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ABSTRACT

The resilience issues in the power system have attracted increasing attention worldwide, espe-

cially for the distribution systems that suffer from extreme weather events, such as hurricanes and

wildfire. In this dissertation, several novel algorithms, such as safe reinforcement learning algo-

rithm and risk-constrained adaptive robust optimization approach are proposed to provide resilient

proactive scheduling strategies, emergency response strategy and restoration strategy for central

controllers in the distribution system. Microgrids are proposed to serve as single entities from

the perspective of the distribution system operator to enhance the resilience of the distribution

system, reduce the distribution system operator’s control burden and improve the power quality

of the distribution system. Uncertainties related with the extreme weather events such as power

generation of distributed generators, intermittent load demand, point-of-common-coupling/tie-line

conditions, and trend/trace of the extreme weather event are tackled through a combination of op-

timization approaches, artificial intelligence algorithms and risk management methods. Extensive

simulation results based on real-world data sets show that the proposed novel algorithms based

proactive scheduling strategies, emergence response strategy and restoration strategy can ensure

the resilience of the distribution system in a real-world environment.

x



CHAPTER 1

Introduction

In this chapter, we first introduce the basic concept of power system and the detailed compo-

nents within a power system. Then, the importance of the distribution system is highlighted to

ensure the resilience and reliability of the power consumption with the help of distributed energy

resources (DERs) and microgrids. In addition, various optimization algorithms and machine learn-

ing methods are introduced to handle the uncertainties associate with the extreme weather event.

Moreover, we compared prior works with our works in ensuring the resilience of the distribution

system through various optimal control strategies in different stages.

In the Chapter 2, the proposed resilient proactive scheduling strategy for major components

within a commercial building (CB) in a distribution system are demonstrated, where a safe rein-

forcement learning (SRL) based algorithm is proposed to handle the uncertainties associated with

the extreme weather events. The combination of risk management method with deep reinforce-

ment learning (DRL) algorithm is developed to tackle the uncertainties and risks associated with

the extreme weather events. Uncertainties related to the extreme weather events includes power

generation of distributed generators (DGs), intermittent load demand, point-of-common-coupling

(PCC)/tie-line conditions, and trend/trace of the extreme weather event, etc.. Several novel mod-

els of the comprehensive comfort levels and correlated demand response (CDR) with in a CB are

developed to capture the unique features of the major components within the CB. Extensive sim-

ulation results based on real-world data sets validate the effectiveness of the proposed resilient

proactive scheduling strategy in ensuring the resilience of a CB in the distribution system.

In the Chapter 3, the proposed resilient proactive scheduling strategy for major components

within independent/networked microgrids in a distribution system are demonstrated, where a two-

stage (pre-event and real-time) risk-constrained adaptive robust optimization (RARO) approach is

proposed to handle the uncertainties associate with the extreme weather event. The combination

of risk management method with optimization approach is developed to tackle the uncertainties

and risks associated with the extreme weather events. Uncertainties related to the extreme weather

events includes power generation of distributed generators (DGs), intermittent load demand, point-

of-common-coupling (PCC)/tie-line conditions, and trend/trace of the extreme weather event, etc..
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Several novel models of the microgrids are developed to capture the unique features of the major

components within the microgrids. Extensive simulation results based on real-world data sets

validate the effectiveness of the proposed resilient proactive scheduling strategy in ensuring the

resilience of the independent/networked microgrids in a distribution system.

In the Chapter 4, a comprehensive framework to provide resilient restoration decisions for the

distribution system operator (DSO) under extreme events is proposed. Our objective is to maximize

the system resilience by minimizing time slots required for load restoration. Bat algorithm is used

to handle nonlinear and discrete characteristics of the proposed framework. Extensive simulation

results show that the approach we proposed can ensure the resilience of the distributed system.

In the Chapter 5, the contributions of the dissertation are summarized. In addition, there are still

challenges that remain in the emergency response stage, such as the issues of situation awareness,

dispatching a rescue team, and relay protection. I will continue my study on the highly correlated

uncertainties associate with the extreme events in the future research. I will develop a novel method

with the vine copula approach to describe the dependence between various uncertainties and reduce

the total dimension of the resilience related problems.

1.1 Power System

The primary propose of the power system is to deliver the generated electricity from the con-

ventional fuel-based power plants to the consumers/end users. As shown in Fig. 1.1, the power

Figure 1.1: A big picture of the power system.

system can be divided into four main sections, namely generation system, transmission system,

distribution system and consumption. In the conventional power system, a large portion of the

energy is produced in the generation section through power plants. Then the generated energy is

2



transmitted through transformers to increase the voltage magnitude for reducing the transmission

loss. After that, the ultra high voltage energy is transmitted through transmission lines to the dis-

tribution system, where the voltage level will be downgraded from 750 kV/500kV to 110kV/35

kV. This is the system closest to the end user side, which has great impact on the power quality

and reliability. More importantly, the distribution system has the duty to make energy accessible to

all users, which significantly increased the control burden of the conventional distribution system

operators. The economy, national security and even the health and safety of the people depend

on the reliable delivery of electricity. However, the electric infrastructure in the U.S. is aging and

its being pushed to do more than it is designed originally. Modernizing the power system will

make it smarter and more resilient by technologies, equipments and optimal control strategies.

This modernizing provides more opportunities for the conventional independent system operators

(ISOs) and distribution system operators (DSOs) but it also makes the system more complicate

and changes its configuring, especially for the distribution system. The details are explained in the

following sections:

1.1.1 Generation

The generation of the electricity can be classified into two categories, namely: renewable en-

ergy sources (RES) based generation and non-renewable fuel based generation. For RES based

generation units, they mainly refer to solar panels and wind turbines to form the wind farm as well

as the solar station. For non-renewable fuel based generation units, they mainly refer to coal-based

generators, gas-based generators and nuclear power based generators to form the conventional

power plants. Specifically, most of the spinning reserves are from the coal-fired/gas-based power

plants, which are necessary components to ensure the reliability of the power system, especially

when huge amount of renewable energy sources based distributed generators are deployed in the

distribution system. The trend is to replace the conventional power plants in the generation side

which far away from the consumption side by distributed generators (DGs) near the end users

side in the distribution system (gas-based combined heat and power (CHP) to improve the overall

efficiency), where the frequency issues are tackled by converters with the DGs.

1.1.2 Transmission System

The role for the transmission system in the whole power system is to transmit the generated

power from the generation side to the demand side through transmission lines and transformers.

The voltage magnitude of the electricity generated from the power plant needs to be scaled up to

reduce the transmission losses when transmitting the power in a long distance. In addition, the

voltage magnitude needs to be scaled down when reaching the distribution system.
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1.1.3 Distribution System

After receiving the power transmitted from the transmission system, the DSO need to first

scale down the ultra-high voltage electricity to around 110kV–35kV through the substations and

transformers. Then the DSO can dispatch the power to the end user after the calculation of N-2

contingency issues in case of congestions on the distribution lines. However, as mention above,

distributed energy resources (DERs) such as distributed storages (DSs), DGs, smart switches (SSs)

and controllable loads (Cls) with different capacities and characteristics are vastly deployed in the

distribution system. The conventional DSOs are not designed to manage and control such amount

of small-scale DERs. Therefore, we need to find a very effective way to handle such issue, where

microgrids are introduced into the power and energy society to control the huge amount of DERs

through the local controllers.

1.1.3.1 Microgrids

According to the Department of Energy (DOE) of the U.S., a microgrid is a group of intercon-

nected loads and DERs with in clearly defined electrical boundaries that acts as a single control-

lable entity with respect to the grid and that connects and disconnects from such grid to enable it

to operate in both grid-connected or islanded mode. The microgrid is a framework to facilitate the

integration and management of DERs in a decentralized way. Microgrids can significantly reduce

the control burden of the DSO by allowing local controllers for DERs to coordinate with microgrid

central controllers (MGCCs). Also, microgrids can strengthen grid resilience and help mitigate

grid disturbances since they are able to continue operating while the upstream grid is down. In ad-

dition, microgrids use DER to sere local loads, reduce energy losses and improving the efficiency

of distribution systems. Networked microgrids share the same unique features as the independent

microgrids. However, they are interconnected through tie-lines, which bring additional challenges

for the MGCCs.

1.2 Resilience and Reliability Issues in the Distribution System

In order to preserve a sufficient power supply for a distribution system while islanded from

the main grid, the central controller of the microgrids needs to utilize various major components,

such as the energy storage system (ESS) and combined heat and power (CHP), to provide reserves

during an extreme weather event [1]. In addition, not only is the resilience related to the power

supply important, but the heating and cooling resilience should also be considered. This is be-

cause the critical loads in a microgrids, e.g., servers, require a constant indoor temperature that

is monitored through heating, ventilation, and air-conditioning (HVAC) systems, which makes H-
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VAC systems critical loads as well [2]. Note that during certain time slots (even some time slots

during an extreme weather event), the power supply to critical loads must be guaranteed. However,

energy reserves may not be able to cover the energy imbalance during the entire extreme weather

event [3]. Such a challenge requires the central controller to deploy a correlated demand response

with proactive resilient reserves to ensure the resilience of the microgrids.

The simple demand response problem for microgrids’ reliability issues with/without comfort

levels has been extensively studied [4]. That said, the correlation between distributed energy re-

sources (DERs) when performing demand response under a potential extreme weather event while

maintaining comprehensive comfort levels has not been considered [5]. For instance, when per-

forming conventional resilient operation with a simple demand response, an HVAC system in a

microgrid may shift the work load from 2:00 pm–3:00 pm to 3:00 pm–4:00 pm. At the same time,

electric water heaters (EWHs) and plug-in electric vehicles (PEVs) are operating as pre-event

scheduled, while an extreme weather event is about to strike the area from 2:00 pm–3:00 pm. Note

that the power resilience can be maintained in this case, but the heating/cooling resilience will be

affected by the simple demand response process. In order to maintain both the power resilience and

the heating/cooling resilience, a framework utilizing both the correlated demand response (CDR)

method and proactive resilient scheduling is proposed for the central controller of a micorgrid.

1.2.1 Extreme Weather Events

Extreme events can be classified into two categories, namely extreme weather events and ex-

treme cyber-physical events. Specifically, hurricanes, earthquakes, snowstorms and wild fires are

the major forms of extreme weather events that can cause huge blackouts all over the world. Even

though the independent system operators have learned their lesson from the 2003 blackout, only

N − 1/N − 2 contingency based security conditions have been included in the conventional op-

eration decision making process. Such security criterion is not suitable for a possible extreme

weather event, especially for a distribution system that does not have enough spinning reserve to

ensure its own resiliency. Thus, many research institute and organizations in the United States

such as Electric Power Research Institute (EPRI), Federal Energy Regulatory Commission (FER-

C) and North American Electric Reliability Corporation (NERC), have proposed several resilient

operation strategies for the system operators against potential extreme weather events.

1.2.2 Four Stages

There are four stages associated with the resilience of a distribution system, namely hardening,

proactive scheduling, emergency response and restoration stages. It can also be categorized as

prior the extreme event, during the extreme event and after the extreme event. The hardening and
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restoration aspects have been extensive studied in prior works. Therefore, we mainly focusing on

the proactive scheduling and emergency response stages. As shown in Fig. 1.2, the operating status

can be treated as numbers of critical loads operating in the steady state. The extreme event occurs

at the time t2, where the first slope between t2 and t3 indicates the development of the extreme

weather event. As time goes by, the curve becomes flat, which means that the extreme weather

event is about to leave the distribution area, where the damage of the extreme event reaches the

highest level at that time.

Figure 1.2: The four stages associated with the resilience of a distribution system.

1.3 Optimization Approaches, Artificial Intelligence Algorithm-
s and Risk Management Methods to Handle Uncertainties

With the concept of the extreme weather events, we began to narrow down the possible un-

certainties need to be considered in the proactive scheduling stage, emergency response stage

and restoration stage, such as when and where the extreme event would occur, which bus or n-

ode would be influenced by the extreme weather event, and the intermittent generation and load

demand, which are all challenges need to be tackled to ensure the resilience of the distribution

system. Some of prior works consider stochastic approach to handle uncertainties which requires a

hard-to-obtain probability distribution of each uncertainty which is impossible for the complicate

real-world cases and brings a lot of computational burden to the problem [6]. Other prior works

consider conventional robust optimization approaches to handle the uncertainties which are too

conservative and did not consider the risks associate with the low possibility of high cost. More-

over, for the resilience issues in the distribution system, the uncertainties of the extreme event

changes with the time slots. Thus, the adaptiveness of the solution approach is also very impor-

tant. In addition to the optimization methods, artificial intelligence (AI) based algorithms are also

introduced by prior works to consider the uncertainties, such as Markov decision process (MDP),

reinforcement learning (RL), and deep reinforcement learning (DRL). However, none of the al-
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gorithms mentioned above can fully address all the unique features of the resilience issues in the

distribution system.

1.4 Prior Works vs. Our Works

In addition to the aforementioned challenges, extreme weather event related uncertainties, such

as grid-connected conditions (including the duration of and when the extreme event will strike a

commercial campus), power generation of rooftop solar panels, intermittent load demand in the

CB, arrival state-of-charges (SoCs), and arrival/departure time of PEVs, are major obstacles pre-

venting the optimal control decisions from occurring as scheduled. To handle these uncertainties,

various optimization algorithms, such as scenario-based stochastic programming [7], robust op-

timization [8], and distributionally robust optimization [9], have been developed. However, the

key feature of an extreme weather event is that the decisions made in the pre-event stage lack

adaptiveness to the real-time conditions. To improve the real-time fast response capability of the

cental controller in a CB during an extreme weather event, a reinforcement learning (RL) method

can be introduced [10], such as the Q-learning method [11]. In addition to Q-learning, which

can only handle discrete state and action spaces, a deep Q-network (DQN) has been developed

for a continuous state space and a discrete action space [12]. It is suitable for a CB that requires

simple actions, such as the on/off actions of an ESS. Furthermore, risks associated with the ex-

treme weather uncertainties need to be tackled during the training process in order to mitigate the

influence caused by potential extreme epochs [13]. Thus, a safe reinforcement learning (SRL)

algorithm [14] has been developed by combining the DQN method and conditional-value-at-risk

(CVaR) method considering all the unique features of the proactive resilient scheduling problem.

