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In conditionally automated driving, drivers engaged in non-driving related tasks (NDRTs) have difficulty taking over control of the
vehicle when requested. This study aimed to examine the relationships between takeover performance and drivers’ cognitive load,
takeover request (TOR) lead time, and traffic density. We conducted a driving simulation experiment with 80 participants, where
they experienced 8 takeover events. For each takeover event, drivers’ subjective ratings of takeover readiness, objective measures
of takeover timing and quality, and NDRT performance were collected. Results showed that drivers had lower takeover readiness
and worse performance when they were in high cognitive load, short TOR lead time, and heavy oncoming traffic density conditions.
Interestingly, if drivers had low cognitive load, they paid more attention to driving environments and responded more quickly to
takeover requests in high oncoming traffic conditions. The results have implications for the design of in-vehicle alert systems to help
improve takeover performance.
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1 INTRODUCTION

The Society of Automotive Engineers (SAE) defines driving automation from L0 (no automation) to L5 (full automation)
[28]. Today, automated vehicles (AVs) of L2 partial automation are already on the road and AVs of L3 conditional
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automation, such as the Audi Traffic Jam Chauffeur, could be purchased in Germany from 2019 [5]. Conditional
automation, compared to partial automation, is not an improvement of automated driving features, but rather a
revolution. The distinction between them lies in who handles the object and event detection and response (OEDR) task
of driving. In L2, the driver completes the OEDR task and intervenes when necessary; In L3, OEDR is handled by the
AV and the driver resumes responsibility when receiving a takeover request (TOR). In conditionally automated driving,
drivers are allowed to engage in other tasks and therefore become increasingly out of the control loop. Drivers decoupled
from the operational control of the vehicle have difficulty taking over control of the vehicle when requested [1, 24, 35].
In response to the difficulty, research has been conducted to examine factors that influence drivers’ performance in
takeover transitions.

One of the most important factors in takeover transitions is the non-driving-related tasks (NDRTs) themselves. A
wide range of NDRTs have been utilized in experimental studies as reported in the literature, including both naturalistic
tasks (e.g., text messaging) and artificial tasks (e.g., n-back memory task) [2, 26, 31, 32]. Prior research compared
drivers’ takeover performance when performing versus not performing an NDRT, and revealed that NDRTs deteriorated
takeover quality, resulting in more crashes in high-traffic situations [26], shorter minimum time to collision (TTC)
[12, 18], larger lateral acceleration [19], and larger standard deviation of lane position [33]. In addition, several studies
examined the effects of performing different types of NDRTs. For example, Wandtner et al. [32] compared NDRTs in
visual (i.e. Surrogate Reference Task, [15]) and auditory modality (i.e. N-back task, [26]). They found that operation
of the visual task with handheld devices degraded takeover performance and led to a higher collision rate, while the
auditory task led to comparable performance to a baseline without any task. Moreover, Zeeb et al. [33] and Wan et al.
[31] examined drivers’ takeover performance while they were typing, reading, watching a video clip, playing a game or
taking a nap. Results showed that different NDRTs led to few differences on takeover reaction time, while watching a
video and taking a nap resulted in a worse takeover quality as it occupied more sensory modalities or induced a very
low arousal level.

The above mentioned studies shed some light on the influence of performing NDRTs on takeover performance.
However, most of the studies did not directly manipulate the workload of NDRTs. One exception is the study of
Zeeb et al. [34], wherein the drivers’ cognitive task load was manipulated via the difficulty of NDRTs (i.e. reading vs.
proofreading a text) and manual task load via the tablet location (i.e. handheld vs. mounted). Results revealed that high
manual task load increased reaction times and deteriorated takeover quality, while the effect of cognitive task load
on takeover ability was dependent on the type of driver intervention. High cognitive load lengthened the reaction
times and deteriorated takeover quality in steering maneuver but not braking maneuver. In contrast, Bueno et al. [6]
manipulated workload by asking drivers to identify and type out the association between three pictures and found a
non-significant effect of workload on takeover time and quality. Further research is need to elucidate the mixed results
and to examine the impact of NDRT workload.

