Nutrient sensing by histone marks: Reading the metabolic histone code using
tracing, omics and modeling
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Abstract

Several n:s serve as substrates for histone modifications and communicate changes
in the metabglicsgnvironment to the epigenome. Technologies such as metabolomics and
proteomic allowed us to reconstruct the interactions between metabolic pathways and
histones. 2chnologies have shed light on how nutrient availability can have a

dramatj various histone modifications. This metabolism-epigenome cross talk
plays mental role in development, immune function, and diseases like cancer. Yet
major challen emain in understanding the interactions between cellular metabolism and
the epi ow the levels and fluxes of various metabolites impact epigenetic marks is

we discuss recent applications and the potential of systems biology
methods such as flux tracing and metabolic modeling to address these challenges and to
uncover ngw metabolic-epigenetic interactions. These systems approaches can ultimately
help eIumM nutrients shape the epigenome of microbes and mammalian cells.
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metabolic d regulate gene expression, thereby influencing normal physiology and
disease progressign. While histone PTMs rely on metabolic substrates, how nutrients impact

Graphica@ct. Histone post-translational modifications (PTMs) sense cellular

the histon ode is unclear. Here we review systems biology technologies that can be
used to st bolic-epigenetic interactions.

1. Intr

Histones age susceptible to a variety of post-translational modifications (PTMs). These
include am, methylation, phosphorylation, ubiquitination, sumoylation, glycosylation,
and many others. These histone PTMs in combination serve as an ‘epigenetic code’ for
transcriptig “ jvation, repression and coordination of higher order chromatin structure./'™!

Histone PTW&#fe highly sensitive to cellular metabolism (Figure 1).”*°! Several metabolites
influence ression by serving as substrates for modification of histones or as
regulator%f epigenetic enzymes.”! The metabolite S-Adenosyl Methionine (SAM) donates a
methyl ethyltransferase enzymes for histone methylation. Histone demethylating
enzymewment on intracellular levels of Flavin adenine dinucleotide (FAD), a-
ketoglutarate, iron and oxygen. Acetyl-CoA, an important biomolecule produced from

glucose, id and fatty acid catabolism, is the substrate for histone acetyltransferase
enzymes, while NIAD" is the substrate for sirtuins, a class of deacetylase enzymes.

represent an innate cellular mechanism that links metabolic status to

n. By sensing the levels of intracellular metabolites, cells can alter the

enes that are important for biological processes such as cell growth and
differentiation. hermore, as metabolism provides the building blocks for histone PTMs, in
many cases, these building blocks limit the creation of histone marks. For instance, lack of
dietary folate can lead to impaired histone methylation during development . Dysregulation
of both metabolism and the epigenome are important hallmarks of cancers and metabolic
disorders such as diabetes, obesity and hypertension.?**
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How histone PTMs sense and integrate various metabolic inputs is still unclear.® This has
been challenging to investigate because histone PTMs sense several central metabolites
that are in turn involved in numerous metabolic reactions.” Here we highlight recent
technologis tha':an help us tackle the highly interconnected and compartmentalized nature
of cellularimetabolism and its myriad impacts on the epigenome.
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Cycle
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Glycolysis

Citrate

Nucleus

Figure 1. ons between metabolites and epigenetic enzymes impact the histone
code. CellSyporm@lly utilize glucose (red) to synthesize the acetylation substrate acetyl-CoA.
There are several nuclear metabolic enzymes that supply a local source of acetyl-CoA for
ation, including PDH, ACLY, and ACSS2. Acetyl-CoA in the nucleus is used by
ferases (HAT) to modify lysine groups on histone tails. Sirtuins are
histone cetylases (HDACs) that depend on local NAD" to deacetylate histone tails.
Histon n (blue) depends on one-carbon donors - methionine and folate. The
metabolic MAT in the cytosol and the nucleus, converts L-methionine to S-
adenosylmethios-\e, the substrate for histone methylation. Histone lysine

methyltra s (KMT) use SAM to methylate lysine groups on histone tails. Folate

allows recyclin homocysteine (Hcy) back to L-methionine to continue the production of
SAM. Hi emethylases (KDMT) remove methyl groups using two distinct mechanisms.
LSD fa ethylases act using a FAD-dependent amine oxidase reaction to

demethylate e lysine residues. JmjC domain family demethylases use an a-
ketoglutarate-Fe(ll)-dependent dioxygenase reaction for demethylation.

