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Abstract

Recurrent event data are widely encountered in clinical and observational

studies. Most methods for recurrent events treat the outcome as a point process

and, as such, neglect any associated event duration. This generally leads to a less

informative and potentially biased analysis. We propose a joint model for the

recurrent event rate (of incidence) and duration. The two processes are linked

through a bivariate normal frailty. For example, when the event is hospitaliza-

tion, we can treat the time to admission and length‐of‐stay as two alternating

recurrent events. In our method, the regression parameters are estimated

through a penalized partial likelihood, and the variance‐covariance matrix of

the frailty is estimated through a recursive estimating formula. Moreover, we

develop a likelihood ratio test to assess the dependence between the incidence

and duration processes. Simulation results demonstrate that our method

provides accurate parameter estimation, with a relatively fast computation time.

We illustrate the methods through an analysis of hospitalizations among end‐
stage renal disease patients.
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1 | INTRODUCTION

Recurrent event data are commonly encountered in clinical
experiments and observational studies. Examples include
repeated hospitalizations, recurrent opportunistic infections
for HIV‐infected patients, and recurrent tumors for cancer
patients. Various methods have been developed, most based
on either intensity functions (Andersen and Gill, 1982) or
rate functions (Lin et al., 2000). Most such methods treat
the recurrent event sequence as a point process and hence
assume (at least implicitly) that event durations are
negligible. In cases where event duration is variable and
not negligible, information and accuracy are sacrificed by
not incorporating event duration. For example, hospitaliza-
tions are frequently analyzed as recurrent events and each
admission has a corresponding length‐of‐stay. An analysis

which ignores length‐of‐stay results in biased regression
coefficients, in accordance with the degree of association
between the length‐of‐stay and admission rate.

A natural way to accommodate recurrent events with
nonnegligible duration is to cast the data structure as an
alternating gap time sequence. Very few methods have
been proposed along these lines. A nonparametric
approach was developed by Huang and Wang (2005).
Recently, Lee et al. (2018) developed an estimating
equation approach for accelerated failure time model
for an alternating recurrent event data. In their proposed
estimating procedure, the distribution of the possibly
correlated random variables for two processes was left
unspecified. Like Huang and Wang (2005), Lee et al.
(2018) does not provide information on the correlations
within or between the two recurrent event sequences.
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Alternatively, correlated frailty models can be devel-
oped to accommodate the alternating recurrent event
setting by adapting bivariate frailty models for clustered
multivariate failure time data (Yashin et al., 1995; Xue
and Brookmeyer, 1996). The marginal likelihood (inte-
grating out the unobserved frailties) can be obtained
through the expectation‐maximization (EM) algorithm,
Gaussian‐Hermite quadrature or a Laplace approxima-
tion (Vaida and Xu, 2000; Ripatti et al., 2002; Huang and
Liu, 2007; Liu and Huang, 2008). Ripatti and Palmgren
(2000) developed a Laplace approximation–based ap-
proach to estimate a penalized partial‐likelihood (PPL)
for a multivariate frailty model, which was shown to
converge much faster than EM (Therneau et al., 2003).

Ripatti and Palmgren (2000) developed a frailty model
applicable to alternating gap time data. The methods
restrict the sign of the correlation between the gap time
sequences to be positive. Dharmarajan et al. (2018)
developed related techniques but required the correlation
to be negative. Although suitable for many practical
settings, the need to prespecify the correlation limits the
implementation of such approaches in the alternating
recurrent event setting. It could be difficult to accurately
prespecify the direction of the correlation.

In this report, our objective is to develop methods for
analyzing alternating recurrent event data that are flexible,
informative, computationally efficient, and implementable
in very large data sets. We propose a novel PPL estimating
approach for alternating recurrent event data using
correlated log‐normal frailties. This is equivalent to model-
ing two recurrent event processes jointly, incorporating a
bivariate random intercept (with correlated elements) to
represent between‐ and within‐process correlations.

The key difference between our proposed methods
and Ripatti and Palmgren (2000) lies in how the
variance/covariance parameters are estimated. Our esti-
mating equation for the variance components is obtained
by differentiating the approximate marginal likelihood
with respect to its inverse variance matrix; in contrast to
Ripatti and Palmgren (2000), for which differentiation
was with respect to the scalar elements. We provide a
detailed description of the technical differences between
the two approaches in the Supporting Information
document. In addition, we propose a likelihood ratio test
(LRT) to assess whether or not the two alternating
recurrent event sequences are mutually independent.

The remainder of this report is organized as follows. We
introduce our model in the setting of alternating recurrent
events in Section 2. In Section 3, our proposed methods are
described. Simulations to evaluate the proposed methods on
finite sample sizes are summarized in Section 4. We apply
the proposed method to an analysis of end‐stage renal
disease patients from the Dialysis Outcomes and Practice

Patterns Study (DOPPS) in Section 5. Some concluding
remarks are provided in Section 6.

2 | MODEL SPECIFICATION

A total of n‐independent subjects are followed over time
and experience two alternating events indexed by k; that
is, k = 1 and k = 2 represent the first and second event
types, respectively. For subject i, the total event time
of the jth occurrence of event type k is denoted by T*ijk.
The ordered event times are then given by

T T T T0 < < < < <* * * *i i i i11 12 21 22 ⋯. The gap times of inter-
est for subject i are then given by T T T˜ = −* * *ij ij i j1 1 ( −1)2 for

k = 1 and T T T˜ = −* * *ij ij ij2 2 1 for k = 2. This setup is
depicted in Figure 1. For example, the two alternating
recurrent events could be time‐to‐readmission to a
hospital (measured from the most recent discharge) and
time‐to‐discharge (ie, length of stay).

