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Abstract 23 

Fe-Al-bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here 24 

we report the synthesis of (Mg0.5Fe3+
0.5)(Al0.5Si0.5)O3 bridgmanite (FA50) with the highest Fe3+-25 

Al3+ coupled substitution known to date. X-ray diffraction measurements showed that at ambient 26 

conditions the FA50 adopted the LiNbO3 structure. Upon compression at room temperature to 18 27 

GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa 28 

and 2600 K. Fitting Birch-Murnaghan equation of state of FA50 bridgmanite yields V0 = 29 

172.1(4) Å3, K0 = 229(4) GPa with K0′ = 4(fixed). The calculated bulk sound velocity of the 30 

FA50 bridgmanite is ~7.7% lower than MgSiO3 bridgmanite, mainly because the presence of 31 

ferric iron increases the unit-cell mass by 15.5%. This difference likely represents the upper limit 32 

of sound velocity anomaly introduced by Fe3+-Al3+ substitution. X-ray emission and synchrotron 33 

Mössbauer spectroscopy measurements showed that after laser annealing ~6% of Fe3+ cations 34 

exchanged with Al3+ and underwent the high-spin to low-spin transition at 59 GPa. The low-spin 35 

proportion of Fe3+ increased gradually with pressure and reached 17-31% at 80 GPa. Since the 36 

cation exchange and spin transition in this Fe3+-Al3+-enriched bridgmanite do not cause 37 

resolvable unit-cell volume reduction, and the increase of low-spin Fe3+ fraction with pressure 38 

occurs gradually, the spin transition would not produce a distinct seismic signature in the lower 39 

mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing 40 

chemical heterogeneity in the lower mantle. 41 

Plain Language Summary 42 

Fe-Al-bearing bridgmanite may be the dominant mineral in the lower mantle, which occupies 43 

more than half of Earth’s volume. A subject of much debate is whether spin transition of Fe in 44 

bridgmanite produces an observable influence on the physics and chemistry of the lower mantle. 45 

In this study, we synthesized a new (Mg0.5Fe3+
0.5)(Al0.5Si0.5)O3 bridgmanite with the highest Fe3+-46 

Al3+ coupled substitution known to date. We studied its structure, elasticity, and spin state by 47 

multiple experimental and theoretical methods. The high Fe content allowed us to better resolve 48 

a pressure-induced spin transition of Fe3+ caused by Fe-Al cation exchange at high temperature. 49 

Our results suggest that the spin transition is enabled by cation exchange but has a minor effect 50 

on the seismic velocity, although it may introduce chemical heterogeneity in the lower mantle. 51 

Our study helps resolve existing discrepancies on the nature of spin transition of Fe-Al 52 

bridgmanite and its influence on the physics and chemistry of the lower mantle.     53 

1 Introduction 54 

Bridgmanite is the dominant phase in the Earth’s lower mantle (Tschauner et al., 2014). It 55 

has an ABX3-type perovskite structure, consisting of eight corner-sharing BX6 octahedra with a 56 

larger A cation caged in the center AX8-12 pseudo-dodecahedral site. The main composition of 57 

bridgmanite is MgSiO3, but it can also accommodate a considerable amount of Fe2+ in its A site 58 

and coupled Fe3+ and Al3+ in its A and B sites for charge balance (Andrault et al., 2001; Boffa 59 

Ballaran et al., 2012; Glazyrin et al., 2014; Nishio-Hamane et al., 2008; Nishio‐Hamane et al., 60 

2005). Therefore its actual chemical composition in the Earth’s lower mantle can vary within the 61 

formula (Mg,Fe2+,Fe3+,Al)(Si,Al,Fe3+)O3 depending on different bulk composition, pressure (P), 62 

temperature (T) and oxygen fugacity (fO2). Frost et al. (2004) showed that Fe2+ in bridgmanite 63 

underwent a self-disproportionation at lower mantle P-T conditions, elevating the concentration 64 

of Fe3+ in bridgmanite. Since most peridotitic and basaltic sources have a higher than unity Al/Fe 65 
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ratio (Mohn & Trønnes, 2016), and Fe3+-Al3+ coupled substitution is the favored mechanism to 66 

incorporate trivalent cations into bridgmanite (Andrault et al., 2001; Mohn & Trønnes, 2016; 67 

Nishio‐Hamane et al., 2005), the Fe-Al bridgmanite can be a dominant phase to host Fe and Al in 68 

the lower mantle (Wang et al., 2015). 69 

As the only major element with variable valence and potential magnetic transition in 70 

bridgmanite, iron plays a key role on its elastic and electrical properties. It may also influence 71 

element partitioning and isotopic fractionation in the Earth’s mantle (Badro, 2014; Lin et al., 72 