This article is protected by copyright. All rights reserved.



2. Metabolism-histone interactions regulate normal and disease physiology

Metabolic-epigenetic interactions play a central role in development and normal physiology
of variousgrganisms.? For example, the interactions between histones and cellular
metabo%poﬁant for controlling gene expression during the cell cycle. The temporal
peak in abgm@ance of acetyl-CoA during the yeast cell cycle correlates with histone
acetylatioenes.W'S] Levels of histone glycosylation by acetylglucosamine
(GIcNACc) alsesehanges during the cell cycle. Histone GIcNAcylation depends on the activity
of the hexgsami@e biosynthesis pathway and is sensitive to the availability of glucose, fatty

acids, uric!’ e and glutamine; thus it may act as a nutrient sensor of diverse metabolic
pathways. abolism and histone acetylation also play an important role in DNA repair

in mammalian eglls. Upon DNA damage, nuclear ATP-citrate lyase (ACLY) promotes acetyl-
CoA proddction, facilitating histone acetylation at the sites of double-strand breaks and
stimulates pair. "

Some celmEbolites directly regulate the expression of metabolic genes via histone
modificati AD-dependent enzyme LSD1 has been shown to demethylate histones
and regul ar energy levels by repressing genes involved in mitochondrial respiration
and energy exdeiture.”z’"’] Another example is found in brown adipose tissue

developm master metabolic regulator — AMP-activated protein kinase (AMPK),
causes incr production of a-ketoglutarate, the substrate for demethylases; a-

eir promoters."! In response to stress, AMPK also phosphorylates
histone H2B serine residues (H2BS36) in mammalian cells and regulates the activity of
histone amsferases and deacetylases through phosphorylation.["

Metabolis epigenetic changes can influence cancer risk.!"® In mammalian cells, the
iwated by the c-Myc oncoprotein!™”! through metabolic rewiring and chromatin
sembles the set of growth genes that are acetylated during acetyl-CoA peak
east cell cycle.*"® Metabolic gene mutations in diverse cancers cause

f succinate, fumarate and R-2-hydroxyglutarate. The accumulation of
olites is believed to contribute to tumorigenesis by inhibiting a-ketoglutarate-

dependent demethylase enzymes including the tumor suppressor TET2.2™ Other studies
have shor\s the NAD-dependent deacetylase enzymes — sirtuins, to be tumor suppressors,

as they i ive oxygen species (ROS) synthesis.?®>?" Low NAD levels results in
decreased sigitein activity and increased risk for many cancers, likely due to DNA damage by
ROS.[ZW]Yme Nicotinamide N-methyltransferase (NNMT) is overexpressed in
numerous'@ancess. Increase in NNMT activity consumes SAM, impairing histone methylation
and leadin red expression of cancer-associated genes.”*!

Besides cancer, multiple studies have been conducted to better understand the effect of
epigen s on disease pathology. The level of H3K4 trimethylation, a histone mark
associ [ tive transcription, in the promoters of genes involved in lipid metabolism,
adipogenesi inflammation, correlates with increasing BMI of individuals.” The

availability of T0 and other one-carbon donors during conception and pregnancy
influence enome and various phenotypes in offspring. ®* SAM and methionine
availability also plays an important role in maintenance of pluripotency in stem cells. The
depletion g V'in stem cells diminishes H3K4 trimethylation levels and leads to enhanced
«ei[@ 52l |n summary, these examples provide a connection between intracellular
metaboliteS;¥aligione marks and their effect on gene transcription, which may contribute to

the progression of diseases.
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3. Metabolic-epigenetic cross talk is complex and context-specific

The numerous metabolic pathways that intersect with histone PTMs make it highly
challenging to ungerstand their interdependencies. For example, acetylation is sensitive to
acetyl-(%AD*,[z"” which are involved in hundreds of metabolic reactions. Methylation

depends ogsfighly connected metabolic intermediates (a-ketoglutarate, SAM) and redox
factors (F % ell.[24