Therefore, we proposed several novel proactive scheduling strategies and emergency response

strategy based on safe reinforcement learning and risk-constrained adaptive robust optimization

approach for the distribution system to ensure its resilience.
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CHAPTER 2

Proactive Scheduling Strategies for a Commercial
Microgrid in the Distribution System

The detailed studies for the proactive scheduling stage of the major components in the distri-

bution system based on the proposed algorithms and control strategies are demonstrated in these

chapters. We first introduce the proposed proactive resilient scheduling strategy for the GEIRINA’s

commercial building on a commercial campus in San Jose, CA based on safe reinforcement learn-

ing algorithm. After that, a risk-constrained adaptive robust optimization is developed to handle

the uncertainties for central controllers of networked microgrids in the following chapter.

2.1 Motivations and Contributions

Distribution systems now contribute more to the resilience of the whole power system than

ever before, especially in the face of extreme weather events. With the help of microgrids, the

potential risks of cascading failures in a distribution system have been minimized. However, such

capability highly relies on a strong communication network, which is impossible to maintain when

an extreme event (such as a hurricane) strikes. Moreover, the cost to restore the operation of

commercial buildings (CBs) to the pre-event phase is much higher than that of restoring residential

households [15]. Thus, in order to maintain the resilience of CBs, a technology called proactive

scheduling has been developed. Unlike hardening and restoration, which make decisions either

years before or months after a potential extreme event, proactive scheduling can provide resilient

control decisions several hours before the potential extreme event, which also ensures a satisfaction

level regarding the energy demand during the extreme event.

Buildings consume nearly 40% of the annual electricity generation of the United States (U.S.),

of which half of total energy consumption is from commercial buildings (CBs) [16]. CBs con-

tribute to a significant portion of the gross domestic product (GDP) in the U.S. Ensuring the relia-

bility of the CBs is a major concern of distribution system operators (DSOs). However, congestion
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of transformers and distribution lines in the upstream grid can lead to contingency issues, which

pose a significant threat to the reliability of CBs in commercial campuses. To prevent a contin-

gency issue from influencing the reliability of a commercial campus, a controller is needed for the

optimal energy management.

Among prior proposed energy management strategies, their objectives can be categorized into

three groups: (i) to minimize the operating cost of the system [17]; (ii) to maximize the comfort

levels of occupants or minimize the discomfort levels of occupants (mainly related with the in-

door temperature) [18]; and (iii) to minimize the load curtailment of the system or maximize the

survivability of critical loads [19]. Reference [20] synthetically combines the first two objectives

using a stochastic optimization approach. The energy management strategy proposed in [21] con-

siders both operation cost minimization and customer comfort level maximization in a commercial

campus. However, the islanding capability of a commercial campus, which is one of the unique

features of a microgrid, is not addressed. With the increasing market trend of plug-in electric

vehicles (PEVs), an effective energy management system should also handle the uncertainties as-

sociated with PEVs [22]. Even though the penetration level of PEV owners among all occupants

of CBs is relatively small, the instant charging of PEVs upon arrival can create huge demand rip-

ples, which not only increase the expected operation and maintenance (O&M) costs, but also the

possibility of a cascading failure occurring at the point of common coupling (PCC) [23].

The islanding capability of a commercial campus can ensure sufficient energy supply to the

critical loads during the uncertain islanding period. Specifically, in the case of microgrid schedul-

ing, the problem of islanding constraints has received considerable attention. A review of existing

methods in handling islanding conditions for microgrid central controllers is provided in [24],

where the concept of smooth transition between grid-connected mode and islanded mode is dis-

cussed. In [25], G. Liu present an optimal scheduling model for microgrid operation taking into

account the probabilistic constraints of successful islanding. A chance constraint is proposed to

represent the probability of a microgrid maintaining enough spinning reserve to accommodate the

demand and renewable energy after islanding from the upstream grid. The authors in [26] utilize

the combined heat and power (CHP) units as back-up power and heating sources along with other

major components in a microgrid to overcome the energy imbalance caused by the islanding issues.

In addition, the possibilities of losing major components are also considered. Voltage imbalance

in the microgrid caused by the islanding from the main grid is studied in [27], which utilizes dis-

tributed generators and inverters to maintain the voltage magnitude in the islanded mode. Z. Li

demonstrate an islanding-aware economic dispatch mechanism for the microgrid central controller

to minimize the operating cost in both grid-connected mode and islanded mode [28]. They also

present the concept of energy deviation along with its associated costs. None of the aforemen-

tioned works, however, has considered all the distinct factors for the optimal energy management
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strategy of a commercial campus with islanding capabilities.

In this work, we propose a novel safe reinforcement learning algorithm to provide resilient

proactive scheduling decisions for the central controller of a CB. The correlation between different

components with demand response capabilities is utilized for the first time to ensure the desired

comprehensive comfort levels of the occupants can be maintained by the limited reserves. The

trade-off between the demand response amount and the maximum total comfort level of the occu-

pants in the CB is handled by several penetration level indices developed in our prior works. An

SRL algorithm is developed through combining a DQN method and a CVaR method to mitigate the

influence of extreme epochs in the learning process. Extensive simulation results based on real-

world data sets validate that the proposed proactive scheduling strategy based on the developed

SRL algorithm is capable of ensuring the resilience of the CB under an extreme weather event.

In summary, we make following contributions in this work:

1. A proactive scheduling strategy is proposed to ensure CB resilience when an extreme weath-

er event occurs.

2. An SRL algorithm is developed through combining a DQN method and a CVaR method to

mitigate the influence of extreme epochs, where exploration and exploitation are considered

simultaneously.

3. The correlation between different components with demand response capabilities is intro-

duced for the first time to ensure the desired comprehensive comfort levels of the occupants

can be maintained by the limited reserves.

4. Extensive simulation results show the effectiveness of the proposed proactive scheduling

strategy in minimizing the damage caused by extreme weather events while maximizing the

occupants’ comfort levels during an extreme weather event.

2.2 System Modeling

In the proposed commercial campus, as shown in Fig. 2.2, there is one CB and one parking

lot, which can be scaled to multiple CBs smoothly. In the CB, there is one HVAC system, several

EWHs, several ESSs, several rooftop solar panels, several CHPs, and one base load. There are also

several PEVs that are owned by the occupants of the CB that need to be charged in the parking lot

during office hours. In order to ensure the power balance of the commercial campus throughout

the whole operating day, both resilience and reliability related constraints are proposed. There are

96 time slots in each operating day, such that each time slot is 15 minutes. The system modeling

is based on the real-world data from the GEIRINA’s CB in San Jose, CA as shown in Fig. 2.1.
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Figure 2.1: The major components in a commercial campus.
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Figure 2.2: The major components in a commercial campus.

2.2.1 Appliance Constraints

This section describes the detailed formulation of each appliance in the commercial campus.

The detailed explanations of notations are provided in the Appendix.

2.2.1.1 HVAC

The indoor temperature of a CB is one of the most important features to evaluate the compre-

hensive comfort levels of its occupants, where the relationship between the power consumed by

the HVAC system and the indoor temperature can be represented by the following constraints:

T hvac
t+1 = β hvacT hvac

t +αhvacUt ,∀t, (2.1)

11



where T hvac
t = [T in

t ,T iw
t ,T ow

t ]T , including the indoor temperature, inner wall temperature, and outer

wall temperature, respectively. Ut = [T out
t ,Ψt ,σtη phvac

t ]T , including the outdoor temperature, solar

irradiance, binary on/off action indicator of the HVAC system, and constant power consumption of

the HVAC system, respectively. α and β are the environment coefficients of the CB [29].

T hvac
d −δ hvac ≤ T in

t ≤ T hvac
d +δ hvac,∀t, (2.2)

where T hvac
d is the desired indoor temperature and δ hvac is the maximum deviation from the desired

indoor temperature.

Moreover, consumers’ comfort level can be related to an HVAC system as follows:

Jhvac,t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, T in
t ≥ T max

1− T in
t −(T hvac

d +εhvac)

δ hvac , T hvac
d + εhvac ≤ T in

t ≤ T max

1, T hvac
d − εhvac ≤ T in

t ≤ Td + εhvac

T in
t −(T hvac

d −δ hvac)

δ hvac , T min ≤ T in
t ≤ T hvac

d − εhvac

0, T in
t ≤ T min.

(2.3)

The comfort indoor temperature zone is defined as T hvac
d ± εhvac, where εhvac is the maximum

deviation from the desired indoor temperature that can still ensure a comfort temperature zone.

2.2.1.2 EWH

The hot water demand within the CB is supported by the EWH, such that the requirements for

the EWH can be expressed as follows:

T ewh
τ = T ewh

0 +ΔT ewh,ΔT ewh =
τ

∑
t=1

ζ ewhzewh
t pewh

t −Hde
t

CwaterM
,∀τ, (2.4)

where pewh
t is the constant power consumption of the EWH. Binary variable zewh

t denotes the on/off

action indicator of the EWH. ζ ewh is the power-to-heat ratio of the EWH. Auxiliary state variable

ΔT ewh is the temperature deviation of the EWH between the beginning of the operating day and

time τ . Parameter Hde
t represents the aggregated negative impacts on the temperature of the hot

water in the EWH, including heat loss that is transferred to its ambient, outflow of hot water and

inflow of cold water. Parameter M is the mass of the water in the hot water tank, and Cwater is the

specific heat capacity of water.

Moreover, the water temperature in the EWH is closely related to the occupants’ comfort level,
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so it is relatively important to maintain this temperature above a certain threshold.

T ewh
d −δ ewh ≤ T ewh

τ ,∀τ (2.5)

Parameter T ewh
d is the desired water temperature in the hot water tank of the EWH.

Jewh,τ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, T ewh
d ≤ T ewh

τ
T ewh

τ −(T ewh
d −δ ewh)

T ewh
d −(T ewh

d −δ ewh)
, T ewh

d −δ ewh ≤ T ewh
τ ≤ T ewh

d

0, T ewh
τ ≤ T ewh

d −δ ewh.

(2.6)

Parameter δ ewh is the maximum allowed deviation from the desired water temperature.

2.2.1.3 PEV

Additionally, we have the following charging dynamics for PEVs:

SoCv,t = SoCv,t−1 +
pch

v,tηch
v Iv,tuch

v,t

Ev
,∀v, t, (2.7)

where pch
v,t is the constant charging rate of the v-th PEV. Parameter ηch

v is the charging efficiency

of the v-th PEV. Parameter Ev is the rated energy of the v-th PEV. We use a binary variable uch
v,t

to represent charging decisions, i.e., if uch
v,t is 1, the v-th PEV is being charged; when uch

v,t is 0, the

v-th PEV is in an idle status. Also, seeing as the arrival and departure schedules of each PEV are

uncertain, we adopt a binary parameter Iv,t to model the location of each PEV, such that, where

Iv,t = 1 when the PEV is ready for the charging process and Iv,t = 0 when the PEV is not in the

parking lot.

In addition, the SoC of each PEV must be maintained within a certain range as follows:

SoCv ≤ SoCv,t ≤ SoCv,∀v, t, (2.8)

where upper bound SoCv and lower bound SoCv are defined.

Furthermore, the comfort level related to the v-th PEV can be defined as follows:

Jv,t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, SoCd
v ≤ SoCv,t

SoCv,t−SoCbase
v

SoCd
v −SoCbase

v
, SoCbase

v ≤ SoCv,t ≤ SoCd
v

0, SoCv,t ≤ SoCbase
v .

(2.9)

Jv,t denotes the comfort level of the v-th PEV owner. SoCd
v is the desired SoC for the v-th PEV.
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SoCbase
v represents the base SoC required for the v-th PEV with a round trip between the owner’s

house and the CB.

2.2.1.4 ESS

Similarly, we have the following charging and discharging dynamics for ESSs:

SoCk,t = SoCk,t−1 +
pch

k,tη
ch
k uch

k,t −
pdis

k,t udis
k,t

ηdis
k

Ek
,∀k, t, (2.10)

where pch
k,t and pdis

k,t are the constant power charged into or discharged from the k-th ESS at time t,

and ηch
k and ηdis

k represent the charging and discharging efficiencies of the k-th ESS, respectively.

uch
k,t and udis

k,t are binary variables indicating charging and discharging decisions of the k-th ESS.

Parameter Ek denotes the rated energy level of the k-th ESS. Each ESS has a finite capacity;

therefore, energy stored in each one must have the following lower and upper bounds:

SoCk ≤ SoCk,t ≤ SoCk,SoCk,0 = SoCk,T ,∀k, t, (2.11)

where SoCk is the upper bound and SoCk is the lower bound of the k-th ESS’ SoC status. Moreover,

we set the initial available SoC to be the same as the final available SoC for a better scheduling of

peak hours for each operating day.

ES units have charging and discharging limits as follows:

0 ≤ uch
k,t +udis

k,t ≤ 1,∀k, t, (2.12)

where the k-th ESS cannot be charged and discharged at the same time.

2.2.1.5 CHP

In order to provide sufficient electricity to the CB in both the islanded mode and the grid-

connected mode, gas-based combined heat and power (CHP) is deployed. Without loss of gener-

ality, we assume the CHP unit has been off for enough time prior to the operating day. We first

formulate the upper/lower limit on the power output of the CHP as follows:

PcIc,t ≤ pc,t ≤ PcIc,t ,∀c, t. (2.13)

Note that when CHP c is off, i.e., Ic,t = 0, the power output of CHP c must be 0.

Additionally, the increase and decrease of the CHP power outputs between two consecutive

time slots are constrained by ramping-up and ramping-down rates, as well as by power output
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limits. When c is started up at time t, i.e., yc,t = 1, it can generate at most SUc in time slot t.

The ramping-down case is modeled similarly. Therefore, we have the following ramping-up and

ramping-down constraints for the CHP:

pc,t − pc,t−1 ≤ RUcIc,t−1 +Pc(1− Ic,t)+SUcyc,t ,∀c, t

pc,t−1 − pc,t ≤ RDcIc,t +Pc(1− Ic,t−1)+SDczc,t ,∀c, t. (2.14)

In addition, for each c, we have the following minimum up/down time constraints:

t+UTc−1

∑
τ=t

Ic,τ ≥ UTcyc,t ,
t+DTc−1

∑
τ=t

(1− Ic,τ)≥ DTczc,t ,∀c, t. (2.15)

The relationship between startup and shutdown action decisions yc,t and zc,t of c is given as

follows:

Ic,t − Ic,t−1 = yc,t − zc,t , yc,t + zc,t ≤ 1,∀c, t. (2.16)

2.2.2 Reliability Constraints

2.2.2.1 Uncertain Grid-connection Conditions

We also use P to represent the capacity limit on the point of common coupling (PCC). As de-

scribed in the introduction, the uncertain grid-connection condition is one of the key uncertainties

that needs to be considered in the proactive resilient scheduling problem. The power exchange

through the PCC between the CB and the main grid is zero during the extreme event. Thus, the

parameter Ig,t ∈ [0,1] is adopted to model the uncertain grid-connection condition. Thus, we have

the following constraints on the grid-connected tie-line:

0 ≤ pg,tug,t ≤ PgIg,t ,∀g, t

∑
g

ug,t ≤ 1,∀t. (2.17)

Parameter pg,t represent real-time power buy from a retail electricity market. Binary variable ug,t

is proposed to model the power purchasing decision.