We set the covariate for gap time T̃ijk to Zijk, such that
all elements are set to their values at their respective gap
time origins; that is, Z Z T= ( )ij ij i j1 , −1,2 and Z Z T= ( )ij ij ij2 1 .
This is for notational convenience, as the proposed
methods can accommodate continuously changing cov-
ariates. The covariates comprising the two recurrent
event types, Zij1 and Zij2, can be different. Note that any
time‐dependent elements are restricted to be external
(Kalbfleisch and Prentice, 2002). The alternating recur-
rent event process is right‐censored by Ci. Let mi be the
number of observed complete event pairs from subject i.
Correspondingly, we denote the observed covariate
history by Z Z j m k= { , = 1, …, + 1, = 1, 2}i ijk i , and as-
sume that Ci is independent of the event times given Zi.
The event indicators and total observation times are
defined as δ I T C= ( < )*ijk ijk i and T T C= *ijk ijk i∧ , respec-
tively, where I ( )⋅ is a 0/1 indicator function and
a b min a b= { , }∧ . Note that it is always true that for
j m= 1, …, i, we have δ = 1ijk and T T= *ijk ijk, while

δ = 0i m( +1)2i and T C=i m i( +1)2i . Event gap times T̃*ijk are
subject to censoring C̃ijk, where C C T˜ = −ij i i j1 ( −1)2 and

FIGURE 1 Alternating recurrent events under right censoring.
T̃i11 is the observed awaiting time to the first hospitalization of subject i.
T̃i12 is the length of stay before discharge. T̃i21, the observed time to the

second hospitalization, is censored. Therefore, we only observe one
complete event pair (m = 1i )

2 | WANG ET AL.
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C C T˜ = −ij i ij2 1. Note that T̃ = 0*i k0 and T̃ = 0i k0 for
k = 1, 2. Consequently, the observed gap times are
T T C˜ = ˜ ˜*ijk ijk ijk∧ . For each event gap, we introduce an
at‐risk indicator Y t I t T( ) = ( ˜ )ijk ijk⩽ .

The assumed hazard model for T̃ijk is given by

Z γ β Zλ t λ t γ( | , ) = ( )exp( + ),′iijk i k k ijk ik0 (1)

where γ γ γ= ( , )′i i i1 2 are independent draws from a mean‐
zero bivariate normal distribution, D0BV N( , )2 2×2 . We
assume that the γ γ, , …1 2 are mutually independent, and
that each γi is independent of Zi. Moreover, for
j k p q T( , ) ( , ), ˜*ijk≠ and T̃*ipq are independent given

γ Z Z{ , , }i ijk ipq . Consequently, the T̃*ijk are subject to
censoring via C̃ijk, which is conditionally independent
given γi and Zi.

We stack γi from the n subjects into a vector

( )γ γ γ γ= , , …, ′′ ′ ′n1 2 , which then follows a mean‐zero
multivariate normal distribution 0 ΣMVN( , )n n n2 2 ×2 . Note
that D IΣ = n n×⊗ is a block‐diagonal matrix, where⊗ is
a Kronecker product and In n× is an n by n identity matrix.
We also include frailty design vectors
R = (0 , …, 1 , …, 0 )ik i k n(1) (2 −2+ ) (2 ) to indicate γik in the
( i k2 − 2 + )th entry of γ is present. We only account
for random intercepts here, though it is possible for the
models to be extended such that various covariates have
random effects. The proposed event‐specific intensity in
(1) will become

Z R γ β Z γ Rλ t λ t( | , , ) = ( )exp( + ′ ).′ijk i ik k k ijk ik0 (2)

The likelihood for subject i conditional on γ and Zi is
given by

β β γ ZL λ λ

λ T η

T η

( , , ( ), ( )| , )

= { ( ˜ )exp( )}

× exp{−Λ ( ˜ )exp( )},

i i

j

m

k
k ijk ijk

δ

k ijk ijk

1 2 01 02

=1

+1

=1

2

0

0

i

ijk∏∏
⋅ ⋅

(3)

where the cumulative intensity of event process k is
t λ s dsΛ ( ) = ( )k

t
k0 0 0∫ , and β Z γ Rη = + ′′ijk k ijk ik. It follows

from (3) that the marginal likelihood is

β β

β β γ Z

γ γ γ

L L λ λ

L λ λ

Σ Σ

= ( , , ( ), ( ))

= ( , , ( ), ( )| , )

× exp − 1
2
′ | | d .

γ

m

i

n

i i

1 2 01 02

=1
1 2 01 02

−1 −1/2⎜ ⎟
⎛
⎝

⎞
⎠

∫∏
⋅ ⋅

⋅ ⋅

(4)

Note that the marginal likelihood in (4) is not in closed
form. A PPL‐based estimation procedure is developed for
the proposed model.

3 | PARAMETER ESTIMATION

3.1 | Approximate likelihood

We derive an approximate marginal likelihood for the log‐
likelihood from (3). The joint likelihood function from the
n subjects and their frailties can be represented as

β β γ K γL λ λ Σ( , , ( ), ( ), ) = | | exp(− ( )),1 2 01 02
−1/2⋅ ⋅ (5)

where we define

(γ) γ γK = ′ + T η

δ η λ T

Σ1
2

Λ ( ˜ )exp( )

− { + log( ( ˜ ))}.

−

i

n

j

m

k
k ijk ijk

ijk ijk k ijk

1

=1 =1

+1

=1

2

0

0

i∑∑∑
(6)

Through a Taylor expansion, K γ( ) is approximated by

K γ K γ K γ γ γ K γ γ γ( ) ˆ ( ) = ( ˜) + 1
2

( − ˜)′ ( ˜)( − ˜),2≈
(7)

where γ̃ is the solution of K γ( ) = 01 , with

K γ K γ
γ

γ

Rt η δ

Σ( ) = ( ) =

+ {Λ ( )exp( ) − } .
i

n

j

m

k
k ijk ijk ijk ik

1
−1

=1 =1

+1

=1

2

0

i∑∑∑

∂
∂

(8)

The corresponding second derivative is given by

K γ K γ
γ γ

Rt ηΣ

( ) = ( )
′

= + Λ ( )exp( ) ,
i

n

j

m

k
k ijk ijk ik

2
2

−1

=1 =1

+1

=1

2

0
2

i∑∑∑

∂
∂ ∂

⊗ (9)

where we define a a a= 1, =0 1⊗ ⊗ , and a aa= ′2⊗ . Note
that K γ( )2 in (9) is block‐diagonal.

