ChemBioChem

Supporting Information

Flavin-Dependent Monooxygenases Notl and Notl’ Mediate
Spiro-Oxindole Formation in Biosynthesis of the
Notoamides**

Amy E. Fraley, Hong T. Tran, Samantha P. Kelly, Sean A. Newmister, Ashootosh Tripathi,

Hikaru Kato, Sachiko Tsukamoto, Lei Du, Shengying Li, Robert M. Williams,* and
David H. Sherman*



Author Contributions

A.F. Conceptualization:Equal; Data curation:Lead; Formal analysis:Lead; Investigation:Lead; Methodology:Lead;
Validation:Lead; Writing - Original Draft:Lead; Writing - Review & Editing:Equal

H.T. Conceptualization:Supporting; Data curation:Supporting; Formal analysis:Supporting; Investigation:Equal; Meth-
odology:Equal; Writing - Original Draft:Supporting

S.K. Data curation:Supporting; Formal analysis:Supporting; Investigation:Supporting

S.N. Data curation:Supporting; Formal analysis:Supporting; Investigation:Supporting

A.T. Data curation:Supporting; Investigation:Supporting; Supervision:Supporting; Validation:Supporting

H.K. Investigation:Lead; Resources:Supporting

S.T. Conceptualization:Supporting; Investigation:Supporting; Project administration:Supporting; Resources:Support-
ing; Supervision:Supporting; Writing - Review & Editing:Equal

L.D. Formal analysis:Supporting; Writing - Review & Editing:Equal

S.L. Conceptualization:Equal; Formal analysis:Supporting; Investigation:Supporting; Project administration:Support-
ing; Supervision:Supporting; Writing - Review & Editing:Equal

R.W. Conceptualization:Equal; Funding acquisition:Equal; Investigation:Equal; Project administration:Supporting;
Resources:Equal; Supervision:Supporting; Writing - Original Draft:Supporting; Writing - Review & Editing:Equal
D.S. Conceptualization:Equal; Funding acquisition:Equal; Investigation:Equal; Project administration:Equal; Resour-
ces:Equal; Supervision:Equal; Writing - Original Draft:Equal; Writing - Review & Editing:Equal



Experimental Methods:

1. Fungal strains and culture conditions

Aspergillus amoenus and Aspergillus protuberus spores were generated on YPD agar plates over the course of
seven days. Each plate of spores was harvested into 5 mL sterile water by gently scraping the surface of the
culture with a sterile inoculating loop. Spores were stored at -80°C prior to genomic DNA extraction. Genomic
DNA was harvested using Wizard Genomic DNA Purification Kit from Promega.

2. cDNA preparation and cloning of notI and notl’

Total RNA was extracted from the mycelia of Aspergillus protuberus using the Invitrogen PureLink RNA Mini
Kit and corresponding plant tissue processing protocol. The culture was grown statically on liquid medium
(50% seawater with 2.0% malt extract and 0.5% peptone) at 28°C and dried by filtration on the 17" day
(roughly 500 mg fungal mat). RNA was treated with DNase I, and cDNA was generated using Invitrogen
Superscript First Strand Synthesis. PCR was used to amplify not/ from the cDNA template. Additionally, a
codon optimized construct was purchased from GeneArt, Life Technologies and used in all enzymology studies.
The codon optimized not! was inserted into the pMCSG7 vector by ligation independent cloning (LIC). To
generate notl’, introns were predicted by analysis using Softberry Fgenesh-M. Further analysis was performed
by comparison with the notl sequence, which has 81% DNA sequence identity. The notl" gene was amplified
from genomic DNA using overlapping PCR with primers in Table S1. The amplified gene was cloned into a
pET28b vector with an MBP tag using restriction enzyme digest and ligation. Plasmids were transformed into
E. coli DHS5a. for screening and plasmid maintenance.

