

signal y, resulting in a Rician distributed signal27; however, 
we assume sufficiently high SNR so that this magnitude sig-
nal is approximately normally distributed with mean f(x, ν, p) 
and variance �2.

Under these assumptions, the Fisher information matrix 
for the magnitude of signal model (4) is28 

where ∇x denotes a row gradient with respect to the un-
known parameters x. The inverse Fisher information matrix 
gives the CRLB for unbiased estimators.29 In particular, 
the variance of an unbiased estimator for the ith unknown 
parameter xi has a lower bound given by the ith diagonal 
element of the inverse Fisher information matrix, that is, 
var(x̂i) ≥ [(I(x, �, P))−1]i,i. This bound on the precision of 
unbiased estimators is useful for optimizing experimen-
tal designs. The CRLB has been used to optimize MR 
sequence parameters for a variety of pulse sequences and 
applications (eg, Refs. 22,30-32 ). In this work, we opti-
mize scan parameters of a set of D STFR scans for MWF 
estimation by minimizing an expected weighted sum of the 
CRLB for each unknown parameter33: 

where  denotes the scan parameter search space, �x,� denotes 
an expectation over x and ν, and W is a diagonal weighting ma-
trix used to indicate the relative importance of precisely esti-
mating the different unknown parameters.

1.1.4  |  Parameter estimation via regression 
with kernels (PERK)

This section describes the PERK method we use to estimate 
the MWF from STFR scans. Suppose a set of scan param-
eters P is given, typically the P̂ from the scan design pro-
cess (6). We seek to estimate unknown parameters x after 
acquiring data using the D scans corresponding to these scan 
parameters. We generate training data by simulating data yn 
via (4) with appropriate signal models f for various values 
of unknown and known parameters xn and �n; these N train-
ing data points are collected as (q1, x1), … , (qN , xN), where 
qn = [|yn|T , �T

n
]T and |·| denotes element-wise complex 

modulus. After scanning (with the scan parameters P), we 
have test data q for each voxel (where ν collects separately 
estimated parameters, such as B+

1
 maps, that are treated as 

known values), and we want to estimate x. PERK computes 
estimates via regularized linear regression (ridge regression), 
after first transforming the feature vectors q (for both train-
ing and testing) via some user-defined feature map (which 

(3)y = f (x, �, p)+�,

(4)y = f(x, �, P)+�,

(5)I(x, �, P) =
1

�2
(∇xf(x, �, P))T (∇xf(x, �, P)),

(6)P̂ = argminP∈�x, �[trace(W(I(x, �, P))−1)],
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is never directly used but is indirectly specified through the 
choice of kernel function). The PERK estimator is22 

where X = [x1, … , xN] denotes all of the training data, 
1N ∈ℝ

N is a vector of all ones, M = IN −
1

N
1N1T

N
 is a 

de-meaning operator, ρ is a regularization parameter, the 
Gram matrix K∈ℝ

N×N has entries Ki,j = k(qi, qj), and 
k(q) = [k(q, q1), … , k(q, qN)]T −

1

N
K1N, where k(q, q′) is the  

user-specified kernel function. In this work, we used the 
Gaussian kernel 

where Λ is a positive definite weighting matrix. PERK with a 
Gaussian kernel corresponds to first transforming the feature 
vectors q via a nonlinear feature map into infinite-dimensional 
features, and then applying ridge regression on the transformed 
features. This lifting of features to a higher dimensional space 
improves the ability to capture the nonlinear dependence of the 
signal on the unknown parameters we wish to estimate.

To reduce storage and computational needs, we approxi-
mated (7) using random Fourier features.22,34

2  |   METHODS

This section describes the experiments performed in this 
work. We first explain the scan design process for optimizing 
a set of STFR scans for MWF estimation. We then explain 
simulated MWF estimation experiments that compare our 
proposed method to MESE-based MWF estimation. Finally, 
we explain an experiment to test our proposed method in 
vivo. The code for reproducing the methods and results in 
this paper  is available at https://github.com/Steve​nWhit​
aker/STFR-MWF. The raw data are available at https://doi.
org/10.7302/nw6e-1d66.

2.1  |  Scan design

For the STFR scan design, we computed the CRLB using the 
2-compartment non-exchanging signal model (2). We chose 
the weighting matrix W to place full weight on the CRLB for 
ff (ie, the diagonal entries of W were all 0 except for a 1 in the 
location corresponding to ff). We took the flip angle scaling κ 
and bulk off-resonance Δω to be known, that is, part of ν, and 
we optimized a set of D = 11 STFR scans. Two of these scans 
were SPGR scans with fixed scan parameters and an echo 
time shift. We included these scans to enable the option of 

estimating Δω using conventional techniques and then treat 
Δω as known for further parameter estimation.

