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Abstract
Background: Early-life wheezing-associated respiratory infection with human rhi-
novirus (RV) is associated with asthma development. RV infection of 6-day-old im-
mature mice causes mucous metaplasia and airway hyperresponsiveness which is 
associated with the expansion of IL-13-producing type 2 innate lymphoid cells (ILC2s) 
and dependent on IL-25 and IL-33. We examined regulation of this asthma-like phe-
notype by IL-1β.
Methods: Six-day-old wild-type or NRLP3−/− mice were inoculated with sham or RV-
A1B. Selected mice were treated with IL-1 receptor antagonist (IL-1RA), anti-IL-1β, or 
recombinant IL-1β.
Results: Rhinovirus infection induced Il25, Il33, Il4, Il5, Il13, muc5ac, and gob5 mRNA 
expression, ILC2 expansion, mucus metaplasia, and airway hyperresponsiveness. RV 
also induced lung mRNA and protein expression of pro-IL-1β and NLRP3 as well as 
cleavage of caspase-1 and pro-IL-1β, indicating inflammasome priming and activa-
tion. Lung macrophages were a major source of IL-1β. Inhibition of IL-1β signaling 
with IL-1RA, anti-IL-1β, or NLRP3 KO increased RV-induced type 2 cytokine immune 
responses, ILC2 number, and mucus metaplasia, while decreasing IL-17 mRNA ex-
pression. Treatment with IL-1β had the opposite effect, decreasing IL-25, IL-33, and 
mucous metaplasia while increasing IL-17 expression. IL-1β and IL-17 each suppressed 
Il25, Il33, and muc5ac mRNA expression in cultured airway epithelial cells. Finally, RV-
infected 6-day-old mice showed reduced IL-1β mRNA and protein expression com-
pared to mature mice.
Conclusion: Macrophage IL-1β limits type 2 inflammation and mucous metaplasia 
following RV infection by suppressing epithelial cell innate cytokine expression. 
Reduced IL-1β production in immature animals provides a mechanism permitting 
asthma development after early-life viral infection.
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1  | INTRODUC TION

Early-life wheezing-associated respiratory infection with human rhi-
novirus (RV) has been associated with asthma development.1-5 We 
have shown that RV infection of 6-day-old immature mice causes the 
development of a chronic asthma-like mucous metaplasia phenotype 
which requires expansion of IL-13-producing ILC2s.6-9 ILC2 expansion 
is driven by the epithelial-derived innate cytokines IL-25 and IL-33.10

Rhinovirus infection induces IL-1β secretion in cultured bron-
chial epithelial cells11,12 and peripheral blood mononuclear cells.13 
Experimental human RV infection increases nasal IL-1β.14-16 Bioactive 
IL-1β is a consequence of inflammasome activation, produced by pro-
gressive proteolytic cleavage of procaspase-1 and pro-IL-1β.17 In cul-
tured bronchial epithelial cells, RV infection induces activation of the 
nucleotide-binding oligomerization domain, leucine-rich repeat, and 
pyrin domain containing 3 (NLRP3) inflammasome.18,19 We recently 
found that, following acute RV infection of adult mice, NLRP3 inflam-
masome activation is required for maximal IL-1β production, airway 
inflammation, and airway hyperresponsiveness in vivo.20 Toll-like re-
ceptor 2 was required for inflammasome priming, and viral RNA was 
required for inflammasome activation. We therefore examined the 
roles of NLRP3 and IL-1β, a key regulator of the innate immune re-
sponse, in our immature mouse model of asthma development.

In general, IL-1β creates a pro-inflammatory milieu with the 
production of IL-6, IL-17, and chemokines which attract neutro-
phils to the airways. In cultured human airway epithelial cells, IL-1β 
is required for RV-induced expression of IL-6 and the neutrophil 
chemoattractants CXCL2, CXCL5, and CXCL8.12 IL-1β, especially 

in synergy with IL-23, plays an essential role in the induction or 
expansion of murine and human Th17 cells.21-23 In addition, IL-1β 
promotes differentiation and function of IL-17-producing type 3 in-
nate lymphoid cells (ILC3s).24-26 On the other hand, under certain 
conditions, IL-1β may promote type 2 eosinophilic inflammation. 
Intranasal treatment with IL-1β, in combination with endotoxin-free 
ovalbumin, induces allergic sensitization in naïve mice, in contrast 
to treatment with ovalbumin alone which has no effect.27 IL-1β−/− 
mice show reduced expression of neutrophil chemoattractants, the 
type 2 cytokine IL-33, and Muc5ac in response to successive house 
dust mite and dsRNA treatment.28 We found that IL-1β was required 
for RV-induced neutrophilic inflammation in naïve mice and eosin-
ophilic inflammation in house dust mite-challenged mice.20 Finally, 
recent studies have shown that type 2 innate lymphoid cells (ILC2s) 
cultured in the presence of IL-1β increase IL-5 and IL-13 production 
as well as mRNA expression of Il17rb and Il1rl1, which encode sub-
units of the IL-25 and IL-33 receptors, respectively.29,30 Based on the 
stimulation of type 2 cytokine production from ILC2s in vitro,29,30 
we hypothesized that, in immature mice with ILC2-dependent mu-
cous metaplasia, IL-1β is required for maximum RV-induced ILC2 ex-
pansion and development of the persistent asthma-like phenotype.