2013). Whether bridgmanite undergoes any spin transition under Earth’s lower mantle 73 

conditions, however, is a question hanging for decades. The Fe2+ can only occupy A site in 74 

perovskite structure. It was suggested to undergo a high-spin (HS) to low-spin (LS), or HS to 75 

intermediate-spin (IS) transition in earlier studies, but recent researches demonstrated that Fe2+ 76 

shows no spin transition in A site up to at least 120 GPa (reviewed by Badro (2014)). The Fe3+ in 77 

A site also has no spin transition within the mantle pressure range, but the Fe3+ in B site was 78 

reported to transform to LS-state at 15-50 GPa in multiple studies (Catalli et al., 2010; Fu et al., 79 

2018; Liu et al., 2018; Mao et al., 2015; Okuda et al., 2019). Some studies further argued that HS 80 

Fe3+ can undergo a cation exchange with Al3+ in B site at ~40-80 GPa and high temperature, in 81 

which B-site Fe3+ will subsequently transform into LS-state as discussed above (Catalli et al., 82 

2011; Fujino et al., 2012; Kupenko et al., 2015), but the others did not observe this cation 83 

exchange and spin transition (Dubrovinsky et al., 2010; Glazyrin et al., 2014; Potapkin et al., 84 

2013). Theoretical calculations also predicted the Fe-Al cation exchange to be energetically 85 

unfavorable due to the large Bader radius of both HS and LS Fe3+ (Mohn & Trønnes, 2016). To 86 

date, the controversary on the cation exchange - spin transition hypothesis in (Fe,Al)-bearing 87 

bridgmanite has not been fully resolved yet.  88 

In this study, we synthesized a new bridgmanite sample with the composition 89 

(Mg0.470.50Fe0.52)(Al0.460.47Si0.510.55)O3, hereafter referred to FA50, and studied its structure, 90 

elastic and electronic properties by X-ray diffraction (XRD), X-ray emission spectroscopy (XES) 91 

and synchrotron Mössbauer spectroscopy (SMS) experiments and DFT calculations. With the 92 

highest fraction of Fe-Al substitution, we aim to better resolve the potential cation exchange and 93 

spin transition under high pressure and high temperature and investigate the influence of Fe-Al 94 

incorporation in bridgmanite on the physics and chemistry of the lower mantle. 95 

2 Materials and Methods 96 

2.1 Multi-anvil apparatus synthesis and characterization 97 

The synthesis was conducted using the 1000-ton multi-anvil apparatus (MA) at the 98 

University of Michigan. The starting materials were a mixture of MgO, SiO2, Fe2O3, Al2O3 with 99 

2:2:1:1 molar ratio. In the synthesis of 57Fe-enriched sample, half of the Fe2O3 was replaced by 100 
57Fe2O3. The mixture was heated at 1073 K for 8 hrs to remove the moisture and structure water 101 

before sample loading. The COMPRES 8/3 cell assemblies were used in the synthesis (K. D. 102 

Leinenweber et al., 2012). The sample was loaded in a platinum capsule and kept at 24 GPa and 103 

1873 K for 10 hrs before quenching to room temperature and then decompressed to 1 bar. The 104 

recovered product was examined by JOEL-7800FLV Scanning Electron Microprobe (SEM) and 105 

SX-100 Electron Microprobe Analysis (EPMA) at the Electron Microbeam Analysis Laboratory 106 

(EMAL) of the University of Michigan. The accelerating voltage and beam current were set at 15 107 

kV and 10 nA. The product consists of mainly (Mg0.5Fe0.5)(Al0.5Si0.5)O3 (FA50, exact formula 108 
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(Mg0.50Fe0.52)(Al0.47Si0.51)O3 and (Mg0.47Fe0.52)(Al0.46Si0.55)O3 in two independent runs), with 109 

minor excess Al2O3 and SiO2, and a coexisting Si-deficient oxide Mg1.47Fe2.46Al1.11Si0.12O7, 110 

hereafter referred to MFA (Figure S1 and Table S1). 111 

2.2 Diamond anvil cell experiments 112 

Diamond anvil cells (DAC) with 150 μm and 300 μm diameter diamond culets were 113 

employed in the synchrotron XRD experiment up to 102 GPa, and XES and SMS experiments up 114 

to 80 GPa, respectively. Rhenium gasket was used for the XRD experiment and beryllium gasket 115 

was used for the XES and SMS experiments. XES and SMS data were collected on the same 116 

sample. The gaskets were pre-indented to ~30 μm thickness. Holes of 90 μm for 150 μm culet 117 

and 150 μm for 300 μm culet were drilled by the laser-drilling system at HPCAT of Advanced 118 