15



2.2.2.2 Power Balance

Furthermore, we denote aggregate critical power loads as dt that must be satisfied [30]. There-

fore, we have following power balance equation:

∑
k

(
pdis

k,t udis
k,t − pch

k,tu
ch
k,t

)
+wt + pg,tug,t +∑

c
pc,t Ic,t (2.18)

=lt +dt + pewh
t zewh

t + phvac
t σt +∑

v
pch

v,t Iv,tuch
v,t ,∀t.

Parameter wt denotes the output of renewables. Variable lt represents the power mismatch due to

the unexpected extreme weather event.

2.2.3 Proactive Resilient Reserves

In order to provide optimal scheduling decisions to ensure the resilience of the commercial

campus, the CHP and ESSs need to satisfy the minimum reserve requirement to maintain the

resilience of the CB [25]. In our proposed model, the resilience of the CB needs to be guaranteed

for the entire operating day. Therefore, the minimum requirement for the energy reserve is to

compensate for any insufficiencies during the extreme weather event. Variable P+
re,t is introduced

as reserves that must be satisfied when power scheduled to be bought from the retail electricity

market cannot be delivered due to the extreme weather event. Ramping-up of the CHP pRU
c,t and

power discharging of ESSs pre,dis
k,t are major contributions to the power reserve P+

re,t .

The constraints related to the islanding capability based reserve can be expressed by the fol-

lowing formulation:

P+
re,t = ∑

c
pRU

c,t +∑
k

pre,dis
k,t ,∀t. (2.19)

In addition, the relationship between the proactive resilient reserve and the power exchange

schedule can be formulated as follows:

Pg ≥ P+
re,t ≥ pg,t ,∀t. (2.20)

Furthermore, for each aforementioned component, the reserves for the optimal proactive re-

silient scheduling strategy have the following upper/lower bounds:

pRU
c,t ≤ RUcIc,t−1 +Pc(1− Ic,t)+SUcyc,t , pRU

c,t ≤ PcIc,t − pc,t ,∀c, t

pre,dis
k,t ≤ pdis

k udis
k,t ,

pre,dis
k,t

ηdis
k

≤ SoCk,tEk −Ek,∀k, t. (2.21)
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Parameter Ek denotes the minimum allowed energy level of the k-th ESS.

2.3 Safe Reinforcement Learning

In this section, our objective is to develop an optimal proactive resilient scheduling strategy for

the central controller of a CB that can minimize the costs from a potential extreme weather event

and maximize comprehensive comfort levels for occupants during office hours (from 8:00 am to

8:00 pm). As mentioned in the introduction section, grid-connected conditions, power generation

of rooftop solar panels, intermittent load demand in the CB, arrival state-of-charges (SoCs), and

arrival/departure time of PEVs, are major uncertainties associated with the extreme weather event

that need to be considered in the training process, especially for the extreme epochs. In order

to mitigate the influence of lack of comprehensive information on the distribution of certain un-

certainties, we model the proactive resilient scheduling of the CB as a Markov decision process

(MDP) [31], with the environment models formulated as in previous sections at each time step t.

In addition, we formulate the MDP model based on a tuple with four vectors: S, A, R, S′,
where S and A denote the state and action spaces, respectively. S

′ is the state space after the

transition through the environment from the original state space S, i.e., from time t to time t + 1.

R : S×A× S
′ ⇒ R represents the reward function, i.e., the immediate reward obtained by the

central controller of the CB after taking action A, which changes the state space from S to S′. In

the proposed model, the states are considered to be continuous for the whole time interval, while

the actions are said to be discrete, which adheres to the nature of the major components in a CB

that require simple actions, such as the on/off actions of an ESS.

Moreover, risks associated with the extreme weather uncertainties need to be tackled during the

training process in order to mitigate the influence caused by potential extreme epochs. Thus, an

SRL algorithm has been developed by combining the DQN method and CVaR method considering

all the unique features of the proactive resilient scheduling problem.

2.3.1 DQN Based Resilient Proactive Scheduling

The detailed information for the state space, action space, and reward function of the proposed

DQN is introduced as follows:

States: The major states of the SRL based proactive scheduling strategy are represented by

vector S, including [T in
t , SoCv,t , SoCk,t , T ewh

τ , pc,t , pg,t , lt], which indicate the indoor temperature,

the SoC of PEV v, the SoC of ESS k, the water temperature of the EWH, the power generation of

the CHP c, power buying from the main grid, and the power mismatch, respectively.

Actions: The actions of the SRL based proactive scheduling strategy are represented by vector
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A, including [σt , uch
v,t , (uch

k,t , udis
k,t ), zewh

t , ug,t , yc,t , zc,t]. The on/off status of the HVAC system,

the charging/idle status of the PEVs, the charging/discharging status of the ESS, the load serving

condition of the EWHs, the binary variable that selects which power amount to buy from the main

grid, and the unit commitment decisions of the CHPs are considered in action space A. All action

variables are binary variables, which adhere to the nature of the major components in a CB.

Reward: Our objective is to minimize damage caused by the extreme weather event while

maximizing occupants’ comfort levels for the central controller of the CB, where risks associated

with the proactive scheduling process are managed through CVaR. Thus, we formulate the reward

of the proactive scheduling problem as follows:

R =−∑
t

Cg pg,tug,t −∑
t

∑
k

CESS(pch
k,tu

ch
k,t + pdis

k,t udis
k,t )−∑

t
∑
c

Cgas pc,t −∑
t

Cp|lt |

+∑
t

Jhvac,t +
80

∑
t=72

∑
v

Jv,t +∑
t

Jewh,t . (2.22)

Note that Cg denotes the real-time electricity price. Parameter CESS is the degradation cost coeffi-

cient of the ESS. Parameter Cgas represents the gas price. Parameter Cp is the penalty cost when a

power mismatch occurs.

2.3.2 CVaR

In the proposed SRL approach, the reward of each epoch is a random variable that involves

the aforementioned uncertainties. In the reward distribution, there are optimal proactive resilient

scheduling strategies with negative rewards (which are huge penalties) for the worst-case epochs

that have rather small possibilities to occur. Therefore, a risk aversion approach is needed to

avoid such an issue, which can ensure that the penalty variability is minimized as desired. In our

model, the variability among the rewards of all epochs is handled by a CVaR method. In the CVaR

method, the risk of the proposed problem is minimized through minimizing epochs with penalties

larger than the (1− ε)–quantile of the reward distribution, i.e., the value-at-risk (VaR) ζ , where ε
is the confidence level [32]. The relationship between the VaR and the rewards can be represented

through the following constraints:

ε ≥ Re −ζ ,ε ≥ 0. (2.23)

In the proposed model, we use Re to represent the reward of epoch e. Non-negative auxiliary

variable ε denotes the deviation between the reward and the VaR. Therefore, the training process is

utilized to select the proper action pairs, where the influence from extreme epochs in the learning

process can be mitigated.
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2.3.3 Procedure to Merge DQN and CVaR

An SRL control approach is designed based on unsupervised DQN and CVaR methods to

provide proactive resilient scheduling decisions for a CB, which minimizes the damage caused

by an extreme weather event while maximizing comfort levels of occupants in the CB. Detailed

information on the proposed SRL method regarding the combination of DQN and CVaR can be

found in the following Fig. 2.3:

Figure 2.3: The process of merging DQN and CVaR.

2.4 Simulation Results

In this section, the proposed algorithm is evaluated through real-world data sets. First, the

selected real-world data sets are described in detail. Then, the performance of the proposed DRL

algorithm is evaluated. All simulations are implemented on a desktop computer with a 3.0 GHz

Intel Core i5-7400 CPU and 8GB RAM. The proposed DRL based energy management problem

is simulated using Python 3.5, Gurobi 8.0, and Tensorflow 1.8.

2.4.1 Numerical Settings

The proposed system is tested in a commercial campus with a CB, two charging piles for

PEVs, and three CHPs. In the CB, there is one HVAC system, two EWHs, two ESSs, one pack

19



Table 2.1: Comfort Level Related Parameters
Type T hvac

d (◦C) δ hvac (◦C) εhvac (◦C)

HVAC 23 5 1

Type Ed
k (%) Ebase

k (%) E0
k (%)

PEV 80 10 10

Type T ewh
d (◦C) δ ewh (◦C) T ewh

0 (◦C)

EWH 40 10 30

Table 2.2: ESS Parameters
SoCk (%) SoCk (%) pch

k,t (kW) pdis
k,t (kW)

10 90 15 15

Table 2.3: PEV Parameters
Type SoCv (%) SoCv (%) pch

v,t (kW)

Tesla Model S 75D 20 90 11.5

Tesla Model X 100D 20 90 17.2

Nissan Leaf SV 20 90 3.6

Table 2.4: CHP Parameters
Unit UTc (hr) DTc (hr) Pc (kW) Pc (kW)

1 0.25 0.25 47.5 594.2

2 0.25 0.25 29.8 373.4

3 0.25 0.25 15.4 294.5

Unit RUc (kW) RDc (kW) SUc (kW) SDc (kW)

1 109.8 109.8 297.1 475.4

2 74.7 74.7 186.7 298.72

3 58.9 58.9 147.3 235.6

of rooftop solar panels, and one base load. All parameters are unified for computational proposes,

with Pbase set at 1,867kW and Hbase set at 1,224kBtu. Comfort levels are only considered during

business hours, when occupants are in the CB (from 8 a.m. to 8 p.m.). The parameters related to

the occupants’ comfort levels are shown in Table 2.1.

The ESSs have an identical storage capacity of 80 kWh, and have a charging and discharging

efficiency of 0.98. Other parameters regarding the ESSs are listed in Table 2.2. To prolong the

ESSs’ lifetime, their SoCs should not drop below 10% or be overcharged above 90%. Both the

initial and final SoCs of the ESSs are set to be 50%. Degradation cost coefficient CESS of each

ESS is set to be 0.0035$/kWh. The arrival and departure time of the PEVs is randomly sampled

within 8:00 am–9:00 am and 6:00 pm–8:00 pm following a normal distribution, and the arrival

SoCs are generated following a normal distribution with a mean of 30% SoC and a variance of

10% SoC. The types of PEVs and their parameters are listed in Table 2.3. Parameters η , αhvac,
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β hvac, and phvac
t of the HVAC system are from [33]. The data for the EWHs is from [34]. The

EWHs’ power to heat ratio is set to 1.2. Moreover, the total capacity of the installed solar panels is

60 kW , where the historic generation patterns are from [35], with proper scaling coefficients. The

historical data of the solar irradiance and the outdoor temperature is from [36], with proper scaling

coefficients. The data for the base load and the hot water demand is from [37]. The penalty for the

power mismatch is from [38]. The parameters for the CHPs are presented in Table 2.4, where the

gas price for the CHPs is 0.013 $/kW .

The TOU electricity price is obtained from the real-world wholesale electricity prices of PJM [39],

with proper scaling coefficients. The uncertain grid-connection condition Ig,t follows a Bernoulli

distribution.

2.4.2 Case Study

The case study is conducted through four steps: (i) show the convergence rate of the pro-

posed SRL algorithm in handling such complicate environment; (ii) compare the proposed SRL

algorithm with a DRL algorithm in both training and testing processes to show the effectiveness

of utilizing CVaR with DQN; (iii) compare the proposed SRL algorithm with a scenario-based s-

tochastic programming and a CVaR-based stochastic optimization approach to show the optimality

of the proposed SRL algorithm and the importance of considering risks through the CVaR method;

and (iv) select one extreme epoch in the testing process to show the resilience of the commercial

campus when facing an extreme event with the proactive scheduling strategy.

2.4.2.1 SRL versus DRL

We first train the proposed SRL based proactive resilient scheduling problem with 10000 highly

intermittent episodes that are generated based on four uncertainties: grid-connection conditions,

base load demand, power output of renewables, and PEV arrival SoC and arrival/departure time.

As shown in Fig. 2.4, the smoothed rewards for the operating day increases as the number of

training episodes increases. Even though the rewards tend to vary during the training process due

to the uncertainties, the proposed SRL learns the optimal action pairs quickly. Moreover, as shown

in Fig. 2.5, the smoothed losses for the operating day decreases as the number of training episodes

increases. The red dotted line shows the trend of the losses. This result demonstrates that the

randomly selected samples are closer to the batch episodes.

In addition, we compare the proposed SRL algorithm with deep reinforcement learning (DRL),

which is the combination of DQN and RL in both the training and testing processes, keeping states,

actions, environment, and reward function are the same.

As shown in Fig. 2.6 and Fig. 2.7, the DRL algorithm is also trained with the same 10000
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Figure 2.4: The reward of the proposed SRL algorithm in the training process under 10000 highly

intermittent episodes.

Figure 2.5: The loss of the proposed SRL algorithm in the training process under 10000 highly

intermittent episodes.

episodes that are generated with the aforementioned uncertainties. During the training process,

the convergence of the DRL algorithm is faster than that of the proposed SRL algorithm and the

losses of the DRL are also lower than those of the proposed SRL method. The reason why the SRL

algorithm converges slower than the DRL algorithm is that the proposed SRL algorithm eliminates

the extreme epochs during the training process, which requires more steps to converge. Doing so

can also help the DQN’s training process in handling various uncertainties in the real-world test

cases, especially to avoid the extreme epoch shown in Fig. 2.6. Also, the training process of the

proposed SRL algorithm takes 6 hours which is only a little more than that of the DRL algorithm,
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Figure 2.6: The reward for the DRL method in the training process under the same 10000 highly

intermittent episodes.

Figure 2.7: The loss for the DRL method in the training process under the same 10000 highly

intermittent episodes.

which is acceptable.

After comparing the training process of the proposed SRL algorithm and the DRL method, we

test the two trained DQNs with an identical 1000 totally new episodes generated from different

uncertainty distributions.

The rewards of the SRL algorithm and of the DRL method based on these new episodes are

presented in Fig. 2.8 and Fig. 2.9. As we can observe from Fig. 2.8, the rewards of the SRL based

method are higher than those of the DRL based method. Moreover, the rewards of the SRL based

method are much smoother than those of the DRL based method. This is because, through the
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Figure 2.8: The reward of the proposed SRL algorithm when testing under 1000 new episodes

containing various extreme conditions.

