Body weight impact of the sugar sweetened beverages tax in Mexican children: a modeling study

Rossana Torres-Álvarez ${ }^{1}$, Rodrigo Barrán-Zubaran ${ }^{1}$, Francisco Canto-Osorio ${ }^{1}$, Luz María Sánchez-Romero ${ }^{2}$, Dalia Camacho-García-Formentí1 ${ }^{1}$, Barry M. Popkin ${ }^{3}$, Juan A. Rivera ${ }^{4}$, Rafael Meza ${ }^{5}$, and Tonatiuh Barrientos-Gutiérrez *1
${ }^{1}$ Center for Population Health Research, National Institute of Public Health, Cuernavaca, Mexico.
${ }^{2}$ Lombardi Comprehensive Cancer Center, Georgetown University, Washington DC, USA.
${ }^{3}$ University of North Carolina, Gillings School of Global Public Health, North Carolina, USA.
${ }^{4}$ National Institute of Public Health, Cuernavaca, Mexico.
${ }^{5}$ Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, USA.

[^0]
Contents

1 Weight change model 3
1.1 Initial values of fat mass and fat free mass for the system of ordinary differ- ential equations 5
1.2 Reference body composition data 6
1.3 Model re-calibration and validation 8
2 Sugar sweetened beverages consumption 11
2.1 Body weight estimation under baseline and taxed SSB scenarios 11
3 Sensitivity analysis 12
3.1 Long-term weight impact of the SSB-tax 13
4 Model Inputs 14
5 Algorithm and Implementation 15

1 Weight change model

We adapted the Dynamics of Childhood Growth and Obesity model (DCGO) from Hall et al., and Katan et al., [1, [2] to the Mexican population. Briefly, this physiological weight change model considers the interactions between fat mass, $F M:=F M(t)$, fat free mass, $F F M:=F F M(t)$, an energy intake function, $I:=I(t)$, and an energy expenditure function, $E:=E(t)$, adjusted by a body-growth term, $g(t)$. In this model, body weight is given by the sum of fat mass and fat free mass:

$$
\begin{equation*}
B W:=B W(t)=F M(t)+F F M(t) . \tag{1}
\end{equation*}
$$

In particular, body weight $(B W)$ is a function of time t, depends on the individual's characteristics for sex (Sex), initial fat mass $\left(F M_{0}\right)$, initial fat free mass $\left(F F M_{0}\right)$ and energy intake $(I(t))$.This is represented as:

$$
\begin{equation*}
B W:=B W\left(t ; \operatorname{Sex}, F M_{0}, F F M_{0}, I(t)\right) \tag{2}
\end{equation*}
$$

The components of $B W, F M$ and $F F M$ are determined by a system of ordinary differential equations:

$$
\begin{align*}
\hat{\rho}_{F F M} \cdot \frac{d F F M}{d t} & =p \cdot(I-E)+g(t) \\
\rho_{F M} \cdot \frac{d F M}{d t} & =(1-p) \cdot(I-E)-g(t) \tag{3}
\end{align*}
$$

where $p=C /(C+F M)$ corresponds to a ratio established by Forbes [1] where $C=10.4$ $\hat{\rho}_{F F M} / \rho_{F M}$. The parameters $\rho_{F M}$ and $\hat{\rho}_{F F M}$ correspond to the constants $\rho_{F M}=9.4 \mathrm{kcal} / \mathrm{g}$ $(=9400 \mathrm{kcal} / \mathrm{kg})$ and $\hat{\rho}_{F F M}=(4.3 \cdot F F M+837) \mathrm{kcal} / \mathrm{kg}$, where $F F M$ represents the reference fat free mass (kg) data.
For system (3), to account for the growth term $(g(t))$ we used the function:

$$
\begin{equation*}
g(t)=A \cdot e^{-\left(t-t_{A}\right) / \tau_{A}}+B \cdot e^{-\left(t-t_{B}\right)^{2} / 2 \tau_{B}^{2}}+D \cdot e^{-\left(t-t_{D}\right)^{2} / 2 \tau_{D}^{2}} \tag{4}
\end{equation*}
$$

where the specific parameters for males and females are shown in Table 1, 1, 2.