2  | MATERIAL S AND METHODS

2.1 | RV infection of mice

RV-A1B (ATCC) was partially purified from infected HeLa cell 
lysates by ultrafiltration using a 100-kD cutoff filter31,32 and 

G R A P H I C A L  A B S T R A C T
Early-life rhinovirus infection increases epithelial expression of the innate cytokines IL-25 and IL-33, expands (type 2 innate lymphoid 
cells) ILC2s, and enhances development of an asthma-like phenotype. Rhinovirus causes macrophage (NLR family, pyrin domain containing 
3) NLRP3 inflammasome activation and bioactive IL-1β production. IL-1β production, which is deficient in immature mice, attenuates 
production of IL-25 and IL-33, thereby protecting against rhinovirus-induced asthma development.
Abbreviations: ILC2, type 2 innate lymphoid cell; NLRP3, pyrin domain containing 3.
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titered by plaque assay.33 Similarly concentrated and purified 
HeLa cell lysates were used for sham infection. Six-day-old 
C57BL/6J mice (Jackson Laboratories), NLRP3−/− and IL-1β−/− 
mice,34 male or female, were inoculated through intranasal route 
under Forane anesthesia with RV-A1B (2 × 106 PFU per mouse) 
or sham HeLa cell lysates. Selected mice were treated with 1 or 
10  ng of recombinant mouse IL-1β (R&D Systems) intranasally, 
or 1 or 2 µg/g body weight of human recombinant IL-1 receptor 
antagonist (IL-1RA, PeproTech) intraperitoneally 1  hour before 
RV infection, followed by a half dose of IL-1β or IL-1RA on day 1. 
IL-1RA is effective against mouse IL-1 receptor. Additional mice 
were treated with either 1 µg/g body weight of neutralizing anti-
body to IL-1β, IL-1α (R&D Systems), or isotype control (polyclonal 
goat IgG, R&D Systems) intraperitoneally 1 hour prior to RV infec-
tion. (The same concentration of neutralizing antibody was suf-
ficient to block RV-induced airway inflammation in adult mice.20) 
Lungs were harvested 1, 7, or 21 days after infection for analysis.

2.2 | Histology and 
immunofluorescence microscopy

Three weeks after RV infection, lungs were perfused through 
the pulmonary artery with phosphate-buffered saline contain-
ing 5 mmol/L EDTA. Next, lungs were inflated and fixed with 4% 
paraformaldehyde overnight. Five-micrometer-thick paraffin sec-
tions were processed for histology or fluorescence microscopy as 
described.35 Lung sections were stained with periodic acid-Schiff 
(PAS) (Sigma-Aldrich) or Alexa Fluor 488–conjugated anti-Muc5ac 
at 1 µg/mL (Thermo Fisher Scientific) to visualize mucus. For IL-25 
and IL-33 staining, lung sections were harvested 2 days post-RV 
infection and stained with Alexa Fluor 488–conjugated rabbit 
anti-mouse IL-25/IL-17E (Millipore), Alexa Fluor 555–conjugated 
goat anti-mouse IL-33 (R&D Systems), and Alexa Fluor 555–con-
jugated rabbit anti-enterovirus D68 VP3 (interacting with RVA1B 
VP3; GeneTex). Levels of PAS, Muc5ac, IL-25, or IL-33 staining in 
the airway epithelium were quantified by NIH ImageJ software. 
PAS, Muc5ac expression was represented as the fraction of PAS+ 
or Muc5ac + epithelium compared with the total basement mem-
brane length. One section from each of four lungs per group was 
analyzed. Sections contained 6-26 individual airways (average, 14). 
Lung sections were also incubated with Alexa Fluor 488–conju-
gated anti-mouse IL-1β (R&D Systems), Alexa Fluor 488–conju-
gated anti-mouse NLRP3 (Cell Signaling Technology), and Alexa 
Fluor 647–conjugated anti-mouse F4/80 (Biolegend).

2.3 | Macrophage depletion

Depletion of alveolar macrophages was accomplished by intranasal 
administration of liposomes containing clodronate (dichloromethyl-
enediphosphonic acid, disodium salt, Millipore Sigma), as previously 

described.35 PBS-containing liposomes were used for control experi-
ments. Liposomes were kept at 4°C under N2 until use. Depletion 
was performed 24 hours before sham or RV infection by introducing 
50 µL of clodronate- or PBS-containing liposomes intranasally under 
Forane anesthesia.

2.4 | Flow cytometric analysis

Lungs from sham- and RV-treated immature C57BL/6J or IL-1β−/− 
mice were harvested one or 7  days postinfection, perfused with 
PBS-containing EDTA, minced, and digested in collagenase IV. Cells 
were filtered and washed with RBC lysis buffer, and dead cells were 
stained with PacBlue (Thermo Fisher Scientific). To identify the cel-
lular source of IL-1β, lung cells were harvested 1 day postinfection 
and stained with fluorescent-tagged anti-CD45, anti-F4/80, and 
anti-CD11b (all from BioLegend). Cells were subsequently treated 
with permeabilization buffer (eBioscience) and stained with anti-
IL-1β (eBioscience). To identify ILC2s, cells were then stained with 
fluorescent-tagged antibodies for lineage markers (CD3ε, TCRb, 
B220/CD45R, Ter-119, Gr-1/Ly-6G/Ly-6C, CD11b, CD11c, F4/80, 
and FcεRIa; all from BioLegend), anti-CD25 (BioLegend), and anti-
CD127 (eBioscience), as described.9 Cells were fixed, subjected to 
flow cytometry, and analyzed on an LSR Fortessa (BD Biosciences). 
Data were collected using FACSDiva software (BD Biosciences) and 
analyzed using FlowJo software (TreeStar).