Figure 2.9: The reward of the DRL method when testing under 1000 new episodes containing

various extreme conditions.

training process, the proposed SRL method has the capability to handle extreme conditions, while

the DRL method does not.

2.4.2.2 SRL versus Scenario-based Stochastic Programming

To benchmark the optimality of the proposed SRL approach, we adopt a scenario-based s-

tochastic optimization approach to provide resilient control decisions for the central controller of

the CB based on the same 10000 scenarios generated from the four uncertainties. The probability

of each scenario is assumed to be 1/10000. The objective function for the scenario-based stochas-
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tic approach is the same as the reward function for the proposed SRL. Through Python and Gurobi,

we attain the expected value of the objective function as 77.62 (represented as the red line) for the

operating day, which validates the convergence of the proposed SRL approach after the training

process, as shown in Fig. 2.4. However, compared to the 6 hours of training required for SRL

based proactive scheduling to converge, the scenario-based stochastic programming method takes

much longer, needing 28 hours to converge (note that this is when the scenario reduction process

is not considered). Furthermore, when applying CVaR with the selected scenario-based stochastic

optimization approach, which becomes a risk-constrained stochastic programming problem, the

performance when facing an extreme weather event is also better than when using the original

stochastic programming method, which results in an expected objective of 78.53 with the 10000

scenarios. This is because, with the help of CVaR, the worst-case scenarios have been eliminated

by the risk averse decisions.

2.4.2.3 Sensitivity Analysis

Figure 2.10: The power discharging reserve from ESSs in per unit value.

Figure 2.11: The ramping-up reserve from CHPs in per unit value.
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In addition, we test the resilience of the proposed framework, utilizing both the proactive

scheduling strategy and CDR under various extreme epochs to show the effectiveness of the SRL

in considering both the exploration and exploitation. The extreme weather event is set to occur

at the 44th time slot, and its total islanding period is two hours, during which time no power can

be exchanged through the PCC. As shown in Fig. 2.10 and Fig. 2.11, the reserve for the power

mismatch is provided by two major components in the commercial campus: CHPs and ESSs.

Specifically, the ramping-up reserve from CHPs and the power discharging reserve from ESSs

contribute to the resilience of the CB. The extreme weather event occurs at the 44th time slot

during business hour, where the real-time power buying from the retail electricity market is zero

until the 52nd time slot. During the islanding period, the shorted power is supported by the reserves

from CHPs and ESSs, which increase the operating costs slightly but enhance the resilience of the

commercial campus.

2.4.2.4 Scalability of the Proposed Proactive Resilient Scheduling Strategy

Then we extend the proposed system modeling to multiple CBs to show the effectiveness and

scalability of the proposed proactive resilient scheduling strategy.
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Figure 2.12: Comfort level related to the indoor temperature of CBs.

The second-stage (real-time) decisions are generated based on the first-stage (day-ahead) de-

cisions after the uncertainties are unveiled in one selected scenario from the 1,000,000 original

scenarios. The unit commitment decisions as well as the buying/selling amount scheduled in the

day-ahead retail electricity market cannot be changed throughout the operating day. As considered

in the problem formulation section, we need to consider both the comfort levels of the occupants
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Figure 2.13: Indoor temperature of CBs.
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Figure 2.14: Comfort level related to water temperature in TS units.

and the reliability of the commercial campus. We first show the comprehensive comfort levels in

Fig. 2.12, Fig. 2.14, and Fig. 2.16 to validate the effectiveness of the proposed energy manage-

ment strategy in handling both the O&M costs and the comprehensive comfort levels. As shown

in Fig. 2.13, even though the comfort level related to HVAC systems cannot remain in the most

comfort level zone during the entire business hours, the indoor temperatures of all CBs still remain

in the pre-defined temperature tolerance in Table 2.1. Since the comfort level related to PEVs only

regards to the SoCs when departure as shown in Fig. 2.17, therefore, it has more priority during
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Figure 2.15: Water temperature in TS units.

10 12 14 16 18 20
Time (h)

0

0.2

0.4

0.6

0.8

1

C
om

fo
rt 

Le
ve

l

Figure 2.16: Comfort level related to SoCs of PEVs.

that period than the HVAC system which depends on the whole business hours. In addition, the

water temperature in TS units are also provided in Fig. 2.15. By utilizing heat boilers, EWHs, and

CHP units, the TS units can ensure the comfort level related with the water temperature never drop.

2.4.2.5 Islanding Capability with/without Reserves

In addition to the scalability, we compared the proposed resilient proactive scheduling strategy

with and without using the islanding capability based reserve method in the same uncertain grid-
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Figure 2.17: SoCs of PEVs.

connection situation, where all other system settings remain the same. The islanding issue is set to

occur at the 44-th time slot, where no power can be exchanged through the PCC at that time.
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Figure 2.18: The reserve for buying power from the retail electricity market.

As shown in the Fig. 2.18 and Fig. 2.19, the reserve for buying/selling power from/to the retail

electricity market is provided by three major components in the commercial campus: CHP units,

ES units and EWHs. The total selling reserve is provided by the ramping-down reserve from

CHP units, the ramping-down reserve from ES units, and the ramping-down reserve from EWHs,

respectively. The total buying reserve is provided by, the ramping-up reserve from CHP units, and
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Figure 2.19: The reserve for selling power to the retail electricity market.
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Figure 2.20: The power output of CHP units when the islanding issue occurs.

the ramping-up reserve from ES units, respectively. The islanding occurs at the 44-th time slot in

the business hour, where the real-time power buying/selling from/to the retail electricity market is

zero in that time slot as shown in Fig. 2.21 and Fig. 2.22. During the islanding period, the shorted

power is supported by the CHP units and ES units, which increase the O&M costs only slightly

but enhances the reliability of the commercial campus.
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Figure 2.21: The power buying from the real-time retail electricity market.
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Figure 2.22: The power selling to the real-time retail electricity market.

2.5 Conclusions

In this section, we propose a novel safe reinforcement learning algorithm to provide resilient

proactive scheduling decisions for the central controller of a CB. The correlation between different

components with demand response capabilities is utilized to ensure the desired comprehensive

comfort levels of the occupants can be maintained by the limited reserves. A deep-Q-network and

a conditional-value-at-risk method are combined to mitigate the influence of extreme epochs on
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the learning process. Extensive simulation results based on real-world data sets validate that the

proposed SRL algorithm is capable of ensuring the resilience of a CB in an extreme weather event.
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CHAPTER 3

Proactive Resilient Scheduling for
Independent/Networked Microgrids with Extreme

Events in the Distribution System

In addition to a commercial system, we further extend the proposed system to independent mi-

crogrids and networked microgrids in a distribution system. Moreover, we developed an innovative

risk-constrained adaptive robust optimization approach to handle the uncertainties associated with

the potential extreme weather event. The reason why we change the SRL algorithm to a RARO

approach for the uncertainties of microgrids is that the total amount of actions the SRL algorith-

m can handle is limited, which is not suitable for the resilient proactive scheduling strategies of

microgrids. Since the concepts of microgrids/networked microgrids under extreme weather event

have been introduced in prior sections, therefore, we will mainly focus on the ssytem modeling in

the networked microgrids and the way to implement the proposed proactive scheduling strategy as

well as the simulation results based on the real-world data sets.

3.1 Introduction

Extreme events, such as earthquakes, tornadoes, hurricanes, floods and ice storms, are happen-

ing more and more often than ever before because of climate changes all over the world. Moreover,

most of these extreme events are a danger to the resilience of power systems, especially distribution

systems [40]. Distribution lines, substations, distributed energy resources (DERs), and consumers

can be seriously damaged by strong winds and flooding, such as during Superstorm Sandy, Hurri-

cane Harvey and Hurricane Irma. Unlike N − 1 and N − 2 contingency issues that have been ex-

tensively studied (mainly in the transmission system level), aforementioned extreme events could

break down a whole distribution system which requires months to restore.

Resilience issues are receiving more attention due to the significant damage that extreme events

inflict on power systems. A review of the resilience of power systems during natural disasters is
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provided in [41], where the concepts of hardening, proactive scheduling, emergency response and

restoration are perfectly defined, as shown in Fig. 3.1. The hardening and restoration aspects have

been extensively studied [42, 43, 44, 45, 46, 47]; however, there are still several challenges that

need to be tackled in the proactive scheduling and emergency response areas [48]. When facing

an extreme event, in order to provide proactive operation and emergency response, rather than

relying on passive methods, the continuous situational awareness issue needs to be considered.

Additionally, ensuring the robustness of the distribution system prior to extreme events requires

the system operator to handle a lot of uncertainties, such as: (i) weather uncertainty; (ii) reactions

of various microgrid central controllers (MGCCs); (iii) resiliency issues related to critical buses

and influential lines; and (iv) generation and load uncertainties. Thus, we mainly focus on proactive

scheduling in this paper to address these challenges.

Figure 3.1: The four stages associated with the resilience of a distribution system.

Proactive resilient scheduling problem in the distribution system has attracted exponentially

increasing attentions lately due to the aforementioned reasons. Specifically, networked microgrids

have been adopted to enhance the resilience of distribution systems, where the proactive schedul-

ing of MGCCs has become more important than ever before. A proactive operation strategy for

enhancing resilience of microgrids using energy storage (ES) units is proposed in [49]. In addition,

to optimally dispatch the mobile based ES units, a resilient routing and scheduling framework is

implemented in [50]. Moreover, critical load resiliency is one of the major features in quantifying

the resilience of a power system, especially during the extreme event. Thus, the transient stabil-

ity, such as limits on frequency deviation and limits on bus voltage magnitude and phase angles

are correlated together as constraints to provide resiliency control in [51]. Furthermore, not only

the modeling of the resilience problem is important, but also how to handle the uncertainties as

aforementioned becomes a priority issue that needs to be tackled.

Several optimization approaches have been adopted to handle uncertainties associated with

extreme events. Some prior works [52, 53] consider a stochastic approach to handle such uncer-

tainties, which requires hard-to-obtain probability distributions and adds a lot of computational

burden to the problem-solving process. Since the computation time of proactive operation and
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emergency response stages is limited, stochastic optimization is not suitable to handle resilien-

t proactive scheduling problems. Additionally, a Markov chain approach is chosen by authors

in [54] to make resilient proactive operation decisions when facing extreme events, where failure

rates of different extreme events are introduced; however, when and where an extreme event will

happen changes rapidly in each time slot. Thus, the adaptiveness of an approach is also very im-

portant. Other prior works consider conventional robust optimization to handle uncertainties [55],

but do not consider risks of an extreme event developing beyond the proper “budget of uncertainty”

that is suitable for the proactive scheduling stage, i.e., infeasible for the emergency response stage

as shown in Fig. 3.1. Moreover, in order to handel such risks, a risk-limiting approach is introduced

in [56], where joint probability density functions is provided for a MGCC to perform restoration.

However, the robustness of the proactive scheduling cannot be guaranteed without cooperating

with the robust optimization approach. Therefore, we introduce a risk-constrained adaptive robust

optimization (RARO) approach to handle these uncertainties and the risks associate with them.

In this work, we mainly focus on developing a proactive approach to handle resilience issues

of networked microgrids that are interconnected microgrids with multiple feeders, which is more

difficult to handle compare to that of serial/parallel microgrids on a single feeder [57]. Moreover,

one microgrid within the system of networked microgrids can benefit from other microgrids by

facilitating high reliability for critical loads [58]. Specifically, MGCCs determine real and reactive

power exchanges and select proper “budget of uncertainty” sets prior a potential extreme event.

Then, after all uncertainties are revealed, MGCCs dispatch their DERs and exchange real and

reactive power in real-time though only if tie-line and grid-connected buses are not influenced by

an extreme event to make sure networked microgrids are stable and resilient.

We summarize our contributions in following aspects:

1. We present a comprehensive system model for networked microgrids’ proactive resilient

scheduling problems under extreme events.

2. We study not only the resilience of electricity in networked microgrids, but also their heating

resiliency.

3. A RARO approach is proposed to handle the resilient proactive scheduling problem in net-

worked microgrids. To the best of our knowledge, this approach has not been employed to

handle uncertainties in resilient proactive operation problems previously.

4. Extensive simulation results show the effectiveness of our RARO approach that the system

can survive from the beginning till the end of an extreme event.
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3.2 System Modeling

3.2.1 Networked Microgrids
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Figure 3.2: The networked microgrids with major components.

There are multiple interconnected microgrids with DERs, including distributed generation

(DG) units and distributed storage (DS) units in a system of networked microgrids, as shown in

Fig. 3.2. Networked microgrids are located downstream of a distribution substation and are man-

aged by MGCCs. Additionally, the microgrids are connected to each other through tie-lines [59].

Specifically, a microgrid consists of trigeneration/combined cooling, heat and power (CCHP) units,

renewable energy sources (RES), thermal storage (TS) units, electrical storage (ES) units, real and

reactive power demand, cooling demand and heat demand. Each DER has a local controller (L-

C). MGCCs and LCs exchange information to achieve resilient and stable operation of networked

microgrids.

3.2.1.1 Combined Cooling, Heat and Power

CCHP systems not only provide stable real and reactive power to fulfill the power demand but

also supply either hot or chilled water to nearby buildings to support the heat and cooling demand

through utilizing the waste heat from its power generation process [60]. When facing extreme

events, the priority of a MGCC is to ensure the resilience of a microgrid. In order to provide

sufficient power, heating and cooling for consumers, all CCHP units must be scheduled to stay

on unless damaged and disconnected from a microgrid by an extreme event. Therefore, we have
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following real and reactive power dynamic constraints:

Pc ≤ pc,t ≤ Pc,Qc ≤ qc,t ≤ Qc,∀c, t ∈ [t1, t2) (3.1)

PcOc,t2 ≤ pc,t ≤ PcOc,t2 ,∀c, t ∈ [t2, t3] (3.2)

QcOc,t2 ≤ qc,t ≤ QcOc,t2 ,∀c, t ∈ [t2, t3], (3.3)

where Pc and Pc are the lower bound and upper bound of the real power output pc,t of CCHP unit

c. Parameters Qc and Qc are the lower bound and upper bound of the reactive power output qc,t

of CCHP unit c. The t1, t2 and t3 are time steps indicating the beginning of proactive scheduling

stage, emergency response stage and restoration stage, respectively. Oc,t2 is a binary variable that

indicating the grid-connection status of the CCHP unit c at time t2 (when the extreme event occurs,

also known as the emergency response stage). Oc,t2 = 1 represents that a CCHP unit c is still

connected to the microgrid at the beginning of extreme event, where both active and reactive power

can be generated by CCHP unit c after t2. Oc,t2 = 0 denotes that a CCHP unit c is disconnected

from the networked microgrids by an extreme event, where no power can be generated by CCHP

unit c after t2.