Through a Laplace approximation, we plug K γˆ ( ) into
(5) and integrate it to obtain an approximate marginal
log‐likelihood,

K γ K γl L Σ= log( ) − 1
2

log | | − ( ˜) − 1
2

log | ( ˜)| .m m 2≈
(10)
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The Laplace approximation is believed to perform better
for larger cluster sizes, and when the variance compo-
nents are small (Breslow and Lin, 1995).

Note that the function K γ( ) is actually the negative
penalized joint log‐likelihood which can be decomposed
as follows:

K γ β β γh λ λ( ) = −PPLL − ( ( ), ( ), , , ),01 02 1 2⋅ ⋅ (11)

where PPLL represents the penalized partial log‐like-
lihood (Section 3.2) and h ( )⋅ is defined in Appendix 1. In
practice, inference on the regression parameters is often
simplified by solely focusing on the PPLL term. Ripatti
and Palmgren (2000) adopted a similar simplification,
and demonstrated in their simulation studies that the
information loss due to neglecting h ( )⋅ was negligible.
Ignoring the h ( )⋅ and estimate the regression parameters
β and the frailties γ merely based on the PPLL term
largely speeds up the computations by avoiding tedious
calculations of the baselines in h ( )⋅ . Moreover, we are
going to show in Section 3.2 that PPLL and K γ( ) share
identical score functions if we replace the baselines with
Breslow estimators.

3.2 | Penalized partial likelihood
estimation

To estimate the regression coefficients and variance compo-
nents, we used two iterating steps, an inner and an outer
loop. In the inner loop, a Newton‐Raphson algorithm is
conducted based on PPLL, treating both γ and βk as
parameters, and treating D̂ as known from the previous
outer loop. The outer loop is grounded in an approximate
marginal profile log‐likelihood (MPLL), fixing θ̂ from the
recent inner loop, where θ β β γ= ( , , ′)′′ ′1 2 . We outline the
proposed algorithm below.

3.2.1 | Inner loop

Given the variance matrix Σ̂ (or D̂), the PPLL is expressd as

γ γ δ

η Y t η

ΣPPLL =− 1
2
′ ˆ +

× − log ( )exp( ) .

i
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j

m

k
ijk

ijk
l

n

p

m
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−1

=1 =1
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=1
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=1 =1

+1

i
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⎛
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⎜⎜

⎞

⎠
⎟⎟

⎫
⎬⎪
⎭⎪

∑∑∑

∑∑
(12)

We define the following, for d {0, 1, 2}∈ ,

S Z

S R

S Z R

t n Y t η

t n Y t η

t n Y t η

( ) = ( )exp( ) ,

( ) = ( )exp( ) ,

( ) = ( )exp( ) .′
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d
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m

ijk ijk ijk
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R
d

i
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j

m

ijk ijk ik
d
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i

n
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m

ijk ijk ijk ik
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=1 =1
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=1 =1

+1

k
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⊗ (13)

Let Z S R S Vt t S t t t S t t¯ ( ) = ( ) ( ), ¯ ( ) = ( ) ( ), ( ) =k Z Z k R R Z
(1) (0) (1) (0)
k k k k k∕ ∕

S V S Vt S t t t S t t( ) ( ), ( ) = ( ) ( ) and ( ) =Z Z R R R ZR
(2) (0) (2) (0)
k k k k k k∕ ∕ SZRk

St S t t S t( ) ( ) = ( ) ( ).Z ZR R
(0) (0)
k k k

∕ ∕ Taking first and second
partial derivatives of PPLL with respect to βk and γ , we
obtain corresponding score functions

β
Z ZPPLL δ T= { − ¯ ( ˜ )},

k i

n

j

m

ijk ijk k ijk
=1 =1

+1i∑∑∂
∂ (14)

γ
R R γPPLL δ T Σ= { − ¯ ( ˜ )} − ˆ ,

i
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k
ijk ik k ijk

=1 =1
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=1

2
−1

i∑∑∑∂
∂

(15)

and information matrices

β β
V ZPPLL δ T T− = { ( ˜ ) − ¯ ( ˜ ) }

′k k i

n

j

m

ijk Z ijk k ijk
2

=1 =1

+1
2

i

k∑∑∂
∂ ∂

⊗ (16)

γ γ
V RPPLL δ T T

Σ

−
′
= { ( ˜ ) − ̄ ( ˜ ) }

+ ˆ
i

n

j

m

k
ijk R ijk k ijk

2

=1 =1

+1

=1

2
2

−1

i

k∑∑∑∂
∂ ∂

⊗

(17)

β γ
V Z RPPLL δ T T T−

′
= { ( ˜ ) − ̄ ( ˜ ) ̄ ( ˜ )′}.

k i

n

j

m

ijk ZR ijk k ijk k ijk
2

=1 =1

+1i

k∑∑∂
∂ ∂

(18)

If we plug in Breslow estimators for K γtΛ ( ), ( )k0 1 is
equal to γPPLL∂ ∕∂ , and K γ β( ) k∂ ∕∂ is equal to

βPPLL k∂ ∕∂ . These identities further justify that estimat-
ing parameters solely on PPLL the inner loop is not only
convenient but also plausible to some extent. It is trivial
to show that β βPPLL ′2

1 2∂ ∕∂ ∂ equals 0.
The Hessian matrix H(θ) is given by

H θ I θ
0 0 0
0 0 0
0 0 Σ̂

( ) = ( ) + ,
−1

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ (19)

where, letting PLL be the partial log‐likelihood without a
penalty term, we have
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I θ
θ θ

β β β γ

β β β γ

γ β γ β γ γ

0

0( ) = − PLL
′
= −

PLL PLL
′

′ PLL PLL
′

PLL PLL PLL
′

.