As wittw;%process in biology, the metabolic impact on histone PTMs is context
specific. F@r example, inhibiting the synthesis of SAM, the substrate for methylation, reduces
histone mwn in primed murine embryonic stem cells.”® However, the same inhibition

does not alfer hulk methylation in naive embryonic stem cells.”® Another layer of complexity
results frofn exteRisive cross-talk between different histone PTMs with some PTMs

stimulatin essing others.?”**® For example, H3K4 methylation can stimulate an
increase in acetylation. In contrast, butyrylation can preclude acetylation of the same
histone.[‘”m understanding how cellular metabolism influences histone PTMs is a
significant llefige.

The histone evels in a cell depend on the activity of both PTM writers and erasers. The
writers compri nzymes such as histone methyltransferases and histone
acetyltransterases, while histone demethylases and histone deacetylases are examples of
“erasers”. ilability of substrates and cofactors, such as folates, acetyl-CoA, SAM,
and a-Ket@glutarate, influences the activity of these epigenetic enzymes (i.e. writers and
erasers).! r example, the levels of a single histone PTM - acetylation, depends on

the levels bstrate acetyl-coA, 17 distinct acetyltransferases, 18 different
deacetylaSes their substrates such as NAD, and the presence of other histone marks

like methylati ence increased acetylation in a cell could occur due to either high acetyl-
COA pr [ due to reduced deacetylase activity arising from a change in redox
metaboli nsequently, acetylation has been found to increase in both nutrient excess

and starvati ditions! 2%

There 0 such epigenetic enzymes in humans with both distinct and overlapping
substrates and targets (i.e. histone sites).** Some histone sites can even be non-

enzymaticglly modified directly by metabolites.' Furthermore, the extent of sensitivity to
metaboli;werent PTMs changes with respect to their positions in the histone.**="]

For examplegacetylation at H3K9, H3K27 and H3K56, but not at H3K14, H3K18 and H3K23,
have bee o be sensitive to acetate addition.”*® Similarly acetylation at H3K9, H3K14,

4. How t:metabolic signals to the nucleus

While the merous pathways that can theoretically synthesize specific epigenetic

s acetyl-CoA, stable isotope tracing analysis can tell us which pathway

n a given condition. Combining isotope-labeled metabolomics with proteomics
proach for uncovering metabolic-epigenetic interactions. For instance,
treating cells heavy isotope labeled glucose or acetate followed by proteomics
measurement of histone PTMs can help identify which molecule and metabolic pathway
contributes more to histone PTM synthesis. Further, measuring the incorporation of stable

isotope labeled glucose or other metabolites over time can track the dynamics of PTMs and
trace metabolic pathways that support the synthesis of PTM substrates (Figure 2).
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Recent studies have used isotope-labeled tracing to uncover how different acetylation sites
exhibit unique sensitivity and dynamics for different substrates.?*>****) This approach can
also help determine the quantitative relationship between histone marks and metabolite
levels an*luxes'Cluntun et al created a tunable system to titrate glucose at various
concentrations in a human colon cancer cell line.”® They performed kinetic flux profiling
experiment§*iSiyg 13C labeled glucose to manipulate glycolytic flux. They found that this
glucose tit w ads to different histone acylation (multiple PTMs) patterns, in which
different s OWsdiffering degrees of sensitivity to glycolytic flux. Similarly, Mentch et al
found amquantitative link between methionine levels and histone H3 trimethylation.®”! They
found thaﬂe SAM/SAH ratio was predictive of the levels of histone methylation in response
to methio riction. While a severe reduction in histone di- and tri-methylation in
response tgsdepletion of SAM or methionine has been observed in many systems,[2%26-28:37.40]
Haws et a@hat mammalian cells mount a highly coordinated response to preserve

H3K9 mon ylation.*"!
Tracing h o Jprovided novel insights on how metabolic pathways are rewired to impact
histone P infStem cells. Chandrasekaran et al traced 13C labeled glucose, glutamine

primed tra pluripotent stem cells.”® In these cells, glycolytic flux is routed towards

and serinﬁ how carbon from glucose impacts histone methylation during the naive to
nsition
the one-c etabolic pathway, which influences serine and folate metabolism, and

leads to in SAM synthesis and ultimately histone methylation. Similarly, Moussaieff
et al usedflabeled glucose tracing to uncover the impact of glycolytic flux on acetyl-CoA
synthesis ﬁone acetylation in naive and primed pluripotent stem cells.*?