Additionally, when CCHP units are still on, the increment and decrement of the real pow-

er generation between two consecutive time slots need to follow ramping-up and ramping-down

constraints:

pc,t − pc,t−1 ≤ RUc, pc,t−1 − pc,t ≤ RDc,∀c, t ∈ [t1, t2)

pc,t − pc,t−1 ≤ RUc,∀c, t ∈ [t2, t3] (3.4)

pc,t−1 − pc,t ≤ RDc(1−Oc,t2)+PcOc,t2 ,∀c, t ∈ [t2, t3],

where RUc and RDc denote the ramping up/down limits of the CCHP unit c.

3.2.1.2 Electrical and Thermal Storages

In our model, energy storage units, such as plug-in electric vehicles (PEVs) and hot water tanks,

can provide elastic power and heat back-up when there is a forecasted extreme event. Based on the

forecast of losing CCHP units or RES units, the ES and TS units can be relocated to the influenced

buses, providing sufficient back-up of both power and heat for the critical load demand [61]. Thus,

we have following storage dynamics and operating constraints for ES/TS units. First, we model

the energy balance of ES units as follows:

Ees,t = Ees,t−1 + p+es,tη
+
es − p−es,t/η−

es ,∀es, t, (3.5)
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where Ees,t denotes the power stored in an ES unit with initial power Ees,0. We use p+es,t and p−es,t as

the rates of charging and discharging for ES unit es, and η+
es and η−

es as the efficiencies of charging

and discharging for ES unit es, respectively.

Then, we have the physical limitations on the energy levels of ES units:

Ees ≤ Ees,t ≤ Ees,∀es, t, (3.6)

where the lower bound Ees and upper bound Ees are imposed to enhance the lifetime of the ES

units.

Additionally, we have the physical limitations on the charging/discharging rate of ES units:

0 ≤ p+es,t ≤ P+
es ,0 ≤ p−es,t ≤ P−

es ,∀es, t, (3.7)

where P+
es and P−

es are the upper bounds of the charging and discharging rates, respectively.

For TS units, we can model their storage dynamic and operating constraints similarly:

Ets,t = Ets,t−1 +h+ts,tη
+
ts −h−ts,t/η−

ts ,∀ts, t (3.8)

0 ≤ h+ts,t ≤ H+
ts ,0 ≤ h−ts,t ≤ H−

ts ,Ets ≤ Ets,t ≤ Ets,∀ts, t, (3.9)

where Ets,t denotes the heating energy stored in the TS unit ts. Variables h+ts,t and h−ts,t) are the

charging and discharging rates of TS unit ts. Parameters η+
ts and η−

ts ) represents the charging and

discharging efficiency of TS unit ts. Also, H+
ts and H−

ts are the maximum charging and discharging

rates of TS unit ts, respectively. Ets and Ets are the minimum and maximum energy levels of TS

unit ts.

3.2.1.3 Critical and Non-Critical Energy Demand

In our model, in order to enhance the resilience of networked microgrids, we classify the real

power demand as critical and non-critical power demand [62]. For critical power demand, the

MGCC must ensure that adequate power generation is provisioned to meet their demand require-

ments within the operating horizon and cannot be curtailed. Parameter D j,t is introduced as the

aggregated critical power demand of the bus j.

For non-critical power demand, they are allowed to be curtailed with a pre-defined reasonable

penalty within a certain time interval (usually during the emergency response stage [t2, t3]). The

specific amount of energy that can be curtailed is modeled as El , where each non-critical power

demand l is allowed to be curtailed within the time interval [T b
l ,T

e
l ]. Outside of this time interval,

the non-critical power demand becomes “critical power demand”, which must be satisfied without
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interruption. For each non-critical load l, the load curtailment rate pl,t should be in the safe opera-

tion limitations of [Pl,Pl] to prevent a potential cascading failure. The non-critical power demand

requirement is expressed as:

T e
l

∑
t=T b

l

pl,t ≤ El,Pl ≤ pl,t ≤ Pl,∀l, t ∈ [T b
l ,T

e
l ] (3.10)

pl,t = 0,∀l, t /∈ [T b
l ,T

e
l ]. (3.11)

Furthermore, as the heat demand is critical during extreme events such as snowstorms, we use

Ht to represent the aggregated heat demand of all the buses in a system of networked microgrids.

3.2.1.4 Linearized AC Power Flow Equations

In our model, buses, lines and components in the networked microgrids suffer differently

when facing extreme events [63]. For example, in one microgrid, the tie-line connected bus i

and the point of common coupling (PCC) connected bus 0 is more influential. Besides, the tie-

lines connecting various microgrids within the networked microgrids are also more influential

than the distribution lines within each microgrid. Specifically, the components connected to the

influential buses have higher risks of being damaged or disconnected from the networked micro-

grids. Thus, we mainly focusing on modeling the unique features related with these influential

components. The conventional AC power flow equations are linearized through the following

steps extended from [64]: (i) bus 0 and bus i are influential buses in each microgrid (denoted

as I buses); (ii) (Vj,t −Vk,t)
2 ≈ 0, where Vj,t is the voltage magnitude on bus j at time t; (iii)

sin(θ j,t −θk,t)≈ θ j,t −θk,t , and cos(θ j,t −θk,t)≈ 1, where θ j,t denotes the voltage phase angle on

bus j at time t; and (iv) the critical power demand are on the less-influential buses. Also, N c
j , N l

j ,

N r
j and N es

j are sets of CCHP, non-critical power demand, RES and ES units that are connected

to bus j, respectively. Therefore, the real and reactive power injection equations are formulated as

follows:

PI,t = ∑
c∈N c

I

pc,t − pRT
t − ∑

l∈N l
I

pl,t + ∑
r∈N r

I

wr,t + ∑
es∈N es

I

(p−es,t − p+es,t)+ ∑
l∈N l

I

pl,t ,∀t (3.12)

Pj,t = ∑
c∈N c

j

pc,t −Dp
j,t + ∑

r∈N r
j

wr,t + ∑
es∈N es

j

(p−es,t − p+es,t),∀ j 
= I, t (3.13)

where Pj,t is the real power injection on bus j at time t. Variable pRT
t indicates the actual real power

exchange between networked microgrids and the main grid, as well as between each microgrid

through tie-lines at time t. wr,t denotes the real power generation from the RES unit r at time t.
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QI,t = ∑
c∈N c

I

qc,t −qRT
t ,∀t (3.14)

Q j,t = ∑
c∈N c

j

qc,t −Dq
j,t ,∀ j 
= I, t. (3.15)

where Q j,t is the reactive power injection on bus j at time t. Variable qRT
t represents the real-time

reactive power exchange between networked microgrids and the main grid, as well as between

each microgrid through tie-lines at time t.

Similarly, the detailed linearized real and reactive power flow equations are formulated [65]:

Pj,t = (2Vj,t −1)G j, j + ∑
k(k 
= j)

G j,k(Vj,t +Vk,t −1)+B j,k(θ j,t −θk,t),∀( j,k), t (3.16)

Pt
j,k = G j,k(Vj,t −Vk,t)+B j,k(θ j,t −θk,t),∀( j,k), t (3.17)

where G j,k and B j,k are the real and imagine parts of the Y matrix of the networked microgrid.

Variable Pt
j,k denotes the real power flow from bus j to bus k at time t.

Q j,t =−(2Vj,t −1)B j, j + ∑
k(k 
= j)

−B j,k(Vj,t +Vk,t −1)+G j,k(θ j,t −θk,t),∀( j,k), t (3.18)

Qt
j,k = B j,k(Vk,t −Vj,t)+G j,k(θ j,t −θk,t),∀( j,k), t. (3.19)

Variable Qt
j,k represents the reactive power flow from bus j to bus k at time t.

3.2.1.5 Network Constraints

In order to ensure the stability and resilience of networked microgrids, we have the following

lower and upper bounds on the voltage magnitude and phase angle [66]:

V j ≤Vj,t ≤V j,θ j ≤ θ j,t ≤ θ j,∀ j, t, (3.20)

where V j and V j are the lower and upper bounds on the voltage magnitude at bus j. Parameters

θ j and θ j are the lower and upper bounds on the voltage phase angle at bus j.

In addition, the resiliency of networked microgrids is also influenced by congestion, where the

lower and upper bounds on real and reactive power flows on the distribution lines are listed as

follows:

−P j,k ≤ Pt
j,k ≤ P j,k,−Q j,k ≤ Qt

j,k ≤ Q j,k,∀( j,k), t. (3.21)
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Parameters P j,k and Q j,k are the real and reactive power flow limitations on the distribution

lines between bus j and bus k.

3.2.1.6 Energy Balance

As mentioned above, the heat loads are critical loads, (especially during extreme weather

events, such as hurricane/strong wind/snow storm) that can be supplied the combination of CCHP

units and TS units. Or when all the CCHP units are damaged or disconnected from the microgrid,

the heat demand will be satisfied by the truck-based dispatchable TS unit only. Moreover, the

heating (hot water in most cases) is not like the electricity, which can only be delivered within a

short distance without decaying that significant [67]. Therefore, we assume that the heating cannot

be transferred between microgrids, which can only be dispatched within a microgrid. Unlike heat

demand Ht , the cooling demand Ct is assumed less critical, which is required to be satisfied before

the extreme event. The heating and cooling balances are expressed as follows:

Nc

∑
c=1

βc pc,t ≥Ct ,
Nc

∑
c=1

αc pc,t +
Nts

∑
ts=1

(
h−ts,t −h+ts,t

)≥ Ht ,∀t, (3.22)

where we use power-to-heat ratio αc and power-to-cooling ratio βc to represent the relationship

between power and useful heat and the cooling output of CCHP unit c.

3.2.2 Risk Management

In our model, uncertainties associated with an extreme event introduce a lot of risks into the

networked microgrids. The risks reveal themselves in multiple aspects, as mentioned in previous

sections. There are several ways to manage these risks, such as value-at-risk (VaR) and conditional-

value-at-risk (CVaR) methods. In our model, we extend the CVaR method to handle risks asso-

ciated with the resiliency issues in networked microgrids. The reason why we select this method

is because we can obtain the proper “budget of uncertainty” [68] through managing risks of un-

certainties. The trade-off between optimality and conservativeness is handled by the budget of

uncertainty, where the decision of selecting the proper budget of uncertainty is made by MGCCs.

Thus, the risk of selecting an improper budget of uncertainty must be ensured to be less than a

certain confidence level ε . Therefore, we have the following risk management constraint:

0 ≤ εx ≤ ζx,∀x. (3.23)

x denotes different kinds of uncertainties, Parameter ζx denotes the maximum allowed confidence

level (usually 5%).
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3.2.3 Total Cost

In each time slot t between proactive scheduling stage t1 and emergency response stage t3, the

total cost of the networked microgrids is formulated as follows:

Nc

∑
c
(Uon

c Oc,0 +Uc pc,t)+
Nl

∑
l

Ul pl,t

+
Nes

∑
es

Ues
(

p+es,tη
+
es + p−es,t/η−

es
)

+
Nts

∑
ts

Uts
(
h+ts,tη

+
ts +h−ts,t/η−

ts
)

+[UPE
t pPE

t +URT
t (pRT

t − pPE
t )+δt ]

+∑
x

κxεx. (3.24)

Note that in equation (3.24), the operating cost of the CCHP units and the load curtailment

cost are in the first line, while the second/third line represents the degradation and dispatch costs

of the ES/TS units; the cost of power exchange is in the fourth line; and the last line denotes the

cost associated with different risks. Parameter Uon
c is the minimum cost to maintain the operating

status of CCHP unit c. Variable Oc,0 is the initial on/off status of the CCHP unit c. Parameter

Uc denotes the generation cost of the CCHP unit c ($/kW ). Parameter Ul denotes the penalty

from curtailed/influenced non-critical power demand. Parameters Ues and Uts are the dispatch and

degradation cost of the ES units and TS units, respectively. Variable pPE
t represents the real power

exchange schedule of each microgrid before the potential extreme event. Variable pRT
t is the real

power exchange of each microgrid in the real-time. Parameters UPE
t and URT

t are pre-event and

real-time power exchange prices, respectively. Variable δt denotes the power exchange mismatch

cost, i.e., δt = ψt
∣∣pRT

t − pPE
t
∣∣, where ψt is the penalty parameter. κx is a risk-averse parameter

representing the relationship between the operating cost and the risk related with uncertainty x.

3.3 Problem Formulation

3.3.1 Uncertainty Set for RES Generation

As mentioned in previous sections, the robust optimization can handle various uncertainties

through a pre-defined deterministic interval, such as [w̄t − ŵ−
t , w̄t + ŵ+

t ] for RES generation w. w̄t

represents the nominal value (i.e., forecasted value) of RES generation in time slot t. ŵ−
t and ŵ+

t

are the maximum negative and positive deviations of RES generation in time slot t, respectively.

42



Coordinating with the budget of uncertainty Γw, we have the cardinality uncertainty set for RES

generation as follows:

W :=
{

w : wt = w̄t + ŵ+
t v+t − ŵ−

t v−t ,∀t,v ∈V
}
, (3.25)

V :=

{
v :

t3

∑
t=t1

(
v−t + v+t

)≤ Γw,0 ≤ v+t ,v
−
t ≤ 1,∀t

}
.

v+t and v−t are auxiliary variables indicating the degree of positive and negative deviation from the

forecasted value w̄t .

3.3.2 Uncertainty Set for Critical Power Demand

When facing an extreme event, critical loads in networked microgrids may increase the total

demand based on temperature change or other situations. Thus, it is important to consider potential

demand changes when a disaster strikes since they cannot be curtailed. Similarly, we use d̄t as the

nominal value (i.e., forecasted value) of the critical load demand in period t. Then, the critical

load demand dt in time slot t can be expressed as [d̄t − d̂−
t , d̄t + d̂+

t ]. d̂−
t and d̂+

t are the maximum

negative and positive deviations of the critical load demand in period t, respectively. Similarly,

coordinating with the budget of uncertainty Γd , we have the following cardinality uncertainty set

for critical load demand:

D :=
{

d : Dt = d̄t + d̂+
t u+− d̂−

t u−t ,∀t,u ∈U
}
, (3.26)

U :=

{
u :

t3

∑
t=t1

(
u−t +u+t

)≤ Γd,0 ≤ u+t ,u
−
t ≤ 1,∀t

}
.

u+t and u−t are auxiliary variables indicating the degree of positive and negative deviation from the

forecasted value d̄t .

3.3.3 Uncertainty Set for Influential Buses

We use an auxiliary variable zt to denote the resiliency issues of the influential buses and lines.