′

′

′ ′

2

2

1 1

2
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2 2
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2
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2

⎡
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⎢
⎢
⎢
⎢
⎢
⎢
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⎤
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⎥

∂
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∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
∂ ∂

∂
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(20)

There are two options for the asymptotic covariance estimate
of θ H θ I θ H θˆ, ( ˆ) ( ˆ) ( ˆ)−1 −1 (Gray, 1992) and H θ( ˆ)−1 (Verweij
and Van Houwelingen, 1994). Since H θ( )−1 has been
demonstrated in related contexts to be more conservative
(Therneau et al., 2003), H θ( )−1 is employed here. Note that,
when the sample size is large (eg, >500 or >1000, dependent
on the computer’s capacity), one may sparsen the Hessian
matrix before calculating the inverse. We found that the
off‐2 × 2‐block‐diagonal parts of K γ( )PPL2 are dominated by
the block‐diagonal parts, implying that little accuracy should
be lost by treating the off‐2 × 2‐block‐diagonal part of
K γ( )PPL2 to be 0. This simplification results in considerable
computational savings and, according to our simulation
results, little reduction in accuracy.

3.2.2 | Outer loop

Fixing θ̂ from the previous inner loop, D can be
estimated in the outer loop through an approximate
marginal profile log‐likelihood by dropping irrelevant
terms from (10) (eg, not including D), such that

K γ K γ

K γ γ γ

l Σ

Σ Σ

− 1
2
log | | − 1

2
log | ( ˆ)| − ( ˆ)

− 1
2
log | | − 1

2
log | ( ˆ)| − 1

2
ˆ′ ˆ.

m 2

2
−1

≈

∝ (21)

We now derive an estimator for the entire variance‐
covariance matrix of the frailties. Given the baselines
fixed, K γ( ˆ)2 is a block‐diagonal matrix with each block
defined as K γ( ˆ)ii2 , thus the marginal likelihood from (21)
can be rearranged as a function of D−1,

D K γ γ D γn
2
log | | − 1

2
log | ( ˆ) | − 1

2
ˆ ˆ ,′

i

n

ii
i

n

i i
−1

=1
2

=1

−1∑ ∑
(22)

where we have

K γ D M θ

M θ T η T η

( ˆ) = + ( ˆ),

( ˆ) = diag Λ ( ˜ )exp( ˆ ), Λ ( ˜ )exp( ˆ ) ,

ii i

i
j

m

ij ij
j

m

ij ij

2
−1

=1

+1

01 1 1
=1

+1

02 2 2

i i⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥∑ ∑

and when the diag( )⋅ function maps a vector to a diagonal
matrix. Taking the first derivative of approximate
marginal likelihood with respect to D−1, we obtain the
estimating equation

D K γ γ γn
2

− 1
2

( ˆ) − 1
2

ˆ ˆ = 0,′
i

n

ii
i

n

i i
=1

2
−1

=1
∑ ∑ (23)

and its solution

D K γ γ γ
n

= 1 [ ( ˆ) + ˆ ˆ ].′
i

n

ii i i
=1

2
−1∑ (24)

Let D̂t denote the variance‐covariance matrix estimate
from the ith outer loop. The t( + 1)th estimator can thus
be expressed as

( )D D M θ γ γ
n

ˆ = 1 ˆ + ( )ˆ + ˆ ˆ .′t
i

n

t i i i+1
=1

−1 −1⎡
⎣⎢

⎤
⎦⎥∑ (25)

The variance‐covariance estimator (25) is analogous to
the recursive estimating formula for logistic regression
models derived through a Laplace approximation
(Demidenko, 2004, chapter 7.7.2). The convergence of
this type recursive estimator is verified by the Fixed Point
Theorem (Zamfirescu, 1972). We suggest initializing D
with a diagonal matrix; for example, identity matrices
were employed in our simulations. Standard errors for
the variance components, if of interest, could be obtained
by bootstrapping.

We found that directly replacing tΛ ( )k0 with its
corresponding Breslow estimator tends to result in
overestimation of the diagonal entries for D. Moreover,
the baseline calculation could be intensive, especially
when the sample size is large. Both K γ( )2 and K γ( )PPL2
are summations involving a Σ−1, and their numerical
difference can be captured by the second derivative of
h ( )⋅ with respect to γ . Ripatti and Palmgren (2000)
suggested to replace the K γ( )2 with K γ( )PPL2 for a more
accurate estimation on the variance components, and to
avoid computing the baselines for each updating step. In
a similar vein, we substitute the 2 × 2matrices located on
the block‐diagonal of K γ[ ( ˆ)]PPL2

−1, which is denoted as
K γ[ ( ˆ) ]PPL blk2

−1
i, for K γ( ˆ)ii2

−1 in (24). Subsequently,we have
a new estimator

D K γ γ γ
n

ˆ = 1
{[ ( ˆ) ] + ˆ ˆ },′

i

n

PPL blk i i
#

=1
2

−1
i∑ (26)

which is shown to be positive‐definite in Web Appendix.
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3.3 | Likelihood ratio test

In order to test whether the frailties from the two
alternating gap time processes are mutually independent,
we propose a LRT. We evaluate an approximate MPPL,

D K γ

γ

nMPPL = −
2
log | | + 1

2
[ ( ˆ) ]

+ PPLL( ˆ),
i

n

PPL blk
=1

2
−1

i∑
(27)

under the null (restricting D to be diagonal) and
alternative hypotheses. Notice that, under the null, the
two recurrent processes can either be fitted separately, or
be fitted together while restricting the off‐diagonal entries
of D# to be 0 in each outer step. Let D̂0