While glu onsidered the most common carbon source for histone acetylation, #4344
eukaryoticice pecially cancer cells, also utilize alternate carbon sources.!”® McDonnell
et al combine C carbon tracing with acetyl-proteomics in immortalized hepatocytes
(AML1 how that up to 90% of acetylation on histone lysines can be derived from
fatty acid ¢ octanoate), even in the presence of excess glucose.”® A large proportion
of tumors ize carbon from acetate for histone acetylation.””! Using 13C labeling and
multipl i monitoring mass spectrometry, Gao et al found that during hypoxia,

acetate becomes a major carbon source for histone acetylation in tumors.®* Furthermore,

carbons from branched-chain amino acid oxidation is used to synthesize acetyl-CoA to
support hi;one acetylation in pancreatic acinar cells and contributes to the development of
pancreati denocarcinoma.!*®

Flux tracies have helped uncover how aberrant metabolic rewiring can influence

histone P umors. Morrish et al used 13C glucose tracing to demonstrate that Myc
overexpressigmmicreases the mitochondrial synthesis of acetyl-CoA, and a 40% increase in
H4K1630.§EE Cancer cells can channel carbon flux into acetyl-CoA to sustain high levels of
histon i@n even when glucose is limiting. This is achieved by increasing the activity
of ATP-Ci'ate L?se (ACLY) or acetyl-CoA synthetase 2 (ACSS2) enzymes that synthesize
acetyl- upport histone acetylation.””! In hypoxic tumors, acetate from histone
deacetyla captured by nuclear ACSS2 and channeled for histone acetylation.
ACSS2 helps m:;wtain adequate nuclear acetyl-CoA levels to support histone acetylation

even whe s high cytosolic demand for acetyl-CoA to support lipogenesis."**!

New hi arks have also been discovered using tracing and mass-spectrometry. For
examp bolic labelling using 13C L-lactate followed by mass-spectrometry analysis
has demons that a novel histone mark - lysine lactylation, can be derived from

lactate.*®! Furthermore, metabolic labelling experiments using isotopic glucose have
demonstrated that lysine lactylation is endogenously derived from glucose.

A limitation of these isotope labeled tracing studies is that they are done using bulk cellular
measurements and as a result, subcellular compartment information is lost. Acetyl-CoA and
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other histone PTM substrates exist in distinct pools in mitochondria, nucleus and other
compartments.”® Metabolite pools in the mitochondria may not have significant impact on
histone modifications in the nucleus. Recent studies have begun to address this limitation
through alariet’f ways including fractionation to separate organelles, compartment-
specific chiemical probes, and via computational modeling. Lee et al measured fluxes in
mitochondgi@amel cytosol by combining isotope tracing with subcellular fractionation and
metabolo @J owever, the subcellular fractionation process itself can lead to artifacts.
Trefely et @fiave"deVeloped a post-labeling correction strategy to account for the disruption
causedsbyathesfeactionation of compartments.®®? Computational models can also be used to
deconvolls compartment-specific metabolism from bulk measurements. Chandrasekaran et
al were a ifferentiate mitochondrial and cytosolic folate metabolism from bulk
metabolomies mgasurement using a computational model of metabolism in various
compartmgnts, afid validated the model using chemical inhibitors that target folate
metabolis tinct compartments.?®..