Photon Source (APS), Argonne National Lab (ANL).  119 

The XRD experiment was conducted at beamline 13-ID-D at APS, ANL. Two sample 120 

grains with ~30 μm diameter and ~15 μm thickness were picked from the MA synthesis product 121 

and loaded into the sample chamber. Au powder was dispersed into the sample chamber as the 122 

pressure calibrant (Fei et al., 2007). Neon gas was loaded as the pressure medium and thermal 123 

insulator using the COMPRES/GSECARS gas loading system at APS, ANL. The incident X-ray 124 

beam size was ~3 μm in diameter and the wavelength was 0.3344 Å. A flat-top double-sided 125 

laser-heating system, with the beam spot focused to 30-40 μm, was used to reach high 126 

temperatures (Prakapenka et al., 2008). We scan-heated the sample continuously to avoid 127 

creating large temperature gradient inside the sample. The two sample grains were first 128 

compressed to ~27 GPa and laser-annealed at 1600-1800 K for 10 mins until the XRD showed 129 

the sample was fully converted to bridgmanite polycrystalline phase. One sample grain was then 130 

further compressed and laser-annealed each time after compression to facilitate the potential 131 

phase transition and cation exchange. XRD patterns were collected twice before and after laser-132 

annealing. The other sample grain was compressed simultaneously without laser-annealing for 133 

comparison. All XRD patterns used for lattice refinement were collected by applying a ±10º 134 

rotation wide scan to improve the number and quality of the peaks. The Au peaks appear 135 

together with the sample peaks in the XRD patterns so the pressure deviation between sample 136 

and pressure marker was minimized. Dioptas (Prescher & Prakapenka, 2015), GSAS (Toby, 137 

2001) and PDIndexer (Seto et al., 2010) software were used to integrate and process the XRD 138 

data. The lattice parameters were fitted by a Le-Bail method. The sample peaks overlapped with 139 

gold or neon peaks were excluded from the fitting.   140 

The XES experiment was conducted at beamline 16-ID-D at APS, ANL. A sample with 141 

~40 μm diameter and ~15 μm thickness was directly loaded into the sample chamber. Silicone 142 

oil was used as the pressure medium, and the edge of Raman peak from diamond culet was used 143 

for the pressure calibration (Akahama & Kawamura, 2006). The incident X-ray beam size was 144 

5×7 μm2, and the beam energy is 11.3 keV with a bandwidth of ~1 eV. Fe Kβ emission was 145 

selected by silicon analyzer and reflected to a silicon detector with an energy step of about 0.3 146 

eV. Each spectrum took ~40 min and 1–3 spectra were taken to accumulate at least 30,000 147 

counts at the Fe Kβ main peak at each pressure. The sample was laser annealed at 1300-2100 K 148 

for 15-35 mins at 59, 75 and 80 GPa to facilitate the potential phase transition and cation 149 

exchange at 13-ID-D, using the same procedure as that in XRD experiments. The time-domain 150 

SMS measurements were performed on the same sample in XES experiments at beamline 3-ID-151 

B at APS, ANL. The time window of SMS with effective statistics was extended to 250 ns in 152 
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hybrid mode, providing better constraint on the hyperfine parameter. The incident X-ray beam 153 

size was ~20×20 μm2. Each spectrum was collected for ~12 h. The CONUSS package was used 154 

for the data processing (Sturhahn, 2000). 155 

2.3 Density functional theory calculation 156 

Density functional theory (DFT) calculation was performed using the Vienna Ab initio 157 

Simulation Package (VASP) in the MedeA software (Kresse & Furthmüller, 1996). Exchange 158 

and correlation were treated using PBE-GGA pseudopotential. The energy cut-off was set to 520 159 

eV. The convergence criteria for the self-consistency loop was set to 10-5 eV. The k-points grid 160 

was set to 6×6×4 for original bridgmanite lattice and was scaled down by ratio when building the 161 

supercells. Spin-polarization was included for Fe atom. The MgSiO3 bridgmanite structure was 162 

used as the prototype and eleven different types of Fe-Al substitution configurations were 163 

selected to search for the most energetically stable structure of (Mg0.5Fe0.5)(Al0.5Si0.5)O3 164 

bridgmanite. 165 

3 Results and Discussions 166 

3.1 LiNbO3 – bridgmanite phase transition 167 

The quenched product FA50 from the MA experiments can be initially indexed as a 168 

corundum-type structure at ambient pressure (Figure 1). It transformed into bridgmanite at 18.8 169 

GPa. The bridgmanite phase remained stable from 26.8 to 102.2 GPa after laser-annealing 170 

treatment (Figure 1b). The transition to bridgmanite occurred without heating and at ~5 GPa 171 

lower than that for pure MgSiO3. Since the sample was synthesized in MA at 24 GPa which 172 

exceeds the transition pressure, the corundum-type phase may have formed retrogressively 173 

during decompression. Both the forward and reverse transitions can proceed without heating, 174 

implying a low kinetic barrier between the two phases. The low kinetic barrier may be explained 175 

by the structures of the perovskite and LiNbO3-type phases, which are related through the 176 

rotation of the BX6 octahedra without breaking B-X bonds (Ross et al., 1989). The c/a ratio of 177 

the quenched sample is 2.67, consistent with the expected value of ~2.63-2.69 for LiNbO3-type 178 

ordering (Abrahams & Marsh, 1986; Ko & Prewitt, 1988; K. Leinenweber et al., 1995) and 179 

smaller than those of the corundum prototype at ~2.73 (Blake et al., 1966; Yim & Paff, 1974) or 180 

ilmenite-type ordering at ~2.77-2.87 (Horiuchi et al., 1982; Kidoh et al., 1984; Wechsler & 181 