Researchers also investigated how traffic density impacted drivers’ takeover performance [8, 11, 12, 18, 26]. Traffic
density refers to the average number of vehicles that occupy one mile or one kilometer of road space. High traffic
density resulted in longer takeover time [12, 18], higher crash rate [12, 18], and higher accelerations [12]. In the
above-mentioned studies, high traffic density was coupled with fewer escape paths. With a high traffic density, there
were more vehicles in the same or neighboring lanes of the automated ego vehicle, hence restricting the drivers’ action
opportunities. There is a need to decouple traffic density and the availability of escape paths.

Another factor that influences takeover performance is the takeover request (TOR) lead time. Lead time refers to the
time to collision at the time of the TOR [20]. Research demonstrated that shorter TOR lead time degraded takeover
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quality in the form of shorter minimum TTC, higher crash rates, greater maximum accelerations and greater standard
deviation of steering wheel angle [22, 29–31]. It would be interesting to investigate whether there are any interaction
effects between TOR lead time and traffic density/cognitive load.

In the present study, we aimed to examine the relationships between drivers’ takeover performance and their
cognitive load, TOR lead time, and traffic density in conditional automated driving. Using a high-fidelity driving
simulator, we conducted a human-subject experiment with 80 participants. In the experiment, we manipulated drivers’
cognitive load using the n-back memory task [16]. In addition, in order to decouple traffic density and the availability
of escape paths, other vehicles only appeared in the oncoming lanes.

2 METHOD

This research complied with the American Psychological Association code of ethics andwas approved by the Institutional
Review Board of the University of Michigan.

2.1 Participants

Eighty university students with normal or corrected-to-normal vision participated in the study (mean age = 22.8 years,
SD = 3.4 years; 33 females and 47 males). All the participants had a valid driver’s license (mean year = 4.8 years,
SD = 3.1 years). We used a 5-point Likert scale to measure participants’ experience with driver assistance system (1
indicates “never” and 5 indicates “always”). Participants’ average experience values were listed as follows: cruise control
– 3.1, adaptive cruise control – 1.5, lane-departure warning – 1.7, lane-keeping assistance – 1.5, collision warning –
1.8, emergency braking – 1.4. Table 1 showed participants’ average annual mileage and weekly mileage. Participants
received $30 in compensation for an hour of participation.

Table 1. Participants’ annual mileage and weekly mileage

Annual mileage # participants Weekly mileage # participants
Less than 5,000 miles 24 Less than 50 miles 41
5,000 - 10,000 miles 25 50 - 100 miles 22
10,000 - 15,000 miles 23 100 - 150 miles 8
15,000 - 20,000 miles 2 150 - 200 miles 6
20,000 - 25,000 miles 4 200 - 250 miles 1
More than 25,000 miles 2 More than 250 miles 2

2.2 Experimental apparatus and stimuli

The study was conducted in a fixed-based driving simulator from Realtime Technologies Inc. (RTI, MI, USA) located in
a dedicated lab space. The virtual world was projected on three front screens (16 feet away), one rear screen (12 feet
away), and two side mirror displays (See Figure 1a). The simulated vehicle was controlled by a steering wheel and pedal
system embeded in a Nisan Versa car model. The vehicle was programmed to simulate an SAE Level 3 automation,
which handled the longitudinal and lateral control, navigation, and responded to traffic elements. Participants could
press the button on the steering wheel to activate the automated mode, which was indicated by a green highlight on
the dashboard. Once the AV reached its performance limit, an auditory TOR (“Takeover”) would be issued, and the
automated mode would be deactivated simultaneously for the driver to take over control of the vehicle.

The NDRT was a visual N-back memory task, adapted from the study of [16]. The stimulus consisted of nine (3 × 3)
squares with two out of nine squares containing the image of a person. Each stimulus was presented for 500 ms in
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(a) Driving simulator (b) In-vehicle setting (c) Smarteye system

Fig. 1. Driving simulator and Smarteye system

Fig. 2. N-back task

sequence with a 2500-ms interval. Participants were required to press the “Hit” button when the current stimulus was
the same as the one presented N steps back in the sequence, and press the “Reject” button otherwise (Figure 2). The
task was running on a 11.6 inch touch screen tablet mounted in the vehicle (Figure 1b).

