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Abstract

Developing low carbon city (LCC) has been widely appreciated as an important strat-

egy for sustainable development. In line with this, an increasing number of cities

globally have launched low carbon practices in recent years and gained various types

of experience. However, it appears that existing studies do not present methods of

how to use these valuable LCC experience in solving new problems. This study there-

fore introduces an experience mining approach to assist decision-makers in reusing

previous experience when tailoring LCC development strategies. The mining

approach consists of three processes, namely, collecting historical cases which have

been experiencing LCC, establishing LCC experience base, and mining similar experi-

ence cases. This study innovates the existing experience mining approach by intro-

ducing a two-step mining process with considering the perspective of problem-based

urban characteristics (PBUCs) and the perspective of solution-based urban character-

istics (SBUCs). The application of the introduced mining approach has been demon-

strated by a case study, where Shenyang's energy structure is adopted as the target

problem. The new experience mining approach provides a valuable reference for

decision-makers to retrieve similar cases for improving LCC development with the

consideration of city characteristics.
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1 | INTRODUCTION

Urbanization is a double-blade for global sustainable development,

which has aroused widespread attention, especially in the field of

climate change (Song et al., 2018; Yao et al., 2018). Contrary to its

contributions to economic growth, employment opportunities and

technological innovation, urbanization has been causing rapid

increase in fossil fuel consumption and carbon emissions (Ali,

Bakhsh, & Yasin, 2019; Shuai et al., 2017; Shuai et al., 2018; Zhang

et al., 2019). According to the United National Department of Eco-

nomic and Social Affairs (UNDESA, 2019), the world's average

urbanization rate increased from 29.6% in 1950 to 55% in 2018.

This dramatically increase brought substantial increment of urban

population and industrial activities, which are accompanied by large

amount of carbon emissions. As reported by World Bank (2018),

carbon emissions in the world have risen from 11.43 billion tons in
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1965 to 36.14 billion tons in 2014, which has triggered global

warming, an emerging challenge facing all countries globally. The

United Nations (2014) further indicated that the gradual transition

of the global population towards urban areas will rise from 50% in

2014 to 70% by 2050. This ever-increasing global urban population

inevitably requires more energy consumption and thus generates

sharp increase in carbon emissions. The International Energy Agency

(IEA, 2008) warned that around 70% of global carbon emissions are

originated from urban areas, and this proportion is expected to

reach 76% by 2030. Therefore, urbanization highlights the dilemma

between economic growth and carbon emission increase

(Colenbrander et al., 2019; Qiao, Zheng, Jiang, & Dong, 2019b;

Zhang et al., 2019). It is therefore important to explore a new

urbanization development model characterized with low emissions,

low pollution, and high energy efficiency for all countries (Cheng

et al., 2019; Qiao, Peng, Sabri, & Rajabifard, 2019c; Shuai et al.,

2019; Wang et al., 2016). In this context, the concept of low carbon

city (LCC) emerged in response to tackling the challenge of climate

change during the urbanization process.

The term LCC is seen as exemplifying urban sustainability by

reducing emissions and promoting cleaner production at multiple

scales (Fu & Zhang, 2017). On one hand, LCC is within the framework

of sustainability, and benefits from sustainability guidelines for setting

low carbon agenda and target plans for cities' low carbonization

(Jensen, Bjerre, & Mansfeldt, 2016). On the other hand, LCC can con-

tribute to the promotion of the sustainable pattern of city develop-

ment, which focuses on reducing carbon emissions by changing

citizen's behavior towards low carbon without harmful to their life

quality (Dai, 2009). It is widely appreciated that the development of

LCC is the most effective solution for enabling sustainable urbaniza-

tion and tackling climate issues (Shen, Wu, Lou, et al., 2018; Shen,

Wu, Shuai, et al., 2018). Therefore, the effectively improvement of

LCC is of strategic essence across the globe.

There is a growing number of countries and international organi-

zations having contributed efforts in improving the development of

LCC. For example, the C40 Cities Climate Leadership Group, a net-

work of the world's megacities taking action to reduce carbon emis-

sions, has involved 96 cities in 2018. The Covenant of Mayors,

launched in 2008 by the European Commission has involved 9,664

signatories to endorse and support the efforts of local authorities in

implementing emission mitigation policies. The cities that joined the

Non-state Actor Zone for Climate Action (NAZCA) launched in

2014 at the United Nations Climate Change Conference in Lima have

adopted and implemented more than 2,500 actions to mitigate cli-

mate change. Su et al. (2013) reported that there are 1,050 cities in

the United States, 40 cities in India, 100 cities in China and 83 cities

in Japan have initiated a series of planning programs on low-carbon

development. Furthermore, there are also many eco and low carbon

city programs established in the world, which are demonstrations on

sustainable urbanization and can offer new insights into the imple-

mentation plan for cities' low carbon development, such as

Shenzhen's international low carbon city and Sino-Singapore Tianjin

Eco-city (Zhan & de Jong, 2018).

The implementation of these LCC initiatives has generated large

amount of experience and lessons for cities internationally on how to

develop LCC. For example, Stockholm's progress in applying distrib-

uted energy supply and generating electricity by waste incineration

are good examples for developing LCC, and have been adopted in

London and other cities. The study by Khanna, Fridley, and Hong

(2014) revealed that the experience of pilot LCCs in China serves as

important models for further development of LCC in the whole coun-

try. Liu and Qin (2016) proposed that learning from the experience

gathered from those forerunners is a smart and efficient strategy for

the development of LCC, which may not only save resources but also

bring technologies and investment from other countries. In order to

reuse successful experience effectively, this study introduces the

experience mining approach proposed by Shen et al. (2013) into the

field of LCC development.