Prewitt, 1984). The LiNbO3-type phase is completely ordered between the A and B sites, each 182 

consisting of a corner-sharing octahedral framework. One set of corner-sharing framework is 183 

fully occupied by Si and Al cations, which rotates to the BX6 corner-sharing framework of 184 

bridgmanite; the other set is occupied by Mg and Fe cations, which displaces to the pseudo-185 

dodecahedral A site in bridgmanite upon compression.  186 

In the FA50 bridgmanite, both A site and B site are occupied by two cations instead of 187 

one. To search for the most stable ordering of Mg/Fe in A site and Si/Al in B site, we performed 188 

DFT calculations on 11 structures of (Mg0.5Fe0.5)(Al0.5Si0.5)O3 with different cation arrangements 189 

at 0 K. The three energetically favored structures share the same type of Si/Al ordering in B site, 190 

in which Si and Al atoms alternate in all axial directions. With this B-site framework, an altered 191 

Mg and Si sheet arrangement in ac plane along b direction is most energetically favorable, while 192 

the strip arrangement along b direction is the closest competitor with 33 meV higher in internal 193 

energy (Figure 2). The LiNbO3-type phase as a retrogressive product should share the same 194 

cation framework of bridgmanite. It is worth noting that the complete cation ordering inside A 195 
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and B site can be disrupted by the elevated temperature, thus further experiments are still needed 196 

to testify these predicted orderings. 197 

3.2 Equation of state and spin transition 198 

The sample grains were heated to 1600-1800 K for 10 mins at ~27 GPa to release stress 199 

and facilitate the formation of bridgmanite from LiNbO3 phase. The two bridgmanite samples 200 

were then compressed to ~102 GPa with a 2-7 GPa pressure interval. Previous studies showed 201 

that due to kinetic barrier Fe-Al exchange only occurred at high temperature (Catalli et al., 2011; 202 

Fujino et al., 2012; Kupenko et al., 2015). Therefore, we laser-annealed sample 1 at 1600-2200 203 

K for 10-25 min each time after compression to facilitate cation exchange and phase transition 204 

(Figure S2). This sample should always adopt the stable cation ordering at high pressure and 205 

high temperature conditions at the whole pressure range. Two XRD patterns were collected after 206 

each compression, one before and the other after the laser-annealing for the laser-annealed 207 

sample (gray and red squares in Fig. 3). The pressure after laser-annealing was higher than that 208 

before laser-heating, because the pressure was still slowly increasing during heating. We tried to 209 

fit the unit-cell volume as a function of pressure by the second-order Birch-Murnaghan equation 210 

of state (BM-EoS). Fitting only the data after laser-annealing (red squares in Fig. 3) yields V0 = 211 

172.0(7) Å3, K0 = 230(6) GPa with K0′ = 4(fixed), while fitting both the data before and after 212 

laser-annealing (gray and red squares in Fig. 3) yields V0 = 172.1(4) Å3, K0 = 229(4) GPa with 213 

K0′ = 4(fixed). The two EoSs are almost identical within uncertainty, indicating laser-annealing 214 

at each pressure points did not introduce visible volume collapse from potential cation exchange 215 

and spin transition. Therefore, the second EoS with a denser data coverage and smaller 216 

uncertainties was used to represent the EoS for thermodynamically stable structure and ordering 217 

of FA50 sample. The slope of normalized stress – Eulerian strain (F-f) fitting is almost flat, 218 

indicating the validity of fixing K0′ to 4.  219 

Sample 2 was only cold compressed thus no cation exchange and spin transition were 220 

expected, and it served as a reference for the initial cation ordering. This sample has a similar or 221 

slightly lower volume at the whole pressure range with the laser-annealed sample. Its EoS 222 

parameters V0 = 170.7(3) Å3, K0 = 240(3) GPa with K0′ = 4(fixed) confirmed this observation. 223 