Table 1: Parameters for the growth function g as established in (4) from [1, 2].

Parameter	Males	Females	Scale
A	3.2	2.3	$\mathrm{kcal} /$ day
B	9.6	8.4	$\mathrm{kcal} /$ day
D	10.1	1.1	$\mathrm{kcal} /$ day
τ_{A}	2.5	1	years
τ_{B}	1	0.9	years
τ_{D}	1.5	0.7	years
t_{A}	4.7	4.5	years
t_{B}	12.5	11.7	years
t_{D}	15	16.2	years

The Energy expenditure rate (E) in (3) is given by:

$$
\begin{equation*}
E=K+\gamma_{F F M} F F M+\gamma_{F M} F M+\beta \Delta I+\delta \cdot B W+\eta_{F F M} \cdot \frac{d F F M}{d t}+\eta_{F M} \cdot \frac{d F M}{d t} \tag{5}
\end{equation*}
$$

where K represents an energy expenditure constant dependent on the indivudal's gender but irrespective of age ($K=800 \mathrm{kcal} / \mathrm{d}$ for males; $K=700 \mathrm{kcal} / \mathrm{d}$ for females); $\beta=0.24$ stands for the adaptation of energy expenditure when energy intake is perturbed $\Delta I ; \eta_{F M}=180 \mathrm{kcal} / \mathrm{kg}$ and $\eta_{F F M}=230 \mathrm{kcal} / \mathrm{kg}$ account for "biochemical efficiencies associated to fat and protein synthesis" [1].

The function for physical activity (δ) in (5) is given by:

$$
\begin{equation*}
\delta(t)=\delta_{\min }+\frac{\left(\delta_{\max }-\delta_{\min }\right) P^{h}}{t^{h}+P^{h}} \tag{6}
\end{equation*}
$$

The minimum physical activity for all ages and genders is represented by the constant $\delta_{\text {min }}=$ $10 \mathrm{kcal} / \mathrm{kg} / \mathrm{d}$. The constant for maximum physical activity is gender specific and given by $\delta_{\max }=19 \mathrm{kcal} / \mathrm{kg} / \mathrm{d}$ for males and $\delta_{\max }=17 \mathrm{kcal} / \mathrm{kg} / \mathrm{d}$ for females.

The parameter $P=12$ years represents the point of maximum physical activity whilst the constant $h=10$ represents the rate of decline as a function of age.

The perturbation of energy intake ΔI in (5) represents the shift away from the energy intake associated with normal growth. Within this work, we have assumed an energy intake rate $I(t)$ equal to the reference energy intake rate $I_{\text {ref }}(t)$ described in (7). $I_{\text {ref }}$ represents the reference energy intake for normal growth:

$$
\begin{align*}
I_{r e f}(t)=E & B_{r e f}+K+\left(\gamma_{F F M}+\delta\right) F F M_{r e f}+\left(\gamma_{F M}+\delta\right) F M_{r e f}+\frac{\eta_{F F M}}{\rho_{F F M}}\left(p \cdot E B_{r e f}+g\right) \tag{7}\\
& +\frac{\eta_{F M}}{\rho_{F M}}\left((1-p) \cdot E B_{r e f}-g\right)
\end{align*}
$$

Thus the ΔI term in equation 5 equals 0 .
The energy balance of reference $\left(E B_{r e f}\right)$ used in equation 7 was adapted from Katan et al. [2] and is given by:

$$
\begin{equation*}
E B_{r e f}(t)=A_{E B} \cdot e^{-\left(t-t_{A}^{E B}\right) / \tau_{A}^{E B}}+B_{E B} \cdot e^{-\left(t-t_{B}^{E B}\right)^{2} / 2\left(\tau_{B}^{E B}\right)^{2}}+D_{E B} \cdot e^{-\left(t-t_{D}^{E B}\right)^{2} / 2\left(\tau_{D}^{E B}\right)^{2}} . \tag{8}
\end{equation*}
$$

The gender specific parameters for this function are shown in Table 2.

Table 2: Parameters for the energy balance function $E B_{\text {ref }}$ as established in (8) from Katan et al., [2].