3. Overexpression and purification of protein for enzymology

The Escherichia coli BL21 (DE3) transformant containing pMCSG7-notl and Takara chaperone plasmid
pGKJES was grown at 37°C overnight in LB media containing 50 pg/mL of ampicillin and 25 pg/mL of
chloramphenicol. 25 mL of culture were used to inoculate 1 L of TB media containing the aforementioned
concentrations of antibiotic and 4% glycerol, and cultures were supplemented with 0.5 mg/mL L-arabinose and
5 ng/mL tetracycline to induce chaperone expression. Cells were grown at 37°C for roughly 4 hours until Agoo
reached 0.6-1.0, and isopropyl B-D-thiogalactoside (IPTG, 0.2 mM) and riboflavin (50 uM) were added to
induce protein overexpression overnight at 18°C. The Escherichia coli BL21 pRARE transformant containing
PET28b-MBP-notl' and Takara chaperone plasmid p7f16 was grown at 37°C overnight in LB media containing
50 pg/mL of kanamycin, 25 pg/mL of chloramphenicol, and 100 pg/mL of spectinomycin. 5 mL of culture was
used to inoculate 1 L of TB media containing the aforementioned concentrations of antibiotic and 4% glycerol,
and cultures were supplemented with 0.5 mg/mL L-arabinose to induce chaperone expression. Cells were grown
at 37°C for roughly 4 hours until Asoo reached 0.6-1.0, and isopropyl B-D-thiogalactoside (IPTG, 0.2 mM) and
riboflavin (50 pM) were added to induce protein overexpression overnight at 18°C.

All purification steps were conducted at 4°C. Briefly, 1 L of expression culture was spun down at 5,500 rpm.
The harvested cell pellet was resuspended in 35 ml of lysis buffer (10 mM imidazole pH 8, 50 mM NaH:POu,
300 mM NaCl, 10% v/v glycerol, adjusted to pH 8) with the addition of 10 mg lysozyme, 4 mg DNase, 50 uM
flavin adenine dinucleotide (FAD), 2 mM MgSO4 and lysed by sonication. Insoluble material was removed by
centrifugation at 20,000 rpm for 30 minutes, and the supernatant was filtered. Notl and Notl" were purified
through metal affinity chromatography with Ni?*-NTA resin (Novagen) that was equilibrated with lysis buffer.
The protein-bound resin was washed with 50 mL of lysis buffer, 50 mL of wash buffer (20 mM imidazole pH 8,
50 mM NaH;POs, 300 mM NacCl, 10% v/v glycerol, adjusted to pH 8), and finally 10 mL of elution buffer (250
mM imidazole pH 8, 50 mM NaH;PO4, 300 mM NaCl, 10% v/v glycerol, adjusted to pH 8). Protein in the
eluate was exchanged into storage buffer (50 mM NaH>PO4, 1 mM EDTA, 0.2 mM DTT, 10% v/v glycerol, pH
7.3) using a PD-10 column. Samples were then flash frozen with liquid N> and stored at -80°C. A 1L expression
culture yielded ~ 42 mg of Notl and ~ 15 mg of NotI'.



4. Enzymatic assays and Q-TOF LC-MS analysis of Notl and Notl’ reactions with deoxybrevianamide E
(13), 6-OH-deoxybrevianamide E (14), notoamide S (15), notoamide E (1), (+)/(-)- notoamide T (16/17).
The standard enzyme assay containing 0.5 mM substrate, 2.5 mM NADH, and 20 pM enzyme in 100 uL
reaction buffer (50 mM NaH>PO4, 1 mM EDTA, 0.2 mM DTT, 10% v/v glycerol, pH 7.3) was performed at
28°C overnight. Each reaction was extracted three times with 200 pL chloroform, and the extract was dried
down under N gas. The product was resuspended in 100 pL methanol for Q-TOF LC-MS analysis. The
samples were analyzed by QTOF LC-MS using a ZORBAX Eclipse Plus C18 reverse phase column (3.5 pm,
4.6 x 150 mm), monitoring wavelengths 240 nm and 280 nm and scanning 200 to 1200 m/z with the following
time program: solvent A: water + 0.1% formic acid and solvent B: 95% acetonitrile in water + 0.1% formic
acid; flow rate: 20% B over 2 minutes, 20-100% B over 10 minutes, 100% B over 5 minutes, 100-20% B over 1
minutes, 20% B over 5 minutes. The flow rate was 0.8 mL/min. The large-scale reaction to produce notoamide
TI (18) was performed under the same reaction conditions with 0.5mM racemic notoamide T (16/17) on a 10
mL scale to produce 2 mg of final product. The reaction was extracted with chloroform, as described above, and
purified by reversed phase HPLC.