#
be the variance

estimator under the independence assumption,

}{D K γ γ γ
n

ˆ = extdiag 1 ( ˆ ) + ˆ ˆ ,′
i

N

PPL blk i i0
#

=1
2 0

−1
0 0

i

⎡
⎣
⎢
⎢

⎡⎣ ⎤⎦
⎤
⎦
⎥
⎥∑
(28)

where extdiag( )⋅ is a function to extract diagonal part of
the matrix, distinct from diag( )⋅ defined previously.
Correspondingly, if the parameters subscripted with 1
are from the unrestricted alternative, and those sub-
scripted with 0 are from the null, the test statistic is then
given by

( ) ( )θ θΣ ΣLRT = 2 MPPL ˆ , ˆ − MPPL ˆ , ˆ .1 1
#

0 0
#⎡⎣ ⎤⎦ (29)

One would reject the null hypothesis of independence if
LRT > χ α(1)

2 , where α is the prespecified type 1 error and

χ(1)
2 is χ2 with degree of freedom 1.

4 | SIMULATION STUDIES

Simulations under different settings were carried out to
evaluate the proposed method in reasonable sample sizes. To
begin, the γ γ γ= ( , )′i i i1 2 were drawn independently from a
mean‐zero bivariate normal distribution with various
specifications for D. Given γ , event times were generated
in alternating turns, added up and recorded until the
censoring time C = 10i . The covariates were drawn from
independent standard normal distributions. The intensity
function with respect to the jth occurrence of the event type
k is given by β Zλ γexp( + )′k k ijk ik0 . We denote the a b( , )th
entry of the variance matrix D by D a b[ , ]. When
D [1, 2] = 0, the two alternating sequences are independent.
We generated 500 samples and set the convergence tolerance
to be 10−6 for each replicate.

Table 1 provides results for samples with different
sizes and baseline intensities, λ = 1.5k0 (k = 1, 2). The
median number of uncensored complete recurrent event
pairs was ≈4. We varied sample sizes from n = 100 to
1000. Estimated regression parameters were approxi-
mately unbiased, with asymptotic standard error (ASE)
generally close to the empirical standard deviation (ESD).
The results are similar across different sample sizes,
implying that the estimation is not affected much by
sample size if the cluster sizes or recurrent event
numbers are fixed. By comparing their results, we noticed
that the negatively correlated setting would experience
less bias in their D matrix estimation than the positively
correlated setting. For data with more recurrent events
(greater mi), the bias in estimating the D matrix
decreased dramatically (Web Table 1). Note that, the
ASEs for regression parameters were calculated from the
inverse Hessian matrix, but the ASEs for the entries of D
were obtained via bootstrapping, for which we tried
different bootstrapping sample size B= 50, 100, and 200.
We notice that using B = 50 provides sufficiently
accurate estimates for the standard errors while takes
relatively less computation time. For large n, we turned
to m‐out‐of‐n bootstrapping: resampling m observations
out of n subjects with replacement (Bickel et al.,
1997; Bickel and Sakov, 2008). By comparing different
nESE of all the estimated parameters with

n = 50, 100, 200, …, 1000, we noticed that when
n = 200, it started to provide stable size adjusted standard
errors ( nESE). Thus we set m = 200 for data sets with
n > 200, and the estimated ASEs from m‐bootstraps were
adjusted by the size difference by multiplying m n∕ . The
resulting coverage probabilities (CP) were acceptable for
the regression parameters and variance components
under various sample sizes.

The dimension of the Hessian matrix is
n p n p(2 + ) × (2 + ), where n is the sample size, and p

is the total regression parameters we are estimating from
two event processes. Increasing the sample size would
largely inflate the dimension of the matrix and conse-
quently the computational burden. It was found that
frailty part of the Hessian matrix (19) is quite sparse, thus
we set its off‐block‐diagonal part to be 0 in order to
improve the computation speed and reduce the memory
usage without causing much information loss. By
comparing results with vs without sparsening (Tables 1
and 2, respectively), though the coverage probabilities of
the estimation from sparse computation are slightly less
than those from the regular estimation procedure, the
differences are negligible, especially when the sample
size is larger. However, the saving of the computation
burden and memory cost was dramatic. For example, a
data set with sample size n will have its space needed for
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TABLE 1 Simulation results: estimating regression coefficients and variance components based on 500 replicates, with λ = 1.5k0 for
k = 1, 2 and a median mi of 5≈

True value

Dw+

True value

Dw−

Bias ESD ASE CP Bias ESD ASE CP

n = 100 cr: 3.81% cr: 3.64%
β1 1 −0.005 0.062 0.056 0.934 1 −0.006 0.064 0.059 0.920

β2 −1 0.003 0.062 0.059 0.940 −1 0.001 0.064 0.062 0.934

D [1, 1] 0.25 −0.010 0.067 0.066 0.880 0.25 −0.007 0.075 0.073 0.922
D [2, 2] 0.25 −0.012 0.068 0.068 0.902 0.25 −0.003 0.081 0.078 0.912
D [1, 2] 0.125 −0.014 0.047 0.047 0.928 −0.125 −0.008 0.053 0.052 0.934

n = 500 cr: 3.84% cr: 3.70%
β1 1 −0.004 0.025 0.025 0.950 1 −0.004 0.028 0.026 0.922
β2 −1 0.003 0.028 0.026 0.930 −1 0.005 0.029 0.028 0.934
D [1, 1] 0.25 −0.012 0.028 0.030 0.932 0.25 −0.006 0.032 0.033 0.942
D [2, 2] 0.25 −0.012 0.032 0.031 0.900 0.25 −0.006 0.034 0.035 0.938
D [1, 2] 0.125 −0.013 0.022 0.021 0.868 −0.125 −0.005 0.023 0.024 0.954

n= 1000 cr: 3.86% cr: 3.68%
β1 1 −0.003 0.018 0.018 0.952 1 −0.004 0.019 0.019 0.924

β2 −1 0.003 0.020 0.019 0.934 −1 0.004 0.021 0.020 0.934

D [1, 1] 0.25 −0.010 0.020 0.021 0.914 0.25 −0.006 0.022 0.023 0.944
D [2, 2] 0.25 −0.011 0.022 0.022 0.894 0.25 −0.004 0.025 0.025 0.930
D [1, 2] 0.125 −0.013 0.015 0.015 0.836 −0.125 −0.005 0.017 0.017 0.938

Note: Sample sizes vary from n= 100 to 1000 and “cr” denotes censoring rate, or the proportion of subjects with mi= 0. Note that the Hessian matrix was not
sparsened for these runs.
Abbreviations: ASE, asymptotic standard error; CP, coverage probabilities; cr, censoring rate; ESD, empirical standard deviation.