There are two objectives in this study: (a) developing a modified

experience mining framework for LCC development, and

(b) demonstrating processes of the new experience mining approach

by conducting a comprehensive case study. In order to achieve the

research objectives, the remainder of this paper first conducts a litera-

ture review to display the existing knowledge gap. Section 3 briefly

illustrates the origins of experience mining principles, and portrays the

modified framework of experience mining for developing LCC.

Section 4 presents an empirical case on the application of experience

mining for LCC. Section 5 provides the conclusions of this study.

2 | LITERATURE REVIEW

A number of studies have delved into improving the development of

LCC, which mainly fall into three research streams. In the first stream,

the improvement strategies are proposed based on analysis of carbon

emission status (Cai et al., 2019; Liu et al., 2019), impact factors (Qin

et al., 2019; Zhang et al., 2019), or indicator system (Yang, Wang, &

Zhou, 2018; Ying & Yue, 2017; Zhou et al., 2015; Zhou et al., 2015).

For example, Liu, Duan, et al. (2019) estimated carbon emissions for

30 cities in Northeast China, and based on which policy recommenda-

tions for carbon mitigation of these cities are provided. Qin et al.

(2019) proposed several suggestions on how Chinese cities can

improve LCC based on the understanding of the driving factors of car-

bon emissions. Yang et al. (2018) analyzed the low carbon develop-

ment pathways of the pilot LCCs in China on the basis of an index

system that quantitatively describes low carbon development. By

evaluating the low carbon development level, Ying and Yue (2017)

provided several insights to improve LCC, including legislative efforts,

economic instrument, and energy-saving technology improvement. In

the second research stream, many other scholars also pay attention to

improving LCC in specific areas, such as low carbon energy (Hast

et al., 2018; Ohnishi et al., 2018; Roberts et al., 2019), technological

innovation (Wang, Engels, & Wang, 2018; Yin et al., 2019), and low-

carbon industries (Dong et al., 2013; Wang et al., 2019; Zhang,

Wang, & Da, 2014). In referring to the third research stream, improve-

ment strategies for LCC are proposed without examining the factors
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or index system. For instance, Phdungsilp (2010) provided an insight

into Bangkok's energy and carbon future and highlighted the steps

required to promote sustainable LCC. Baeumler, Ijjasz-Vasquez, and

Mehndiratta (2012) concluded that the low-carbon action plan of

London city has provided an example of setting roadmap for LCC

development, which includes four steps, namely, developing a base-

line emission inventory, establishing an emission reduction goal, for-

mulating policies and supporting actions, and monitoring and

reporting of carbon emissions. Li et al. (2018) also suggested that

developing LCC involves four key steps, including understanding city's

carbon footprint, establishing city's emission goal, designing and

implementing a LCC plan, and measuring LCC progress by evaluation

indicator systems. Zhao, Gao, and Zuo (2019) reviewed low carbon

policies of China and found out that the Chinese government mainly

facilitates LCC development from the perspectives of planning guid-

ance, building energy conservation, industrial development regulation,

energy industry development and energy mix, economic measures,

and supervision measures.

The above literature outlines some key profiles in improving LCC,

but a few issues should be further addressed. First, most of the existing

literature claimed to improve LCC by focusing on several impact fac-

tors, indexes, or sectors. However, LCC is a sophisticated system with

multiple elements; thus, a sustainable development of LCC requires

efforts from every factor, index, or sector, such as energy, multilayered

governance, transportation, and building (Tan et al., 2017). Therefore, it

appears that a holistic solution for improving LCC development is still

absent (Li et al., 2018). Second, the existing improvement pathways are

proposed for either individual cities or all cities but without the consid-

eration of city characteristics. In fact, there are many differences

between cities in multiple aspects such as economic development

levels, energy mixes, and industrial structures (Liu, Duan, et al., 2019).

Thus, different development pathways should be designed for different

cities with the consideration of city characteristics. In summary, there is

an urgent need to propose a holistic approach for guiding the improve-

ment of LCC with distinctive city characteristics.

Few studies are attempting to apply experience mining approach

to guide the development of LCC. Experience mining is first proposed

by Shen et al. (2013), which is an effective approach to extract valu-

able experience from similar past practical cases as decision-making

references to solve new problems. There are some scholars

attempting to apply this approach in various areas. For example, Shen

et al. (2017) introduced the measure of similarity into the experience

mining approach for improving urban sustainability. Based on experi-

ence mining approach, Wang et al. (2019) presented a lessons mining

system for searching references to support decision-making towards

sustainable urbanization. Liu et al. (2019) established an experience

mining framework based on case-based reasoning (CBR) for dispute

settlement of international construction projects. Such studies dem-

onstrate that experience mining approach can be applied in a wide

range of experience-intensive problems due to the advantages such

as its effectiveness for solving unstructured problems and conve-

nience in updating the knowledge database (Liu, Li, et al., 2019). Shen,

Yan, Zhang, and Shuai (2017) further pointed out that experience

mining can ensure the mined cases are very similar to the target prob-

lem by considering local distinctive. Furthermore, the mined experi-

ence from this approach is characterized by continuous improvement

as more and more cities devoted in low carbon transition, which will

generate continuous experience for solving problems. In view of these

circumstances, experience mining approach is suitable for guiding the

improvement of LCC with distinctive city characteristics.