Parameter	Males	Females
$A_{E B}$	7.2	16.5
$B_{E B}$	30	47
$D_{E B}$	21	41
$\tau_{A}^{E B}$	15	7
$\tau_{B}^{E B}$	1.5	1
$\tau_{D}^{E B}$	2	1.5
$t_{A}^{E B}$	5.6	4.8
$t_{B}^{E B}$	9.8	9.1
$t_{D}^{E B}$	15	13.5

Finally with the combination of the above equations, the closed form expression for the energy expenditure rate equation (5) is given by:

$$
\begin{equation*}
\mathrm{E}=\frac{K+\left(\gamma_{F F M}+\delta\right) F F M+\left(\gamma_{F M}+\delta\right) F M+\beta \cdot \Delta I+\left(\frac{\eta_{F F M}}{\rho_{F F M}} p+\frac{\eta_{F M}}{\rho_{F M}} \cdot(1-p)\right) \cdot I+g \cdot\left(\frac{\eta_{F F M}}{\rho_{F F M}}-\frac{\eta_{F M}}{\rho_{F M}}\right)}{1+\frac{\eta_{F F M}}{\rho_{F F M}} p+\frac{\eta_{F}}{\rho_{F M}} \cdot(1-p)} . \tag{9}
\end{equation*}
$$

1.1 Initial values of fat mass and fat free mass for the system of ordinary differential equations

We estimated the initial fat mass $\left(F M_{0}\right)$ used in the system (3) utilizing the equations presented by Deurenberg et al. [3]:

$$
F M_{0}= \begin{cases}\frac{1.51 \cdot \mathrm{BMI}_{0}-0.7 \cdot a-2.2}{100} \cdot B W_{0}, & \text { if Male } \tag{10}\\ \frac{1.51 \cdot \mathrm{BMI}_{0}-0.7 \cdot a+1.4}{100} \cdot B W_{0}, & \text { if Female }\end{cases}
$$

where a represents the individual's age in years, BMI_{0} the initial body mass index $\left(\mathrm{kg} / \mathrm{m}^{2}\right)$ and $B W_{0}$ the initial body weight.

The initial fat free mass $\left(F F M_{0}\right)$, for that same system, is given by the difference between initial fat mass and initial body weight:

$$
\begin{equation*}
F F M_{0}=B W_{0}-F M_{0} \tag{11}
\end{equation*}
$$

1.2 Reference body composition data

We use data from ENSANUT 2006 to derive reference fat free mass ($F F M_{r e f}$) and reference fat mass $\left(F M_{r e f}\right)$ values by age and gender for the Mexican population, as shown in Table 3. These were used in the equation (7) for the reference of energy intake term $\left(E B_{r e f}\right)$ as linear interpolations.

Table 3: Reference values of fat mass and fat free mass (kg) from ENSANUT 2006 [4]

	Males			Females	
Age	Fat Free Mass (kg)	Fat Mass (kg)		Fat Free Mass (kg)	Fat Mass (kg)
5	15.72	3.66		14.86	4.47
6	18.18	4.48		17.09	5.18
7	20.63	4.94		19.16	5.75
8	23.83	6.45		21.75	6.49
9	26.42	7.03		24.83	7.93
10	28.30	7.47		27.67	9.02
11	31.93	8.83		31.41	10.43
12	35.46	9.58		34.90	11.93
13	41.01	11.64		37.22	13.08
14	43.23	12.45		49.41	14.11
15	46.30	12.82		41.30	15.73
16	49.18	13.93		41.80	15.12
17	49.92	14.01		42.05	14.83
18	52.17	13.35		42.96	15.89

Figure 1, shows the difference between the reference $F M$ and $F F M$ data used to calibrate the original DCGO model [5, 6, 7] versus the corresponding values used for the Mexican population. The Mexican data were composed by individuals aged 5 to 18 years from ENSANUT 2006 [4]. We used these reference values to re-calibrate the model and adapt it to the Mexican population.

Figure 1: Comparison between the body composition references [5] [6] [7] used for the DCGO model and [4] for Mexican population, by gender.

1.3 Model re-calibration and validation

The original DCGO model was re-calibrated to reference body composition data from Mexican children as explained in Section 1.2. A comparison between the one-year simulated weights for children $5-17$ y (FM and FFM) from ENSANUT 2006 obtained with the DCGO model, and the observed average body weight for children ages 6-18 from ENSANUT 2006, showed an average error of 0.65 kg in weight (Figure 2).