When an extreme event happens, the real-time power exchange between networked microgrids

and the main grid, as well as between each microgrid through tie-lines, may be different from

the pre-event schedule due to damaged distribution lines and tie-lines. Also, we consider that all

the tie-lines will be influenced at the same time, which is reasonable for a small distribution sys-

tem. Similarly, coordinating with the budget of uncertainty ΓI , we have the following cardinality
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uncertainty set for influential buses and lines:

−Ptzt ≤ pPE
t ≤ Ptzt ,−Qtzt ≤ qPE

t ≤ Qtzt ,∀t (3.27)

−Ptzt ≤ pRT
t ≤ Ptzt ,−Qtzt ≤ qRT

t ≤ Qtzt ,∀t, (3.28)

where Pt and Qt represent the line capacity of the real and reactive power, respectively.

Z :=

{
z :

t3

∑
t=t2

(1− zt)≤ ΓI,0 ≤ zt ≤ 1,∀t
}
. (3.29)

3.3.4 Uncertainty Set for CCHP Status

As mentioned in previous sections, Oc,t2 is used to denote resiliency issues of each CCHP unit

c. When Oc,t2 is 0, the CCHP unit c is disconnected from the networked microgrids, which is

influenced by an extreme event at t2. When Oc,t2 is 1, the CCHP unit is connected to the networked

microgrids, which is not influenced by the extreme event at t2. Similarly, coordinating with the

budget of uncertainty Γg, we have the following cardinality uncertainty set for CCHP status:

O :=

{
O :

Nc

∑
c=1

(1−Oc,t2)≤ Γg,Oc,t2 ∈ {0,1},∀c

}
. (3.30)

3.3.5 Two-Stage Adaptive Robust Risk-Constrained Optimization Formu-
lation

We construct a two-stage adaptive robust risk-constrained optimization formulation to provide

resilient proactive operation decisions for MGCCs. In the first stage, MGCCs make their own

decisions regarding the pre-event power exchange schedule using both inter-exchange among mi-

crogrids and outer-exchange with the main grid, and select proper budgets of uncertainty to ensure

the system can survive through the emergency response stage. Then the MGCCs dispatch each dis-

patchable unit in networked microgrids to ensure resilience by minimizing the operating cost with

that all uncertainties have been revealed in the second stage. The adaptiveness of our approach is

from the worst-case scenario that contains all the realizations of the uncertainties. Therefore, we

44



have the following two-stage RARO problem formulation:

min
z,O

{
Nc

∑
c=1

Uon
c Oc,t2 +

t3

∑
t=t1

UPE
t pPE

t

+max
w,d

min
p,h,x

t3

∑
t=t1

[ Nc

∑
c=1

Uc pc,t +URT
t (pRT

t − pPE
t )+δt

+
Nes

∑
es=1

Ues
(

p+es,tη
+
es + p−es,t/η−

es
)

+
Nts

∑
ts=1

Uts(h+ts,tη
+
ts +h−ts,t/η−

ts )

]}

+∑
x

κxεx, (3.31)

subject to constraints (3.1)–(3.23).

3.4 Solution Methodology

For the simplicity of presenting the solution algorithm, we rewrite the original two-stage risk-

constrained adaptive robust optimization formulation into a matrix form:

min
z,O

{
UT (O, p)+max

w,d
min
p,h

UT y(p,h,w,d)

}

+κy(x)

s.t. AO ≤ p,Jz ≤ p,O,z ∈ {0,1} (3.32)

Ω(p,h,w,d) =
{

Fy ≤ g, (3.33)

T y = w, (3.34)

Ry = d
}
, (3.35)

where Ω(p,h,w,d) is the set of adaptive second-stage decisions based on first-stage decisions p

and uncertainty sets z and O. y is the second-stage decisions, including p,h,w,d. Equation (3.32)

represents the constraints related to only first-stage variables (3.1), (3.27), (3.29) and (3.30), where

equation (3.33) collects constraints (3.4)–(3.11) and (3.14)–(3.22). Equation (3.34) accounts for

constraints (3.12) and (3.25), which involve uncertain RES power generation. Equation (3.35)

accounts for constraints (3.12) and (3.26), which include uncertain critical load demand.
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3.4.1 Problem Reformulation

The formulation above is still a min-max-min problem, which cannot be solved directly by

commercial solvers. Thus, as strong duality holds, we transform the inner min problem into its

dual as a max problem:

max
w,d,λ ,μ,ϕ

−λ T g+μT w+ϕT d

s.t. −λ T F +μT T +ϕT R =UT ,

λ ≥ 0 (3.36)

where λ , μ and ϕ denote Lagrangian multipliers of constraints (3.33), (3.34) and (3.35), respective-

ly. However, there are two bilinear terms, μT w and ϕT d, in (3.36), which makes the second-stage

problem hard to solve. Thus, we need to linearize the bilinear terms through the Big-M method

[69]. As shown in equations (3.25) and (3.36), RES generation is independent from all the other

variables. Therefore, the realization of worst-case scenario w∗ must be the extreme points of W ,

where we assume ŵ+
t = ŵ−

t .

Then, we can substitute (3.25) into the bilinear term μT w as follows:

μT�w =
T

∑
t=1

(
μt w̄t +μtv+t ŵt −μtv−t ŵt

)
. (3.37)

Similarly, we can express ϕT d as:

ϕT �d =
T

∑
t=1

(
ϕt d̄t +ϕtu+t d̂t −ϕtu−t d̂t

)
. (3.38)

Then, we can transform the original bilinear dual problem into a linear one with the Big-M

method [70]:

max
ϕ,λ ,σ ,μ,π,v,u

−λ T g+
t3

∑
t=t1

(μt w̄t +σ+
t ŵt −σ−

t ŵt

+ϕt d̄t +π+
t d̂t −π−

t d̂t)

s.t.−λ T F +μT T +ϕT R =UT ,λ ≥ 0 (3.39)

σ+
t ≤ Mu+t ,σ

+
t ≤ μt +M(1−u+t ),∀t

σ−
t ≤ Mu−t ,σ

−
t ≤−μt +M(1−u−t ),∀t

π+
t ≤ Mv+t ,π

+
t ≤−ϕ+

t +M(1− v+t ),∀t

π−
t ≤ Mv−t ,π

−
t ≤−ϕ−

t +M(1− v−t ),∀t,
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where σ±
t and π±

t are auxiliary variables. M is a constant number that is large enough.

3.4.2 Column-and-Constraint Generation Algorithm

Combined with all the formulations from previous sections, we can finally reformulate the

primal problem into the following mixed-integer linear programming (MILP) problem:

min UT (O, p)+θ +κys(xs) (3.40a)

s.t. AO ≤ p,Jz ≤ p,O,z ∈ {0,1} (3.40b)

θ ≥UT ys,s = 1,2, . . . ,S (3.40c)

Fys ≤ g,s = 1,2, . . . ,S (3.40d)

T ys = ws,s = 1,2, . . . ,S (3.40e)

Rys = ds,s = 1,2, . . . ,S. (3.40f)

As mentioned in previous sections, the worst-case scenario of each set of uncertainty is inde-

pendent from all others and can only occur at a set’s upper and lower bound, which are finite. Thus,

{{ws,Os,zs,ds},s = 1,2, . . . ,S} are the upper and lower bounds of the joint set W ×O ×Z ×D .

To solve the problem in a reasonable solution time, we employ the column-and-constraint genera-

tion (C&CG) algorithm [71]. The basic idea of the C&CG algorithm is that a problem formulation

with a partial enumeration of possible worst-case scenarios provides a valid relaxation to the o-

riginal problem (3.40); we can calculate a lower bound by solving this relaxed problem (master

problem). Hence, by adding a non-trivial possible worst-case scenario at each iteration, we can

obtain a stronger lower bound. Meanwhile, at each iteration, we can find a corresponding up-

per bound by solving the second-stage problem (sub problem) with the first stage decisions being

fixed. The algorithm terminates when the difference between the UB and the LB is within a small

tolerance value.

Thus, we have the detailed C&CG algorithm as follows:

1. Set p0 as the feasible first-stage decision with budget of uncertainty ΓI and Γg. Then, solve

the sub problem (3.39) with the initial conditions. After that, use the answer of w1 and d1 as

the worst-case scenario. Let UB = +∞ be the upper bound, LB = −∞ be the lower bound,

and 1 be the iteration number.

2. Solve the master problem (3.40) with the worst-case scenario. Determine the updated opti-

mal first-stage decision and budget of uncertainty. Let LB =UT (O, p)+θ +κys(xs).

3. Solve the sub problem (3.39) with the updated optimal solutions from Step 2. Make UB =

min{UB,UT (O, p)+κys(xs)+ρ∗}, where ρ∗ is the updated value of the objective function.
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4. If UB−LB ≤ ε , then stop. Otherwise, update s to s+1 and return to Step 2.

3.5 Simulation Results

We first evaluate our two-stage RARO approach in three steps: (i) we obtain the first-stage

decisions pPE
t and qPE

t and choose proper budgets of uncertainty, while testing the convergence

rate of the proposed solution algorithm; (ii) we solve the second-stage problem repeatedly for each

first-stage decision with 1,000 randomly generated scenarios to show the adaptiveness of our pro-

posed approach when facing extreme events; and (iii) we compare the capabilities of our approach

with those of both the conventional robust approach and a deterministic approach to handling un-

certainties. Then, we test the networked microgrids resilience under extreme conditions, especially

when the extreme event develops to the emergency response stage between t2 and t3.

The proposed solution algorithm for the two-stage RARO model is implemented in Python 2.7.

The reformulated MILP is solved with GUROBI 8.0.0 on a desktop with an Intel Core i7-7700 4.2

GHz CPU and 16GB of memory. We set 10−2 as the convergence tolerance.

3.5.1 Networked Microgrids
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Figure 3.3: Two microgrids in a system of networked microgrids.
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We consider two different microgrids in the set of networked microgrids, which are op-

erated by the same MGCC. The networked microgrids are tested in a system with a modified

IEEE 13-bus test feeder and a modified IEEE 34-bus test feeder [72], as shown in Fig. 3.3, where

transformers, switches and voltage regulators are removed and the system is assumed to be bal-

anced. The parameters of CCHP units are from [73]. The historical wind power generation data is

from [74]. PEVs and hot water tanks are dispatched to the influential buses as forecasted that may

be affected by the extreme event, where those parameters are as from [75]. The parameters of crit-

ical power loads are from [76], where non-critical power loads are 10% of the critical power loads.

The begin and end time of the non-critical load curtailment time interval are t1 and t2, respective-

ly. The load shedding cost is set to 1000$/kWh. The parameters of heat and cooling demand are

from [77]. The pre-event and real-time power exchange prices are from [78], with proper scaling

coefficients. The total time between t1 and t3 is set to six hours, where the proactive scheduling

stage t1 to t2 takes four hours and the emergency response stage takes two hours, respectively. Each

hour has four time slots t.

3.5.2 Results and Discussion

3.5.2.1 C&CG Algorithm Convergence
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Figure 3.4: The average total cost and the lower/upper bound of networked microgrids with bi-

normally distributed CCHP status.

We test the convergence property of the C&CG decomposition methodology for different
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budgets of uncertainty: Γw,Γd,ΓI,Γg and obtain the optimal first-stage decisions. For the simplic-

ity of demonstration, we show the simulation result of Γg for the convergence performance.

The UB and LB of the proposed approach with different budgets of uncertainty allotted for the

CCHP status are shown in Fig. 3.4, where the convergence rate is three iterations. The iteration

numbers for other uncertainty sets are from three to six. Therefore, the proposed C&CG algorithm

can guarantee its convergence.

3.5.2.2 Budget of Uncertainty and System Resiliency

We test the proposed approach’s ability to handle various uncertainties given an extreme event,

based on several sets of randomly generated scenarios. The aim of this case study is to check the

resiliency of the networked microgrids. The performance of the proposed approach is evaluated in

two aspects: the average total cost and its standard deviation. The average total cost refers to the

resiliency of the first-stage decisions and the guessing of the budget of uncertainties; its standard

deviation indicates the adaptiveness of the proposed approach based on the first-stage decisions

and the sets of budgets of uncertainty.
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Figure 3.5: The average total cost and its standard deviation of networked microgrids with normal

distributed wind power generation.

Firstly, we show the simulation results of the networked microgrids system that is influenced by

the normally distributed wind power generation. One set of 1,000 normally distributed scenarios

is generated, where the feasible region is from zero to wmax with mean w̄t and standard deviation

w̄t/3. Fig. 3.5 shows the average total cost for the networked microgrids for each Γw. We observe

that when Γw is 1, the average total cost is the lowest, which is because the proposed approach
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dispatches resources in the second stage, based on the wind power generation uncertainty set. As

the wind power operating cost is zero, with more available wind power generation, the networked

microgrids can reduce costs resulting from enabling expensive emergency options. In addition,

we also compare the standard deviation of the total cost for each Γw, as shown in Fig. 3.5, which

reduces rapidly when Γw is small and becomes steady with the increase of Γw. The reason is that

a penalty occurs whenever there is a violation in the energy balance. The MGCC has to curtail the

non-critical load to maintain system resiliency when the actual wind power generation is outside of

the uncertainty set. Therefore, after considering all these aspects, the proper budget of uncertainty

of wind power generation Γw is set to 2 in our test case.
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Figure 3.6: The average total cost and its standard deviation of networked microgrids with Bernoul-

li distributed CCHP units status.

Secondly, we focus on the CCHP status when an extreme event occurs, where other budget of

uncertainty sets are remaining the same as the first settings. One set of 1,000 Bernoulli distribution

scenarios is generated, where success probability p is set as 0.9. Fig. 3.6 shows the average total

cost and standard deviation for the networked microgrids for each Γg. Based on the robustness

evaluation criterions mentioned above, we set Γg to 4 for the proper budget of uncertainty of the

CCHP connection status.

Thirdly, we focus on the tie-line connection status when an extreme event occurs, where other

budget of uncertainty sets are remaining the same as the first settings. One set of 1,000 Bernoul-

li distribution scenarios is generated, where success probability p is set as 0.95. Fig. 3.6 shows

the average total cost and standard deviation for the networked microgrids for each ΓI . Similarly,

based on the robustness evaluation criteria mentioned above, we set ΓI to 3 for the proper budget
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Figure 3.7: The average total cost and its standard deviation of networked microgrids with Bernoul-

li distributed influential buses status.

of uncertainty of the tie-line connection status. In the randomly generated 1,000 scenarios, the

statuses of the tie-line are various in the 8 time slots between t2 and t3. In the worst-case scenar-

ios, the tie-line between the two inter-connected microgrids are damaged, as well as the tie-lines

connecting to the main grid through PCC 1 and PCC 2 from the beginning of the t2. However,

in most of the scenarios, the tie-lines will not be influenced from the beginning of the extreme

event, (varies between [t2, t3]) which reflects in the Fig. 3.6. As shown in Fig. 3.6, based on both

the average value and its standard deviation, we can see that ΓI set to be 3 is the best choice to

balance the cost and survivability of the networked microgrids. This is because the influence of the

extreme event usually accelerates with the time, after 2-3 time slots (30-45 mins), the accelerated

damage would break down the tie-lines as handled by the budget of uncertainty.