DFT calculations give EoS parameters of V0 = 176.5(5) A3, K0 = 212(12) GPa and K0′ = 3.97(33) 224 

from energy-volume fitting, in which the Fe3+ is at A-site and HS, consistent with the EoS of 225 

sample 2 with a typical overestimation of V0 and underestimate of K0. If sample 1 has a 226 

continuous cation exchange and spin transition along with the increased pressure, it should have 227 

a lower volume and softened K0 compared with those of sample 2. However, the volumes do not 228 

show the trend as expectation, suggesting that even if there is any cation exchange and spin 229 

transition in sample 1, it does not introduce visible volume collapse compared with its original 230 

state. The bulk modulus of sample 1 is lower than sample 2 as expected, but the difference is 231 

small and not conclusive enough to determine any transition considering the uncertainty level 232 

indicated by the inverse trend in volume. Overall, comparing these two samples could not 233 

distinguish any pressure-induced cation exchange and spin transition as suggested in other FA 234 

bridgmanite (Catalli et al., 2011; Fujino et al., 2012; Kupenko et al., 2015), indicating either 235 

there is no cation exchange, or the cation exchange and subsequent spin transition does not 236 

introduce resolvable difference by XRD method.  237 

The FA50 bridgmanite has a larger unit-cell volume than MgSiO3 and other Fe,Al-238 

bearing bridgmanite samples with lower Fe-Al contents, due to the large ionic size of Fe3+ and 239 
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Al3+ (Andrault et al., 2001; Boffa Ballaran et al., 2012; Nishio-Hamane et al., 2008). Its unit-cell 240 

volume is smaller than the (Mg0.46Fe0.53)(Fe0.51Si0.49)O3 (FF50) bridgmanite (Liu et al., 2018), 241 

which indicates Fe3+(HS) > Fe3+(LS) > Al3+ in B site. This relation is consistent with the ionic 242 

radius at ambient pressure (Shannon, 1976) The gap between FA50 and LS-state FF50 243 

bridgmanite decreases with pressure, indicating Fe3+(LS) is more compressible than Al3+ at high 244 

pressure. When comparing these Fe-Al substituted bridgmanites at K0′ = ~4, the unit-cell 245 

volumes exhibit a quasi-linear relation with the fraction of Fe-Al substitution (Figure S3). The 246 

bulk moduli have a negative correlation to the unit-cell volumes (Table S2) (Andrault et al., 247 

2001; Boffa Ballaran et al., 2012; Liu et al., 2018; Nishio-Hamane et al., 2008) except a small 248 

anomaly between MgSiO3 (Boffa Ballaran et al., 2012) and FA5 (Andrault et al., 2001) within 249 

uncertainty, consistent with that the larger ion is more compressible. 250 

To further examine spin transition, we performed XES and SMS measurements, which 251 

are more sensitive probes for the electronic configuration than XRD, on the FA50 bridgmanite 252 

(Figure 4 &5). The sample was compressed from 18 to 80 GPa and laser-heated at three 253 

pressures of 59, 75 and 80 GPa. In XES spectra, the area depression of the satellite peak around 254 

7044 eV was used to quantify the fraction of LS Fe3+ in B site. The area difference was 255 

calculated by subtracting the spectrum of LS standard from the measured ones, and the spectrum 256 

at 18 GPa is set as HS standard. The intensity relative difference (IRD) and intensity absolute 257 

difference (IAD) methods were both applied to calculate the area difference (Figure 4b) (Mao et 258 

al., 2014). Before laser heating at 18-54 GPa, the area of the satellite peaks remains similar to HS 259 

standard, indicating no spin transition. After the first laser annealing at 59 GPa, the peak area 260 

was depressed by ~6%, indicating ~6% Fe3+ transformed into LS-state (Fig. 2b). It also implies 261 

the same fraction of Fe3+ exchanged into B site. The peak area was further diminished at 75 GPa 262 

and 80 GPa where laser-annealing treatment was applied. The good correlation between peak 263 

area and laser-annealing treatment indicates that high temperature is necessary to overcome the 264 

kinetic barrier during cation-exchange induced spin transition. The increased fraction of cation 265 

exchange with pressure indicates that the transition could happen in a wide pressure range, where 266 

the LS-state B-site Fe3+ continuously increase with depth (Figure 4b). At 80 GPa after laser 267 

annealing, the fraction of LS Fe3+ increased to 17-29% from IRD and IAD methods, respectively, 268 

implying that the fraction of Fe3+ HS-LS transition increases with pressure. The 59 GPa pressure 269 

point thus only gave an upper limit of the initiation pressure of the cation exchange and spin 270 

transition, while the transition could initiate at lower pressure if been heated. If extrapolated from 271 

the pressure – HS fraction of Fe3+ at 59, 75 and 80 GPa, the initiation pressure was roughly 272 

estimated at ~47 GPa, but the uncertainty is extremely large thus further investigation is needed 273 

with denser pressure coverage. In addition, we collected two SMS spectra at 35 GPa and 80 GPa 274 

on the same sample before and after laser annealing, which confirmed the magnetic transition 275 

(Figure 5). The spectrum at 35 GPa can be well explained by one HS Fe3+ site, while the 276 

spectrum at 80 GPa needs at least two Fe3+ sites for a satisfactory fitting. The fitted Quadrupole 277 