3 | RESEARCH DESIGN

3.1 | A modified experience mining framework

Experience mining approach is adopted in this study. The approach is

originally built based on case-based reasoning (CBR), which involves

five major components, namely, represent, retrieve, reuse, revise and

retain (Finnie & Sun, 2003), as shown in Figure 1.

• Represent: Design an appropriate structure for representing case

contents.

• Retrieve: Retrieve similar cases within the case base for solving a

new problem.

• Reuse: Reuse the solution stored in the retrieved case as a refer-

ence to solve target problem.

• Revision: Revise the solution applied to the target problem.

• Retention: Retain the new solution in case base for solving similar

future problems.

According to the 5R-schematic cycle in Figure 1, Shen et al.

(2013) introduced experience mining approach which has three major

components: a refinery process, a case base, and a mine-sweeper. The

refinery process is to convert the practical cases or experience into

individual experience modules, which are stored in a base, called case

base. Mine sweeper is used to extract experience modules from the

case base which are similar to the target case in order to solve the tar-

get problems (Shen et al., 2013). In other words, the three key con-

tents in applying experience mining approach are collecting historical

cases, establishing experience base, and mining or retrieving similar

cases for references to solve new problems.

It is appreciated that the process of case retrieve plays most signifi-

cant role for the application of experience mining as it directly affects

the effectiveness of using the mined cases as references in solving new

problems (Pereira & Madureira, 2013; Shen, Yan, Zhang, & Shuai, 2017).

Shen, Yan, Zhang, and Shuai (2017) further pointed out that it is impor-

tant to consider the level of similarity of the backgrounds between the

target case and those to be mined from the case base when applying

experience mining approach. In line with this, previous studies intend to

add a similarity mechanism of case characteristics. For example, in refer-

ring to an urban case, typical characteristics include urbanization rate,

development stage, climate zone, and landform (Huang, Fan, & Shen,

2019; Shen, Yan, Fan, et al., 2017; Shen, Yan, Zhang, & Shuai, 2017).

However, in applying experience mining approach for improving

LCC development, the approach needs to be modified as the urban
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characteristics used in the existing approach for examining similarity

convey limited information for describing cities' characteristics from

both problem and solution perspectives. In fact, there are two types

of urban characteristics for analyzing similarity between a target city

and the stored cities, namely, problem-based urban characteristics

(PBUCs) and solution-based urban characteristics (SBUCs). PBUCs are

used to analyze problem background similarity which is the reference

for mining similar cases from the case base. When the PBUCs

between a target city and mined cities are similar, the solutions from

the mined cities may be suitable for addressing the problem presented

in the target city. In other words, mined cases may present a number

of solutions. However, the effective implementations of these solu-

tions will request for specific conditions. For example, promoting

hydroelectric power is a key solution for optimizing energy structure,

but the effectiveness of this solution will depend on the condition of

rich water resources. For another example, the promotion of public

bicycles is commonly appreciated as a good solution to improve low-

carbon traffic, but this solution will not be suitable in the circumstance

of mountain cities such as Chongqing in China. Thus, a further mining

process is needed to examine which solutions are suitable for the tar-

get case. In other words, it is necessary to further mine preferred solu-

tions by analyzing the similarity of solution-based urban

characteristics (SBUCs) between the target case and the mined cases.

Based on the above discussions, this study extends the existing

experience mining approach for improving LCC development by intro-

ducing a two-step mining process, as shown in Figure 2.

3.2 | Collecting historical cases for developing LCC

The collection of sufficient and appropriate cases in practicing LCC

development is critical for mining effective LCC experience. Accord-

ingly, a comprehensive literature review is conducted for collecting

historical cases in this study. The sources used are as follows:

• Related database, such as Sustainable Cities: Best Practice Data-

base (DAC, 2016) and Best Practices Database in Improving the

Living Environment (UN-Habitat, 2016).

• Related books or journal papers, such as Baeumler et al. (2012),

Tan et al. (2017), and Liu and Qin (2016).

• Official website, such as local governments, United Nations Devel-

opment Programme (UNDP), United Nations Environment Pro-

gramme (UNEP), World Bank, and C40 Cities Climate Change

Group.

3.3 | Establishing an experience base of LCC

After collecting historical LCC cases, the experience information for

each case needs to be properly structured so as to be effectively

mined. It is considered that typical practice experience must contain

three main elements, namely, specific problems, city characteristics,

and solutions adopted for addressing corresponding problems

(Huang et al., 2019; Wang, Shen, et al., 2019). As described in

Figure 2, the LCC experience base will be presented by individual

modules characterized with “problem-PBUC-SBUC,” which is shown

as Figure 3.

3.3.1 | Problem

In Figure 3, the representation of problems should be foolproof.

Each problem needs to be addressed in order to develop LCC, for

example, lack of low carbon technology, extensive consumption on

fossil fuels, low use of renewable energies, and waste pollution

(Chen & Zhu, 2013; Dong, Dong, & Dong, 2019; Dong, Dong, &

Jiang, 2019; Huang et al., 2019; Wu, Tam, et al., 2019). Based on the

theory of sustainable development, problems for developing LCC

can be classified across economic, social, and environmental

dimensions.