We fixed Tg = 2.8 ms across all 11 scans. We fixed � = 5◦ 
and Tfree = 10.3 ms for the 2 SPGR scans. The TE of each 
STFR scan and the first SPGR scan was 4 ms. The echo time 
shift between the 2 SPGR scans was 2.3 ms. For the remain-
ing 9 STFR scans, we fixed Tfree = 8 ms and we constrained 
�∈ [1, 15]◦, �∈ [0, 15]◦, and �∈ [−180, 180]◦.

The expectation in (6) requires choices for the probability 
distributions of the unknown and known parameters. Table 1 
shows the distributions we used. To explore the effect that the 
additional myelin water off-resonance Δ�f has on the CRLB 
of ff, we performed 1 scan design (design A) where we took 
Δ�f to be unknown, and another (design B) where we ig-
nored Δ�f (ie, we assumed it was known and equal to 0). 
To solve the optimization in (6), we used the NLopt package 
(https://github.com/Julia​Opt/NLopt.jl) in the Julia program-
ming language (https://julia​lang.org).

2.2  |  MWF estimation

For MWF estimation, we compared several estimation pro-
tocols. The proposed method, which we call STFR3-PERK, 
uses PERK to estimate MWF from the optimized STFR 
scans, with training data generated using the 3-compartment 
exchanging model. This method assumes bulk off-resonance 
Δω and flip angle scaling κ are known (unless otherwise 
noted). Another method, STFR2-PERK, is the same as 
STFR3-PERK, except training data are generated using the 
2-compartment non-exchanging model. Again, Δω and κ 
are assumed known. The reference method, MESE-NNLS, 
uses regularized NNLS to estimate MWF from a MESE 
scan. Following,5 we fit 40 different T2 components spaced 
logarithmically from 15 ms to 2000 ms, and computed 
MWF as the proportion of signal coming from components 
with T2 ≤ 40 ms to the total signal. This method does not  
assume knowledge of Δω or κ, but jointly estimates κ. A 
fourth method, MESE-PERK, estimates MWF from a MESE 
scan using PERK, with training data generated using the 
3-compartment exchanging model. This method was in-
cluded to determine whether performance differences were 
due to the estimation method (ie, NNLS versus PERK), or 
due to the scans (ie, MESE versus STFR). MESE-PERK does 
not assume knowledge of Δω or κ. Finally, because the pro-
posed STFR3-PERK assumes Δω and κ are known, whereas 
the reference MESE-NNLS does not, we compared a fifth 
method, STFR3-PERK-JE, that is the same as STFR3-PERK 
except Δω and κ are assumed unknown. Table 1 shows the 
training ranges for the methods that use PERK.

The methods that use PERK require specifying the regu-
larization parameter ρ and the positive definite matrix Λ in 
the Gaussian kernel. For the Gaussian kernel, to eliminate 

(7)x̂(q) =
1

N
X1N +XM(MKM+N𝜌IN)−1k(q),

(8)k(q, q�)≜ exp
�
−

1

2
‖�−1(q−q�)‖2

2

�
,

https://github.com/StevenWhitaker/STFR-MWF
https://github.com/StevenWhitaker/STFR-MWF
https://doi.org/10.7302/nw6e
https://doi.org/10.7302/nw6e
https://github.com/JuliaOpt/NLopt.jl
https://julialang.org
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dependence on scale we set � = �diag(m|q|), where λ is a 
regularization parameter and m|q| denotes the sample average 
across all voxels of the magnitude test data |q|, where q col-
lects the magnitude STFR signals |y| and the known param-
eters ν (see § 1.1.4). We chose � = 2−60 and � = 23.5 for the 
regularization parameters, which we tuned using a holdout 
process described in [22, Section S.II].

2.2.1  |  Numerical simulation

We compared the 2 optimized sets of STFR scans to vali-
date the scan design process. We simulated test data using 
the 2-compartment non-exchanging STFR signal model (2) 
using the range of tissue parameters over which the scans 
were optimized (to match the scan design assumptions), 
and we estimated MWF using STFR2-PERK. We measured 
the root mean square error (RMSE) of the MWF estimates 
versus the additional myelin water off-resonance Δ�f for  
3 cases: first, using design B and training data that ignored 
Δ�f (ie, all training points had Δ�f = 0); second, using 
design B and training data that accounted for Δ�f; and 
third, using design A and training data that accounted for 
Δ�f. Section S1 of the Supporting Information describes 

another experiment where test data was generated using the  
2-compartment model with fixed WM and gray matter 
(GM) tissue values (see Table 1).