Figure 2: Comparison of average body composition data between the DCGO model one-year predictions of ENSANUT 2006 [4] children aged 5-17 and ENSANUT 2006 [4] reported average values. Weight (A), fat mass (B) and fat free mass (C).

For validation purposes, we compared the mean body weights, FFM and FM by age (ages 6-18) from ENSANUT 2012 with the average one-year simulated weights from our weight model, using data from ENSANUT 2012 children ages 5-17. One-year predictions were consistent with the observed average weights for the corresponding ages in the ENSANUT 2012 data, with a 1.22 kg error (Figure 3).

Figure 3: Reported (ENSANUT 2012) and model-simulated one-year average body weight (A), fat mass (B) and fat free mass (C) by age

As an additional validation, we used the model and data from ENSANUT 2006 for children aged $5-12$ to predict the average weight after 6 -years (ages 11-18), to compare these predictions with the observed ENSANUT 2012 average weights, FM and FFM for ages 11-18. The 6-year predictions based on 2006 data were consistent with the observed average values in ENSANUT 2012, with an error of 2.10 kg in weight $(<5 \%), 1.03 \mathrm{~kg}(<11 \%)$ in fat mass and $1.07(<4 \%)$ in fat free mass (Figure 4).

Figure 4: Comparison of average body composition data between the DCGO model six-year predictions with ENSANUT 2006 [4] children aged 5-12 and ENSANUT 2012 [8] reported average values. Weight (A), fat mass (B) and fat free mass (C).

2 Sugar sweetened beverages consumption

We derived sugar sweetened beverages (SSB) consumption and total energy intake (TEI), using data from ENSANUT's 2012, 7-day semi-quantitative FFQ [9]. The individual amount of $\mathrm{kcal} /$ day from SSB was estimated as a fixed proportion of the reported TEI. This proportion was calculated for each individual k as:

$$
\begin{equation*}
\text { propSSB } B_{k}=\frac{\text { Reported } S S B \text { intake }(k)}{\text { Total energy intake }(k)} . \tag{12}
\end{equation*}
$$

The implementation of a 10% tax scenario yields to a purchase reduction of 0.4% in low and 13.2% in high SSB purchasers, respectively [10]. Based on this result we assumed the same reductions in SSB consumption. Applying a linear behavior, a tax of 20% would reduce $2 \cdot 0.4 \%$ or $2 \cdot 13.2 \%$ depending on the SSB consumption level and so on. We estimated the change in SSB energy intake attributable to taxation as follows:

$$
\begin{equation*}
\Delta S S B_{k}^{t a x}(t)=1-\operatorname{prop} S S B_{k}(t) \cdot \text { reduction }^{\operatorname{tax}} \tag{13}
\end{equation*}
$$

Finally, we estimated the new energy intake rate for each individual (i) using different taxes as:

$$
\begin{equation*}
\Delta I_{(k, r e f)}^{\operatorname{tax}}(t)=\left(I_{(k, r e f)}(t) \cdot \Delta S S B_{k}^{\operatorname{tax}}(t)\right) \tag{14}
\end{equation*}
$$

2.1 Body weight estimation under baseline and taxed SSB scenarios

First we obtained the energy intake for every individual k in ENSANUT 2012 at time t as described in Section 1. Then we calculated the predicted weight $B W^{(k)}(t)$ using the weight change model:

$$
\begin{equation*}
B W_{k}^{\text {baseline }}(t)=B W_{k}^{\operatorname{model}}\left(t+a g e_{k} ; \operatorname{Sex}_{k}, F M_{k}, F F M_{k}, I_{(k, \text { ref })}(t)\right) \tag{15}
\end{equation*}
$$

To obtain the corresponding predicted weight under different SSB tax scenarios, the input for energy intake was considered as in equation (14), the new body weight was computed using:

$$
\begin{equation*}
B W_{k}^{\operatorname{tax}}(t)=B W_{k}^{\operatorname{model}}\left(t+a g e_{k} ; \operatorname{Sex}_{k}, F M_{k}, F F M_{k}, \Delta I_{(k, r e f)}^{\mathrm{tax}}(t)\right) \tag{16}
\end{equation*}
$$