3.3.2 | Problem-based urban characteristic (PBUC)

In referring to LCC development, PBUCs can be city's emission char-

acteristics, which are important references for taking LCC

F IGURE 1 Case-based reasoning
cycle (Shen et al., 2017; Watson &
Marir, 1994)
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improvement measures (Shen, Wu, Shuai, et al., 2018). It is considered

that emission characteristics are to facilitate access to cities with the

similar background in the LCC experience base. According to Shen,

Wu, Shuai, et al. (2018), emission characteristics of cities can be

decomposed by adopting an extended Kaya identity, which is shown

as follows:

X
Ci =

XCi

Ei
×

Ei
GDPi

×
GDPi
GDP

×
GDP
P

× P=
X

ESi × EIi × ISi × EO× P

ð1Þ

In Model (1), Ci stands for carbon emissions of specific industry i,

E is energy consumption, and P is the total population. In general,

F IGURE 3 LCC experience base
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SimilaritiyySimilaritiy

SBUCsSBUCs

SimilaritiyySimilaritiy
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Reference for solving target problemSolution revision

New
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New
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Case
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F IGURE 2 New experience mining approach for developing LCC: A two-step mining process [Colour figure can be viewed at
wileyonlinelibrary.com]
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there are three typical types of industries (i = 1, 2, 3), namely, primary

industry, secondary industry, and tertiary industry. Primary industry

includes agriculture, forestry, animal husbandry, and fishery. Second-

ary industry consists of manufacturing industry and construction

industry. Tertiary industry contains transport, storage and post,

wholesale, retail trade, hotels, and other sectors (Ahmed, Ramli, &

Yusup, 2016; Wang & Feng, 2017). In line with this, the following

seven PBUCs are confirmed by referring Model (1):

1. ES (energy structure), which is measured by carbon emission per

unit of energy consumption (X1).

2. EI (energy intensity), which is measured by energy consumption

per unit of GDP (X2).

3. IS (industrial structure), which is measured by the ratio of industrial

added value to GDP and can be decomposed as IS1 (X3), IS2 (X4),

and IS3 (X5).

4. EO (economic output), which is measured by GDP per capita (X6).

5. P (population), which represents the total population of a specific

city (X7).

3.3.3 | Solution-based urban characteristic (SBUC)

As described in the above section, SBUCs indicate the necessary con-

ditions for the implementation of LCC solutions. According to previ-

ous studies, LCC solutions can be various, such as promoting low-

carbon product certification, developing carbon trade pilots, compiling

and verifying the emission inventories, defining the reduction base-

lines, and certifying emission-reduction credits (Liu et al., 2013; Wang

et al., 2015). In referring to these sample solutions, a certain level of

low carbon technology is an implementation condition, that is, a

SBUC. There are various methods for determining SBUCs, such as lit-

erature review and interview.

3.4 | Mining similar cases for solving the problem
presented in the target case

Mining is a process of searching the most similar cases for solving

problems. In order to achieve this aim, the degree of similarity

between a target city and the stored cities will be analyzed from the

perspective of PBUCs and SBUCs, which has been shown in Figure 3.

3.4.1 | Similarity measure of PBUCs

There are various methods for measuring similarity, among which

Euclidean distance is the most common type (Ahn et al., 2014). Euclid-

ean distance is calculated as square root for the sum of squares of the

arithmetical differences between the two objects, which is suitable

for measuring the similarity of quantified attributes (Kwon et al.,

2017). As all the seven PBUCs (X1, X2, X3, X4, X5, X6, X7) are expressed

by crisp numbers, this study adopts Euclidean distance for measuring

the distance of each PBUC, denotes as d
ðwjÞ
XY , between a target city (Xj)

and a stored city (Yj). Due to the fact that the importance of these

PBUCs may be different for the target problem, the weighted Euclid-

ean distance between cities is employed to measure the general dis-

tance of the seven PBUCs, denotes as d
ðwjÞ
XY , which can be expressed in

the following manner (Pal & Shiu, 2004):

d
wjð Þ

XY =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXf

j=1
wj

� �2
d jð Þ
XY

� �2
r

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXf

j=1
wj

� �2
Xj
std−Yj

std

� �2
r

ð2Þ

In Model (2), Xj
std and Yj

std are the standard values of Xj and Yj

( j = 1,2,…,7) respectively. To eliminate dimensional influence of these

seven characteristics, the standard values are used, which are

converted by employing Z-score transformation:

Xj
std =

Xj−μX
σX

ð3Þ

where μX and σX are the average value and standard deviation of Xj

and Yj during the surveyed period respectively.

wj in Model (2) represents the weighting assigned to the jth PBUC,

indicating the importance of this characteristic for developing LCC. There

are various methods for determining weight of city characteristics, among

which analytic hierarchy process (AHP) method is most commonly

applied (Huang et al., 2019; Liu, Li, et al., 2019; Shen, Yan, Fan, et al.,

2017). AHP is a hierarchic structured method for establishing the relative

importance between a group of alternatives based on expert opinions by

conducting pairwise comparisons (Saaty, 1988). However, this method

does not consider the interactive relationships between PBUCs, which

does not match with reality (Li et al., 2011). For example, cities with

higher economic output (X6) may have lower energy intensity (X2), as they

can afford to various advanced technologies in improving energy effi-

ciency (Wu, Shen, et al., 2019). To address this limitation, this study

adopts the advanced AHP method, namely, the analytic network process

(ANP) method, to determine the weighting of city characteristics. ANP is

a network and cluster structure, which has been widely proven effective

for determining weightings by considering the mutual and interdependent

relationships among variables (Liu et al., 2018; Wu et al., 2018).