An essenMement for isotope labeling experiments is the steady-state labeling of
metabolit egthe isotopic labeling does not change over time. However, the exchange of

intracellul ternal metabolites can significantly reduce labeling rates and labeling may
not reach steadytate. For example, cytosolic acetate freely exchanges with both acetyl-
CoA and lar acetate. This free exchange along with rapid protein acetylation-

makes it giiallenging to study histone acetylation labeling by acetate. To overcome this,

deacetylati s can lead to labeling of histones without a net carbon transfer. This
Bulusu et

ilized a chemical derivative of acetate to determine net acetate exchange rate
abeling of histone-bound acetate.

and quantify | [44]

Although ot abeling patterns of metabolites can directly provide qualitative information
on relative Way activities, 13C metabolic flux analysis (MFA)®*** can provide a more
quantit te of fluxes at key branch points. In MFA, labeling patterns of metabolites
are use utationally estimate metabolic fluxes.”® However, MFA is time-intensive
and computatie®al models with detailed atomic mapping are currently available only for a
limited ays in central metabolism.*°

Finally, the interpretation of large numbers of metabolic changes observed in tracing and
metabolomics measurements is a significant challenge.®*" While flux tracing is limited to a
small set Ihtudied pathways, extensive metabolic changes occur during differentiation
or tumorigegesis resulting in altered epigenetic modifications. Mechanistic modeling tools
have now developed to interpret omics datasets. Recent studies have also applied
metabolic g methods to understand the influence of diverse metabolic changes on
histone modifications.

Auth
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Figure 2. F acing experiments and proteomic profiling under different conditions reveal
the img q@ etabolic rewiring on histone acetylation and other histone PTMs. A. Histone
acetylatio eling using "’C-labeled glucose and acetate. Measuring incorporation of the
labeled acetyl-group over time using mass spectrometry enables quantification of histone
acetylation dynamics and kinetic profiles of different histone writers and erasers. To quantify
the impact of metabolite concentrations on histone acetylation, Metabolic Flux Analysis
(MFA) can be used to infer intracellular fluxes for small metabolic networks. The rate of
labeling incorporation over time can be used to measure metabolic activity for various
metabolic pathways. Combining both proteomic kinetic profiling and MFA under different
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nutrient- and genetic perturbation conditions can reveal unique metabolic dependencies of
various histone PTMs. B. A schematic of a pulse-chase analysis to quantify histone
acetylation/deacetylation rates from different nutrient sources. In a pulse-chase experiment,
an isotopagtracergis introduced (pulse), and an unlabeled form of the nutrient replaces the
tracer oMase). The time it takes for the unlabeled acetyl-groups to replace the

labeled amstones is the deacetylation rate for a given acetylation species.

5. Consth\ased modeling can predict and interpret metabolism-histone
cross ta

All living Wain numerous highly interconnected metabolic pathways with varying
degrees of activity. Transcriptomics or metabolomics analysis can provide a snapshot of

cellular m ; however, transcript or metabolite changes do not directly provide
insights on the aglivity of various metabolic reactions. For instance, increased accumulation
of TCA cy abolites may be due to increased activity of glycolysis and TCA cycle or

of one pat@iway should be interpreted in the context of all other pathways that are linked to it.

decrease of oxidative phosphorylation pathway. Similarly, changes in mRNA levels
Interpreti

olic changes through traditional informatics approaches such as grouping

genes into ys is also challenging.® Usually, individual proteins in a pathway do not
change cahe as a whole. Given the highly inter-connected nature of the metabolic
network, t lying assumption behind pathway analysis that each pre-defined pathway
is inde ach other does not hold for metabolism as adjacent pathways can
influen other’s activity. A systems-level model is needed to account for changes at
both the indivi protein level and the overall network level.

Metab reconstructions address these challeng}es and provide a virtual map of all

known metabolic reactions that happen in a human cell.®® Metabolic network
reconstructions represent the mechanistic relationships between genes, proteins, and
metabolit%ell. For example, the human metabolic model (Recon 2) contains 7,440
reactions, T, genes, 2,194 transcripts, 2,657 proteins, 1,052 protein complexes, 8 cellular

comparth 5,063 metabolites.®®

Several th | approaches that utilize metabolic reconstructions to interpret
transcriptogiesa’™ and metabolomics?®®+°! data have been developed. All these
approachgs build upon a fundamental theoretical concept called Constraint-Based Modeling
(CBM) [ owerful theoretical tool that is capable of simulating hundreds of enzymes
in the metlbolic Patwork. (6671 Using CBM, we can identify an optimal path through the