TABLE 2 Simulation results: Estimating regression coefficients and variance components based on 500 replicates, with λ = 1.5k0 for
k = 1, 2 and a median mi of 5≈

True value

D [1, 2] > 0

True value

D [1, 2] < 0

Bias ESD ASE CP Bias ESD ASE CP

n = 100 cr: 3.81% cr: 3.64%
β1 1 −0.006 0.062 0.056 0.932 1 −0.006 0.064 0.059 0.922

β2 −1 0.004 0.062 0.059 0.940 −1 −0.000 0.064 0.062 0.932

D [1, 1] 0.25 −0.014 0.066 0.065 0.880 0.25 −0.010 0.074 0.072 0.916
D [2, 2] 0.25 −0.016 0.067 0.067 0.892 0.25 −0.007 0.079 0.077 0.900
D [1, 2] 0.125 −0.015 0.047 0.047 0.924 −0.125 −0.005 0.052 0.052 0.930

n = 500 cr: 3.84% cr: 3.70%
β1 1 −0.004 0.025 0.025 0.950 1 −0.004 0.028 0.026 0.920
β2 −1 0.003 0.028 0.026 0.928 −1 0.005 0.029 0.028 0.934
D [1, 1] 0.25 −0.012 0.028 0.029 0.924 0.25 −0.007 0.032 0.033 0.936
D [2, 2] 0.25 −0.012 0.031 0.031 0.894 0.25 −0.007 0.034 0.034 0.936
D [1, 2] 0.125 −0.014 0.022 0.021 0.862 −0.125 −0.004 0.023 0.023 0.950

n= 1000 cr: 3.86% cr: 3.68%
β1 1 −0.003 0.018 0.018 0.952 1 −0.004 0.019 0.019 0.922

β2 −1 0.003 0.020 0.019 0.934 −1 0.004 0.021 0.019 0.934

D [1, 1] 0.25 −0.010 0.020 0.021 0.908 0.25 −0.007 0.022 0.023 0.934
D [2, 2] 0.25 −0.011 0.022 0.022 0.892 0.25 −0.005 0.025 0.025 0.928
D [1, 2] 0.125 −0.013 0.015 0.015 0.832 −0.125 −0.005 0.017 0.017 0.938

Note: Sample sizes vary from n= 100 to 1000 and “cr” denotes censoring rate, or the proportion of subjects with mi= 0. Note that the Hessian matrix was not
sparsened for these runs.
Abbreviations: ASE, asymptotic standard error; CP, coverage probabilities; cr, censoring rate; ESD, empirical standard deviation.
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a Hessian matrix of γ reduced from n(2 ) × 8 102 6∕ to
n2 × 8 102 6∕ MB. Thus when the sample size is large we

recommend sparsening the Hessian matrix. In addition to
including the same cases from Table 1, we also
incorporated the cases with a large sample size
n= 6000, a high censoring rate (cr: 75%–80%) and many
covariates in Web Appendix D and Web Figures 1 to 4 to
show that our method can handle data sets with high
censoring rates when the sample size is about as large as
the data we analyzed in Section 5.

We carried out simulations to compare the computa-
tional speed and estimation performance of the proposed
method with the R package coxme (2018) implementa-
tion of Ripatti and Palmgren (2000) under different
settings. For each sample, there were n individuals
generated, each with a median of mi

∼ complete event
pairs. The regression parameters were estimated compar-
ably well with both methods, and coxme has less bias
than the proposed method with respect to the variance
matrix estimator (presumably owing to having correctly
pre‐specified the direction of covariance component).

Examining the computation times (in seconds) listed in
Table 3, our method appears to be much faster than
coxme. This comparison is not completely fair consider-
ing, for example, features such as coxme’s front‐end
error‐checking capabilities. Our goal was not to compare
sets of code, but to demonstrate that the improved
flexibility of the proposed methods does not come at the
expense of computational efficiency.

The proposed LRT was tested under different sizes,
event frequencies, and covariance matrices in Table 4.
We fixed the regression parameters to be β = 11 and
β = −12 for simplicity. We focuses on a big family of
variance matrices whose variance components
D D[1, 1] = [2, 2] = 0.5 and the covariance component
varies: D [1, 2] = ±0.25 or ±0.125 as representatives of
strong ( ρ| | = 0.5) or weak correlated ( ρ| | = 0.25) event
pairs for power calculations, and D [1, 2] = 0 for type 1
error (T1E) evaluations. The proposed LRT test starts to
performs well when the sample size and the event
frequencies are not too small. In addition, if the
magnitude of the correlation coefficient (ρ) is low, the

TABLE 3 Simulation results: Comparing the proposed method and coxme with respect to computational speed via average run time
based on 500 replicates