Splitting (QS) of Fe3+ was consistent with those in previous studies (Lin et al., 2012; Liu et al., 278 

2015). The LS proportion is 31%, consistent with XES measurement within uncertainties. The 279 

observed cation-exchange-induced spin transition coincides with several previous studies (Catalli 280 

et al., 2011; Fujino et al., 2012; Kupenko et al., 2015) but opposites to the others (Dubrovinsky 281 

et al., 2010; Glazyrin et al., 2014; Potapkin et al., 2013). The absence of observation of spin 282 

transition in these previous studies may be resulted from the kinetic barrier of cation exchange, 283 

or the low signal due to low Fe3+ concentration.  284 
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The limited fraction of cation exchange and spin transition also explains the absence of 285 

volume collapse in XRD results. The volume reduction associated with full transformation of B 286 

site Fe3+ in (Mg0.5Fe0.5)(Fe0.5Si0.5)O3 into the LS-state is estimated at  ~0.5% (Liu et al., 2018). In 287 

our sample, if 20% of the Fe3+ enters the B-site after laser annealing, the transformation of 288 

(Mg0.5Fe0.4Al0.1)(Fe0.1Al0.4Si0.5)O3 to the LS-state at ~80 GPa would produce ~0.1% volume 289 

reduction (~0.14 Å3), well below the uncertainty level of volume refinement. The volume 290 

reduction would be even smaller in the Earth’s mantle, which typically has much lower Fe-Al 291 

contents (Boffa Ballaran et al., 2012; Glazyrin et al., 2014).  292 

3.3 Bulk sound velocity 293 

Although the spin transition in Fe-Al bridgmanite is likely seismically invisible, the 294 

compositional difference between Fe-Al bridgmanite and MgSiO3 bridgmanite results in 295 

significant contrast in their density and compressibility, which leads to the difference in bulk 296 

sound velocity: 297 

𝑣𝛷 = √𝐾/𝜌 = √𝐾𝑉/𝑀   (1) 298 

where ρ is density, M and V are the unit-cell mass and volume. Figure 6 plotted vΦ of different 299 

bridgmanites as a function of pressure. The vΦ can also be calculated from the direct sound 300 

velocity measurement by 301 

𝑣𝛷 = √𝑣𝑝2 −
4

3
𝑣𝑠2   (2) 302 

where vp is the compressional wave velocity and vs is the shear wave velocity.  303 

The vΦ decreases systematically with increased Fe-Al content in these bridgmanites, 304 

because the differences of vΦ mainly come from the unit-cell mass difference introduced by Fe 305 

substitution. The K and V of these bridgmanites are anti-correlated with each other as discussed 306 

above, making the KV term close in value for different bridgmanite and the M the dominant 307 

factor for the difference in vΦ. For example, at 130 GPa MgSiO3 and FA50 have only -1.6% 308 

difference in KV, but a constant 15.5% difference in M; The vΦ of FA50 is about 7.7% smaller 309 

than that of MgSiO3 bridgmanite and this difference is dominated by the difference in M (Figure 310 

6). Thus, from the mass difference, FA50 might represent the highest sound velocity variation 311 

introduced by the coupled Fe-Al substitution. vΦ of FF50 is ~16.4% smaller than that of MgSiO3 312 

bridgmanite at 130 GPa (Liu et al., 2018), which means substituting 50% Fe in B site further 313 

reduce bulk sound velocity by ~8.7%, quite similar to substituting 50% Fe in A site. Therefore, 314 

the incorporation of Fe3+ into either/both sites decreases vΦ equally by ~8.2% for each 0.25 315 

Fe3+/(Fe3++Mg+Si+Al), at core-mantle boundary pressure, which can serve as a criterion on 316 

detecting Fe-enriched region in lower mantle. The similar volume deduction for A and B sites 317 

also implies that a significant sound velocity discontinuity is not expected during cation 318 

exchange.  319 

When comparing the vΦ derived from sound velocity measurement with the vΦ calculated 320 

from EoS parameters of similar compositions, the F6A4 and F12A11 composition matches well 321 

with the range defined by FA5 and FA15 (Fu et al., 2019), but the FA10  showed a different 322 

slope with increased pressure, mainly because the K’ is 3.44(3), lower than those in other studies 323 

(Kurnosov et al., 2017). It is still acceptable difference concerning the uncertainty range in sound 324 

velocity measurements. Previous study also suggested that Fe3+, if originally HS at B site, can 325 
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induce sound velocity discontinuity during spin transition due to the softening of bulk modulus K  326 

(Fu et al., 2018). It is a different scenario for Fe-Al substituted bridgmanite where Fe3+ locate at 327 