Next, we investigated the effects of exchange and com-
pared STFR-based MWF estimates to MESE-based esti-
mates. We simulated STFR scans using design A and a MESE 
scan using �ex = 90◦, �ref = 180◦, Nref = 32, TE = 10 ms,  
and TR = 1200 ms. We simulated test data using the  
3-compartment model with exchange and tissue parameters 
corresponding to WM and GM (see Table 1). Additionally, 
we chose bulk off-resonance Δω values to vary from −30 
to 30 Hz and κ values to vary from 0.8 to 1.2. We compared 
MWF estimates from each of the aforementioned methods 
(STFR3-PERK, STFR2-PERK, MESE-NNLS, MESE-
PERK, and STFR3-PERK-JE). For these simulations we 
added complex Gaussian noise corresponding to a SNR in 
WM ranging from 7 to 28 across the STFR scans and from 2 
to 122 across the 32 MESE echoes (to match the SNR of the 
in vivo data), where SNR was calculated by dividing the WM 
signal mean by the noise SD.

The proposed method (STFR3-PERK) uses a model that 
matches the model used to generate the test data in the previ-
ous experiment. To investigate the effects of model mismatch, 
we repeated the previous experiment using a 9-compartment 

T A B L E  1   Unknown and known parameters used in scan design and in simulation

Parameter Design A Design B White matter Gray matter PERK training ranges

M0 1 1 0.77 0.86 unif (0, M
max
0

)
a 

ff unif (0.03, 0.31) unif (0.03, 0.31) 0.15 0.03 unif (0.03, 0.31)

T1,f (ms)  (400, 802)  (400, 802) 400 500 unif (320,480)

T1,s (ms)  (1000, 2002)  (1000, 2002) 832 1331 unif (800, 1200)

T2,f (ms)  (20, 42)  (20, 42) 20 20 unif (16, 24)

T2,s (ms)  (80, 162)  (80, 162) 80 80 unif (64, 96)

Δ�f (Hz) unif (5, 35) 0c  15 5 unif (0, 35)

Δω (Hz) unif (−50, 50)c  unif (−50, 50)c  Varies Varies unif (−50, 50)
b 

κ unif (0.8, 1.2)c  unif (0.8, 1.2)c  Varies Varies unif (0.8, 1.2)
b 

fm N/A N/A 0.1 0.03 unif (0.03, 0.31)

T1,m (ms) N/A N/A 1000 1000 unif (800, 3000)

T2,m (ms) N/A N/A 0.02 0.02 unif (0.01, 0.1)

�f→s (ms) N/A N/A 100 20 unif (80, 150)

�f→m (ms) N/A N/A 50 10 unif (40, 75)

Notes: Values were chosen to match literature values for white matter.1,17,21,35 We used M0 = 1 for the scan designs because it only scales the STFR signal. The line 
below κ separates parameters used in both the 2-compartment and 3-compartment models (above) from those used only in the 3-compartment exchanging model 
(below).
N/A—Not applicable (scan designs only used 2-compartment model).
unif (a, b)—Uniform distribution on interval [a, b].
 (�, �2)—Normal distribution with mean μ and variance �2.
a
M

max
0

 given by maximum signal value from data divided by mean signal value from signal model with M0 = 1. 
bUnless parameter is known, in which case training range covers range of values in known map. 
cKnown parameter. 
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tissue model with exchange for the test data. The 9 compart-
ments were created by splitting each of the 3 compartments 
in the 3-compartment model into 3 sub-compartments. For 
example, the myelin water compartment with fraction ff 
and relaxation time T2,f was split into 3 compartments with 
fractions 0.5 ff, 0.25 ff, and 0.25 ff and relaxation times T2,f,  
0.8 T2,f, and 1.2T2,f. Section S2 of the Supporting Information 
repeats this experiment for a 4-compartment model with  
exchange and a 3-compartment model without exchange.