5. Enzymatic assays and HPLC analysis of Notl and Notl’' reactions with (+)-stephacidin A (9), (-)-
stephacidin A (4), (+)-6-epi-stephacidin A (6), and (-)-6-epi-stephacidin A (7).

The standard enzyme assay containing 200 uM FAD, 50 uM substrate, 5 mM NADH, and 40 uM enzyme in 50
uL reaction buffer (50 mM NaH;PO4, 1 mM EDTA, 0.2 mM DTT, 10% v/v glycerol, pH 7.3) was performed at
28°C for 2 hours. The reactions were quenched and extracted three times by the addition of 100 pL ethyl
acetate. The ethyl acetate was removed by evaporation under N>, and the purified reaction mixture was
resuspended in 50 uL. LC-MS grade methanol. The samples were compared to product standards on a Shimadzu
HPLC using a Phenomenex Lux 5 pm Cellulose-3 LC column (250 x 4.6 mm) with the following time program:
30% acetonitrile for 2 minutes, 30-60% acetonitrile over 15 minutes, 60% acetonitrile for 1 minute, 60-30%
acetonitrile over 1 minute, and 30% acetonitrile for 8 minutes. The flow rate was 1 mL/min and the reactions
were monitored at 240nm.

6. Notl kinetic assays and Q-TOF LC-MS analysis

The reactions were performed with varying substrate concentrations (10-500 uM (-)-stephacidin A (4) ) on a
250 pL scale containing 2.5 uM Notl, 5 mM NADH, and 0.1 mM FAD in reaction buffer (50 mM NaH;POs, 1
mM EDTA, 0.2 mM DTT, 10% v/v glycerol, pH 7.3). The reactions were pre-warmed at room temperature for
5 minutes and initiated with addition of 5 mM NADH. At varying time points, the reactions were quenched with
an equal volume methanol, vortexed vigorously, and placed on ice. The samples were then centrifuged at
17,000 xg at 4°C for 25 minutes to pellet the precipitated protein, and the supernatant was used for Q-TOF LC-
MS analysis. The samples were analyzed using a ZORBAX Eclipse Plus C18 reverse phase column (3.5 pum,
4.6 x 150 mm), monitoring at 240 nm/280 nm and scanning 200 to 1200 m/z using the following time program:
solvent A: water + 0.1% formic acid, solvent B: 95% acetonitrile in water + 0.1% formic acid; flow rate: 0.8
mL/min; mobile phase: 50% B over 2 minutes, 50-55% B over 5 minutes, 55-50% B over 30 seconds, 50% B
over 2.5 minutes. All experiments were performed in duplicate. Quantitative analysis was performed through
integration of the extracted ion chromatograms corresponding to substrate and product masses. The data were fit
to the Michaelis-Menten model.

7. Notl epodixation efficiency reactions

To measure the rate of NADH oxidation during the Notl/Notl'-catalyzed conversion of (-)-stephacidin A (4), 50
uL reactions were run in a 384-well plate and monitored at 340 nm at various timepoints over 45 minutes. The
reaction components consisted of 2.5 uM FAD, 2.5 uM Notl, 200 uM (-)-stephacidin A (4), and 200 uM
NADH. Separate aliquots were quenched at 10, 20, 30, and 40 minutes and analyzed by the above described
HPLC method to determine product formation under identical conditions to the NADH assays.
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8. Determination of FAD incorporation in Notl and Notl’
Each protein was denatured by boiling and centrifugation and the cofactor identification was monitored by
HPLC with a Phenomenex LUNA phenyl-hexyl 100A LC column (250 x 4.6 mm). The samples were
monitored at 448nm using the following method for separation: 5%B for 2 minutes, 5-30%B over 10 minutes,
hold 30%B for 2 minutes, 30-100%B over 1 minute, hold 100%B for 2 minutes, 100-5%B over 2 minutes,
where solvent A = water + 0.1% formic acid and B = acetonitrile + 0.1% formic acid with a flow rate of
ImL/min. FAD incorporation was determined through the use of a standard curve for FAD, from which the
concentration of the cofactor was determined and compared to the concentration of the enzyme.