2.5 | ILCs culture

Lungs from sham- and RV-treated immature C57BL/6J or IL-1β−/− 
mice were harvested 7 days postinfection for ILC isolation by flow 
cytometry (Sony MA900 Cell Sorter). Lung cells were processed 
as described above and stained with fluorescent-tagged antibod-
ies for lineage markers, CD45 and CD127. Lineage-negative CD45 
and CD127 ILCs were plated on round-bottom 96-well plates at 
104 cells per well and cultured in RPMI 1640 supplemented with 
10% FBS, IL-2, and IL-7 (20 ng/mL each) (R&D Systems). Twenty-
four hours later, cells were stimulated with IL-1β (10 ng/mL) + IL-12 
(50 ng/mL), IL-25 (50 ng/mL) +  IL-33 (50 ng/mL), or IL-1β (10 ng/
mL) + IL-23 (50 ng/mL, all from R&D Systems). After 24 hours, cell 
pellet RNA was extracted for quantitative real-time PCR, as de-
scribed below.

2.6 | Western blot assay

Lungs were harvested 1  day postinfection, dissolved in lysis 
buffer, and homogenized for Western blot assay using anti-mouse 
IL-1β (R&D Systems), anti-mouse caspase-1 (Abcam, Cambridge, 
MA), anti-mouse NLRP3 (Cell Signaling Technology), and anti-β-
actin (Millipore Sigma).
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2.7 | Quantitative real-time polymerase chain 
reaction (qPCR)

After solubilization with Trizol (Invitrogen), RNA was extracted 
from cells and tissue according to the manufacturer's recommen-
dations. Purified RNA was processed for first-strand cDNA and 
qPCR using reverse transcriptase and SYBR green qPCR reagents 
(ThermoFisher Scientific). For in vivo experiments, mRNA Il1b, 
Il18, Aim2, Nlrp1, Nlrp3, Nlrc5, Il1rn, Il1r1, Tnf, Cxcl1, Cxcl10, and Il33 
were measured 1 day postinfection; mRNA Il12b, Il25, Il13, Muc5ac, 
Muc5b, and Gob5 were measured 7  days postinfection10; mRNA 
Ifng and Il17 were measured 1 and 7 days postinfection. Expression 
levels were normalized to GAPDH using the ΔΔCt method. Primers 
used are described in Table S1. To quantify virus particles, qPCR for 
positive-strand viral RNA was conducted using RV-specific prim-
ers and probes (forward primer: 5′-GTGAAGAGCCSCRTGTGCT-3′; 
reverse primer: 5′-GCTSCAGGGTTAAGGTTAGCC-3′; probe: 
5′-FAM-TGAGTCCTCCGGCCCCTGAATG-TAMRA-3′).36

2.8 | Measurement of IL-1β, IL-25, and IL-33 
protein levels

Lung IL-1β (R&D Systems), IL-25, and IL-33 (Thermo Fisher Scientific) 
were measured by ELISA. ELISA data were analyzed by BioTek Gen5 
software. Total lung protein concentration was measured by BCA 
protein assay (Thermo Fisher Scientific).

2.9 | Human bronchial epithelial cell culture

Airway epithelial cells were isolated from tracheobronchial trim-
mings of unused healthy donor lungs under a protocol approved by 
the University of Michigan Investigational Review Board (protocol 
number HUM00000230). Primary airway epithelial cells were cul-
tured in Transwells at air-liquid interface as described previously, 
with some modifications.37 Briefly, airway epithelial cells were 
cultured under submerged conditions in complete PneumaCult-Ex 
Plus medium (Stemcell Technologies) for 1 week. Cells were trans-
ferred to Transwells and cultured with complete medium in both 

basal and apical wells until confluence was reached. Cells were 
then maintained at air-liquid interface for 3 weeks in PneumaCult-
ALI maintenance medium. Cells were infected with sham or RV-
A1B at an MOI of 10 for 12  hours. Selected wells were treated 
with human recombinant IL-1β and IL-17 at concentrations 10 or 
30 ng/mL.

2.10 | Quantification and statistical analysis

Data are represented as mean ± standard error. Statistical signifi-
cance was assessed by unpaired t test, one-way ANOVA, or two-
way ANOVA, as appropriate. Group differences were pinpointed 
by a Tukey multiple comparison test.

3  | RESULTS

3.1 | RV infection activates the inflammasome in 
vivo in 6-day-old mice

Our recent study showed that RV infection of mature mice in-
duces lung inflammasome priming and activation.20 To examine 
developmental differences, we collected lungs from RV-infected 
6-day-old and 8-week-old mice and measured mRNA and pro-
tein expression of IL-1β and IL-1 receptor antagonist (IL-RA). IL-1β 
and IL-1RA mRNA and protein expression were increased in RV-
infected 6-day-old mice 1 day postinfection (Figure 1A), but ex-
pression was significantly lower in immature mice compared to 
8-week-old mice. Il1b, Il1rn, and Il33 mRNA as well as IL-1β pro-
tein peaked at day 1 postinfection in RV-infected 6-day-old mice 
(Figure 1B). Il25 mRNA was elevated on day 2 after infection and 
peaked on day 7, consistent with our previous study.10 In addi-
tion, mRNA expression of Nlrp1, Nlrp3, and Nlrc5 but not Il18 was 
increased (Figure 1C). RV increased protein expression of NLRP3 
and pro-IL-1β (Figure 1D,E), indicative of the RV-induced priming 
step. RV also triggered cleavage of pro-IL-1β and caspase-1 and 
subsequent production of IL-1β and caspase-1 p12 (Figure 1D,E), 
demonstrating inflammasome activation in the lungs of RV-
infected immature mice.