This simulator was equipped with the Smart Eye (Smart Eye, Sweden) four-camera eye-tracking system that provided
live head-pose, eye-blink, and gaze data (Figure 1c). The sampling rate of the eye-tracking system is 120 Hz.

2.3 Experimental design

The study employed a within-subjects design with the driver’s cognitive load, TOR lead time, and traffic density as
independent variables. The cognitive load was manipulated via the difficulty of the NDRTs (low: 1-back memory
task; high: 2-back memory task). The heavy- and no- traffic conditions had 15 and 0 oncoming vehicles per kilometer
respectively. The TOR lead time was 4 or 7 seconds. Based on prior literature [17, 21, 23, 27], eight takeover events were
designed in urban and rural drives with typical roadway features (Table 2). The difficulty of the scenarios was designed
to be approximately the same. The order of cognitive load, traffic density and TOR lead time was counterbalanced via
an 8 × 8 balanced Latin Square across participants. Based on standard programming practices for the simulator, the
order of scenario presentations was counterbalanced by having half of the participants drive from Event 1 to 8, and
the other half from Event 8 to 1. During the entire session, there were no other vehicles in the driver’s direction and
participants could avoid the objects in their lane by changing to the adjacent lane.

2.4 Dependent variables

We collected drivers’ subjective, vehicle-related and NDRT-related measures (Table 3). After each takeover event,
participants reported their takeover readiness for each takeover event using a 0-100 scale, with 0 indicating not ready
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Table 2. Descriptions of takeover events

Event World Scenario type Event descriptions
Event 1 Urban Lane changing Bicyclist in the lane ahead
Event 2 Urban Lane keeping Construction zone on the left
Event 3 Urban Lane changing Construction zone ahead
Event 4 Urban Lane keeping Sensor error on the curve
Event 5 Rural Lane changing Swerving vehicle ahead
Event 6 Rural Lane keeping No lane markings on the curve
Event 7 Rural Lane keeping Sensor error on the curve
Event 8 Rural Lane changing Police vehicle on shoulder

Table 3. Dependent Variables

Dependent Variables Unit Category Explanation
Takeover readiness Scale from 0-100 Subjective rating How ready participants were to takeover control of the vehicle
Takeover reaction time Seconds Takeover timing Time between TOR and start of maneuver
Eyes-on-road reaction time Seconds Takeover timing Time between TOR and eyes on road
Maximum resulting acceleration/jerk 𝑚/𝑠2,𝑚/𝑠3 Takeover quality Maximum resulting acceleration/jerk during takeover situation
Minimum time to collision (TTC) Seconds Takeover quality Minimum time to collision during takeover situation
Road deviation standard error Centimeters Takeover quality Standard error of center road deviation during takeover situation
Reaction time in N-back task Seconds NDRT The reaction time for the N-back memory task
Accuracy in N-back task Percentage NDRT The accuracy for the N-back memory task

at all and 100 indicating absolutely ready. Takeover readiness was defined in the present study as the extent to which
participants were ready to takeover control of the vehicle when an TOR was issued [20].

Takeover performance was measured in two aspects: timeliness and quality. With regard to takeover timeliness,
takeover reaction time and eyes-on-road reaction time were measured. Takeover reaction time was defined as the time
between the TOR and the start of maneuver. According to Gold et al. [12], the threshold of maneuver was set as a 2
degree change of the steering wheel angle or a 1% change of the pedals, whichever is quicker. Eyes-on-road reaction
time was the time between the TOR and the driver’s first gaze vector on the road [8].

Takeover quality was assessed by three measures: maximum resulting acceleration, maximum resulting jerk, and
minimum time to collision (TTC𝑚𝑖𝑛) within the time window between the TOR and the end of the takeover process. The
end of the takeover process was defined as either the endpoint defined for each takeover scenario, or when participants
re-engaged the vehicle, whichever was earlier. Consistent with prior research [12], the endpoint of Event 1, 3, 5, and 8
was when the vehicle’s center of gravity reached the boundary of the neighboring lane; the endpoint of Event 4, 6, and
7 was when the driver passed the exit point of the curve; and the endpoint of Event 2 was when the vehicle passed the
construction zone location. However, participants were instructed to re-engage the vehicle as soon as they thought the
vehicle was able to drive on its own.