For our final outcome, we estimated each individual's body weight difference between no tax and different tax scenarios as:

$$
\begin{equation*}
\Delta B W_{k}^{\operatorname{tax}}(t)=B W_{k}^{\text {baseline }}(t)-B W_{k}^{\operatorname{tax}}(t) \tag{17}
\end{equation*}
$$

3 Sensitivity analysis

We constructed a consumption-percent change Matrix Λ. This matrix, contains different combinations of taxation and caloric compensation scenarios, ranging from 0% to 100% by 10%. (Table 4). Each entry $\lambda_{i, j}$, corresponds to the percent of SSB reduction associated to different tax and compensation values and is calculated as follows:

$$
\begin{equation*}
\lambda_{i, j}=(i-1) \cdot\left(1-\frac{(j-1)}{10}\right), \tag{18}
\end{equation*}
$$

where $i=\{0 \%, 10 \%, 20 \%, 30 \%, \ldots, 100 \%\}$, represents the tax values and $j=\{0 \%, 10 \%, 20 \%$, $30 \%, \ldots, 100 \%\}$ the compensation values. Then, each entry $\lambda_{i, j}$ will be multiplied by the corresponding reduction for each individual's level of consumption.

Table 4: Matrix Λ with percent reductions in SSB consumption, corresponding to tax and compensation augmentation.
\% Compensation

Using Matrix Λ, we calculated the change in SSB energy intake attributable to taxation as follows:

$$
\begin{equation*}
\Delta S S B_{(i, j)}^{k}(t)=1-\operatorname{propSS} B_{k}(t) \cdot \lambda_{i, j} \tag{19}
\end{equation*}
$$

The new energy intake was estimated as in equation (14) and applied to the individual weight change model. Then, we estimated the values of the average body weight differences calculated as in section 2.1.

3.1 Long-term weight impact of the SSB-tax

As additional sensitivity analysis, we projected the potential long-term effect on weight of the implementation of the SSB tax. Figure 5 shows the results of our sensitivity analysis after 3 years of SSBs tax implementation. Overall, we observe that the potential effect of different tax and compensation scenarios on weight reduction could range between -0.48 kg with a 10% tax up to -4.65 kg with a 100% tax assuming a 0% caloric compensation. Nonetheless, even with a high caloric compensation (90%), we could still obtain weight reductions ranging from -0.05 kg to -0.48 kg with 10% or 100% taxes, respectively.

Figure 5: Sensitivity analysis for estimated weight (Kg) change after 3 years based on different sugar reductions and compensation rates.