F I G U R E  1   Rhinovirus activates inflammasome in vivo in immature mice. A, Eight-week-old (adult) or 6-d-old (immature) C57BL/6 mice 
were inoculated with sham or RV. Lung mRNA and protein expression were measured 1 d later. (N = 4, mean ± SEM, *different from sham, 
†different from adult RV, P < .05, one-way ANOVA with Tukey's multiple comparisons test.) B, Six-day-old immature C57BL/6 mice were 
inoculated with sham or RV. Lung mRNA and protein expression were measured 1, 2, 3, 4, or 7 d later. (N = 4-7, mean ± SEM, *different 
from sham, P < .05, one-way ANOVA with Tukey's multiple comparisons test. C, Six-day-old immature C57BL/6 mice were inoculated with 
sham or RV. Lung mRNA was measured 1 d after infection. (N = 6, mean ± SEM, *different from sham, P < .05, unpaired t test. D, One day 
after infection, whole lungs were homogenized within the lysis buffer and subjected to Western blot. Anti-mouse-IL-1β recognizes pro-IL-
1β and its bioactive form IL-1β. Anti-mouse-caspase-1 detects both caspase-1 and its cleaved form, caspase-1 p12. E, Group mean relative 
expression levels were normalized to β-actin. (N = 6, mean ± SEM, *different from sham, P < .05, one-way ANOVA.) F and G, Lung IL-
1β + cells in RV-infected 6-d-old mice. IL-1β + cells were identified 1 d after infection. IL-1β + cells were analyzed as a percentage of live cells 
(left panel), and F4/80+ and CD11b + cells were analyzed as a percentage of CD45 + IL-1β + cells (right panel) (n = 4, mean ± SEM, *different 
from WT sham, P < .05, unpaired t test). H, Lungs were stained for IL-1β (green) NLRP3 (green), F4/80 (red), and nuclei (DAPI, black; bar, 
50 µm). I and J, Clodronate- or PBS-containing liposomes were delivered to mice intranasally 24 h before sham or RV infection. One day 
after infection, lungs were harvested for mRNA and Western blot (N = 6, mean ± SEM, *different from sham, P < .05, one-way ANOVA)
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We performed flow cytometry to determine the cellular source 
of IL-1β. RV-infected 6-day-old mice showed a greater percentage 
of CD45 + IL-1β + lung cells (Figure 1F), and almost all of them were 

F4/80 + CD11b + exudative macrophages (Figure 1G). We also ex-
amined airway IL-1β and NLRP3 deposition by immunofluorescence. 
Infection with RV increased airway IL-1β and NLRP3 expression, 
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with the strongest signal found in F4/80-positive cells, indicative of 
airway macrophages (Figure  1H). There was less IL-1β and NLRP3 
staining in the airway epithelium.

Next, we delivered clodronate- or PBS-containing liposomes to 
mice intranasally to deplete macrophages as previously described.35 
Twenty-four hours later, mice were inoculated with sham or RV. 
RV-induced protein expression of NLRP3 and pro-IL-1β as well as 
production of mature IL-1β and caspase-1 p12 was reduced in clodro-
nate-treated mice (Figure 1I). Clodronate treatment also significantly 
reduced whole-lung IL-1β mRNA in RV-infected mice (Figure  1J). 
Together, these data confirm the macrophage to be a major cellular 
source of inflammasome activation.

3.2 | Inhibition of IL-1β signaling prior to 
RV infection amplifies ILC2 expansion and 
development of the asthma-like phenotype in 
immature mice

To further investigate the role of IL-1β, we employed an antagonist 
of IL-1 receptor (IL-1RA) and a neutralizing antibody against IL-1β. 
Again, early-life RV infection induced a mucous metaplasia pheno-
type, as evidenced by periodic acid-Schiff (PAS) staining and Muc5ac 
protein deposition in the airway epithelium 21 days after infection 
(Figure 2A,B). RV infection also expanded the population of lineage-
negative CD25+ CD127+ ILC2s 7 days after infection (Figure 2C,D). 
We have previously shown that ILC2 expansion peaked at 7 days and 
is maintained 21 days after infection.10

In contrast to RV-infected mature mice, IL-1RA treatment aug-
mented RV-induced PAS staining, Muc5ac protein accumulation 
(Figure  2A,B), and ILC2 expansion (Figure  2C,D). mRNA expres-
sion of the ILC2 products IL-5 and IL-13 and the mucus-related 
genes Muc5ac and Gob5 was also significantly augmented in RV-
infected, IL-1RA-treated mice (Figure  2E). mRNA expression was 
increased in a dose-dependent manner. In addition, IL-25 and IL-33 
mRNA and protein expression were induced by RV infection and 
further increased in the presence of IL-1RA (Figure 2F,G). (Levels 
of IL-25 and IL-33 were measured at days 7 and 1 after infection, 
respectively, when their production is maximal.10) These results 
are consistent with the notion that IL-1β limits development of the 
mucous metaplasia phenotype via regulation of innate cytokine 
expression and ILC2 expansion. IL-1RA did not block RV-induced 

mRNA expression of Tnf, Cxcl1, Cxcl10, or Ifng. However, IL-1RA 
decreased Il17 mRNA expression (Figure  2H). IL-1RA treatment 
was associated with a slight increase (0.2 log) in viral copy number 
(Figure 2I).