Based on d
ðwjÞ
XY in Model (2), the similarity of PBUCs between a

target city and a stored city (denotes as SM jð Þ
XY ) can be defined as fol-

lows (Pal & Shiu, 2004):

SM jð Þ
XY =

1

1 + d
wjð Þ

XY

ð4Þ

The higher the value of d
ðwjÞ
XY , the lower the similarity between a

target city X and a stored city Y. According to SM jð Þ
XY , all the historical

cities can be ranked, and the top N historical cities are mined from the

experience base for further analyzing.

3.4.2 | Similarity measure of SBUCs

Different from the seven PBUCs measured by crisp numbers, the

SBUCs cannot only be measured by crisp number but also other
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formats. For example, promoting the use of public bicycles can

improve low-carbon traffic, but this solution is limited by landform, so

landform is a SBUC. The landform characteristic is a crisp symbol with

definite meanings, which can be expressed by hills, plains, mountains,

plateaus (Huang et al., 2019). Different value formats of SBUCs

should have different calculations for measuring similarity. In terms of

SBUCs expressed by a crisp number ( j*), the similarity SM
j*ð Þ

XY can be

measured by using the Equations (2)–(4). For SBUC does not in the

format of crisp number (j
0
), the similarity between the target city and

stored cities can be measured by judging whether their conversion

values are the same (Ahn et al., 2014; Kocsis et al., 2014; Shen, Yan,

Zhang, & Shuai, 2017). For example, conversion value for landform

characteristic of hills, plains, mountains, plateaus can be defined as

100, 200, 300, 400. When the conversion value for target city X and

stored city Y is the same, the landform characteristic is similar. The

equation is shown as follows:

SM
j
0� �

XY =
1，ifQX =QY

0，ifQX 6¼QY
ð5Þ

where QX and QY represent the convert value of SBUC j
0
for target

city X and stored city Y, respectively. Only if the similarity for SBUCs

do not in crisp number are all equal to 1, the corresponding solution

of the stored city is suitable for solving the problem presented in the

target city, otherwise the solution is not applicable.

By integrating Equations (2)–(5), the general similarity of SBUCs

between a target city and a stored city is obtained, which is defined as

follows:

SM Jð Þ = SM
j*ð Þ

XY + β×
Xf

j
0
=1

δ
j
0 × SM

j
0� �

XY ð6Þ

Equation (6) consists of two parts, which are used to measure the

similarity of SBUCs expressed by crisp number ( j*) and other formats

(j
0
), respectively. β is the weighting value of j

0
in comparing to j*. δ j0 is

the weighting value of each SBUC j
0
. As SBUCs are the necessary con-

ditions for the implementation of solutions, this study considers that

each characteristic has an equal importance on determining the effec-

tiveness of solution implementation. In other words, SBUCs of a spe-

cific solution have equal weightings. The higher the value of SM(J), the

more suitable of case solutions for solving problems presented in the

target city.

4 | DEMONSTRATION OF THE NEW
EXPERIENCE MINING APPROACH

4.1 | Defining a target problem

To demonstrate the proposed new experience mining approach in

Figure 2, this study selects the energy structure of Shenyang city

as a target problem for mining similar cases. It has been widely

appreciated that there is an urgent need for the Chinese cities to

optimize energy structure in order to reduce carbon emissions, as

China is the largest carbon emitter in the world and characterized

by coal-dominated energy structure (Chen et al., 2020; Qiao,

Chen, Dong, & Dong, 2019a; Xu et al., 2019). The reasons why

Shenyang is chosen as the case city mainly lie in the following

two aspects. On one hand, Shenyang has been a typical heavy

industrial city since the early 1900s, experiencing rapid economic

growth and urbanization process, resulting in a large amount of

coal consumption and carbon emissions (Xi et al., 2011). On the

other hand, this city is located in central Liaoning province in

Northeast China, which is one of the coldest regions in China,

indicating substantial demand for coal-consumption heat supply in

the cold of winter (Geng et al., 2013). Therefore, Shenyang is an

emblematic city, which needs urgent action for optimizing energy

consumption, and the mined experience of this city can be shared

and promoted in many other cities.

4.2 | Establishing an experience base

As mentioned in section 3, an experience base for developing LCC is

the basis for applying experience mining approach, which contains

substantial cases. Considering that the statistical methods are quite

different between China and other countries (Yang & Li, 2013), this

study only takes the Chinese pilot LCCs into account for establishing

the experience base. In order to promote the development of LCC,

the National Development and Reform Commission (NDRC), China's

top agency responsible for formulating and implementing national cli-

mate strategies, initiated a national low carbon pilot program since

2010, which encompasses 81 cities by 2017. These pilots have been

at the leading edge in practicing LCC within China and launched many

programs to achieve low-carbon targets, including the establishment

of low-carbon institutions, formulation of greenhouse gas inventories,

and the design of low-carbon development plans and lifestyles.