True value

Proposed method coxme

Bias ESE Bias ESE

n m= 50, = 9i
∼ Time cost: 6.37 s 77.2 s

β1 1 −0.006 0.061 −0.006 0.061

β2 −1 −0.003 0.069 0.002 0.069

D [1, 1] 0.25 −0.011 0.076 −0.010 0.077
D [2, 2] 0.25 −0.000 0.081 0.001 0.081
D [1, 2] −0.125 −0.006 0.057 −0.002 0.057

n m= 50, = 17i
∼ Time cost: 5.31 s 136 s

β1 1 −0.002 0.046 −0.001 0.046
β2 −1 −0.001 0.044 −0.001 0.044
D [1, 1] 0.25 −0.000 0.069 0.002 0.070
D [2, 2] 0.25 −0.001 0.067 0.001 0.068
D [1, 2] −0.125 −0.004 0.052 −0.002 0.053

n m= 100, = 10i
∼ Time cost: 69.3 s 745 s

β [1]1 −1 −0.004 0.040 −0.004 0.040

β [2]1 −0.5 −0.003 0.032 −0.003 0.032

β [3]1 0 −0.001 0.031 −0.001 0.031

β [4]1 0.5 −0.000 0.034 −0.000 0.034

β [5]1 1 0.005 0.042 0.005 0.042

β [1]2 −1 −0.001 0.041 −0.001 0.041

β [2]2 −0.5 −0.004 0.034 −0.004 0.031

β [3]2 0 0.000 0.031 0.000 0.034

β [4]2 0.5 0.002 0.034 0.002 0.034

β [5]2 1 0.001 0.041 0.001 0.041

D [1, 1] 0.25 −0.004 0.051 −0.001 0.053
D [2, 2] 0.25 −0.008 0.051 −0.003 0.053

D [1, 2] 0.125 −0.007 0.038 0.001 0.039

Abbreviation: ESD, empirical standard deviation.
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proposed LRT is less likely to correctly detect the existence of
a non‐zero covariance; but when ρ is identical, a larger
covariance entry improved the detection of the dependence
(compared with D D[1, 1] = [2, 2] = 0.25 but ρ| | = 0.5 or
D [1, 2] = ±0.125). According to our simulations, T1Es
were be close to the nominal value (α = 0.05) in most
settings.

5 | APPLICATION

The DOPPS is a well‐known prospective, longitudinal,
international study of hemodialysis patients. This study aims
to improve the understanding of dialysis practices that are
associated with better outcomes for end‐stage renal disease
patients. Details regarding the DOPPS study can be found in
several reports (Young et al., 2000; Pisoni et al., 2004;
Robinson et al., 2012). Mortality, hospital admission and
inpatient stay are important indicators of quality of life, and
morbidity related outcomes have arguably been under‐
utilized in the DOPPS and other studies of ESRD patients.

We applied our proposed methods to jointly analyze
the time‐to‐readmission and time‐to‐discharge (from
admission) alternating gap time sequence. Our objective
was to determine the important predictors for each
recurrent event process, and to quantify the correlation
between the two processes. Our study population
(n= 6032) included DOPPS Phase‐5 adult patients (age
18⩾ ) who entered the DOPPS within 3 months of

initiating hemodialysis. Each member of the study cohort
was followed for a maximum of 3 years, with the
database closing on 31 December 2015. The study
population included patients from 11 different countries,
including Belgium, Canada, China, Gulf Coast Consor-
tium, Germany, Italy, Japan, Spain, Sweden, the United
Kingdom, and the United States. The median age among
DOPPS patients was 67, with 39.5% being female.

Our primary goal was to compare the hospital
admission and the discharge event rates among dialysis
patients by country. In particular, Belgium, Canada,

China, Gulf Coast Consortium, Germany, Italy, Japan,
Spain, Sweden, the United Kingdom, Asian‐American
and African‐American are compared to the US Cauca-
sians (reference). Adjustment covariates included age,
sex, height, vascular access (arteriovenous [AV] graft,
central venous catheter, with AV fistula as the reference),
and the following comorbid condition indicators: cor-
onary artery disease [CAD], cancer, cerebral vascular
disease (CVD), congestive heart failure symptoms (CHF),
chronic obstructive pulmonary disease (COPD), periph-
eral vascular disease (PVD), stroke, diabetes, hyperten-
sion, neurological disorder, psychological disorder, and
cellulitis. Table 5 lists results based on our model (2).
DOPPS patients from Belgium (e = 1.470.386 ), Germany
(e = 2.660.98 ), Italy (e = 1.430.360 ), Japan (e = 2.320.842 ),
Sweden (e = 1.660.507 ), and the United Kingdom
(e = 1.710.534 ) had significantly higher covariate‐adjusted
hospital admission rates than US Caucasians. In contrast,
the hospital admission rates for patients in China
(e = 0.537−0.621 ) was approximately half that of US
Caucasians. With respect to length of hospital stay,
patients from Canada (e = 0.446−0.807 ), China
(e = 0.302−1.198 ), Germany (e = 0.649−0.433 ), Italy
(e = 0.513−0.667 ), Japan (e = 0.526−0.624 ), Spain
(e = 0.634−0.456 ), and the United Kingdom
(e = 0.625−0.470 ) had lower discharge rates (implying
longer hospital stay) than US Caucasians. We did not
observe significant differences in the US among races for
either hospital admission or discharge rates.

Comorbid conditions were generally positively asso-
ciated with hospital admission and negatively associated
with hospital discharge. Common significant predictors
for both episodes include cancer and neurological
disorder. CAD, CVD, stroke, COPD, and psychological
disorder were associated with significantly increased
hospital admission rates, while cellulitis was significantly
associated with increased discharge rates. Note that CAD
(P= .056) was marginally significantly associated with
discharges. The impact of age was found to be negatively
associated with both the admission and discharge,

TABLE 4 Power and type I error of the proposed likelihood ratio test, with λ λ=01 02, and correlation coefficients ρ = ±0.5 corresponding to
D [1, 2] ± 0.25 or ± 0.125 for D D[1, 1] = [2, 2] = 0.5 or 0.25, and ρ = 0.25 corresponding to D [1, 2] = ±0.125 for D D[1, 1] = [2, 2] = 0.5

D D[1, 1] = [2, 2] n m̃

T1E Power

ρ = 0 ρ = 0.5 ρ =−0.5 ρ= 0.25 ρ =−0.25

0.5 50 4 0.066 0.656 0.646 0.236 0.174
100 4 0.038 0.902 0.918 0.394 0.366
100 9 0.042 0.976 0.982 0.516 0.482

0.25 50 5 0.058 0.498 0.436
100 5 0.054 0.754 0.758
100 9 0.060 0.942 0.930
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though the difference for every 5‐year increment was
small (3%–5%). Every 5 cm increment in height was
associated with a 3% decrease in the hospitalization risk.
In comparison to AV fistula (the most commonly adopted
vascular access approach) AV graft and central venous
catheter increased the rate hospital admission by 1.69 and
2.19 times, respectively. Note that each of the regression
parameters should be interpreted as a conditional effect,
given the unobserved frailties.