network rients to biomass components based on thermodynamic, stoichiometric and
enzyme e n constraints. CBM does not require any kinetic parameters and can be
used to simulate Jnodels with thousands of reactions. Flux balance analysis, the oldest and
most com sed CBM method, is formulated as an optimization problem, wherein fluxes

are estimate
compo

ssuming cellular metabolism is optimized for the production of biomass
ubject to stoichiometric constraints resulting from mass balances for

intrace tabolites (Figure 3).°®! Further external nutrient levels and metabolic
secretion rates PRovide boundary constraints on intracellular fluxes. Due to redundancies in
the metabolic network, additional constraints from transcriptomics or metabolomics data are
frequently used to limit the feasible space of possible fluxes through the network.

CBM has been successfully used to predict the metabolic state of various mammalian
systems, including cancer cells and stem cells.?*¢%%?. CBM models have led to the

This article is protected by copyright. All rights reserved.



discovery of biomarkers, metabolic vulnerabilities and drug targets.”®*’® For example, CBM
identified dysregulation of mannose metabolism in obese patients, which was validated by
quantifying plasma mannose levels in lean and obese individuals.!”" Similarly, modelling of
hepatoc¥t| meta'olism revealed serine deficiency in patients with non-alcoholic fatty liver
disease.

CBMis hie in predicting lethality of single and combinatorial gene knockouts as
this appro | at predicting infeasible metabolic states. For example, using a

metabqglic gagdalef renal-cell cancer cells, Frezza et al discovered a synthetic lethal
interactiomgbetween the enzymes fumarate hydratase (FH) and haem oxygenase.” Since
FH mutatLoommon in these cancers, haem oxidation could be targeted in tumors
with FH inagtivating mutations, while sparing normal cells with wild-type FH. A metabolic
model of ﬁllular carcinoma (HCC) revealed that de novo lipogenesis is substantially
upregulatethi ients with HCC and identified mitochondrial acetate as the substrate for
Iipogeneswh the upregulation of mitochondrial acetyl-CoA synthetase 1 (ACSS1)."!

Like all m e accuracy of CBM depends on the availability of high-quality datasets to
build and e metabolic models. Further, the underlying assumptions of metabolic
steady state andYeptimization of biomass are not applicable for all systems. Nevertheless,
these ass f can be adjusted based on experimental evidence. For example, time-
course metabolomics measurements can be used to identify metabolites that are not at

steady-state. Similarly complex objectives based on biochemical tasks performed by a
cell type s euron or hepatocyte can be used as an alternate optimization goal instead
of optimizing biomass."*”!

CBM method e also been recently applied to gain insight on how metabolic changes
can influe ne modifications. For example, a variation of CBM called Dynamic Flux
Activit s snapshots of metabolite levels taken at different time points and

subseq verlays this onto a metabolic network model.”® DFA was used to compare
the metaboli embryonic- and induced-pluripotent stem cells using time-course

s of each cell state. DFA revealed the activation of the one-carbon metabolic

embryonic stem cells transitioning from naive to primed pluripotent state.
This activation enhances the synthesis of SAM and supports extensive histone methylation
in primed Sem cells. Inhibiting this pathway reduced histone methylation in primed cells but

not in nai as predicted by the model. DFA also uncovered differences in folate
metabolis een mitochondria and cytosol, which is usually lost during bulk

metabolo surement. These predictions were then experimentally confirmed using
inhibition enzymes in different compartments.

Notably, mputational model based on CBM for directly simulating the dynamics of
histone adgtylation was recently developed by Shen et al.*? This enabled them to predict the
impact c alterations on histone acetylation (Figure 3). To simulate acetylation

using t%c network model, the authors added biochemical reactions corresponding
to histoneacetylation and synthesis of acetyl-CoA in the nucleus.*®! This model enabled
them to coffeCtiffpredict the histone acetylation levels of various cell lines based on their
metabolic activityy suggesting a quantitative relationship between the two processes. This
model suggests that excess carbon that is not used for biomass synthesis supports
acetylatio 0 explains why acetylation can increase in certain nutrient stress conditions
such a «u@ en starvation that result in excess carbon levels. Finally, it also revealed that
the diversiom@fcarbon flux for histone acetylation will have limited impact on overall
metabolism in an-actively dividing cell. This is significant given that histone acetylation
accounts for 74% of all acetylated lysines in mammalian cells.["!

