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1 Web Appendix A: Definition of h(·)

Following the Appendix from Ripatti and Palmgren (2000):

h(λ01(·), λ02(·), θ̂) =
n∑
i=1

(mi+1)∑
j=1

2∑
k=1

δijk log(λ0k(T̃ijk))

+
n∑
i=1

(mi+1)∑
j=1

2∑
k=1

δijk log(
n∑
l=1

(ml+1)∑
p=1

Ylpk(T̃ijk) exp(η̂lpk))

−
n∑
i=1

(mi+1)∑
j=1

2∑
k=1

Λ0k(T̃ijk) exp(η̂ijk)

(1)
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2 Web Appendix B: D̂# is Positive-definite

Fixing D, a partial log-likelihood (PLL) is assumed to be concave with respect to γ,

or in other words, −(∂2PLL)/(∂γ∂γ ′) is positive-definite. Variance matrix Σ and

thus its inverse Σ−1 are positive-definite. KPPL2(γ) = −(∂2PPLL)/(∂γ∂γ ′), sum

of −(∂2PLL)/(∂γ∂γ ′) and Σ−1, is positive-definite; so is its inverse KPPL2(γ)−1.

In line of the Remark blow, [KPPL2(γ̂)−1]blki are positive-definite. As follows, the

sum of quadratic terms γ̂iγ̂
′
i and [KPPL2(γ̂)−1]blki would produce a positive-definite

estimator D̂#. The remark is claimed and proved as below.

Remark. IfKPPL2(γ̂)−1 is positive-definite, then [KPPL2(γ̂)−1]blki are positive-definite.

Proof. Let Ii = [0(1), . . . ,1(i), . . . ,0(n)]
′
2×2n, where 1i is a 2 × 2 identity matrix lo-

cated at the ith horizontal block or occupying columns 2i − 1 and 2i, leaving other

components to be 0. Thus we have [K ′′PPL(γ̂)−1]blki = I ′iKPPL2(γ̂)−1Ii. Since

KPPL2(γ̂)−1 is positive-definite, for ∀x 6= 0, we shall have x′ [KPPL2(γ̂)−1]blki x =

x∗TKPPL2(γ̂)−1x∗ > 0 , where x∗ = [01, . . . ,x, . . . ,0n]′ 6= 0.

3 Web Appendix C: Comparison with Ripatti and

Palmgren (2000) and Lee et al. (2018)

To the best of our knowledge, there is no literature that derived a direct estima-

tor for the entire variance-covariance matrix within a hierarchical survival model.

Recall that in hierarchical frailty model discussed by Ripatti and Palmgren (2000),

the authors incorporated three independent frailties to ensure a positive correlation
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between two events in their model. Dharmarajan et al. (2018) built a correlated

frailty model of competing risks with a negative correlation by flipping a sign for one

of its random effects. They both predefined the correlation directions between two

events, which can be summarized as

λ1ij(t | Z1,γ
∗
i ) = λ01(t) exp(β′1Z1ij + γ∗1i + γ∗0i)

λ2ij(t | Z1,γ
∗
i ) = λ02(t) exp(β′2Z2ij + γ∗2i ± γ∗0i),

(2)

where γ∗i = [γ∗0i, γ
∗
1i, γ

∗
2i]
′ are independent and identically distributed draws from a

normal distribution N(0,D∗) and D∗ = diag[φ0, φ1, φ2], and the plus-minus sign ±

controls the the correlation sign between two events. Note that we use a superscript

∗ to distinguish the analogs in Ripatti and Palmgren (2000) from ours.

In the outer loop, the estimating equations for φd with d = 0, 1, 2 are

∂MPLL
∂φd

= −1
2

{
tr
(
Σ∗−1 ∂Σ

∗

∂φd

)
+ tr

(
K∗2(γ̂∗)−1 ∂Σ

∗−1

∂φd

)
− γ̂∗′Σ−1 ∂Σ∗

∂φd
Σ∗−1γ̂∗

}
= 0.

(3)

Ripatti and Palmgren (2000) also suggested using the second derivative of the pe-

nalized partial log likelihood K∗PPL2(γ) = ∂2PPLL/∂γ∗∂γ∗′ in place of K∗2(γ) =

∂2K(γ∗)/∂γ∗∂γ∗′ to achieve a better estimating performance. In practice, due to the

difficulty to obtain ∂Σ∗−1/∂φd and that its Newton-Raphson estimating procedure

in the outer loop cannot ensure it to be positive-definite (though re-parametrization

of the variance-covariance matrix might save this point), practitioners assume the

independent frailty model with the sign of the covariance of D pre-specified as in

(2) for convenience. Under such assumption as in models (2), the estimators for
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variance-covariance components are