2.2.2  |  In vivo experiments

Under an IRB-approved protocol, we scanned a healthy 
volunteer to compare the proposed STFR-based MWF es-
timation to MESE-based MWF estimation. We used 3D ac-
quisitions for both the STFR and MESE scans to avoid slice 
profile effects. The STFR scans used design A, and the RF 
pulses had time-bandwidth product of 8 and duration of 1 ms;  
the 2 SPGR scans took 58 seconds and the 9 STFR scans 
took 3 minutes 36 seconds for a total scan time of 4 minutes 
34 seconds. We also acquired a pair of Bloch-Siegert (BS) 
scans for separate estimation of κ36; the excitation RF pulse 
of these scans had time-bandwidth product of 8 and dura-
tion of 1 ms, and used ±4 kHz off-resonant Fermi pulses 
between excitation and readout. The total duration of the 
BS scans was 2 minutes 40 seconds. Therefore, our overall 
STFR-based MWF estimation scan protocol lasted 7 min-
utes 14 seconds. For the MESE scan, we used the same scan 
parameters as in simulation (described above); the initial ex-
citation RF pulse had time-bandwidth product of 6, duration 
of 3 ms, and slab thickness of 0.9 cm, and each refocusing 
pulse had time-bandwidth product of 2, duration of 2 ms, 
and slab thickness of 2.1 cm. Each refocusing pulse was also 
flanked with crusher gradients, each of which imparted 14 
cycles of phase across the imaging volume. The total dura-
tion of the MESE scan was 36 minutes 11 seconds. For all 
scans, we acquired a 22 ×22 ×0.99 cm3 field of view (FOV) 

with matrix size 200 × 200 × 9 (except the BS scans used 
matrix size 200 × 50 × 9). We implemented the protocol in 
TOPPE.37

We used a GE Discovery™ MR750 3.0T scanner with a 
32-channel Nova Medical® head coil. We used conventional 
inverse FFT reconstruction followed by square-root of sum-
of-squares coil combination to make the magnitude images 
used for MWF estimation. We estimated the SNR in the WM 
brain regions (pooling the 4 WM regions of interest (ROIs) 
in Supporting Information Figure S1 for each scan/echo) to 
vary from 8 to 17 across the STFR scans and from 6 to 73 for 
across MESE echoes.

We analyzed the center slice of the acquired data. We es-
timated MWF using STFR3-PERK, STFR2-PERK, MESE-
NNLS, and MESE-PERK. In this case, for STFR3-PERK 
and STFR2-PERK we took bulk off-resonance Δω to be un-
known (but still assumed κ to be known).

3  |   RESULTS

3.1  |  Scan design

Table 2 reports the 2 optimized scan design parameters. For 
design A, the additional myelin water off-resonance Δ�f was 
taken to be unknown and distributed uniformly from 5 to  
35 Hz. For design B, Δ�f was ignored (ie, taken to be known 
and equal to 0).

Figure 2 compares the expected CRLB of the SD of MWF 
of these 2 scan designs versus Δ�f, where at each data point 
Δ�f is fixed (unlike the other parameters that vary according 
to the distributions in Table 1) but is still unknown, that is, 
contained in x (see §1.1.3). For these CRLB calculations, we 
used a noise SD that corresponds to SNR ranging from 9 to 
15 in WM across the STFR scans to match the SNR of the  
1.1 mm isotropic in vivo data. Figure 2 shows that modeling 
Δ�f improves the precision of the optimized scan design, and 
that MWF becomes easier to estimate as Δ�f increases.

T A B L E  2   Optimized scan parameters

  Scan # 1 2 3 4 5 6 7 8 9 10 11

Design A α 5 5 15.0 15.0 15.0 15.0 15.0 15.0 15.0 11.4 15.0

β 0 0 15.0 15.0 11.6 15.0 13.3 15.0 14.9 0.3 14.4

ϕ 0 0 −139.3 −108.1 −66.0 −28.0 25.9 64.4 104.1 146.3 173.0

Design B α 5 5 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0

β 0 0 15.0 14.5 14.9 14.8 14.8 14.9 0.0 14.5 15.0

ϕ 0 0 −139.3 −113.3 −63.7 −14.3 14.3 63.7 83.2 113.3 139.3

Notes: The first 2 scans are the STFR (SPGR) scans with fixed parameters; the remaining scans were optimized during the scan design process. All values have units 
of degrees. For design A, the additional myelin water off-resonance Δ�f was taken to be unknown and distributed uniformly from 5 to 35 Hz. For design B, Δ�f was 
ignored (ie, taken to be known and equal to 0).
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3.2  |  MWF estimation

3.2.1  |  Numerical simulation

We computed the RMSE of MWF estimates for test data gen-
erated using (2) with different values of Δ�f and a range of 

tissue parameters. For design A, we estimated MWF using 
training data that were generated with a range of Δ�f val-
ues. For design B, in 1 experiment we estimated MWF using 
training data that was generated with a range of Δ�f, and in 
another experiment the training data included only Δ�f = 0