Since IL-1RA is a competitive inhibitor of both IL-1α and IL-1β, 
we employed neutralizing antibodies against IL-1β and IL-1α to 
specify their individual roles. Consistent with the effects of IL-1RA, 
anti-IL-1β increased RV-induced mRNA expression of Il5, Il13 and 
Muc5ac (Figure  2J). Anti-IL-1β had no significant effect on mRNA 
expression of Tnf, Ifng, or Cxcl10. However, anti-IL-1β decreased Il17 
mRNA expression (Figure 2K). Anti-IL-1β also increased mRNA and 
protein expression of IL-25 and IL-33 (Figure  2L). In contrast, an-
ti-IL-1α had no significant effect on Il25, Il33, Il13, Il5, Muc5ac, Gob5, 
or Il17 mRNA expression (Figure S1).

3.3 | NLRP3 KO increases RV-induced type 2 
immune responses in vivo

NLRP3 is required for the RV-induced inflammasome activation 
but not the priming.20 We therefore employed NLRP3−/− mice 
to examine the requirement of NLRP3 for type 2 immune re-
sponses and development of mucous metaplasia. Compared to 
wild-type mice, RV infection of 6-day-old NLRP3−/− mice in-
duced a similar level of pro-IL-1β protein (Figure 3A,B) and Il1b 
mRNA (Figure  3C), indicating intact inflammasome priming. 
However, caspase-1 p12 and IL-1β levels were significantly de-
creased, indicative of impaired IL-1β maturation and secretion 
(Figure  3A,B). Twenty-one days after RV infection, NLRP3−/− 
mice showed increased PAS staining and Muc5ac protein ac-
cumulation compared to wild-type mice (Figure  3D,E). mRNA 
expression of Il5 and Il13 as well as the mucus-related genes 
Muc5ac and Gob5 was significantly increased in NLRP3−/− mice 
compared to wild-type mice (Figure 3F). IL-25 and IL-33 mRNA 
and protein expression were also significantly higher (Figure 3G). 
NLRP3 KO did not block RV-induced mRNA expression of Cxcl1, 
Cxcl10, or Ifng (Figure  3H). NLRP3 KO mice showed a mod-
est but statistically insignificant increase in viral copy number 
(Figure  3I). These results further demonstrate that inhibition 
of IL-1β during RV infection of immature mice increases innate 
cytokine expression and development of a mucous metaplasia 
phenotype.

F I G U R E  2   IL-1RA increased RV-induced ILC2 expansion and mucus metaplasia in 6-d-old wild-type mice. Six-day-old C57BL/6 mice 
were inoculated with sham or RV intranasally. IL-1RA or vehicle was given intraperitoneally 1 hour before RV infection, followed by a 
half dose of IL-1RA on day 1. The concentration of IL-1RA was 2 µg/g unless otherwise noted. PAS staining (A; bar = 50 µm), Muc5ac 
immunofluorescence (B; bar = 50 µm), lung lineage-negative CD25 + CD127 + ILC2s (C and D), and whole-lung mRNA and protein 
expression (E–H) were examined. Il33, Il17, Ifng, Tnf, Cxcl1, and Cxcl10 mRNA and IL-11 protein were examined at 1 d postinfection. Il25, Il5, 
Il13, Muc5ac, and Gob5 mRNA IL-25 protein, PAS staining, Muc5ac immunofluorescence, and lung ILC2s were examined 7 d postinfection. I, 
RV positive-strand RNA was assessed 24 h after infection and presented as viral copy number in total lung. (N = 3-4, mean ± SEM, *different 
from sham, †different from RV, P < .05, P < .05, one-way ANOVA). J-M, 6-d-old wild-type C57BL/6 mice were inoculated with sham, RV, 
in combination with either isotype IgG control or anti-IL-1β Ab. Whole-lung mRNA was measured using quantitative PCR, and whole-lung 
IL-25 and IL-33 protein were examined by ELISA. (N = 4, mean ± SEM, *different from WT sham, †different from WT RV, P < .05, one-way 
ANOVA)
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F I G U R E  3   NLRP3 KO increases RV-induced innate cytokine expression, type 2 immune responses and mucus metaplasia in 6-d-old wild-
type mice. Six-day-old wild-type C57BL/6 and NLRP3−/− mice were inoculated with sham or RV (A and B). One day after infection, whole 
lungs were homogenized in lysis buffer and subjected to Western blot. Anti-mouse-IL-1β recognizes pro-IL-1β and its bioactive form IL-1β. 
Anti-mouse-caspase-1 detects both caspase-1 and its cleaved form, caspase-1 p12. Group mean relative expression levels were normalized 
to β-actin. (N = 3, mean ± SEM, *different from wild-type RV, P < .05, one-way ANOVA.). C. Lung mRNA expression were measured one day 
after infection. (N = 4, mean ± SEM, *different from sham, P < .05, † different from WT RV, P < .05, one-way ANOVA with Tukey's multiple 
comparisons test.) D and E, PAS staining and Muc5ac immunofluorescence were examined 21 d postinfection (bar = 50 µm). Whole-lung 
mRNA and protein expression were examined 1 or 7 d postinfection. F–H, Il33, Il1b, Nlrp3, Ifng, Tnf, Cxcl1 and Cxcl10 mRNA, and IL-33 
protein were examined 1 d postinfection; Il25, Il5, Il13, Muc5ac, and Gob5 mRNA and IL-25 expression were examined 7 d postinfection 
(n = 4, mean ± SEM, *different from WT sham, †different from WT RV, P < .05, one-way ANOVA). I, RV positive-strand RNA was assessed 24 
and 48 h after infection and presented as viral copy number in total lung. (N = 3-4, mean ± SEM, *different from sham, †different from RV, 
P < .05, one-way ANOVA)
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3.4 | Effect of IL-1β KO on ILC2 maturation