Following prior research [7], maximum resulting acceleration is calculated as𝑚𝑎𝑥 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 =

𝑚𝑎𝑥
𝑡

√
𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛2

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙
+ 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛2

𝑙𝑎𝑡𝑒𝑟𝑎𝑙
. A smaller acceleration represents a smoother and safer reaction to

TORs. In addition, we calculated themaximum resulting jerk as𝑚𝑎𝑥 𝑗𝑒𝑟𝑘𝑟𝑒𝑠𝑢𝑙𝑡𝑖𝑛𝑔 =𝑚𝑎𝑥
𝑡

√
𝑗𝑒𝑟𝑘2

𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑖𝑛𝑎𝑙
+ 𝑗𝑒𝑟𝑘2

𝑙𝑎𝑡𝑒𝑟𝑎𝑙
.

Jerk is the derivative of acceleration and has been utilized to evaluate shift quality, ride comfort [14] and driving
aggressiveness [3, 4, 9]. Similarly, a smaller jerk represents higher takeover quality. For the four takeover event that
require drivers to change lanes, TTC was measured. TTC is a time-based event criticality indicator for detecting
rear-end collision risk and is defined as the time taken for two objects to collide if maintaining their present speeds and
trajectories [13]. A larger minimum TTC means lower risk of collision and better takeover quality. If the vehicle hit the
objects ahead or ran off the road, we defined the scenario as a collision and set the minimum TTC as “NA”.
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In the present study, participants were informed that the NDRT would not stop automatically when an TOR was
issued, and were instructed to end the NDRT by themselves. This setting was similar to the “no lockout” condition
in the study of [32], where participants had to make a trade-off decision between terminating the NDRT and taking
over control of the vehicle immediately [32]. Drivers’ reaction time and accuracy in NDRT were used as a check for
cognitive load manipulation.

2.5 Experimental procedure

After participants signed an informed consent form and completed an online demographics questionnaire, they were
asked to track six targets on the front screen for eye-tracking calibration. They were then introduced the N-back task
and automated driving features of the simulator. Participants were told that there was no need to actively monitor the
driving environments or takeover control of the vehicle while no TOR was issued as the vehicle was able to handle the
situations by itself.

Participants had a 2-minute practice for the N-back memory task, followed by a 5-minute practice drive using the AV.
In the practice drive, they were asked to change lanes, engage the AV, perform the N-back task, and take over control of
the vehicle. The takeover event was a scenario where traffic lights did not work and required drivers to observe the
surroundings and take over control of the vehicle. During driving, participants were instructed to maintain the speed
limit of 35 mph in urban and rural environments and 65 mph in highway environments and obey all the traffic rules.

Each participant drove two experimental drives (15-20 minutes each), each containing four takeover events. At the
beginning of the drive, participants were asked to activate the AV mode and then start the N-back task when the audio
command “Please start the NDRT” was issued. Participants were told that an extra $20 bonus could be earned if their
NDRT performance was ranked among the top 10. After about 90-second NDRT, a TOR was issued unexpectedly and
participants were required to terminate the NDRT manually and take over the control immediately. When participants
thought they had negotiated the takeover event, they were free to activate AV mode. The experimenter would remind
participants to re-engage the vehicle if they did not turn on the automation after the takeover event. The survey
on takeover readiness was administered after each takeover event with AV mode activated. The operation of NDRT,
takeover, AV mode activation and question process were repeated for each takeover event.

Fig. 3. Sequence of events in one drive

3 RESULTS

Each participants experienced 8 takeover events, so a total of 640 takeovers were available for data analysis. Due to
technical malfunction, 21 takeover events were excluded for eye-tracking data analysis. We used a linear mixed model
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to analyze how cognitive load, TOR lead time, and traffic density affect takeover readiness and takeover performance
(timeliness and quality). The cognitive load, TOR lead time, traffic density, and their two-way interactions were set
as fixed effects. Random intercept (participants had their own intercepts) rather than random slope (participants had
their own slopes) was used in the model development. Pearson correlation coefficients were examined to explore the
relationships between drivers’ subjective takeover readiness and objective takeover performance. 𝛼 was set at .05 for
results to be reported as significant. Table 4 and 5 show the mean and standard error of dependent variables.