A site originally and the spin transition requires cation exchange. Although the Fe3+ turns to LS 328 

state immediately after entering B-site at >15-50 GPa (Catalli et al., 2010; Fu et al., 2018; Liu et 329 

al., 2018; Mao et al., 2015; Okuda et al., 2019), the cation exchange itself is a gradual process 330 

with increased pressure throughout the whole lower mantle, which controls the fraction of LS 331 

Fe3+. Therefore, the changes resulted from the cation exchange and spin transition are distributed 332 

into the whole lower mantle pressure, and a volume collapse or a bulk modulus softening is not 333 

expected to occur within a narrow pressure range. We thus posit that the spin transition in Fe-Al 334 

coupled bridgmanite does not cause a resolvable seismic discontinuity in Earth’s mantle.  335 

4 Implications and Conclusions 336 

The prediction of Fe2+ disproportionation in bridgmanite (Frost et al., 2004) and the 337 

positive correlation between Fe3+ and Al content in bridgmanite composition silicates from 338 

diamond inclusions (McCammon et al., 1997) imply that Fe-Al coupled substitution may be a 339 

major mechanism to accommodate Fe and Al in lower mantle. The solubility of Fe-Al in MgSiO3 340 

bridgmanite was suggested to have an upper limit since FeAlO3 stabilizes as Rh2O3(II) instead of 341 

the perovskite structure (Nagai et al., 2005; Nishio‐Hamane et al., 2005). Previous studies 342 

reported the synthesis of a series of bridgmanites ranging from FA5 to FA40 (Andrault et al., 343 

2001; Boffa Ballaran et al., 2012; Nishio-Hamane et al., 2008). Here the synthesis of FA50 344 

further elevates this upper limit of solubility to 50%, which may be an end member of this 345 

bridgmanite series. More interestingly, FA50 may have different cation ordering from FA5-40 346 

because FA50 can transform into a LiNbO3-type phase reversibly, while FA5-FA40 did not have 347 

similar transition and therefore always quenched as metastable bridgmanite. The difference may 348 

be explained by the cation arrangement is more ordered in FA50, possibly due to the nearly 1:1 349 

stoichiometric ratio of MgSiO3 and FeAlO3. Although complete ordering inside A and B sites is 350 

unlikely at mantle temperatures, a more ordered cation arrangement may have lower entropy and 351 

would be energetically favored under lower temperatures. Considering that both FA50 and 352 

MgSiO3 bridgmanite have lower entropy than the bridgmanites with intermediate composition, 353 

the FA5-FA40 may decompose into FA50 and MgSiO3 endmembers in order to minimize the 354 

total free energy in low-temperature environments such as cold subducted slabs, which is also an 355 

environment enriched with Fe3+.  356 

With the extreme iron enrichment in FA50 sample, we observed a gradual increase of the 357 

fraction of B-site LS Fe3+ in Fe-Al coupled substitution bridgmanite due to Fe-Al cation 358 

exchange. The spin transition, however, does not induce a sharp unit-cell volume reduction or 359 

bulk modulus softening, thus may not be able to introduce detectable seismic anomaly at specific 360 

pressure. It has also been suggested that Fe-Al coupled incorporation has very limited influence 361 

on its electrical conductivity because it does not introduce site vacancy in bridgmanite that 362 

enhances the conductivity (Potapkin et al., 2013; Sinmyo et al., 2014). The HS-LS transition in 363 

FF50 only lowers the electrical conductivity by <0.3 log unit (Liu et al., 2018). Since the Fe-Al 364 

site exchange in FA50 does not introduce additional defects from charge balance and the amount 365 

of Fe3+ in B-site is less than FF50, the spin transition may also be difficult to be detected by 366 

electromagnetic probes.  367 

Isotopic fractionation of Fe in the lower mantle may be affected by the spin-transition of 368 

Fe3+- and Al3+-bearing bridgmanite. When Fe3+ exchanges with Al3+ to enter the B site and 369 
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undergoes spin transition, the Fe-O bond shortens, and the coordination number decreases from 8 370 

to 6. As the Fe-O bond in bridgmanite becomes stiffer with increasing depth, heavier Fe isotopes 371 

may be favored in bridgmanite, as suggested by previous studies of isotopic fractionation 372 

associated with spin transition in ferropericlase, Fe2+-bearing bridgmanite and phase transition in 373 

metallic iron alloys (Lai et al., 2017; Rustad & Yin, 2009). The increased fraction of B-site Fe3+ 374 

with pressure may result in a chemical heterogeneity with depth. Further investigations are 375 

needed from high-pressure experiments to test if the isotopic fractionation fits this prediction and 376 

makes it a potential depth indicator for volcanic products and deep mantle diamond inclusions.  377 