To further investigate the role of IL-1β in ILC2 expansion and devel-
opment of mucous metaplasia and airway hyperresponsiveness in 

RV-infected immature mice, we first infected 6-day-old wild-type and 
IL-1β−/− mice with RV-A1B. In contrast to our results with IL-1RA and 
anti-IL-1β, IL-1β deficiency blocked RV-induced mRNA expression of Il5, 
Il13, Muc5ac, and Gob5 (Figure 4A), PAS staining, and Muc5ac protein 

F I G U R E  4   IL-1β-KO blocked RV-induced development of an asthma-like phenotype and innate cytokine expression in immature mice. 
6-d-old wild-type C57BL/6 and IL-1β−/− mice were inoculated with sham or RV (A). Lung mRNA expression was measured 7 d postinfection. 
(n = 4, mean ± SEM, *different from WT sham, †different from WT RV, P < .05, one-way ANOVA). Mucous metaplasia was assessed by PAS 
staining (B) and Muc5ac immunofluorescence (C). Lung sections prepared 3 wk after treatment of 6-d-old mice. D, Airway responsiveness of 
4 wk-old baby mice, 21 d after sham and RV infection (n = 4, mean ± SEM, *different from WT sham, †different from WT RV, P < .05, two-
way ANOVA). E and F, Whole-lung IL-25 and IL-33 mRNA and protein expression were examined seven and 1 d postinfection, respectively. 
G, Il1rl1, Il1rn, Ifng, Tnf, Il17, and Cxcl10 mRNA were examined 1 d postinfection. H, RV positive-strand RNA was assessed 24 and 48 h after 
infection and presented as viral copy number in total lung (n = 4, mean ± SEM, *different from WT sham, †different from WT RV, P < .05, 
one-way ANOVA)
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accumulation compared to wild-type mice (Figure  4B,C). Similarly, 
airway hyperresponsiveness to RV was blocked in IL-1β−/− mice 
(Figure 4D). IL-1β deficiency blocked RV-induced IL-25 and IL-33 mRNA 
and protein expression (Figure 4E,F). Compared to wild-type mice, IL-
1β−/− mice showed reduced mRNA expression of Tnf, Ifng, Cxcl10, Il17, 
and Il1rl1, which encodes the IL-33 receptor ST2 (Figure 4G). Viral copy 
number was significantly higher in IL-1β−/− mice (Figure 4H).

The significant reduction in Il1rl1 in IL-1β−/− mice, with or without 
RV infection, suggested a developmental deficiency of type 2 immunity 
in IL-1β−/− mice. To test this, we sorted Lin-CD45 + CD127+ ILCs 38 
from both wild-type and IL-1β−/− mice and then cultured and stimulated 
them ex vivo (Figure 5A). In the absence of cytokine stimulation, expres-
sion of mRNAs encoding the type 2 cytokines IL-5 and IL-13, the innate 
cytokine receptors IL-17RB and ST2 and the ILC2 transcription factor 
GATA3 was significantly reduced in the sorted cells from the IL-1β−/− 
mice (Figure 5B). No significant difference in Ifn and Il17 mRNA was ob-
served. Treatment with the ILC2 agonists IL-25 and IL-33 increased Il5, 

Il13, and Il1rl1, in wild-type mice but not in IL-1β−/−. In contrast, there 
was no defect in the Ifn mRNA response to the ILC1 stimuli IL-1β and IL-
12. There was no induction of Il17 mRNA. Taken together, these results 
demonstrate that the absence of IL-1β during development leads to a 
defect in ILC2 maturation which makes the cells unresponsive to IL-25 
and IL-33. This physiologic state contrasts to the absence of IL-1β signal-
ing after RV infection, which promotes ILC2 responses.

3.5 | IL-1β protects against RV-induced type 2 
immune responses in vivo

We next examined the effects of exogenous IL-1β on RV-induced type 
2 immune responses. Two doses of recombinant IL-1β were given intra-
nasally to RV-infected 6-day-old mice; the first dose was given 1 hour 
prior to infection and the second dose was given 24 hours after infec-
tion. One group of mice received 1 ng per dose and a second group 