. Figure 3 shows the results. The mean MWF value in the 

F I G U R E  2   The 2 optimized scans (see Table 2) were evaluated to explore how including the additional myelin water off-resonance Δ�f in 
the design process affects performance. Design A (where Δ�f was included in the optimization) has a better expected CRLB for every value of 
Δ�f within the 5-35 Hz range over which design A was optimized. Design B (where Δ�f was ignored) understandably has a better expected CRLB 
for Δ�f = 0. For each value of Δ�f investigated in this plot, the expected CRLB was computed with that value of Δ�f held constant but unknown. 
Typical values of Δ�f in white matter are 5-35 Hz.17 Although these CRLB values predict estimator SD (for an unbiased estimator) on the order of 
100% MWF or more, we are not restricted by these large values because we are using a Bayesian estimator (see Supporting Information Figure S6 
for details)

F I G U R E  3   RMSE of MWF estimates from simulated test data for various ways of accounting for the additional myelin water off-resonance 
Δ�f. The diamond-markered green curve was generated using scan design B (where Δ�f was ignored) and using PERK training data where  
Δ�f = 0. In other words, Δ�f was not considered in any aspect, neither in the scan design nor when training. The square-markered red curve was 
also generated using scan design B, but the training data included a range of Δ�f values. The circle-markered blue curve was generated using design 
A and a range of values of Δ�f. The latter 2 methods look almost identical, but both have much better RMSE than the first method as Δ�f increases



      |  1985WHITAKER et al.

test data was 0.17, so the minimum RMSE of 0.045 corre-
sponds to about 26% relative error. Supporting Information  
Figure S2 reports an analogous experiment using fixed  
WM and GM tissue values.

Furthermore, we investigated the effects of exchange on 
MWF estimates. We simulated STFR scans (using design 
A) and a MESE scan, and we used the 3-compartment tissue 
model with exchange using tissue parameters correspond-
ing to WM and GM. We estimated MWF using STFR2-
PERK, STFR3-PERK, MESE-NNLS, MESE-PERK, and 
STFR3-PERK-JE. Table 3 shows the RMSEs, means, and 
SDs of the MWF estimates. Figure 4 shows the ground 
truth map and a visual comparison of the estimated MWF 
maps. Figure 5 shows the results of this experiment when 
using a 9-compartment exchanging model. Supporting 
Information Figures S3 and S4 show results when using 
a 4-compartment exchanging model and a 3-compartment 
non-exchanging model, respectively. The anatomy for 
the simulated data used in these experiments came from 
BrainWeb.38

3.2.2  |  In vivo experiments

We scanned a healthy volunteer using scan design A. 
Supporting Information Figure S5 shows images of the 2 
SPGR and 9 STFR scans of the subject. In the same scan ses-
sion, we also scanned the volunteer with a MESE scan. Figure 
6 shows MWF maps that were computed from the STFR and 
MESE scans. In this case, we made the STFR-based MWF es-
timates without using a separately estimated Δω map because 
the MWF estimates made with the separately estimated Δω 
map exhibited spatial variation that mimicked the field map 
spatial variations, which we do not expect in MWF maps (ie, 
we expect myelin content to be independent of Δω). Table 4 
shows numerical results for the in vivo data for several ROIs.

4  |   DISCUSSION

Almost all of the optimized flip angles α and β for both scan 
designs A and B are equal to (or are very close to) the upper 

F I G U R E  4   Right: MWF maps from 5 methods using simulated test data for a 3-compartment tissue model with exchange. Table 3 reports 
numerical results. The proposed STFR3-PERK estimates are closer to the true MWF value for white matter tissue values than are the MESE-NNLS 
estimates. Left: Bulk off-resonance Δω and flip angle scaling κ maps used in this simulation

 
White matter 
(MWF  = 0.15)

Gray matter 
(MWF  = 0.03)  

  RMSE Mean SD RMSE Mean SD Time (s)

STFR2-PERK 0.215 0.349 0.082 0.185 0.209 0.047 21.9

STFR3-PERK 0.021 0.158 0.020 0.046 0.074 0.015 43.1

STFR3-PERK-JE 0.026 0.145 0.026 0.044 0.069 0.021 41.3

MESE-NNLS 0.063 0.092 0.025 0.029 0.001 0.003 1602.4

MESE-PERK 0.029 0.134 0.025 0.026 0.026 0.025 142.7

Notes: The reported time refers to the entire estimation, combining the time to estimate MWF in white matter 
voxels and gray matter voxels; it also includes training time for the methods that use PERK. The best value in 
each column is highlighted. See Figure 4 for a visual comparison of these methods.