3.5.2.3 The Proposed RARO Approach versus Prior Approaches

We compare our RARO approach with prior approaches to show the capability of the proposed

approach in handling uncertainties. In this comparison, we only consider the impact of uncertain

wind power generation in networked microgrids.

We first compare the proposed approach with a deterministic approach with the uncertainty set

defined above. Γw = 0 is the case for the deterministic approach, considering zero uncertainty and

risk. For the proposed approach, we suggest Γw = 2, considering both the uncertainty and the risk.

As shown in Fig. 3.5, both the average total cost and the standard deviation of the total cost of the

proposed approach are lower than that of the deterministic approach. This is reasonable since the
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proposed approach benefits from the first-stage decisions, making it adaptive to the realization of

uncertain wind power generation.

Secondly, we compare the proposed approach with a conventional robust approach using the

same settings. For the conventional robust approach, Γw = 1 is the optimal choice. However,

compared with the proper budget of uncertainty Γw = 2 of our approach, the total load curtailment

amount of the conventional robust approach, 194.23 kW , is much higher than that of our approach,

0 kW . The reason is that an extreme event can develop in the emergency response stage between

t2 to t3, where a plan of Γw = 1 is not resilient enough to handle the situation.

Therefore, with the help of risk management, the proposed RARO approach can ensure the

survivability of the networked microgrids system.

3.5.2.4 Networked Microgrids versus Independent Microgrids

Furthermore, the performance of a networked microgrids system and two independent micro-

grids under an extreme weather event is evaluated. In this case, we assume that the tie-line within

the networked microgrids survived during the extreme weather event and the tie-lines connected to

the main grid are down.

Compared with the performance tested for the uncertainty related with the on/off status of

CCHP units in Fig. 3.6 and the uncertainty related with the random output from RES units in

Fig. 3.5 for networked microgrids, the performance of two independent microgrids under the two

aforementioned uncertainties is shown in Fig. 3.8 and Fig. 3.9.

Only the performance during the extreme event is shown for the two independent microgrids

with normal distributed wind power generation in Fig. 3.9. This is because we mainly focus on

the resiliency issues. As presented in the comparison, for both the average operating costs and the

standard deviations of the two uncertainties, the networked microgrids are lower than that of the

independent microgrids. This is reasonable since the real and reactive power that are exchanged

through the tie-line can be utilized by the central controller of the networked microgrids to enhance

the resilience of the system, where the two independent microgrids have to rely on their own

components, especially when one CCHP unit is damaged in each microgrid by the extreme event.

As shown in Figs. 3.10, 3.11, 3.12 and 3.13, the two CCHP units are down from the beginning

of the extreme event at time t2, which influence the voltage magnitude of all the buses in both

the 13-bus microgrid and the 34-bus microgrid. However, for the networked microgrids, the real

and reactive power exchange through the tie-lie as shown in Fig. 3.14 help the central controller

maintain the voltage magnitude within the predefined safety range of [0.9–1.1] (in per unit value).

Moreover, the voltage magnitude of each bus is also maintained within the safety range for the

independent microgrids, the reason is that based on the proposed RARO approach, where ES and

TS units are dispatched to the influential buses to provide the back-up power and heating supply, the
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Figure 3.8: The average total cost and its standard deviation of two independent microgrids with

Bernoulli distributed CCHP units status.
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Figure 3.9: The average total cost and its standard deviation of two independent microgrids with

normal distributed wind power generation.

resilience of the independent microgrids can still be ensured. Even though the voltage magnitude

of the two systems are all within the safety range, the voltage magnitude of the 13-bus microgrid

varies a lot as shown in Fig. 3.12, which is worse than that of the 13-bus microgrid in the networked

microgrids. It is because the tie-line can not only transfer real-power, but also exchange reactive
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Figure 3.10: The voltage magnitude of each bus when two of the CCHP units are damaged for the

13-bus microgrid in networked microgrids.
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Figure 3.11: The voltage magnitude of each bus when two of the CCHP units are damaged for the

34-bus microgrid in networked microgrids.

power between the two microgrids, which contributes a lot in maintaining the voltage magnitude

on each bus in the networked microgrids.
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Figure 3.12: The voltage magnitude of each bus when two of the CCHP units are damaged for the

independent 13-bus microgrid.
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Figure 3.13: The voltage magnitude of each bus when two of the CCHP units are damaged for the

independent 34-bus microgrid.

3.5.2.5 Sensitivity Analysis

In this part, we check the effectiveness and resilience of our system model by changing the

parameters to simulate an extreme event; in particular, we change the load curtailment time interval

in two scenarios. In scenario one, the ES and TS units are in networked microgrids that are pre-
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Figure 3.14: The real and reactive power exchange through the tie-line from the 13-bus microgrid

to the 34-bus microgrid.
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Figure 3.15: The average total cost of networked microgrids with different load curtailment time

intervals.

scheduled to provide power and heat at the forecasted influenced buses. In scenario two, the ES

and TS units are not in the networked microgrids. The impacts of the ES and TS units on the

networked microgrids’ resiliency are shown in Fig. 3.15. The average total cost of scenario one
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is lower, where ES and TS units are coordinated by MGCCs to maintain the resiliency of the

networked microgrids, while the only and expensive choice of scenario two is to perform load

shedding. Additionally, with the increase of the load curtailment time interval, the networked

microgrids’ average total cost decreases. This is because with a longer allowed load curtailment

time interval, a non-critical load can provide more flexibility when the TS and ES units are not on

the influenced bus.

3.6 Conclusions

In this work, we proposed a risk-constrained adaptive robust optimization approach to provide

proactive resilient scheduling decisions for networked microgrids central controllers under poten-

tial extreme events. Our objective is to ensure that after proactive resilient scheduling, most of the

critical energy demand in the areas at risk of being influenced by the extreme event can still be

satisfied by distributed generation units. A risk-constrained adaptive robust optimization approach

has been developed to handle the risks and uncertainties associate with an extreme event. Exten-

sive simulation results show that the approach we proposed can ensure the resilience of networked

microgrids throughout an extreme event.
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CHAPTER 4

Resilient Restoration for Distribution System
Operators when Facing Extreme Events

A comprehensive framework to provide resilient restoration decisions for the distribution sys-

tem operator (DSO) under extreme events is proposed in this work. Our objective is to maximize

the system resilience by minimizing time slots required for load restoration. A bat algorithm is

used to handle nonlinear and discrete characteristics of the proposed framework. Extensive sim-

ulation results show that the approach we proposed can ensure the resilience of the distributed

system.

4.1 Introduction

Extreme events, such as earthquake, tornado, hurricane, flood and ice storm, are happening

more and more often than ever before because of the climate change all over the world and most of

them are dangerous to the power systems resilience, especially for the distribution systems. During

Superstorm Sandy and Hurricane Harvey, distribution lines and substations are seriously damaged

by wind and flooding. Moreover, with the development of modern society, the expectation of high

quality electricity service put increasing pressure on distribution system operator (DSO) to enhance

the resilience of the distribution grid against extreme events.

There are four time steps associate with the resilience of the distribution system: hardening,

proactive scheduling, emergency response and restoration. The hardening part has already been

extensively studied. However, there are still several challenges need to be faced in the system

restoration part. When facing the extreme event, in order to provide the restoration rather through

passive ways, the continuous situational awareness issue of the distribution system needs to be

considered [79]. Moreover, the structure of the distribution system after the extreme event is

seriously damaged, where the system reconfiguration is necessary to preform the restoration for

the critical loads and buses. Furthermore, compared with earthquake and snowstorm, hurricane is
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one of the major extreme events that has most of influence on the distribution system in the U.S..

Thus, we mainly focus on the resilient post-hurricane restoration part in this paper to face these

challenges.

Resilience issues are receiving more attention due to the huge damage that extreme events bring

to the power systems. A review on resilience of power system under natural disasters is provided

in [41], where the time slot of hardening, emergency response and restoration are perfectly defined.

In [80], a resilient distribution network planning problem is proposed to minimize the system dam-

age, while coordinating the hardening and distributed generation resources allocation. Moreover,

a stochastic programming approach for increasing resiliency of a distribution system exposed to

an approaching wildfire is proposed in [81]. The uncertainties associate with the solar radiation,

wind speed and wind direction that affect the progression of the wildfire and the production of

stochastic distributed generators are considered. Furthermore, the resource allocation problem in

distribution systems ahead of a coming hurricane is focused in [53]. Generation resources such as

diesel oil and batteries are considered for allocation, which can be used to serve outage critical load

in the post-hurricane restoration. Additionally, a proactive operation strategy to enhance system

resilience during an unfolding extreme event is proposed in [54]. However, none of the papers

mentioned above have considered all the distinct factors of restoration in distribution system.

In this work, we consider the resilience issues for distribution systems with multiple microgrid-

s. Microgrids are adopted to enhance the resilience of distribution systems, where the restoration

scheduling of microgrid central controllers (MGCCs) becomes important than before. The mi-

crogrids are different from conventional buck power systems in three aspects: (i) vastly deployed

distributed energy resources (DERs) [82]; (ii) the DERs’ sizes are very small (kW level) compared

with conventional generation units (MW level) [83]; and (iii) the microgrids can be operated in

both grid-connected mode and islanded mode, where the conventional power system cannot [84].

Specifically, the distribution system resilience problem operates in two stages. First, the MGCC

determines the day-ahead bidding amount and the unit commitment decisions without knowing

generation of RES units, extreme events conditions and potential reactions of MGCCs. Then,

after the generation of RES units and extreme event conditions are revealed for each time slot, the

microgrid dispatches its energy storage units, manages its controllable loads, and exchanges power

with the main grid in real-time to meet the demand [85]. Therefore, we introduce the multi-time

slots approach to handle these unique features.

In summary, the main contributions of this work are listed as follows:

• We propose a novel two-stage non-linear optimization formulation to model the post-hurricane

resilience problem in distribution systems with microgrids.

• Bat algorithm is adopted to handle the nonlinear and discrete characteristics of the proposed
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formulation.

• Extensive simulation results show that the proposed framework is effective and the proposed

model is resilient.

4.2 Problem Formulation

This section explains the problem formulation of our proposed resilient post-hurricane restora-

tion framework including the objective function and relevant constraints. For the simplicity of

explanation about our framework, we assume there is one microgrid in the distribution system.

4.2.1 Microgrid Components

In our model, the microgrid has distributed generation (DG) units such as solar panels and wind

turbines, distributed storage (DS) units such as plug-in electric vehicles (PEVs), controllable loads

(CLs) such as heating, ventilating, and air-conditioning (HVAC) and uncontrollable loads such as

lighting. The DG units in the microgrid are highly influenced by weather conditions and thus, are

uncertain [86]. This problem can be overcome by coordinating DS units with DG units. When

real-time DG is different from the forecasted amount, DS units can be used to mitigate imbalances

caused by the weather uncertainty by charging or discharging [87]. CLs are both interruptible and

adjustable, while the uncontrollable loads need to be satisfied at all times [88].

Microgrids are connected to the main grid through the points of common coupling (PCC). Each

operating day in our model includes 24 time slots, with 1 hour per time slot.

4.2.2 Objective Function

In the post-hurricane analysis, the objective function is to maximize the system resilience by

minimizing time slots required for load restoration. To this end, the system resilience curve after a

typical extreme event is depicted in Fig. 4.1.

In Fig. 3.2, F(t) shows the system performance function for different time intervals including:

(i) hurricane event progress state [te, tpe]; (ii) post-event degraded state [tpe, tr]; (iii) restoration state

[tr, t pr]; (iv) post-restoration state [tpr, tir]; and (v)infrastructure recovery [tir, tpir], respectively. The

main time interval which is available for maximizing the area bellow the system resilience curve

is [tr, tir]. Any time before tr is engaged with hurricane and is not suitable for any special resilient

strategy. At tir, the utility will start the normal recovery process and thus is out of the scope of this

study.
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Figure 4.1: Network resilience curve after the hurricane.

According to Fig. 3.2, the system resilience objective function in the post-hurricane period is

calculated as follows:

R = γ
∫ tr+T 0

tr
F(t)dt −G. (4.1)

Here G represents the generators costs and γ is constant value to convert the F(t) area into the

equivalent dollar value R. In an electric grid, F(t) is calculated as the total load value multiplied

by its weighting factor as follows:

F(t) = ∑
l

Wl,tPD
l,t , t ∈ [tr, tr +T 0],∀l ∈ Q, (4.2)

where Q represents the set of branches l connected to the bus, Wl denotes the weighting factor of

the bus l, PD
l,t is the total load demand on bus l, respectively.

Considering T sw as the switching time through the reconfiguration, the R equation can be

rewritten as below:

R = γ
∫ tr+T sw

tr
(∑

l
Wl,tPD

l,t)dt −G = γ ∑
l

WlPD
l T sw

l −G,∀l ∈ Q (4.3)

where t is represented in T sw
l after the reformulation.

Additionally, the total power generation cost from the DERs in the microgrid can be calculated

as follows:

G = ∑
t
(∑

i
ρiPi,t)δ t,∀i ∈ Nc,∀t, (4.4)

where Pi,t represents the power generated from the i-th DG unit, ρi denotes the generation cost of

the i-th DG unit as $/kW .
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4.2.3 Constraints

The resilient objective function R is maximized by meeting some equality and inequality con-

straints as follows:

4.2.3.1 AC Power Flow Equations

PLm,n,t = gm,nV 2
m,t −Vm,tVn,t(gm,n cos(θm,t −θn,t)+bm,n sin(θm,t −θn,t)),∀m,∀n,∀t, (4.5)

where PLm,n,t is the real line flow from bus m to bus n in time t. gm,n and bm,n denote the

conductance and susceptance of the line between bus m and bus n, respectively. Vm,t and Vn,t

represent the voltage magnitude of bus m and bus n, respectively. θm,t and θn,t are the voltage

phase angle of bus m and bus n, respectively.

Similarly, QLm,n,t is the reactive line flow from bus m to bus n in time t.