CBM of metabolism-epigenome interactions is still in its infancy. Existing models cannot yet
differentiate between specific histone sites (e.g. H3K9 or H3K27). Further, CBM in general
cannot model the feedback regulation of metabolism by transcriptional regulation induced by
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metabolic changes. New approaches are being developed to model this feedback in
microbes,®?"® and may soon be able to tackle the regulatory complexity in mammalian cells.

Genome-scale metabolic network reconstruction and constraint-based modeling
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Figure 3. Using Constraint-based Modeling (CBM) to compute metabolic fluxes through the
metabolic!etwork. Genome-scale metabolic network reconstructions map all known gene-
protein-re sociations using an iterative process of literature curation, database
mining, and gdel refinement. The resulting metabolic network is converted to a

mathemat ) as a matrix of the stoichiometries (S) for every single reaction-metabolite
pair. The preduel’of the stoichiometric matrix (S) and the desired vector of metabolic fluxes
going thro h reaction (v) is equal to the rate of change of metabolites (b). If b is set to
0, this repfesents quasi-steady state conditions. Solving for v provides steady-state fluxes
from th ic reconstruction. To get a unique biologically feasible flux distribution,
several copstraings must be imposed on the model. A cellular objective is set, where a cell is
assumH specific metabolic task such as maximizing biomass production. Further,

the struct metabolic network itself (S), given that each reaction is mass- and
charge-balancedfprovides another constraint. Thermodynamic parameters such as Gibbs

Free Ene e used to set reaction directions. Finally, datasets such as

transcriptomic oteomics, and metabolomics can be used to limit enzyme activity, flux
bounds strate uptake rates. Together, these constraints can produce condition-
specifi lic profiles. Extending the metabolic network to include reactions required for
histone PT simulate metabolomic-epigenomic interactions at the genome-scale.
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6. Next-generation technologies for discovering new metabolic-epigenetic
interactions

The devellgme%’of new imaging, omics and modeling technologies can help discover new
interacti een these two central cellular processes in the future. Ultimately these
technologig®®e@ether may make it possible to track a labelled metabolite in a live cell, watch
its transitic @ 2en cellular compartments and ultimately identify which histone

modificati® @8%ip in at which gene.

A major |r$:ence in this area of research was the surprising discovery that key mitochondrial

energy m enzymes are present in the nucleus and provide metabolites for histone
modificatio These observations support the possibility that other metabolic enzymes,
which arefprimarily thought to function in the mitochondria or the cytoplasm, may directly
facilitate emc change in the nucleus. Imaging techniques and sensors to locate
enzymes agd abolites in space are likely to be powerful tools in this hunt.

A limitatio abolomics and tracing approaches is that they lack spatial resolution within
a compa ike nucleus. Many metabolic substrates are synthesized in the nucleus and
metabolism drivag epigenetic alterations may happen in specific regions of the chromatin.

Histone ifi ns may change spatially at different loci even though the bulk levels may
remain the same. Next-generation sequencing approaches such as chromatin-

immunop n and sequencing (ChlP-seq) allow identification of gene-specific
epigeneti of metabolism. Notably, Aranda et al recently developed a DNA-mediated
chromatin pull-down technology to identify chromatin-bound proteins in pluripotent stem
cells.' U approach, they discovered that the enzyme adenosyl-homocysteinase
(AHCY) influ SAM/SAH ratio, thereby affecting methylation in chromatin sub-
compartments¥¥inking spatial metabolite levels coupled with genome-wide and spatial
measu histone marks using ChlP-seq or chromatin capture technologies®™ will
enable t cterization of these local effects.