T A B L E  3   Comparison of various 
methods of MWF estimation
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constraint, and there is a wide spread of tip-up phases (see 
Table 2). This seems to suggest that most of the informa-
tion needed for estimating MWF lies in the phase accrual that 
occurs between the tip-down and tip-up excitations, so the 
flip angles should be chosen to maximize SNR. Interestingly, 

however, an unreported experiment showed that a scan de-
sign with flip angles set to 15◦ and with an even spread of 
tip-up phases ϕ resulted in CRLBs that were many orders of 
magnitude worse than the optimized scans. This result em-
phasizes the importance of the scan design process in choos-
ing scan parameters, because these optimized parameters 
are robust across a range of Δ�f values (see Figure 2). We 
also looked at optimized scan parameters when fixing Tfree to  
6 ms. We found that the tip-up phases still covered a spread 
of values, but the range of phases was slightly smaller,  
which makes sense because a smaller Tfree leads to less off-
resonance precession.

The expected CRLB for scan design A is better than that 
of design B when compared across many values of the addi-
tional myelin water Δ�f (see Figure 2), as expected because 
the optimization of design B ignored the presence of Δ�f.  
Figure 2 also illustrates the impact that Δ�f has on estimates 
of MWF; MWF becomes harder to estimate as Δ�f ap-
proaches 0. These findings appear to be at variance with the 
findings in,39 where in multi-GRE MWF estimation model-
ing Δ�f led to worse estimates at 3T. However, there is likely 
more information about Δ�f in the STFR scans because of 
the optimized tip-up phases, which could explain why mod-
eling Δ�f in this work improved MWF estimation.

Simulated test data showed that scan design A and scan 
design B gave similarly good estimates of MWF across 
many values of Δ�f, at least for a range of tissue parameters 
(see Figure 3). At first glance, one may be surprised that 
design A performed noticeably better than design B with re-
spect to the expected CRLB, and yet the 2 designs had simi-
lar RMSE values. One may also be surprised that the RMSE 
values were relatively small (about 25% of the mean MWF 
value) even though the expected CRLB predicted errors of 
100% or more. However, PERK is a Bayesian estimator; 

F I G U R E  5   MWF maps from 5 
methods using simulated test data for 
a 9-compartment tissue model with 
exchange. These results are essentially the 
same as when using the 3-compartment 
exchanging model (see Figure 4). Thus, 
even though STFR3-PERK was trained 
with a 3-compartment exchanging model, 
it still produced good MWF estimates from 
signal generated using a 9-compartment 
exchanging model

F I G U R E  6   MWF maps from in vivo MESE data and STFR 
data using scan design A. Table 4 shows numerical results for several 
manually selected regions of interest. The MESE-NNLS MWF map 
appears noisier than those shown in other works. This is likely due to 
the lower SNR of our data due to differences in voxel size. To match 
the STFR resolution, we acquired MESE with 1.1 mm isotropic voxels, 
whereas often MESE data are collected with slice thickness of 5 mm 
and 1.6 mm or greater in the phase encode direction. Remarkably, 
MESE-PERK is much less noisy than MESE-NNLS. This is likely due 
to PERK being a Bayesian estimator that discourages estimates that are 
far from the mean MWF training value
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thus, the unbiased CRLB does not necessarily predict the 
precision of MWF estimates computed by PERK. We mini-
mized the unbiased CRLB during scan design because of its 
simplicity, but recognize that other objective functions for 
scan optimization may be better suited for MWF estimates 
from PERK or other Bayesian estimation methods. We in-
vestigated the effect of bias in Section S3 of the Supporting 
Information.

Simulated test data also show that STFR-based myelin 
water imaging compares well to MESE-based approaches. 
Compared to the conventional MESE-NNLS, STFR3-PERK 
gives more accurate results in simulated WM voxels, in ad-
dition to reducing estimation time by more than an order of 
magnitude (see Table 3). This result is interesting because 
the simulated MESE echoes generally had much higher 
SNR than the STFR scans. Combining MESE with PERK 
improves upon the NNLS results. However, the MESE scan 
is longer than the combined time of all the STFR and BS 
scans. Furthermore, MWF estimation using MESE-PERK 
takes longer than STFR3-PERK because when simulating 
the MESE signal one must simulate a collection of spins to 
account for stimulated echoes, which is not necessary for 
STFR. This simulated data also show that ignoring exchange 
when estimating MWF with STFR scans results in drastically 
overestimated MWF values (see Figure 4), so it is essential 
to generate training data that account for exchange. These 
same results hold even when the test data were generated 
using a 9-compartment exchanging model (see Figure 5). See 
Section S2 of the Supporting Information for results using 
a 4-compartment exchanging model and a 3-compartment 
non-exchanging model.