According to the Tanpaifangjiaoyi Website, the annual average

decrease rate of carbon intensity of pilot LCC (8.2%) is higher than

that of the national level (6.6%). In this regard, pilots have achieved

some progress, and their experience in developing LCC can be shared

and learnt by other cities. For example, the low-carbon product certifi-

cation system in Hangzhou and Chongqing, the low-carbon transpor-

tation pilots in Tianjin and Guangzhou, and real-time monitoring of

public buildings in Shanghai are all well reported experience (Khanna

et al., 2014; Wang et al., 2015). Therefore, the pilot LCCs are good

representative cases for establishing an LCC experience base when

optimizing energy structure of Shenyang city. Owing to the fact that

the third-batch pilots are issued in 2017, their experience on LCC are

limited and need to be further examined the effectiveness, and thus

only 35 pilots in the two initial batches are surveyed in this study

(Greater Khingan region is excluded due to data unavailability). The

cities are Beijing, Tianjin, Shanghai, Chongqing, Shenzhen, Xiamen,

Hangzhou, Nanchang, Guiyang, Baoding, Jinchen, Shijiazhuang, Qin-

huangdao, Hulunbuir, Jilin, Suzhou, Huai'an, Zhenjiang, Ningbo,
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Wenzhou, Chizhou, Nanping, Jingdezhen, Ganzhou, Qingdao, Jiyuan,

Wuhan, Guangzhou, Guilin, Guangyuan, Zunyi, Kunming, Yan'an,

Jinchang, and Urumqi.

In order to mine experience of optimizing energy structure from

the 35 LCC pilots, this study first conducts a comprehensive literature

review for collecting experience on related databases, books or jour-

nal papers, and official websites according to the experience mining

process presented in Figure 2. Second, city characteristics of each

experience case, including PBUCs and SBUCs are identified. Thirdly,

the data for city characteristics are collected from publicly available

official sources, such as statistical yearbooks, energy statistical year-

books, statistical communique of the national economic and social

development. It is noting that the PBUC of energy structure (X1) is

represented by the proportion of coal consumption in total energy

consumption in this study due to the data unavailability of carbon

emissions at the city level, which is also appreciated by Zhou et al.

(2017). To avoid inflation influence, the values of GDP are converted

into constant prices measured in 2010. Through these three data

retrieving processes, an experience base for optimizing energy struc-

ture can be established. As the volume of the experience base is too

large, Table 1 only provides some relevant information of experience

module for Beijing city.

4.3 | Mining experience cases by applying the
similarity of PBUCs

By applying Equations (2)–(4), the similarity between Shenyang and

the 35 stored cities for PBUCs can be obtained. As mentioned in

section 3.4.1, before using Equation (2), the weighting of each PBUC

will be determined by employing the ANP method. The data for

processing ANP is collected through practical survey by judging the

pairwise comparison between each characteristic. It is considered that

there is no dependence between the seven PBUCs, and the ANP

structure is interrelated. Based on this structure, the pairwise compar-

ison of the PBUCs with respect to the goal is developed by using a

1–9 Saaty scale, which is shown in Table A1. To ensure the effective-

ness of expert opinion, the research team conducted face-to-face

interviews with 11 experts who have good knowledge of developing

LCC, such as managers of Development and Reform Commission and

the Ministry of Housing and Urban–Rural Development, researchers

from Zhejiang University and Chongqing University. In case when

there occur significant different judgements towards the pairwise

comparisons, the research team will hold several collective discussions

concentrating on the divergence until consensus has been reached.

With the assistance of SuperDecision software, the relative

TABLE 1 Relevant information of experience module for Beijing city

City Year

PBUC

Solution SBUC ReferenceX1 X2 X3 X4 X5 X6 X7

Beijing 2010 71,938 0.9 23.6 75.5 0.49 27.07 1,962 (1) Reducing coal consumption. For
example, reducing coal for coking,
power generation and heating
gradually from industry to
household, and improving the
elimination of coal-fired power
plants.

High economic
development level;

Alternative energy

“Beijing's energy
development plan for the
13th five-year plan”,
“Beijing's clean air action
plan 2013–2017”, (Fan &
Lei 2017; Wei et al. 2017)

2011 75,566 0.8 22.6 76.6 0.46 24.16 2,019

(2) Increasing the input of electricity.
For example, expanding the scale
of power transmission to
promote “electricity generation
coal,” electrification and new
energy vehicle projects.

High economic
development level

2012 79,417 0.8 22.2 77 0.44 22.59 2,069

2013 83,672 0.8 21.7 77.5 0.38 21.45 2,115

(3) Increasing natural gas. For
example, expanding the
application of natural gas in
heating, industry and
refrigeration, improving the
proportion of natural gas for heat
supply reaches to 70%, and
accelerating the improvement of
urban and rural gas supply
system.

Sufficient natural gas2014 88,237 0.7 21.4 77.9 0.36 18.16 2,152

2015 93,500 0.6 19.7 79.7 0.34 12.15 2,171

(4) Improving the efficiency of
renewable energy such as wind
and solar. For example,
accelerating wind power base
facilities around Beijing,
vigorously developing distributed
energy sources such as solar,
wind and natural gas.

Rich resource for wind
and solar;

Certain technology
level

2016 99,766 0.4 19.3 80.3 0.321 8.67 2,173

TABLE 2 Weighting of each PBUC
PBUC X1 X2 X3 X4 X5 X6 X7

Weighting 0.306 0.291 0.004 0.062 0.077 0.242 0.018
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weightings of the seven PBUCs are obtained, and the results are listed

in Table 2.