F I G U R E  5   IL-1β−/− mice demonstrate deficient ILC2 maturation. Six-day-old wild-type C57BL/6 and IL-1β−/− mice were inoculated 
with sham or RV. Lungs were collected from sham or RV-infected wild-type or immature mice, and cell suspensions were sorted for Lin- 
CD45 + CD127 + ILCs. Sorted ILCs were stimulated with combinations of type 1 (IL-1β + IL-12), type 2 (IL-25 + IL-33), and type 3 (IL-1β + IL-
23) stimuli. The cell pellet was collected for mRNA expression by quantitative PCR (N = 3/group). (*different from wild-type mock, †different 
from stimulated wild type, P < .05 one-way ANOVA)
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F I G U R E  6   IL-1β treatment is protective against RV-induced type 2 inflammation. Six-day-old wild-type C57BL/6 mice were inoculated 
with sham or RV in combination with recombinant mouse IL-1β. A-C, Whole-lung mRNA and protein were assessed 1 d (Cxcl 1, Cxcl2, Tnfα, 
and Il33) or 7 d (Il5, Il13, Il17, Il25, Ifng, Muc5ac, and Gob5) postinfection. D, RV positive-strand RNA was assessed 24 h after infection and 
presented as viral copy number in total lung. (N = 3-4, mean ± SEM, *different from sham, P < .05; † different from RV, P < .05, one-way 
ANOVA). E, Two days postinfection, lungs were stained for IL-33 (red), IL-25 (green), RV VP3 protein (red), and nuclei (DAPI, black). Scale bar, 
50 µm. IL-25 and IL-33 were quantified as the fraction of epithelium that was positively stained, measured by NIH ImageJ software (N = 4, 
mean ± SEM, *different from sham, P < .05; † different from RV, P < .05, one-way ANOVA). F, PAS staining and Muc5ac immunofluorescence 
were examined 21 d postinfection (bar = 50 µm). PAS and Muc5ac were quantified as the fraction of epithelium that was positively stained, 
measured by NIH ImageJ software (N = 4, mean ± SEM, *different from sham, P < .05; † different from RV, P < .05, one-way ANOVA)
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of mice received 10  ng per dose. Seven days after infection, mice 
treated with exogenous IL-1β showed decreased RV-induced mRNA 
expression of Il5 and Il13 as well as mucus-related genes Muc5ac and 
Gob5 (Figure 6A). On the other hand, exogenous IL-1β increased RV-
induced Ifng and Il17 mRNA, and there was no effect of IL-1β on Tnfa, 
Cxcl1, or Cxcl2 (Figure 6B). IL-1β treatment had no significant effect on 
viral copy number (Figure 6C). In addition, IL-1β inhibited lung IL-25 
and IL-33 mRNA and protein expression (Figure 6D). IL-1β also attenu-
ated IL-25 and IL-33 deposition but not RV immunoreactivity in the 
airway epithelium (Figure 6E). Twenty-one days after infection, IL-1β-
treated, RV-infected mice showed significantly reduced PAS staining 
and Muc5ac expression in the airways (Figure 6F).

3.6 | IL-1β inhibits RV-induced human epithelial-
derived innate cytokine expression

Innate cytokines are produced by the airway epithelium in response to 
allergens, pathogens, pollutants, and toxic compounds. To determine the 
effects of IL-1β on the epithelial IL-25 and IL-33 expression, we infected 
human bronchial epithelial cells with RV in combination with human re-
combinant IL-1β or IL-17. RV infection increased mRNA expression of 
Il25, Il33, and Muc5ac but not Cxcl1, Cxcl8, or Cxcl10 (Figure 7). Both 
IL-1β and IL-17 suppressed RV-induced mRNA expression of Il25, Il33, 
and Muc5ac. IL-1β and IL-17 had no effect in sham-infected cells (data 
not shown). IL-1β and IL-17 treatment significantly decreased viral copy 
number (Figure 7). Together, these data suggest that IL-1β prevents type 
2 inflammation and asthma development following early-life viral infec-
tion by suppressing epithelial cell innate cytokine expression.

4  | DISCUSSION

Early-life respiratory viral infection has been associated with asthma 
development. In a prospective study of Finnish infants hospitalized 

for wheezing, RV was the most common virus isolated and was sig-
nificantly associated with a diagnosis of asthma 6 years after hos-
pitalization.39 In the University of Wisconsin Childhood Origins of 
Asthma Study, infants with a family history of allergy and wheezing-
associated illnesses with RV were more likely to develop asthma 
than infants with allergen sensitization or infection with respiratory 
syncytial virus.40,41 The association between asthma and wheezing 
illnesses with RV was still present at age 13 years.1 Similarly, infants 
in the Netherlands Generation R study with bronchitis, bronchioli-
tis, and pneumonia before 3 years of age were more likely to have 
lower lung function and asthma at 10  years of age.2 In the latter 
study, allergic sensitization did not factor into the associations seen. 
These data are consistent with the notion that early-life RV infec-
tions induce a nonallergic asthma phenotype.3,42 It has also been 
suggested that early-life RV infections could drive the development 
of atopic sensitization and subsequent allergic airways disease.4

Rhinovirus infection of 6-day-old immature mice causes the de-
velopment of a chronic asthma-like mucous metaplasia phenotype 
which is associated with expansion of IL-13-producing ILC2s and de-
pendent on IL-25 and IL-33.8-10,36 We recently found that RV-induced 
inflammasome activation is required for maximal airway inflamma-
tion and hyperresponsiveness in naive and house dust mite-exposed 
mature mice with allergic airways disease.20 We therefore hypothe-
sized that IL-1β is required for maximum RV-induced ILC2 expansion 
and the development of mucous metaplasia. However, we found that 
inhibition of IL-1β signaling with IL-1RA or anti-IL-1β administered 
prior to RV infection increased type 2 immune responses, ILC2 num-
ber, and mucus metaplasia. Knockout of NLRP3, which is required 
for the RV-induced inflammasome activation,20 also increased type 2 
cytokine responses. Treatment with IL-1β attenuated the asthma-like 
phenotype, including deposition of IL-25 and IL-33 in the airway ep-
ithelium. Finally, IL-1β suppressed Il25, Il33, and muc5ac mRNA ex-
pression in cultured airway epithelial cells. Together, our data suggest 
that macrophage IL-1β limits type 2 inflammation and mucous meta-
plasia following early-life viral infection by suppressing epithelial cell 