The in vivo MWF estimates in Figure 6 further emphasize 
the importance of modeling exchange. The MWF map given 
by STFR2-PERK has higher MWF values than the map given 
by STFR3-PERK. The 3-compartment model led to maps that 
better agreed with the MWF maps estimated from MESE data. 
Table 4 indicates that in all WM ROIs the STFR3-PERK esti-
mates are within 1 SD of the mean MESE-NNLS estimates. 
In GM it is different; however, this difference could be due to 
how the STFR training data were simulated, as typical values 
for GM T1,f and T1,s are slightly outside of the range of values 
generated for training. Figure 6 and Table 4 also demonstrate 
the effect that the estimation method has on MWF estimates: 

the MESE-PERK estimates have decreased SD compared  
to the MESE-NNLS estimates. Furthermore, Table 4 demon-
strates that STFR-based MWF estimates have lower SD than 
MESE-based MWF estimates, despite the MESE scans being 
4× longer than the STFR scans.

For the in vivo data, we did not use a separately acquired 
bulk off-resonance Δω map as a known parameter for our 
proposed STFR-based MWF estimation technique, even 
though the scan design and simulations assumed that Δω was 
known. When we attempted to use the separately acquired 
Δω map for the in vivo data, the MWF estimates appeared to 
be more biased in regions with high Δω values. Further work 
is needed to investigate this behavior.

For the in vivo data, we acquired a 9 mm slab in about 
7 minutes total scan time with 1.1 mm isotropic resolution. 
Whole brain coverage would require 4 times as much data 
(with 2 mm slices), so our proposed approach would take 
about 28 minutes, which is longer than the 8 minutes achieved 
by the GRASE method. However, in6 the authors under- 
sampled the GRASE data by a factor of 4, whereas we  
acquired fully sampled data. By under-sampling by the same 
factor the proposed STFR approach would achieve whole-
brain coverage in about 7 minutes.

5  |   CONCLUSION

This work optimized a set of STFR scans that can be used to 
estimate MWF. We found that estimates of MWF are more 
precise for larger values of the frequency difference Δ�f 
between myelin water and non-myelin water. Fortunately, 
in WM reported values of Δ�f are far enough away from 0 
to aid estimation of MWF.17 We also found that modeling 
exchange (ie, using a more accurate tissue model) greatly im-
pacts the MWF estimates from STFR scans. When modeling 
exchange, STFR with PERK yields MWF estimates that are 
comparable to MESE-based MWF estimates.

This is the first work to compare STFR-based MWF es-
timation to MESE-based MWF estimation. Additionally, to 
our knowledge, this is the first work to generate MWF esti-
mates from a MESE scan using PERK. While this estimation 
method was not the main point of this paper, it illustrates an-
other potential method for MWF estimation.

ROI STFR2-PERK STFR3-PERK MESE-NNLS MESE-PERK

WM1 0.175 ± 0.021 0.116 ± 0.029 0.096 ± 0.042 0.105 ± 0.030

WM2 0.175 ± 0.009 0.117 ± 0.011 0.089 ± 0.046 0.097 ± 0.023

WM3 0.206 ± 0.010 0.133 ± 0.010 0.108 ± 0.036 0.133 ± 0.014

WM4 0.195 ± 0.008 0.138 ± 0.010 0.121 ± 0.039 0.141 ± 0.014

GM 0.187 ± 0.034 0.110 ± 0.029 0.034 ± 0.035 0.085 ± 0.034

Note: Figure 6 shows corresponding MWF maps, and Supporting Information Figure S1 shows the 
corresponding ROIs.

T A B L E  4   Sample means ± SDs of 
MWF estimates for 4 white matter (WM) 
regions of interest (ROIs) and 1 gray matter 
(GM) ROI
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This study was a proof-of-concept study to see if STFR could 
be applied to estimating MWF. As such, only a single healthy 
volunteer was scanned. While the initial comparison of STFR 
to MESE is promising, future studies should compare the 2 
methods across multiple volunteers. Additionally, our proposed 
MWF estimation method should be validated in pathology to 
verify that it can detect, for example, multiple sclerosis lesions. 
Such verification is especially important because the proposed 
method assumes a fixed number of tissue compartments, which 
may or may not inhibit its sensitivity to anomalies.