Table S1. Primers for not/ and notl' intron removal and amplification

Name
notl F
notl F

notl" F Ndel
notl' R

notl’ MBP_F
notl” MBP R
notl' Intl F
notl' Intl R
notl' Int2 F
notl' Int2 R

Sequence

GGAGTTCCATATGGCTATAGACGGATCT
CAATGAAGCTTTCAACCAACCGGTATACC
GGAATTCCATATGGCTATAGACGCATCTGGTGCTG
ATAAGAATGCGGCCGCTTAATCCACCGGTATACCACCGAAG
CTAGTGAGAATCTCTACTTCCAAGGCGCTATGGCTATAGACGCATCTGGTGC
GGTGGTGCTCGAGTGCGGCCGCAAGTTAATCCACCGGTATACCACCG
CAAGAGCTACCGTTTGGG AGACTTGATCAATGTGACCGGG
CCCGGTCACATTGATCAAGTCTCCCAAACGGTAGCTCTTG
CGAGTGACAGAGAAGCTAAGGTACCAAAGGGTTGCTGCAA
TTGCAGCAACCCTTTGGTACCTTAGCTTCTCTGTCACTCG

Function
amplification
amplification
amplification
amplification
amplification
amplification
intron removal
intron removal
intron removal
intron removal
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Table S2. 3C-NMR, 'H-NMR, gHMBCAD, and gCOSY correlations recorded at 700 MHz in (CD3)>SO-ds for
notoamide TI (18) isolated from in vitro reaction with Notl. HRMS (ESI-QTOF): m/z [M+H]" calculated for
C26H31N304 = 450.2393, experimental = 450.2414. Data were measured on a Varian Vnmrs 700 spectrometer.

Position | 0 '°C 0 'H (m, J [Hz]) gHMBCAD gCOSY
1 43.37 3.38 obs
2 29.03 1.78 (m)
2.50 obs 1,3,4,21 3
3 24.34 1.78 (m) 5 2
1.99 (m)
4 68.08
5 29.57 1.72 (dd, 12.8, 8.3) 4,6,7,21
1.92 (m) 6
6 55.39 3.24 (m) 7,18
7 44.92
8 61.36
9 120.29
10 107.49 6.41 (d, 8.0) 9,14 11
11 123.64 6.81 (d, 8.0) 12,13 10
12 141.35
13 155.27
14 110.05
15 NH 8.51
16 183.39
17 33.34 2.14 (d, 14.1) 7,8,16,18,19
2.78 (d, 14.2) 6,8,9,16,18,19
18 65.53
19 169.48
20
21 173.13
22 NH 9.07 4
23 23.46 3.17 (m) 12,13,14,24,25 | 24
24 122.66 5.13 (t,7.0) 25
25 130.43
26 25.57 1.61 (d, 10.1) 24,2527
27 17.83 1.69 (s) 24,25,26
28 23.09 0.68 (s) 6,7,8,29
29 19.56 0.70 (s) 28

“obs: These peaks are obscured by the solvent and water in the sample.
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Table S3. Percent identity matrix of NotI/Notl' homologs including AuaG,!!! PhgK,?! OxaD,! asperlicin C
monooxygenase (GenBank: GBF62818.1), FMO from Penicillium griseofulvum (GenBank: KXG49074.1),
Notl, NotI’, NotB,'*, and BvnB!®! (generated using Clustal2.1).1°]

AuaG | PhgK | OxaD ASP;L'Iigi" C | p.griseofulvum | Notl Not! | NotB | BvnB

AuaG 10000 | 2533 | 2586 22.75 20.37 2520 | 2626 | 2348 | 2440
PhqK 2533 | 10000 | 33.71 35.78 33.55 3491 | 3396 | 3182 | 32.34
OxaD 2586 | 3371 | 100.00 35.43 41.14 3672 | 3788 | 3620 | 3557
Aspericin € 2275 | 3578 | 3543 100.00 44.30 4213 | 4144 | 3848 | 3551
P. griseofulvum | 2037 | 3355 | 41.14 44.30 100.00 4051 | 3981 | 4415 | 4295
Not! 2520 | 3491 | 3672 42.13 40.51 100.00 | 8499 | 4503 | 42.92