The B-site Fe3+ spin transition may also affect the iron partitioning between bridgmanite 378 

and ferropericlase (Lin et al., 2013). However, the Fe in ferropericlase is dominantly Fe2+ and 379 

therefore Fe-Mg re-partitioning between ferropericlase and Fe3+-bearing bridgmanite would 380 

require oxidizing or reducing source. In Earth’s mantle, the metallic Fe0 produced from Fe2+ 381 

disproportionation (Frost et al., 2004) can be a reducing source to partition more Fe into 382 

ferropericlase during spin transition; conversely, the disproportionation reaction may produce 383 

additional Fe3+ to enter bridgmanite, which serves as an additional oxidizing source. Therefore, 384 

the cation exchange and spin transition can influence the Fe partitioning between Fe-Al 385 

bridgmanite and ferropericlase in the Earth’s mantle; meanwhile, this process may also slightly 386 

change the redox state of lower mantle. 387 
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Figure captions 523 

Figure 1. X-ray diffraction patterns of compressed FA50 polymorphs at 300 K. (a) LiNbO3-524 

type (LN) FA50 at 1.3 GPa, 300 K with a = 4.864(1) Å and c = 12.997(3) Å; (b) FA50 525 

bridgmanite (Bdg) at 102.2 GPa, 300 K after laser annealing with a = 4.385(6) Å, b = 4.690(3) Å 526 

and c = 6.410(13) Å. Ticks of gold (Au), neon (Ne) and the residual curve (blue) between 527 

experimental data (black cross) and fitted curve (red line) are shown. 528 

Figure 2. Comparison of internal energy of different cation orderings in FA50 bridgmanite. 529 

All structures are calculated at fixed volume of 167.53 Å3. The most energetically favored 530 

structure (No. 4, black filled square) and two close competitors (No. 3 & 6, gray filled squares) 531 

share the same type of B-site ordering, in which each Si atom (dark blue spheres and octahedra) 532 

is bridged to six Al atoms (light blue spheres and octahedra) by O atoms (red spheres), and vice 533 

versa. Structure No. 4 has an alternating Mg (light brown spheres) and Fe (dark brown spheres) 534 

sheet arrangement in ac (010) plane along the b axis direction. This indicates that the Fe and Al 535 

atoms alternate between the closest neighbor sites along the (110) and (1-10) plane normal 536 

directions but align separately in column in the (001) plane normal direction. 537 

Figure 3. Compression curve of FA50 bridgmanite at 300 K. (a) Unit-cell volume as a 538 

function of pressure. Sample 1 (filled squares) was laser-annealed after each compression, while 539 

sample 2 (open circles) was cold compressed to the highest pressure. (b) Normalized stress – 540 

Eulerian strain (F-f) plot. Symbols correspond to those in (a). The data can be fitted linearly with 541 

slope close to 0, indicating the validity of using a 2nd order BM-EoS. 542 

Figure 4. X-ray emission spectroscopy measurements of FA50 bridgmanite at high 543 

pressures. (a) XES Fe Kβ spectra of FA50 from 18 to 80 GPa, together with the LS (black 544 

dotted) reference spectra. The spectra at 18 GPa (black solid) was used as HS reference. All 545 

spectra were normalized to unity in integral area and aligned by the position of the Kβ main peak. 546 

Inset: Fe Kβ satellite peak, whose area shrank after laser heating at high pressure, indicating a 547 

decrease of HS Fe3+ species. (b) The HS fraction of Fe3+ calculated by the IAD of the Fe Kβ 548 

satellite peak (open circles). The IAD method integrates the satellite peak area to the isobestic 549 

point around 7049 eV; For comparison, the IRD method (filled squares) integrates the area at 550 

7030-7056 eV, to correct for natural peak broadening at high pressure. 551 

Figure 5. SMS measurements of compressed FA50 bridgmanite after laser heating. At 35 552 

GPa the spectrum can be fitted by one Fe site, which corresponds to the HS Fe3+ at the A site. 553 

Fitting the spectrum at 80 GPa requires at least two Fe sites: 69% Fe3+ with a low quadrupole 554 

splitting (QS) was assigned to a HS-state, and 31% Fe3+ with a high QS was assigned to a LS-555 

state (Lin et al., 2012; Liu et al., 2018). The difference in center shift (ΔC) between the two sites 556 

is 0.22 mm/s, consistent with the 0.1-0.3 mm/s values for FF50 sample (Liu et al., 2018). The 557 

SMS measurements were done on the same sample in XES measurements.  558 

Figure 6. Calculated bulk sound velocity of FA50 bridgmanite. The bulk sound velocity 559 

shows a negative correlation with its Fe3+content, mainly because the atomic mass of Fe is about 560 

twice as heavy as that of Mg, Al, or Si. At 130 GPa and 300 K, the bulk sound velocity of 561 

MgSiO3 is 7.7% higher than that of FA50 bridgmanite (50% Fe3+ in A site), which in turn is  562 

8.7% higher than that of FF50 bridgmanite (additional 50% Fe3+ in B site).  563 
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