QLm,n,t =−bm,nV 2
m,t −Vm,tVn,t(−bm,n cos(θm,t −θn,t)+gm,n sin(θm,t −θn,t)),∀m,∀n,∀t. (4.6)

Moreover, the most important part of the system restoration is the system reconfiguration.

−Γ(1−wm,n,t)≤ PLm,n,t −PLm,n,t ≤ Γ(1−wm,n,t),∀m,∀n,∀t, (4.7)

where Γ is an anxilary variable denotes the limitation of the reconfigured real line flow power

associate with the remotely controlled switches. wm,n,t denotes the status of the remotely controlled

switch on the line between bus m and bus n, which indicates the possibility of reconfiguration.

Additionally, when it is 0, the switch on the line is closed, i.e., there are power flowing through

the line; when it is 1, the switch on the line is opened, i.e., there are no power flowing through the

line. PLm,n,t represents the reconfigured line real power flow from bus m to bus n in time t.

−PLmax
m,n wm,n,t ≤ PLm,n,t ≤ PLmax

m,n wm,n,t ,∀m,∀n,∀t, (4.8)

where PLmax
m,n represents the limitation on the reconfigured real line power flow, which can prevent

the contingency issues along with the system restoration process.

Similarly, we have following constraints for the reconfigured reactive line power flow [89]:

−Γ(1−wm,n,t)≤ QLm,n,t −QLm,n,t ≤ Γ(1−wm,n,t),∀m,∀n,∀t. (4.9)

QLm,n,t represents the reconfigured line reactive power flow from bus m to bus n in time t.

−QLmax
m,n wm,n,t ≤ QLm,n,t ≤ QLmax

m,n wm,n,t ,∀m,∀n,∀t, (4.10)
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where QLmax
m,n represents the limitation on the reconfigured reactive line power flow, which can

prevent the contingency issues along with the system restoration process.

4.2.3.2 Network Constraints

As the microgrid is connected to the main grid through the PCC, therefore, the security of the

tie-line is very important for the MGCC in order to maintain the resilience of the microgrid with

sufficient power supply. Hence, we need to take the network limitations into consideration. First,

the real power delivery between the main grid and the microgrid must stay within the physical

limitation of the tie-line:

−Pmax
M ≤ PM,t ≤ Pmax

M ,∀t, (4.11)

where ±Pmax
M denotes the upper bound and lower bound of the tie-line, respectively. PM,t represents

the power delivery between the main grid and the microgrid.

Additionally, the stability of the microgrid is equally important as its resiliency. Thus, limita-

tions of the voltage magnitude and phase angle of each bus in the microgrid need to be satisfied:

V min
l ≤Vl,t ≤V max

l ,−θ max
l ≤ θl,tθ max

l ,∀l,∀t, (4.12)

where V min
l and V max

l represents the lower bound and upper bound of the voltage magnitude on bus

l, ±θ max
l denotes the upper bound and lower bound of the voltage phase angle of bus l, respectively.

4.2.3.3 Constraints of DG Units

In the microgrid, most of the DG units are combined heat and power (CHP) units that can gen-

erate useful heat and power simultaneously, which can significantly improve the overall efficiency

of the microgrid [90]. Even though the DG units in the microgrid are usually smaller compared

with the conventional generation units, such as coal-fired power plants, they still need to follow

certain physical rules. We assume that the DG units do not need to absorb reactive power to start

up and the DG units have been turned off for a sufficient time period before the operating day. For

instance, the DG unit can only generate power when it is started up, which is impossible for it to

generate power when it is shut down:

Pmin
i Ii,t ≤ Pi,t ≤ Pmax

i Ii,t ,∀i,∀t, (4.13)

where Pi,t denotes the real power generated from DG unit i in time t. Pmin
i and Pmax

i are the lower

bound and upper bound of the physical limitation for i-th DG unit in the microgrid, respectively.

Ii,t is a binary variable indicates the on/off status of the DG unit i, when it is 1, the DG unit i is on;
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when it is 0, the DG unit i is off.

Additionally, the limitations on the DG unit ramping up and ramping down rate are shown as

follows:

Pi,t −Pi,t−1 ≤URi,∀i,∀t, (4.14)

Pi,t−1 −Pi,t ≤ DRi,∀i,∀t, (4.15)

where URi and DRi denote the maximum ramping up and ramping down rate of DG unit i between

two periods.

Moreover, in order to guarantee the lifetime of DG units, they can not be turned on/off be-

fore warming/cooling for a certain period, which is also known as the uptime and downtime con-

straints [91]:

T on
i,t ≥UTi(Ii,t − Ii,t−1),∀i,∀t, (4.16)

T o f f
i,t ≥ DTi(Ii,t−1 − Ii,t),∀i,∀t, (4.17)

where T on
i,t and T o f f

i,t denote the time that the DG unit i must stay on and off, respectively. UTi and

DTi are the minimum uptime and downtime of DG unit i.

4.2.3.4 Constraints of DS Units

As mentioned before, when adopting RES units in the microgrid, DS units are also implement-

ed in the microgrid to help the CHP units to mitigate the energy imbalance caused by the uncertain-

ties brought by the RES units. The DS units are commonly considered as PEVs in the microgrid,

which can provide both vehicle to grid (V2G) and grid to vehicle (G2V) [92]. Furthermore, the

DS units can also considered as back-up generators when performing system restoration after the

hurricane. Thus, it is important to consider the physical limitations on the DS units. Firstly, the

charging and discharging process of DS units must be operating within the safety range:

Pe,t ≤ Pdch,max
e,t ue,t −Pch,min

e,t ve,t ,∀e,∀t, (4.18)

Pe,t ≥ Pdch,min
e,t ue,t −Pch,max

e,t ve,t ,∀p,∀t, (4.19)

where Pe,t denotes the charing and discharging rate of the DS unit e, that is bounded by the max-

imum and minimum charging and discharging rate Pch,max
e,t , Pch,min

e,t , Pdch,max
e,t and Pdch,min

e,t , respec-

tively. Additionally, ue,t and ve,t are binary variables that indicate the discharging and charging

status of the DS unit e, when ue,t is 1, the DS unit e is discharging and when ve,t is 1, the DS unit e

is charging.

However, the DS unit can not be charged and discharged at the same time [93]. Therefore, we
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have following status constraint for the DS units:

ue,t + ve,t ≤ 1,∀e,∀t. (4.20)

This can be used to determine the DS unit e is either charging or discharging.

Moreover, in order to enhance the lifetime of the DS units, the state-of-charge (SOC) and

charging and discharging time must be considered.

Ce,t =Ce,t−1 −Pe,t ,Cmin
e ≤Ce,t ≤Cmax

e ,∀e,∀t, (4.21)

where Ce,t denotes the remaining energy inside the DS unit e, which is related to the previous status

and the charging/discharging rate. Additionally, it is bounded by the physical limitation of the DS

units as upper bound Cmax
e and lower bound Cmin

e , which is usually 10% to 90% of the DS unit’s

total capacity.

Furthermore, the charging time T ch
e,t and discharging time T ch

e,t are guaranteed by the minimum

charging time MCe and minimum discharging time MDe. When the status of charing and discharg-

ing changes, the time limitations begin to count.

T ch
e,t ≥ MCe(ue,t −ue,t−1),T dch

e,t ≥ MDe(ve,t − ve,t−1),∀e,∀t. (4.22)

4.3 Optimization Algorithm

Due to the nonlinear and discrete characteristics of the proposed formulation, this paper makes

use of bat algorithm (BA) to solve the problem. BA is a meta-heuristic optimization algorithm

which mimics the echolocation process to find the optimal solution. To this end, four main rules

are used to lead the random solutions in the bat population [94]: (i) each bat Xj with the velocity

of Vj generates an especial pulse with the frequency and loudness of f j and A j, respectively; (ii)

loudness constant A j diminishes from a large value to a low value; (iii) echolocation phenomenon

helps the bats to distinguish food from a barrier; and (iv) as time passes, the frequency f j and rate

r j are updated dynamically.

Initially a random bat population is generated. Each bat represents a solution for the proposed

optimization problem. After calculating the objective function, the bat position is updated as be-

low:

V new
j =V old

j + f j(Gbest −Xj),Xnew
j = Xold

j +V new
j , f j = f min

j +φ1( f max
j − f min

j ),∀ j ∈ Ω, (4.23)

where φ1 is a pre-defined weighting factor. Gbest is an initial bat population number. Ω denotes the
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set of solutions in BA.

In a second stage, BA uses a random movement to improve the population. Therefore, a random

value (β ) is generated and compared with r j. If that is larger than r j, a new solution around the bat

Xj is generated:

Xnew
j = Xold

j + εAold
mean,∀ j ∈ Ω. (4.24)

In the this formulation, ε is a random value in the range of [−1,1] and Aold
mean equals the mean

value of the bats loudness. In the case that β is smaller than r j, another random solution Xnew
j is

generated. The new solution is accepted only if the following two conditions are satisfied:

β ≤ A j, f (Xj)≤ f (Gbest),∀ j ∈ Ω. (4.25)

After each iteration, the loudness and rate parameter are updated as follows:

Anew
j = αAold

j ,rIter+1
j = r0[1− exp(−γIter)],∀ j ∈ Ω, (4.26)

where α and γ are constant values and Iter is the iteration number.

Therefore, the problem we proposed can be solved iteratively [95].

4.4 Simulation Results

All simulations are implemented on a laptop with a 2.20 GHz Intel Core i7-2670 CPU and

8GB RAM.

4.4.1 Numerical Settings

This section uses IEEE 32-bus network as a microgrid test system. Fig. 3.3 shows the single

line diagram of the network incorporating fuel cell (FC), micro turbine (MT) and Photovoltaics

(PV). The hurricane path is shown by blue line in this picture. Microgrid is assumed to have

5 tie switches (normally open) which are shown by dotted lines and 32 sectionalizing switches

(normally closed) which are shown by solid lines. A main circuit breaker is located at the main

feeder to make it possible for microgrid to go islanded if necessary. There is a sectionalizer at the

beginning of each feeder to make it possible for reconfiguration. The other numerical settings are

the same as [96].

DG characteristics such as capacity, ramp up and down and generation costs are shown in

Table 4.1.
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Table 4.1: Parameters for DGs
Type Min Power Max Power Bid Start-up/

(kW) (kW) ($/kWh) Shut-down Cost ($)

PV - - 2.584 -

FC 80 1000 0.294 1.65

MT-1 100 1500 0.457 0.96

MT-2 100 1500 0.457 0.96
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Figure 4.2: Schematic of the RMG with DGs and PEV fleet.

4.4.2 Simulation Results

We test our proposed model in three different scenarios to show the effectiveness of our ap-

proach.

4.4.2.1 Scenario 1

Ignore reconfiguration and DGs are OFF. In this scenario, there is no restoration and the micro-

grid receives normal utility crew help after tr+T 0. As shown in Fig. 4.3, the total energy that is not

supplied in scenario 1 is the highest among all the three scenarios. This is reasonable because there

is no reconfiguration process considered in scenario1, while all DGs are OFF. The demand remains

the same but the MGCC cannot provide enough generation without the help of DGs. Moreover, the

utility crew is scheduled after tr +T 0, which means that the generation units are backed up slower

than the expected speed, where the demand are still the same as the scheduled amount. This could

result in cascading failure in the microgrid as well as in the distribution system.
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Figure 4.3: Comparative plot of total energy not supplied for three scenarios.

4.4.2.2 Scenario 2

Ignore reconfiguration but DGs are ON. In this scenario, some loads are restored by DGs at

time tr. As shown in the Fig. 4.3, the scenario 2 is better than the scenario 1 but worse than the

scenario 3. This is because the reconfiguration process is not considered in scenario 2 but the DGs

are ON and some loads are restored by DGs are time tr. The DGs can provide part of the generation

to some of the loads while the others are lost. Also, the loads are backed up as expected which

reduces the unsupported loads by the end of the time slots.

4.4.2.3 Scenario 3

Consider reconfiguration and DGs are ON. In this scenario, restoration process is made by DGs

as well as switching at time tr. As presented in Fig. 4.3, the scenario 3 is the best among all the

three scenarios. As mentioned above, the scenario 3 considers the reconfiguration process as well

as the DGs are ON. Therefore, with the on time help of the utility crews, the MGCC can maintain

the resilience of the microgrid after the extreme event.

4.4.2.4 Sensitivity Analysis

Table 4.2 shows the detailed simulation results for all scenarios. According to these results, the

microgrid lost several buses in scenario 1, where the resilience-related performance is the worst

among all the three scenarios. The scenario 3 is the best among all the three scenarios with smallest

load losses and highest resilience-related performance. With the reconfiguration process and all
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Table 4.2: Simulation Results for Different Scenarios
Case Bus Without Resilience

Number Power Objective Function ($)

Scenario 1 13,14,15,16,17,29,30,31,32 42,667.14

Scenario 2 13,14, 15, 16, 17 44,529.20

Scenario 3 13,14 45,098.67

the DGs as well as the on time help from the utility crews, the microgrid can provide resilient

restoration after the hurricane.

4.5 Conclusion

In this work, a comprehensive framework to provide resilient restoration decisions for the dis-

tribution system operator under extreme events has been proposed. The objective of maximizing

the system resilience by minimizing time slots required for load restoration has been realized. Bat

algorithm has been adopted to handle nonlinear and discrete characteristics of the proposed frame-

work. Extensive simulation results show that the approach we proposed can ensure the resilience

of the distributed system.
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CHAPTER 5

Conclusions and Future Work

5.1 Conclusions

In this dissertation, several novel algorithms, such as safe reinforcement learning algorith-

m and risk-constrained adaptive robust optimization approach are proposed to provide resilient

proactive scheduling strategies, emergency response strategy and restoration strategy for central

controllers in the distribution system. Microgrids are proposed to serve as single entities from

the perspective of the distribution system operator to enhance the resilience of the distribution

system, reduce the distribution system operator’s control burden and improve the power quality

of the distribution system. Uncertainties related with the extreme weather events such as power

generation of distributed generators, intermittent load demand, point-of-common-coupling/tie-line

conditions, and trend/trace of the extreme weather event are tackled through a combination of op-

timization approaches, artificial intelligence algorithms and risk management methods. Extensive

simulation results based on real-world data sets show that the proposed novel algorithms based

proactive scheduling strategies, emergence response strategy and restoration strategy can ensure

the resilience of the distribution system in a real-world environment.

5.2 Future Work

There are still challenges that remain in the emergency response stage, such as the issues of

situation awareness, dispatching a rescue team, and relay protection. We will continue our study

on the highly correlated uncertainties associate with the extreme events in the future research. We

will develop a novel method with the vine copula approach to describe the dependence between

various uncertainties and reduce the total dimension of the resilience related problems.
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