Table 4. Mean and standard error of dependent variables under 4s TOR lead time (𝑀𝑒𝑎𝑛 ± 𝑆𝐸)

4s TOR lead time
No traffic Heavy oncoming traffic density

Low cognitive load High cognitive load Low cognitive load High cognitive load
Takeover readiness 74.6 ± 2.9 65.8 ± 2.8 72.6 ± 2.8 68.1 ± 3.0
Takeover RT (s) 2.32 ± 0.14 2.26 ± 0.14 2.2 ± 0.13 2.23 ± 0.11

Eyes-on-road RT (s) 1.05 ± 0.11 1.17 ± 0.09 0.84 ± 0.1 1.33 ± 0.09
Max resulting acceleration (𝑚/𝑠2) 3.29 ± 0.31 3.21 ± 0.26 3.22 ± 0.29 3.71 ± 0.3

Max resulting jerk (𝑚/𝑠3) 44.1 ± 10.1 36.2 ± 8.0 43.5 ± 8.6 45.2 ± 8.0
Minimum TTC (s) 1.39 ± 0.21 1.46 ± 0.16 1.3 ± 0.16 1.22 ± 0.18

Road deviation SE (cm) 1.00 ± 0.15 0.84 ± 0.07 0.81 ± 0.08 0.85 ± 0.07
Accuracy in N-back task (%) 94.5 ± 0.6 88.8 ± 1.1 95.3 ± 0.4 89.6 ± 0.8

Reaction time in N-back task (s) 1.20 ± 0.02 1.24 ± 0.02 1.20 ± 0.02 1.23 ± 0.02

Table 5. Mean and standard error of dependent variables under 7s TOR lead time (𝑀𝑒𝑎𝑛 ± 𝑆𝐸)

7s TOR lead time
No traffic Heavy oncoming traffic density

Low cognitive load High cognitive load Low cognitive load High cognitive load
Takeover readiness 79.9 ± 2.1 69.0 ± 2.8 78.9 ± 2.2 74.5 ± 2.3
Takeover RT (s) 2.33 ± 0.15 2.43 ± 0.14 2.11 ± 0.15 2.28 ± 0.14

Eyes-on-road RT (s) 1.16 ± 0.10 1.23 ± 0.10 1.00 ± 0.10 1.30 ± 0.09
Max resulting acceleration (𝑚/𝑠2) 2.44 ± 0.25 2.46 ± 0.25 2.76 ± 0.28 2.39 ± 0.24

Max resulting jerk (𝑚/𝑠3) 28.8 ± 7.1 28.0 ± 7.0 36.5 ± 7.7 26.4 ± 5.7
Minimum TTC (s) 3.34 ± 0.24 3.2 ± 0.25 2.68 ± 0.25 2.72 ± 0.23

Road deviation SE (cm) 0.78 ± 0.06 0.72 ± 0.06 0.83 ± 0.09 0.79 ± 0.05
Accuracy in N-back task (%) 95.1 ± 0.6 89.0 ± 1.0 95.2 ± 0.4 89.4 ± 1.0

Reaction time in N-back task (s) 1.20 ± 0.02 1.26 ± 0.02 1.18 ± 0.02 1.24 ± 0.02

3.1 Manipulation check

There were significant main effects of workload on drivers’ reaction time and accuracy in the NDRTs, 𝐹 (1, 552) = 37.5,
𝑝 < .001; 𝐹 (1, 553) = 158, 𝑝 < .001. Drivers had longer reaction time and lower accuracy in 2-back task than 1-back
task, which indicated the success of our manipulation.

3.2 Takeover readiness

There were significant main effects of cognitive load, 𝐹 (1, 554) = 23.50, 𝑝 < .001, and TOR lead time, 𝐹 (1, 554) =

12.89, 𝑝 < .001, on subjective ratings of takeover readiness. Drivers said they were more ready to take over control of
the vehicle when they had lower cognitive load and when they had a larger time budget for takeover transitions. No
other significant effects were found.
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3.3 Takeover timeliness

There were no significant effect of cognitive load, 𝐹 (1, 554) = .44, 𝑝 = .51; traffic density, 𝐹 (1, 554) = 2.28, 𝑝 = .13; and
TOR lead time, 𝐹 (1, 555) = .30, 𝑝 = .59, on takeover time. None of their interaction effects were significant.