F I G U R E  7   IL-1β inhibits RV-induced human epithelial-derived innate cytokine expression. Human bronchial derived epithelial cells were 
infected with RV at an MOI of 20 in combination with recombinant human IL-1β and IL-17. mRNA expression and RV positive-strand RNA 
were measured 12 h postinfection. (n = 3, mean ± SEM, *different from sham, P < .05; † different from RV, P < .05, one-way ANOVA)
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innate cytokine expression. These results are consistent with a pre-
vious study showing that Heligmosomoides polygyrus bakeri-induced 
IL-1β expression suppresses intestinal epithelial cell IL-25 and IL-33 
production.43 In the latter case, suppression of epithelial IL-25 and 
IL-33 production attenuates parasite expulsion, allowing pathogen 
chronicity. In the case of early-life viral infection, IL-1β appears to 
play a protective role, limiting expression of innate cytokines, type 
2 cytokines and mucus-related genes and blocking the development 
of mucous metaplasia. Finally, we found that, compared to mature 
mice, immature mice show reduced IL-1β production in response to 
RV infection, consistent with the notion that a limited IL-1β response 
permits development of the mucous metaplasia phenotype.

In our study, IL-1RA reduced, and IL-1β enhanced, Il17 tran-
scription. IL-17 also attenuated epithelial cell innate cytokine ex-
pression. It is therefore possible that the effect of IL-1β was at 
least partially mediated by IL-17. IL-17 treatment attenuates ov-
albumin-induced Th2-mediated allergic airways disease.44 Among 
the innate immune cells, γδ T cells and type 3 innate lymphoid cells 
produce IL-17 in response to IL-1β.24,45 We have found that, in 
adult mice, RV infection expands these cell populations, though to 
a lesser extent than enterovirus-D68 infection.46 A subpopulation 
of ILC2s that can convert into IL-17-producing NKp44-ILC3-like 
cells has recently been identified.38 However, in our study lung 
ILCs did not produce IL-17 in response to IL-1β and IL-23 stimu-
lation. IL-1β also increased expression of the canonical type 1 
cytokine IFN-γ, which we have shown to directly suppress ILC2 
function. 7 In contrast to IL-1β, IFN-γ had no effect on lung IL-25 
or IL-33 production.

While in vitro studies of RV-induced inflammasome activa-
tion have focused on airway epithelial cells,18,19 we found that 
CD11b + F4/80 + macrophages in the airway lumen and subepithe-
lium produce IL-1β in response to RV infection in vivo. CD11b + exu-
dative macrophages are recruited to the lung following RV infection,47 
influenza infection,48 and LPS administration.49 These data are con-
sistent with previous work showing that caspase-1 inflammasome 
activation in the hematopoietic, but not stromal, compartment was 
required to induce protective antiviral immunity in influenza-in-
fected mice.50 These data provide support to the concept that air-
way macrophages,35,51 ILC2s,8-10 and other innate immune cells are 
an important source of pro-inflammatory cytokines following RV in-
fection, interacting with airway epithelial cells to determine the final 
response to RV infection.

We found that IL-1β tended to reduce viral copy number whereas 
IL-1β blockade tended to increase vRNA. It is therefore conceivable 
that IL-1β inhibits the RV-induced mucous metaplasia phenotype 
by decreasing viral load. However, IL-1β administration increased 
IL-17 mRNA and IFN-γ expression, demonstrating that the inhibitory 
effect of IL-1β on type 2 gene expression and mucous metaplasia 
was not due to a general suppression of viral-induced responses. 
In addition, changes in vRNA were small, rarely reaching statistical 
significance and reaching at most 0.3 log (in IL-1β KO mice). Finally, 
IL-1β did not appear to reduce RV immunoreactivity in the airway 
epithelium (Figure 6E).

One unexpected aspect of our study is the contradictory ef-
fect of IL-1β KO mice compared to inhibition or activation of IL-1β 
signaling prior to RV infection. Studies of cultured ILCs from imma-
ture mouse lungs showed that IL-1β KO block ILC2 maturation, as 
evidenced by reduced mRNA expression of Il17rb, Il1rl1, and Gata3 
and insensitivity to IL-25 and IL-33 stimulation. Recent studies have 
shown that ILC2s cultured in the presence of IL-1β show increased 
IL-5 and IL-13 production as well as increased mRNA expression of 
Il17rb and Il1rl1, which encode unique subunits of the IL-25 and IL-33 
receptors, respectively.29,30

The immature immune system is qualitatively different from 
that of adult, refractory to type 1, and permissive to type 2 re-
sponses. Infection of mice with RV induces an age-dependent 
immune response in the airways. Early-life RV infection, but not 
adult infection, increases expression of IL-4, IL-5, IL-13, IL-25, and 
IL-33.7-10,36 In contrast, induction of the type 1 cytokines IFN-
γ, IL-12 p40, and TNF-α is diminished in neonates compared to 
adults. In this context, upregulation of the macrophage IL-1β re-
sponse pulls the immune response toward a mature antiviral re-
sponse and away from a pro-asthmatic phenotype. Further insight 
into this pathway may lead to therapeutic interventions against 
asthma development.
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