φ̂d =
[γ̂∗d]′[γ̂∗d]+tr[{K∗PPL2(γ̂

∗)−1}d]
n

d ∈ {0, 1, 2}, (4)

where we define γ̂∗d = [γ̂∗d1, . . . , γ̂
∗
dn]′, and {K∗PPL2(γ̂∗)−1}d is the dth sub-matrix of

K∗PPL2(γ̂
∗)−1 corresponding to γ̂∗d. In other words, tr[{K∗PPL2(γ̂∗)−1}d] is summing

up every dth elements on the diagonal of K∗PPL(γ̂∗)−1. Note that K∗2(γ∗) is diagonal

while K∗PPL(γ∗) is not, taking the trace tr[{K∗PPL2(γ̂∗)−1}d] is comparable to taking

the sum of the diagonal blocks in our proposed method. Consequently, the entire

variance matrix D̂∗ can be assembled as

D̂∗ =

 φ̂1 + φ̂0 ±φ̂0

±φ̂0 φ̂2 + φ̂0

 . (5)

Since the main difference between the two methods lie in the outer loop procedure,

the regression parameter estimation would not be affected much (Table 3 and Web

Table 3). Moreover, compared to coxme, the proposed approach reduces the compu-

tation burden by estimating fewer parameters in the inner loop: 2n + p vs 3n + p.

Meanwhile in Web Table 4, we compared the outputs from our method with an

accelerated failure time (AFT) method designed for alternating recurrent episodes

(Lee et al, 2018). The AFT method has been implemented in an R package BivRec

(version 1.0.0), which was quite fast and accurate, but it did not provide variance

component estimates, and efficiency of the regression parameter estimates was lower

than the PPL methods (Web Tables 3-4). Coxme and the proposed method provides
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similar estimations, the accuracy from coxme is slightly better, but requires much

longer computation time.

4 Web Appendix D: Additional simulation studies

4.1 Larger cluster size

We increased the cluster size (mi) in Web Table 1 to show that it will largely reduce

the estimation bias for the variance components, and provide a better estimation on

the regression parameters. The sample size is fixed at n = 100, and other settings

are consistent with the simulation settings in the manuscript.

4.2 High censoring, large sample size, and many covariates

In order to test whether our proposed method works well for datasets with large pro-

portion of censoring rate and many regression variables. We let 95% of the samples

with censoring time C = 0.4, and the other 5% with censoring time C = 10, the base-

lines intensities are λ0k = 1.5. The frailty is following a bivariate normal distribution

γ ∼ BV N(02,D) where D[1, 1] = D[2, 2] = 0.25 and D[1, 2] = ±0.125. The gap

times were generated from exponential distribution with intensity λ0k exp(β′Zijk)γik,

where the covariates were simulated from a standard normal distribution. For each

event type, there are 30 regression as an arithmetic sequence with constant incre-

ments ranging from −1 to +1 (p = 60). For each of the 500 replicates, we generated

n = 6, 000 subjects, 75 − 80% censoring rate, and around 8, 000 event pairs in to-

tal. For D[1, 2] = 0.125, the average estimated random effect variance-covariance
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matrix is quite accurate with bias of the estimates for D[1, 1] to be -0.007 (ESE:

0.035), D[2, 2] to be -0.008 (ESE: 0.046), and D[1, 2] to be -0.005 (ESE: 0.025); for

D[1, 2] = −0.125, the respective estimation biases were -0.008 (ESE: 0.036), -0.005

(ESE: 0.051), and -0.001 (ESE: 0.026). The estimation of the regression parameters

were also quite accurate according to the plots in Web Figures 1-4.

Web Table 1: Estimating regression coefficients and variance
components for varying cluster sizes, based on 500 replicates,

with n = 100 and λ01 = λ02.

True Strong D True Weak D
Value Bias ESD ASE CP Value Mean ESD ASE CP

λ0k 6 m̃i = 16 m̃i = 18
β1 1 -0.001 0.029 0.028 0.948 1 -0.002 0.030 0.030 0.940
β2 -1 -0.001 0.028 0.029 0.944 -1 0.001 0.030 0.030 0.944
D[1, 1] 0.7 -0.031 0.105 0.107 0.900 0.25 -0.006 0.046 0.043 0.894
D[2, 2] 1.2 -0.047 0.193 0.179 0.874 0.25 -0.001 0.044 0.044 0.926
D[1, 2] 0.2 -0.038 0.101 0.099 0.916 0.125 -0.006 0.033 0.033 0.938
λ0k 15 m̃i = 40 m̃i = 45
β1 1 -0.001 0.018 0.018 0.952 1 -0.001 0.019 0.019 0.954
β2 -1 -0.000 0.018 0.018 0.958 -1 -0.000 0.018 0.019 0.964
D[1, 1] 0.7 -0.014 0.104 0.102 0.908 0.25 -0.005 0.041 0.038 0.902
D[2, 2] 1.2 -0.016 0.163 0.171 0.920 0.25 -0.005 0.040 0.038 0.930
D[1, 2] 0.2 -0.018 0.099 0.095 0.932 0.125 -0.005 0.031 0.029 0.922

m̃i: median of mi.
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Web Table 2: Estimation on the DOPPS data by fitting two frailty models separately
(using coxme)