4 Model Inputs

Input	Description	Value	Reference
Age	Age in years	5-18	ENSANUT 2012 [8]
Sex	male or female	0/1	ENSANUT 2012 [8]
Height	Height in meters	0.9-1.90 m	ENSANUT 2012 [8]
$B W_{0}$	Initial Body Weight	$12-140 \mathrm{~kg}$	ENSANUT 2012 [8]
BMI	Body mass index	10-58 $\frac{\mathrm{kg}}{\mathrm{m}^{2}}$	ENSANUT 2012 [8]
$F M_{0}$	Initial fatmass	$\frac{(1.51 \cdot B M I-0.7 \cdot a g e-3.6 \cdot s e x+1.4) \cdot B W}{100}$	ENSANUT 2012 [8]
$F F M_{0}$	Initial fat free mass	$B W-F M$	ENSANUT 2012 [8]
$\hat{\rho}_{F F M}$	Effective FFM energy density	$4.3\left(\frac{k c a l}{k g^{2}}\right) F F M(k g)+837 \frac{\mathrm{kcal}}{\mathrm{kg}}$	Model parameter from Hall et al. [1]
$\rho_{F M}$	FM energy density	$9.4 \frac{\mathrm{kcal}}{\mathrm{g}}$	Model parameter from Hall et al. [1]
C	Forbes body composition	$10.4 \mathrm{~kg}\left(\frac{\hat{\rho}_{F F M}}{\rho_{\text {FM }}}\right)$	Model parameter from Hall et al. [1]
p	p-radio Energy partitioning	$\frac{C}{C+F M}$	Model parameter from Hall et al. [1]
K	Expenditure constant	male: $800 \frac{\mathrm{kcal}}{d}$ female: $700 \frac{\mathrm{kcal}}{\mathrm{d}}$	Model parameter from Hall et al. [1]
$\eta_{F M}$	Cost of fat synthesis	$180 \frac{\mathrm{kcal}}{\mathrm{d}}$	Model parameter from Hall et al. [1]
$\eta_{F F M}$	Cost of fat free tissue synthesis	$230 \frac{\mathrm{kcal}}{\mathrm{d}}$	Model parameter from Hall et al. [1]
β	Adaptive thermogenesis	0.24	Model parameter from Hall et al. 1
$\gamma_{F M}$	Metabolic rate of adipose tissue	$4.5 \mathrm{kcal} / \mathrm{kg} / \mathrm{d}$	Model parameter from Hall et al. [1]
$\gamma_{F F M}$	Metabolic rate of fat-free tissue	$22.4 \mathrm{kcal} / \mathrm{kg} / \mathrm{d}$	Model parameter from Hall et al. [1]
$\delta_{\text {min }}$	Minimum physical activity	$10 \mathrm{kcal} / \mathrm{kg} / \mathrm{d}$	Model parameter from Hall et al. [1]
$\delta_{\text {max }}$	Maximum physical activity	male: $19 \mathrm{kcal} / \mathrm{kg} / \mathrm{d}$ female: $17 \mathrm{kcal} / \mathrm{kg} / \mathrm{d}$	Model parameter from Hall et al. [1]
P	Time of half max. physical activity	12 years	Model parameter from Hall et al. [1
h	Physical activity Hill coefficient	10	Model parameter from Hall et al. [1]

5 Algorithm and Implementation

To solve the system of differential equations (3), we used a 4th order Runge-Kutta algorithm (RK4) [11] with a stepsize $\Delta t=1$. This weight model was implemented in the bw package in R using Rcpp 12, 13, 14, 15, 16. The algorithm 1 contains the pseudo-code of the implementation.

```
Algorithm 1 Individual level weight change model
    procedure Weight change model
    Input:
```


for k in 1 to n do
$\mathrm{BMI}_{\text {init }}^{(k)} \leftarrow B W_{\text {init }}^{(k)} /\left(H_{\text {init }}^{(k)}\right)^{2}$
Body Fat $\%_{\text {init }}^{(k)} \leftarrow 1.51 \cdot \mathrm{BMI}^{(k)}-0.70 \cdot \mathrm{Age}_{\text {init }}^{(k)}-3.6 \cdot \mathbb{I}_{\text {Sex }^{(k)}==^{‘} \mathrm{Male}^{e}}+1.4$.
$F M_{\text {init }}^{(k)} \leftarrow\left(\right.$ Body Fat $\left.\%_{\text {init }}^{(k)}\right) \cdot B W_{\text {init }}^{(k)}$
$F F M_{\text {init }}^{(k)} \leftarrow B W_{\text {init }}^{(k)}-F M_{\text {init }}^{(k)}$
$\Delta I(t)_{\text {ref }}^{(k, \operatorname{tax})} \leftarrow\left(I_{r e f}^{(k)}(t) \cdot \Delta S S B^{(k, \operatorname{tax})}(t)\right)$.
for tax in $[0,10,20,30,40]$ do
Runge Kutta 4 do
Calculate $\hat{\rho}_{F F M}^{(k)}$ and $p^{(k)}$ from (3).
Calculate $g^{(k)}(t)$ from (4).
Interpolate linearly the values of Table 3 to calculate $I_{\text {ref }}^{(k)}$ as in (7).
Calculate $E^{(k, \operatorname{tax})}(t)$ from (5).
Aproximate $\frac{d F F M}{d t}{ }^{(k, \text { tax })}$ and $\frac{d F M}{d t}{ }^{(k, \text { tax })}$ as in (3).
end Runge Kutta 4
Calculate $B W^{(k, \operatorname{tax})}(t) \leftarrow F M^{(k, \operatorname{tax})}(t)+F F M^{(k, \operatorname{tax})}(t)$.
$\Delta B W^{(k, \text { tax })} \leftarrow B W^{(k, 0)}(365 \cdot$ Years $)-B W^{(k, \operatorname{tax})}(365 \cdot$ Years $)$
end for
end for
for tax in [10, 20, 30, 40] do
for cat in [Males, Females, Overall] do
${\overline{\Delta B W_{c a t}}}_{\text {cat }}^{(\mathrm{tax})}=\sum_{i=1}^{n} w_{i} \cdot \Delta B W^{(i, \text { tax })} \cdot \mathbb{I}_{\text {cat }}$
end for
end for
end procedure