The estimated variance for time to admission, at 0.819,
with 95% confidence interval (0.709, 0.929), was larger
than the estimated frailty variance for length‐of‐stay,
0.375 (0.253, 0.497). The estimated covariance of −0.139
(−0.229, −0.049) implies that the two events were
negatively correlated with a correlation coefficient
ρ̂ = −0.251. Note that the standard errors for variance
components were estimated through standard bootstrap
due to the presence of many unbalanced binary variables.
The LRT for the dependence between two event
processes was 5.41 with a P of .02. These results indicate

that those who had more frequent admission to a hospital
would (through a lower discharge rate) tend to have a
longer inpatient stay, and the association is significant.

Note that only 21.3% of patients experienced more
than one hospitalization. The average length of stay in
hospital was 8.8 days (range = 1–331; median = 5). We
tested the validity to implement the proposed estimating
method on huge data sets with a small proportion of
subjects that experienced multiple recurrences. The
proposed methods appear to work well in data structures
resembling DOPPS with respect to event rates and the
variance‐covariance matrix (Table 2, Web Appendix D
and Web Figures 1–4). The convergence tolerance for
parameter estimation is 10−6.

6 | DISCUSSION

In this report, we propose a correlated bivariate frailty
model for alternating recurrent event (gap time)

TABLE 5 Application of the proposed method to DOPPS data: estimated regression parameters (bolded when P < .05)

Admission Discharge

Estimate SÊ P value Estimate SÊ P value

Age (per 5 yr) −0.026 0.010 .007 −0.050 0.010 <.001

Height (per 5 cm) −0.028 0.017 .103 −0.005 0.018 .804

Female 0.019 0.069 .782 −0.065 0.073 .373

Vascular access
Arteriovenous graft 0.524 0.156 .001 −0.034 0.149 .822
Central venous catheter 0.783 0.059 <.001 0.033 0.060 .583

Comorbid conditions
CAD 0.447 0.069 <.001 −0.130 0.068 .056
Cancer 0.214 0.082 .009 −0.208 0.082 .011
CVD 0.177 0.076 .020 −0.070 0.075 .345
Stroke 0.190 0.090 .034 −0.004 0.088 .968
CHF 0.078 0.068 .251 0.028 0.070 .692
Diabetes 0.053 0.056 .347 −0.072 0.060 .228
Hypertension 0.017 0.068 .802 0.111 0.076 .143
COPD 0.264 0.090 .003 −0.075 0.087 .387
Neurological disorder 0.373 0.101 <.001 −0.341 0.096 <.001
Psychological disorder 0.293 0.090 .001 −0.076 0.088 .389
PVD 0.111 0.078 .156 0.124 0.079 .115
Cellulitis 0.169 0.131 .198 −0.454 0.126 <.001

Countries
Belgium 0.386 0.127 .002 −0.041 0.125 .741
Canada 0.234 0.125 .060 −0.807 0.124 <.001
China −0.621 0.231 .007 −1.198 0.253 <.001
Gulf −0.069 0.131 .596 −0.054 0.138 .693
Germany 0.980 0.100 <.001 −0.433 0.097 <.001
Italy 0.360 0.127 .005 −0.667 0.130 <.001
Japan 0.842 0.100 <.001 −0.624 0.107 <.001
Spain −0.138 0.127 .274 −0.456 0.135 .001
Sweden 0.507 0.130 <.001 −0.115 0.132 .382
UK 0.534 0.135 <.001 −0.470 0.140 .001
USA: Asian −0.148 0.305 .628 −0.214 0.354 .546
USA: African–American −0.035 0.089 .693 −0.020 0.102 .848
USA: Caucasian 0 – – 0 – –
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processes. We also derived a variance‐covariance estima-
tor of the bivariate frailty in a recursive estimating
formula. Through simulations, the methods were demon-
strated to work well for both regression parameters and
variance components. We also developed a LRT to
evaluate whether joint modeling of the two gap time
processes is necessary. This is important in practice, since
fitting two separate frailty models requires less computa-
tion than fitting a joint frailty model. The proposed
methods were applied to simultaneously analyze time‐to‐
readmission and length‐of‐stay among end‐stage renal
disease patients in the DOPPS study.

The proposed estimating approach does not require
prespecifying the sign of the correlation between the two
recurrent event processes. In the context of hospitaliza-
tion data, it is possible that the longer length‐of‐stay
tends to accompany hospitalization for a more severe
episode which, in turn, can be associated with shorter
time to readmission. In contrast, longer hospital stay
could reflect better care and, as such, be associated with
longer time to readmission.

To be able to analyze large data sets, part of our program
is written in the R package RcppArmadillo (2018). Besides,
the proposed computing algorithm yields very reasonable
computation times. When the sample size is large, we
recommend using the “sparse” Hessian matrix option to
reduce the memory cost. The current version has been tested
for data sets with sample sizes up to 100 000.

The methods in this report could be extended to other
settings; for example, clustered survival outcomes.
Technically, the method can be extended to fit more
than two event types. Furthermore, although the frailties
we consider primarily in this report represent subject‐
specific intercepts, one could also include frailties
corresponding to one or more covariates.
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