Admission Discharge

Estimate ŜE P-value Estimate ŜE P-value
Age (per 5 years) -0.025 0.010 0.016 -0.050 0.010 <0.001
Height (per 5 cm) -0.027 0.019 0.149 -0.003 0.018 0.875
Female 0.020 0.075 0.786 -0.049 0.072 0.494
Vascular access

Arteriovenous graft 0.547 0.171 0.001 0.003 0.147 0.986
Central venous catheter 0.810 0.064 <0.001 0.085 0.059 0.149

Comorbid conditions
CAD 0.465 0.074 <0.001 -0.100 0.067 0.136
Cancer 0.215 0.089 0.016 -0.208 0.081 0.010
CVD 0.195 0.083 0.019 -0.048 0.074 0.518
Stroke 0.203 0.098 0.038 0.019 0.087 0.832
CHF 0.074 0.074 0.319 0.020 0.069 0.770
Diabetes 0.054 0.061 0.377 -0.076 0.059 0.200
Hypertension 0.020 0.073 0.788 0.123 0.075 0.099
COPD 0.275 0.098 0.005 -0.038 0.086 0.660
Neurological disorder 0.378 0.110 0.001 -0.319 0.094 0.001
Psychological disorder 0.298 0.099 0.003 -0.065 0.087 0.456
PVD 0.117 0.085 0.171 0.130 0.078 0.095
Cellulitis 0.175 0.144 0.222 -0.408 0.124 0.001

Countries
Belgium 0.401 0.138 0.004 0.138 0.123 0.263
Canada 0.250 0.135 0.065 -0.657 0.123 <0.001
China -0.583 0.241 0.015 -1.004 0.251 <0.001
Gulf -0.051 0.141 0.715 0.218 0.138 0.113
Germany 1.021 0.109 <0.001 -0.284 0.095 0.003
Italy 0.381 0.137 0.006 -0.536 0.129 <0.001
Japan 0.867 0.109 <0.001 -0.431 0.106 <0.001
Spain -0.122 0.136 0.366 -0.331 0.133 0.013
Sweden 0.514 0.141 <0.001 0.107 0.130 0.411
UK 0.573 0.146 <0.001 -0.315 0.138 0.023
USA: Asian -0.125 0.322 0.697 -0.107 0.350 0.759
USA: African-American -0.034 0.095 0.720 0.011 0.100 0.910
USA: Caucasian 0 - - 0 - -
Variance 1.105 - - 0.339 - -
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Web Figure 1: D[1, 2] = 0.125: for event type 1, we have 30 parameters ranging
from -1 to +1. The sub-figure on the left has shown that entries of β1 were plotted
against the average value of their estimates, which is quite close to the red reference
line y = x; On the right, we show the CPs for all the regression parameters form
event 1, and the red line denotes the nominal value 0.95.
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Web Figure 2: D[1, 2] = 0.125: for event type 2, we have 30 parameters ranging
from -1 to +1. The sub-figure on the left has shown that entries of β1 were plotted
against the average value their estimates, which is quite close to the red reference
line y = x; On the right, we show the CPs for all the regression parameters form
event 2, and the red line denotes the nominal value 0.95.
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Web Figure 3: D[1, 2] = −0.125: for event type 1, we have 30 parameters ranging
from -1 to +1. The sub-figure on the left has shown that entries of β1 were plotted
against the average value of their estimates, which is quite close to the red reference
line y = x; On the right, we show the CPs for all the regression parameters form
event 1, and the red line denotes the nominal value 0.95.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1.0

−0.5

0.0

0.5

1.0

−1.0 −0.5 0.0 0.5 1.0
β2

β 2

β2 vs β2

●

●

●
● ●

● ● ● ● ● ● ● ●
● ●

● ●
●

●
●

●
●

●
●

● ● ●
●

●
●

0.0

0.3

0.6

0.9

0 10 20 30

C
ov

er
ag

e 
P

ro
ba

bi
lit

y

Coverage Probability for β2

Web Figure 4: D[1, 2] = −0.125: for event type 2, we have 30 parameters ranging
from -1 to +1. The sub-figure on the left has shown that entries of β1 were plotted
against the average value their estimates, which is quite close to the red reference
line y = x; On the right, we show the CPs for all the regression parameters form
event 2, and the red line denotes the nominal value 0.95.
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