By inputting the weightings and the data of PBUCs into Equa-

tions (2)–(4), the distance of each PBUC dðjÞXY and global similarity

(SM jð Þ
XY ) between Shenyang and the 35 stored cities are calculated, as

shown in Table 3. It can be observed from this table that, the stored

city whose global similarity to Shenyang rank the top five is Jilin

(0.83), Kunming (0.82), Wuhan (0.82), Chongqing (0.79), and Nan-

chang (0.78). In other words, the top five historical cases are mined,

and their solutions can provide references for Shenyang city to opti-

mize energy structure.

4.4 | Mining preferred solutions by applying the
similarity of SBUCs

The above section has mined Jilin as the most similar case for refer-

ence to optimize energy structure in Shenyang. This study further

conducts the similarity measurement of SBUCs between Shenyang

and Jilin to select preferred solutions. Due to paper length, only typi-

cal solutions of energy structure optimization of Jilin are chosen to

demonstrate the procedures of applying the new experience mining

approach. The solutions and their SBUCs are shown in Table 4. It can

be observed from Table 4 that the solutions of energy structure

TABLE 3 Similarity results of PBUCs
between Shenyang and stored cities

City d 1ð Þ
XY d 2ð Þ

XY d 3ð Þ
XY d 4ð Þ

XY d 5ð Þ
XY d 6ð Þ

XY d 7ð Þ
XY SM jð Þ

XY

Beijing 3.29 0.95 0.64 2.76 2.65 0.17 1.91 0.48

Tianjin 2.00 0.58 0.56 0.19 0.25 0.35 0.94 0.61

Shanghai 2.75 0.68 0.67 1.25 1.39 0.29 2.35 0.53

Chongqing 0.22 0.24 0.51 0.51 0.23 0.97 3.22 0.79

Shenzhen 1.75 0.78 0.75 0.55 0.83 0.98 0.39 0.61

Xiamen 1.28 0.72 0.62 0.26 0.48 0.09 0.68 0.69

Hangzhou 1.18 1.00 0.25 0.57 0.61 0.21 0.10 0.68

Nanchang 0.53 0.64 0.06 0.73 0.60 0.49 0.46 0.78

Guiyang 1.08 1.14 0.07 0.83 0.73 3.64 0.56 0.50

Baoding 0.62 0.54 1.35 0.46 1.09 1.30 0.42 0.71

Jinchen 1.09 2.24 0.06 1.22 0.98 0.85 0.89 0.57

Shijiazhuang 0.62 0.59 0.80 0.29 0.35 0.85 0.34 0.75

Qinhuangdao 0.62 0.18 1.49 1.10 0.27 0.94 0.78 0.76

Hulunbuir 1.08 0.31 2.09 0.49 0.84 0.68 0.86 0.72

Jilin 0.28 0.49 0.85 0.23 0.42 0.53 0.59 0.83

Suzhou 0.70 0.60 0.52 0.36 0.21 0.88 0.35 0.74

Huai'an 0.70 0.80 1.22 0.46 0.34 0.93 0.51 0.72

Zhenjiang 0.70 0.59 0.13 0.39 0.27 0.19 0.76 0.78

Ningbo 1.18 0.91 0.14 0.44 0.28 0.17 0.08 0.69

Wenzhou 1.18 0.96 0.29 0.19 0.21 0.92 0.14 0.66

Chizhou 0.31 0.63 1.49 0.28 0.69 1.20 1.02 0.73

Nanping 1.28 0.86 2.88 0.67 1.04 1.00 0.84 0.65

Jindezhen 0.53 0.40 0.44 1.05 1.10 0.97 0.99 0.75

Ganzhou 0.53 0.74 1.87 0.44 0.70 1.46 0.04 0.69

Qingdao 1.06 0.43 0.08 0.40 0.34 0.14 0.11 0.74

Jiyuan 0.24 1.01 0.04 2.25 1.86 0.28 1.13 0.73

Wuhan 0.57 0.28 0.21 0.33 0.35 0.15 0.30 0.82

Guangzhou 1.75 1.05 0.52 1.49 1.52 0.65 1.19 0.60

Guilin 1.22 0.39 2.13 0.41 0.95 1.15 0.50 0.67

Guangyuan 0.97 0.19 2.27 0.50 0.97 1.46 0.85 0.68

Zunyi 1.08 1.43 1.57 0.54 0.51 1.36 0.31 0.61

Kunming 0.21 0.19 0.07 0.50 0.39 0.81 0.25 0.82

Yan'an 0.52 0.51 0.62 1.97 1.98 0.66 0.90 0.75

Jinchang 1.15 1.61 0.33 2.00 1.88 0.36 1.17 0.62

Urumqi 0.83 1.21 0.56 1.10 1.20 0.50 0.73 0.68
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optimization in Jilin mainly from the perspective of coal reduction and

cleanliness, alternative energy increase, and clean energy develop-

ment. To further identify preferred solutions, the similarities of SBUCs

between Shenyang and Jilin are examined. In fact, Shenyang as the

capital cities of Liaoning province, also has paid great attention on

energy structure optimization, and has formulated a series of policies,

such as “The 13th five-year plan to control greenhouse gas emissions

in Shenyang,” “Development plan of clean energy and renewable

energy during 2016–2017 in Shenyang,” and “Control plan for total

coal consumption in Shenyang.” These policies are also highly

attached to promote clean energy technologies such as biomass

energy, wind power and solar power. Therefore, it is considered that

Shenyang can meet the implementation conditions of governmental

support (SU1), certain technology level (SU2), rich in crop resource

(SU4), sufficient supply of natural gas (SU5), rich in biomass energy

(SU7), and rich in wind power and solar power (SU8) for solutions S1–

S9. However, Shenyang is under limited water resource, and are not

suitable for promoting hydropower generation on a large scale.