References

[1] Kevin D Hall, Nancy F Butte, Boyd A Swinburn, and Carson C Chow. Dynamics of childhood growth and obesity: development and validation of a quantitative mathematical model. The Lancet Diabetes \& Endocrinology, 1(2):97-105, 2013.
[2] Martijn B Katan, Janne C De Ruyter, Lothar DJ Kuijper, Carson C Chow, Kevin D Hall, and Margreet R Olthof. Impact of Masked Replacement of Sugar-Sweetened with Sugar-Free Beverages on Body Weight Increases with Initial BMI: Secondary Analysis of Data from an 18 Month Double-Blind Trial in Children. PloS one, 11(7):e0159771, 2016.
[3] Paul Deurenberg, Jan A Weststrate, and Jaap C Seidell. Body mass index as a measure of body fatness: age-and sex-specific prediction formulas. British Journal of Nutrition, $65(2): 105-114,1991$.
[4] Instituto Nacional de Salud Pública. Encuesta Nacional de Salud y Nutrición 2006. http://ensanut.insp.mx/, 2006. Online; accessed 24 May 2016.
[5] Ferdinand Haschke. Body composition during adolescence. Body composition measurements in infants and children, pages 76-83, 1989.
[6] Samuel J Fomon, Ferdinand Haschke, Ekhard E Ziegler, and Steven E Nelson. Body composition of reference children from birth to age 10 years. The American Journal of Clinical Nutrition, 35(5):1169-1175, 1982.
[7] Kenneth J Ellis, Roman J Shypailo, Steven A Abrams, and William W Wong. The reference child and adolescent models of body composition: a contemporary comparison. Annals of the New York Academy of Sciences, 904(1):374-382, 2000.
[8] Instituto Nacional de Salud Pública. Encuesta nacional de salud y nutrición 2012. http://ensanut.insp.mx/, 2012. Online; accessed 24 May 2016.
[9] Ivonne Ramírez-Silva, Alejandra Jiménez-Aguilar, Danae Valenzuela-Bravo, et al. Methodology for estimating dietary data from the semi-quantitative food frequency questionnaire of the Mexican National Health and Nutrition Survey 2012. Salud Pública de México, 58(6):629-638, 2016.
[10] Shu Wen Ng, Juan A Rivera, Barry M Popkin, and M Arantxa Colchero. Did high sugarsweetened beverage purchasers respond differently to the excise tax on sugar-sweetened beverages in mexico? Public Health Nutrition, 22(4):750-756, 2019.
[11] Uri M Ascher and Chen Greif. A first course on numerical methods. SIAM, 2011.
[12] Rodrigo Zepeda-Tello and Dalia Camacho-García-Formentí. bw: Dynamic body weight model. https://github.com/INSP-RH/bw-Mexican-children-population, 2018.
[13] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2018.
[14] Dirk Eddelbuettel and Romain François. Rcpp: Seamless R and C++ integration. Journal of Statistical Software, 40(8):1-18, 2011.
[15] Dirk Eddelbuettel. Seamless R and $C++$ Integration with Rcpp. Springer, New York, 2013. ISBN 978-1-4614-6867-7.
[16] Dirk Eddelbuettel and James Joseph Balamuta. Extending extitR with extitC++: A Brief Introduction to extitRcpp. PeerJ Preprints, 5:e3188v1, aug 2017.

[^0]: *Contact information: Center for Population Health Research, National Institute of Public Health, Avenida Universidad 655, Santa María Ahuacatitlán, 62100 Cuernavaca, Morelos, México, [tbarrientos@insp.m], (52)5554871015.