There are several ways in which the scan design process 
could be further explored. Our choice to optimize 9 STFR 
scans for scan design was somewhat arbitrary, so one could 
explore different numbers of scans to see how the CRLB is 
affected for a given scan time budget. Additionally, one could 
change the space of scan parameters over which to optimize; 
especially interesting would be to increase the upper bound 
on α and β to see if the optimized scans would have a greater 
variety of flip angles. Another route to explore is to adjust 
the weighting matrix W to optimize STFR scans for estimat-
ing other parameters in addition to or instead of MWF. In 
particular, since the results here suggest that the STFR scans 
are sensitive to the effects of exchange, it could be interest-
ing to optimize STFR scan design for quantifying exchange 
parameters. Additionally, future work could explore what 
parameters to include as known parameters versus unknown 
parameters, in both the scan design and in PERK.

Finally, to reduce the scan time of the STFR scans, either 
to allow for more scans or to reduce scan time, one could un-
der-sample the MRI k-space data. The image reconstruction 
would then be under-determined, thus requiring some sort of 
regularized reconstruction. Methods that jointly reconstruct all 
D scans at once would be a natural approach (eg, Refs. 40,41).
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FIGURE S1 White matter (WM) and gray matter (GM) 
regions of interest (ROIs). The underlying image is from a 
standard MP-RAGE acquisition, acquired in the same scan 
session and registered to the other scans. The ROIs are la-
beled to correspond to Table 4 in the paper
FIGURE S2 RMSE of MWF estimates for WM and GM 
simulated test data. Scan design A has better RMSE in WM 
for values of Δ�f we expect to see in WM. This better RMSE 
in WM is at the cost of worse RMSE in GM. Note that the 
values of T1,f and T1,s for GM were outside of the range of 
values used for the scan designs and for training our 
estimator
FIGURE S3 MWF maps from 5 methods using simulated test 
data for a 4-compartment tissue model with exchange. The 4 
compartments considered were myelin water, axonal water 
(ie, water in myelinated axons), all other water, and macro-
molecules. The results are similar to those using the 3-com-
partment model with exchange. Supporting Information 
Table S1 shows numerical results
FIGURE S4 MWF maps from 5 methods using simulated 
test data for a 3-compartment tissue model without exchange. 
Without exchange, the 3-compartment model becomes es-
sentially a 2-compartment model because the T

2
 of the 

macromolecular pool is so small. Thus, it makes sense that 
STFR2-PERK performs well. Surprisingly, MESE-PERK 
still produces good MWF estimates, even though it is trained 
with the 3-compartment exchanging model (like STFR3-
PERK). This could be because the T

R
 of the MESE scan is 

long compared to the residence times governing exchange. 
Furthermore, it is possible that if the training ranges for the 
residence times were adjusted appropriately (increased) then 
STFR3-PERK would also do well. Supporting Information 
Table S2 shows numerical results
FIGURE S5 In vivo images for 2 SPGR and 9 STFR scans 
using scan design A. Each image is the square root sum of 
squares combination of the individual coil data. STFR pro-
duces contrast similar to balanced SSFP, including a similar 
off-resonance profile that induces the characteristic banding 
artifact of balanced SSFP. Different points of this profile are 
sampled as the phase ϕ of the STFR tip-up excitation var-
ies. The 9 STFR images are sorted by increasing ϕ, so this 
off-resonance profile is easily visualized. In the lower right is 
the field map estimated from the 2 SPGR scans
FIGURE S6 Comparison of biased and unbiased CRLBs 
for WM tissue values using the 2-compartment non-ex-
changing model. The biased CRLB is much lower than the 
unbiased CRLB, suggesting that bias is the reason why our  
STFR-based MWF estimation results in estimates with low 
variance. However, our proposed method still shows sen-
sitivity to changes in MWF (see Supporting Information  
Figure S7)
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FIGURE S7 Expected MWF estimates from the proposed 
STFR3-PERK MWF estimation technique for fixed WM tis-
sue values from a 3-compartment exchanging model. The pro-
posed method is (mildly) biased, yet it is still very sensitive to 
changes in true MWF value. Furthermore, bias decreases as 
SNR increases. (An unbiased estimator would have estimates 
along the line of identity, that is, along the dashed line)
TABLE S1 Numerical results for Supporting Information 
Figure S3
TABLE S2 Numerical results for Supporting Information 
Figure S4
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