Thus, the solution of S7 may not be adaptable in Shenyang city. By

inputting the similarity value of the SBUCs into Equations (2)–(6), the

global similarity values of the nine solutions (S1–S9) are shown in

Table 5.

It can be seen from Table 5 that the mined solution S1, S2, S3,

S5, and S8 share similar SBUCs with Shenyang. The high degree of

TABLE 4 Solutions and corresponding SBUCs for optimizing energy structure in Jilin city

Solution number Solution SBUC Reference

Coal reduction and
cleanliness

S1 Formulating exit plan of inferior coal and
supply system of clean coal, and carry out
a special double random inspection on coal
product production within the city

Governmental support (SU1) “The 13th five-year plan for energy
development and energy security system
in Jilin city,” “The 13th five-year plan to
control greenhouse gas emissions in Jilin,”
“Implementation plan for controlling coal
consumption in Jilin,” “Clean air action plan
for Jilin (2016–2020)”

S2 Organizing coal-fired heating enterprises to
build clean coal reserves and use high-
quality coal and clean coal

Governmental support (SU1)

S3 Implementing coal reduction and
replacement for new coal-consuming
projects, and simultaneously building coal
washing facilities to increase the rate of
raw coal

Governmental support (SU1);
Certain technology level (SU2)

S4 Increasing the elimination of backward
production capacity, and strictly enforcing
access to new coal-fired boilers

Governmental support (SU1);
Certain technology level (SU2);
Economic investment (SU3)

Alternative energy
increase

S5 Formulating a comprehensive plan for straw
utilization in substituting wood technology
and solidification molding, and carrying out
special actions for straw energization

Governmental support (SU1);
Certain technology level (SU2);
Rich in crop resource (SU4)

S6 Accelerating the implementation of the
“Gasification Jilin” project. For example,
giving priority to natural gas utilization
replacing coal combustion in residents'
lives, developing high-efficiency utilization
projects such as natural gas distributed
energy

Governmental support (SU1);
Certain technology level (SU2);
Economic investment (SU3);
Sufficient supply of natural gas

(SU5)

Clean energy
development

S7 Improving the utilization of the Songhua
River, accelerating the construction of
pumped storage power station, and
developing small hydropower stations

Governmental support (SU1);
Certain technology level (SU2);
Rich in water resource (SU6)

S8 Vigorously developing four major projects of
biomass combustion for power generation,
solidification molding fuel, biomass
gasification, and fecal biogas

Governmental support (SU1);
Certain technology level (SU2);
Rich in biomass energy (SU7)

S9 Accelerating the development of wind power
and solar power

Governmental support (SU1);
Certain technology level (SU2);
Economic investment (SU3);
Rich in wind power and solar

power (SU8)

TABLE 5 Similarity results of SBUCs

Solution S1 S2 S3 S4 S5 S6 S7 S8 S9

SM(J) 1 1 1 0.88 1 0.91 0 1 0.91
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similarity indicates that these solutions are valuable references for

decision-making on the energy structure optimization of Shenyang.

Although the similarity values of solution S4, S6, and S9 are less than

1, these solutions can still provide good references for assisting in

solving the target problem.

The above case study in mining solutions for optimizing energy

structure of Shenyang suggests that the new experience mining

approach introduced in this study is applicable to mining solutions for

addressing new problems towards LCC development. The mined city

Jilin and the target city Shenyang are both located in Northeast China

and have many similar city characteristics, such as climate and land-

form, thus it is considered that the mined solutions can be effectively

adopted as references for Shenyang to formulate strategies for energy

structure optimization. This indicates that the proposed new experi-

ence mining approach can help retrieve previous successful experi-

ence for reuse in addressing problems, and it consequently

contributes to the development of LCC.

5 | CONCLUSIONS

This study introduces a two-step experience mining approach for

developing low carbon cities (LCCs) by incorporating the perspec-

tives of problem-based urban characteristics (PBUCs) and solution-

based urban characteristics (SBUCs). In using the new mining

approach, the cities with similar PBUCs will be first mined, and then

the solutions presented in the mined cities will be further mined for

solving target problems. The effectiveness of the new experience

mining approach has been proven through a comprehensive case

study.

The promotion of this new mining approach can break two limita-

tions of previous studies on designing LCC roadmap. First, existing

studies commonly present solutions for LCC development in fragmen-

tation, while this new approach can organize the existing solutions

systematically in the form of an experience base when solving new

problems. Second, this approach enables the pathway for improving

LCC more effectively as it allows decision-makers to design pathway

for implementing LCC by considering city characteristics, including

PBUCs and SBUCs.

The limitation of this study is that the effectiveness of the new

mining approach is demonstrated only by few cases. Furthermore,

other urban characteristics such as urbanization level and total

areas should be further considered when determining PBUCs and

SBUCs.
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APPENDIX A.

TABLE A1 Saaty's 1–9 scale of ANP (Saaty, 2013)

Intensity of importance Definition

1 Equal importance

3 Weak importance

5 Strong importance

7 Very strong importance

9 Extreme importance

2、4、6、8 Intermediate values
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