The ad machine learning algorithms has revolutionized many areas of biology.®"
Unlike iochemical modeling approaches, machine learning algorithms can learn

patterns in data without relying on prior knowledge. In contrast, the mechanistic models
(CBMs) employed in studies highlighted above were built using biochemical data on
enzymes htrates curated from literature.®? Using advanced machine learning
algorithms likesDeep learning may soon make it possible to directly predict histone
modificati ramifications of metabolic alterations on the epigenome without knowledge
of underly anism. While mechanistic modeling is limited to known reactions or
interactions in literature, machine learning algorithms are ideally suited for uncovering novel
interaction$: ver, machine learning algorithms are data-driven. Hybrid approaches that
integrate &:hing-learning and mechanistic modeling®®*®® can enable us to effectively

harness qige-scile metabolic and epigenomic datasets in the future.

7. Future dire§ons for metabolism-epigenetics research

ances described above will reveal important metabolic-epigenetic

iverse areas of biology, as well as opening up new research areas, and

to old biological puzzles. They can provide insights on the impact of the
tissue micro-envifonment on the epigenome during tumorigenesis, development, or ageing.
Identification of unique growth requirements of stem cells based on their epigenetic state to
improve their viability in culture can transform regenerative medicine applications such as
disease modeling and stem-cell therapy.®® Recent discoveries in neuroscience on the
importance of metabolism and epigenetics for memory and behavior®®" and altered brain
energy metabolism in conditions such as obesity and aging®°" could underlie known
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associations between diet and the brain.®® Another area that links metabolism and
epigenetics is transgenerational epigenetic inheritance. Research has now confirmed that
environmental exposures (e.g. diet, stress, toxins) can alter the phenotypes of future
generatio* withgut altering DNA sequences.™*! |n some cases, these changes appear to
provide a echanism of short-term adaption to the exposure, which contrasts with the
slower evQjiffié process of natural selection.®**® Numerous cases of transgenerational
epigenetic M’ nce in rodents, C. elegans and Drosophila stimulated by nutritional
exposuresisUge hat metabolism-epigenetic interactions may be part of these

inheritamcesmeeh@nisms. Future work will reveal how widespread and important these
mechanis!s are for adaptation in all species, including our own.

The growttf jtabolism-epigenetic research will bring translational benefits through
modulatiofl of ph¥siology for therapy and agriculture. Manipulation of metabolism-epigenetic
mechanismisgi onsequence of the ketogenic diet, a treatment for epilepsy and some
current cangergherapies.””*® Considering the recently discovered importance of
metabolisfh-gPig@hetic regulation of immune cell development® it is likely that therapies
targeting t chanisms will be developed for a variety of inflammatory and infectious
diseases. anding the interdependencies of metabolic epigenetic processes can
identify synergisi and antagonistic combinations of epigenetic and metabolic inhibitors.
uch as histone deacetylase inhibitors are being explored for treating
immunologj cological, and neurological disorders.!"" Similarly, anti-metabolites such
as metho:%xate, gemcitabine and nucleotide analogs are widely used for cancer therapy.['®"
Thus, ide i ynergistic combinations of antimetabolites with epigenetic inhibitors can
enhance the efficacy of current therapies.!"? Finally, as more is learned about how
netic interactions influence growth, health and inheritance, there could be
t nimal production and crop yields through nutritional supplementation at
multiple stages of the life cycle or even multi-generationally.['®!

Epigeneti

8.Co

Regulation of gene expression through epigenetic chemical modifications is highly
responsivgyto various metabolic cues. Mass spectrometry-based proteomics and
metaboloh‘mologies are helping us uncover these interactions between metabolism
and the epigeaame. Yet interpreting these vast datasets to understand the

interdepe @ between these processes is challenging. Building virtual biochemical
models reRgesents an important and timely opportunity to harness the vast amounts of omics
data and gain a better understanding of interaction mechanisms. Further, it is likely that we
d the surface on the interplay between these two central cellular

mbining cutting-edge tools from systems biology, imaging, mass spectrometry
ence can ultimately uncover interactions between metabolism, histone
egulation that underlie numerous biological processes and diseases.
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