For eyes-on-road reaction time, there was a significant effect of cognitive load, 𝐹 (1, 534) = 21.00, 𝑝 < .001. As shown
in Figure 4, lower cognitive load led to shorter eyes-on-road reaction time. Moreover, there was a significant interaction
effect between cognitive load and traffic density, 𝐹 (1, 534) = 7.11, 𝑝 = .01. Simple effect analysis showed that lower
cognitive load led to a shorter eyes-on-road time in heavy oncoming traffic condition, 𝑝 < .001, while cognitive load
did not influence eyes-on-road time when there was no oncoming traffic, 𝑝 = .18.

Fig. 4. Eyes-on-road reaction time (s). Error bar indicates one standard error

3.4 Takeover quality

The 4s TOR lead time resulted in a larger maximum resulting acceleration, 𝐹 (1, 555) = 23.23, 𝑝 < .001, and a larger
maximum resulting jerk, 𝐹 (1, 555) = 5.64, 𝑝 = .02 (Figure 5). No other significant effects were found on maximum
resulting acceleration, maximum resulting jerk, or standard error of road deviation.

In the four takeover events that required drivers to change lanes, drivers had shorter minimum TTC when oncoming
traffic density was heavy, 𝐹 (1, 305) = 5.77, 𝑝 = .02, and when the TOR was 4s, 𝐹 (1, 305) = 115.32, 𝑝 < .001 (Figure 6).

3.5 Correlations between drivers’ subjective takeover readiness and objective takeover performance

As shown in Table 6, there were significant correlations between drivers’ subjective takeover readiness and objective
takeover performance including eyes-on-road reaction time, maximum resulting acceleration/jerk, minimum TTC,
and standard error of road deviation. To be specific, the more ready drivers said they were for takeover requests, the
larger minimum TTC drivers had. The more takeover readiness drivers reported, the lower eyes-on-road reaction time,
maximum resulting acceleration/jerk, and standard error of road deviation drivers had.
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Fig. 5. Maximum resulting acceleration (𝑚/𝑠2). Error bar indicates one standard error

Fig. 6. Minimum time to collision (TTC) (s). Error bar indicates one standard error

Table 6. Correlation Matrix between drivers’ subjective takeover readiness and objective takeover performance; * Difference is
significant at the 0.05 level; ** Difference is significant at the 0.01 level

TOR reaction
time

Eyes-on-road
reaction time

Max resulting
acceleration

Max resulting
jerk

Minimum
TTC

Road deviation
SE

Takeover readiness -.074 -.137** -.126** -.086* .192** -.080*

4 DISCUSSION

In the present study, we systematically investigated the relationships between a driver’s takeover performance and
cognitive load, TOR lead time, and traffic density. We discuss how the three factors influenced different aspects of
takeover transitions.
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4.1 Effects of cognitive load, TOR lead time, and traffic density

We manipulated drivers’ cognitive load using a N-back memory task and found that with a lower cognitive load, drivers
had a higher level of perceived takeover readiness, and shorter eyes-on-road reaction time. We speculate that cognitive
load influenced takeover actions by changing the monitoring behavior at the NDRT stage. When the cognitive load was
low, drivers had the bandwidth to monitor the driving environment, stay prepared and therefore responded quickly
once the TOR was issued. More gaze behaviors could be analyzed in the future to validate the explanations.

Prior research on traffic density indicated that heavy traffic reduced takeover performance [8, 11, 12, 18, 26]. However,
in these studies, traffic density was confounded with the availability of escape paths. In the present study, all the other
vehicles were in the oncoming traffic. This design allowed us to decouple traffic density and the availability of escape
paths. We found that oncoming traffic density did not influence either takeover reaction time or maximum resulting
acceleration/jerk. This result implies that heavy traffic density per se did not lead to increased use of braking or steering
but the available escape paths did. Nevertheless, as represented by minimum TTC, heavy oncoming traffic density did
increase drivers’ risk of collision through longer decision making time.

Interestingly, we found an interaction effect between oncoming traffic density and cognitive load, that lower cognitive
load shortened eyes-on-road reaction time only during heavy oncoming traffic. This suggests that participants adjusted
their monitoring behavior according to the complexity of driving environments. When oncoming traffic density was
heavy, low cognitive load allowed drivers to allocate their attention on the road in order to increase situational awareness
and be prepared for potential events.

There were no effects of TOR lead time on takeover reaction time and eyes-on-road time. Generally, longer takeover
lead time lead to longer takeover reaction times, but takeover reaction time is also influenced by other variables such as
scenario emergency [20]. A possible reason for no significance here is that all the scenarios looked urgent so drivers
reacted reflectively and equally quickly regardless of takeover request lead time.

When TOR lead time was 7s, participants had higher takeover readiness, smaller maximum resulting acceleration
and jerk, and larger minimum time to collision. Maximum resulting acceleration and jerk have been utilized to identify
shift safety, ride comfort [14] and driving aggressiveness [3, 9]. The results indicate that 7s TOR lead time led to safer
and and more comfortable takeover behavior and lower collision risk, which supports previous studies [10, 12, 18, 31].

This study uncovered significant correlations between drivers’ perceptions of takeover readiness and objective
takeover performance. When drivers perceived themselves more ready to take over control the vehicle, it took them
less time to move their eyes back on the roads upon takeover requests. During takeover transitions, the more takeover
readiness drivers reported, the less maximum resulting acceleration/jerk drivers had, indicating more smooth and
comfortable driving. Larger takeover readiness was also related with larger minmim TTC and smaller standard error of
road deviations, suggesting lower collision risk and better lane keeping behaviors.

4.2 Design implications

Our findings have implications for the design of in-vehicle alert systems. While different levels of cognitive load, traffic
density, and TOR lead time influence drivers’ takeover performance differently, in-vehicle alert systems can be designed
adaptively to match drivers’ takeover readiness. For example, when oncoming traffic density is heavy, a gaze guidance
system can be designed to highlight the most important features and support drivers noticing the potential hazards.
When TOR lead time is short, a multimodal display combining auditory, visual and tactile alerts can be issued to
alarm drivers intensively and increase their alertness [25]. If driver monitoring systems detect that drivers are in high
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cognitive load induced by NDRTs, a regulatory warning can be issued to remind drivers to stop current NDRTs, keep
relaxed and prepare for potential takeover requests.

4.3 Limitations and future study

First, considering the experiment goals and time limitation, eight takeover scenarios were designed within about
40-minutes drive course. Future research can extend experiment duration to see the potential findings caused by drivers’
drowsiness or boredom in automated driving mode. Second, only driving behaviors were reported in this study. Future
studies can collect and report drivers’ physiological measures such as heart rate and galvanic skin conductance to
indicate their cognitive and emotional states and situational awareness non-intrusively before a takeover event. Third,
drivers’ individual demographic information and personality may affect takeover readiness and performance. Future
studies can include more driver groups with different characteristics. Fourth, signal filtering can be applied to extract
jerk (third derivatives of acceleration) to reduce numeric noise in future studies.

5 CONCLUSION

Existing studies on the effects of drivers’ cognitive load on takeover performance have mixed findings and didn’t
comprehensively explore the interaction effects of cognitive load with other road situations and TOR lead time.

This study systematically investigated the effects of a driver’s cognitive load, TOR lead time, and traffic density
on takeover readiness and performance. Generally, the results showed that drivers had worse takeover readiness and
performance when they had a high cognitive load, short takeover request lead time, and heavy oncoming traffic density.
Interestingly, if drivers had low cognitive load, they paid more attention to driving environments and responded more
quickly to takeover requests in high oncoming traffic density condition.

The results have important implications for the design of in-vehicle alert systems to monitor driver behaviors, improve
takeover readiness and optimize takeover performance. It is highly recommended that appropriate self-regulatory
behavior is required on NDRT selection, especially in a complex driving environment. The findings will enhance the
interaction between drivers and conditionally automated vehicles.
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