Not' 2626 | 3396 | 37.88 41.44 39,181 8499 | 10000 | 4342 | 41.76
NotB 2348 | 3182 | 3620 38.48 4415 4503 | 4342 | 10000 | 62.14
BvnB 2440 | 3234 | 3557 35.51 42.95 4292 | 4176 | 6214 | 100.00

Table S4. Average percent conversions for Notl and Notl’ with natural substrates (+)-stephacidin A (9), (-)-
stephacidin A (4), (+)-6-epi-stephacidin A (6), and (-)-6-epi-stephacidin A (7). Reactions were performed in
triplicate and conversions were calculated via substrate and product standard curves.

Substrate Product Notl conv (%) Notl’ conv (%)
(+)-Stephacidin A (9) (-)-Notoamide B (10) 11 9
(-)-Stephacidin A (4) (+)-Notoamide B (5) 68 52
(+)-6-epi-Stephacidin A (6) (+)-Versicolamide B (8) 13 7
(-)-6-epi-Stephacidin A (7) (-)-Versicolamide B (11) 0 0
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Figure S1. Comparative biosynthetic gene clusters for bicyclo[2.2.2]diazaoctane fungal indole alkaloids,
including brevianamide (bvn), notoamide (not/not"), malbrancheamide (mal), and paraherquamide (phq).
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Figure S2. SDS-PAGE gels from purification of a.) Notl (47,044 Da) and b.) MBP-Notl’ (89,544 Da). Notl was
purified via a gradient elution with increasing concentrations of imidazole to yield ~ 42 mg of protein per liter
of expression culture. Notl" was fused to an N-terminal MBP tag and batch purified resulting in 15 mg of
protein per liter of expression culture. Columns 2-5 represent an attempt to express Notl’ in the pTrc vector,
while the MBP-fusion resulted in majority soluble protein (columns 7 supernatent and 10 elution with 250 mM
imidazole) and some insoluble protein (column 6 cell debri pellet and 8 flowthrough from the Ni column).
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Native Notl absorbance spectrum Notl denatured supernatant

Wavelength (nm) : Wavelength (nm)

Figure S3. UV-Vis spectra of purified Notl protein solution (left) and the supernatant of denatured NotI protein
solution (right). Denatured protein was generated by boiling for 15 minutes. The flavin cofactor peaks at 360
and 450 nm are present in both the native protein solution and the denatured supernatant.
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Figure S4. Identification of FAD as the non-covalently bound Notl flavin cofactor. (a) FMN standard; (b) FAD
standard; (c) Notl supernatant after denaturation of protein by boiling and centrifugation.

N

5 7 9 11 13 15

Time (minutes)

Figure SS5. Identification of FAD as the non-covalently bound Notl’ flavin cofactor by HPLC monitored at
448nm. (a) FAD standard; (b) Notl’ supernatant after denaturation of protein by boiling and centrifugation.
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Figure S6. Kinetic curve of Notl against (-)-stephacidin A (4).
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Figure S7. Comparison of the rate of NADH oxidation and the average rate of product formation in a reaction
with Notl and (-)-stephacidin A (4). The higher rate of NADH oxidation indicates decoupling of these two
catalytic factors, and the epoxidation efficiency is 4.1%.

Figure S8. Numbering scheme for notoamide TI (18).
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Figure S9. Planar structure of Notoamide TI (18) showing gCOSY correlations with bold red bonds and
gHMBCAD correlations with blue arrows recorded at 700 MHz in (CD3)2SO-ds.

Figure S10. C-terminus and substrate paraherquamide L from PhgK crystal structure (green, PDB ID: 6pvi)
aligned with the surface representation of the Notl homology model.

S8



AuaG
PhgK
OxaD
AsperlicinC_FMO
P. griseofulvum
NotI
NotI'
NotB
BvnB

AuaG
PhgK
OxaD
AsperlicinC_FMO
P. griseofulvum
NotI
NotI'
NotB
BvnB

AuaG
PhgK
OxaD
AsperlicinC_FMO
P. griseofulvum
NotI
NotI'
NotB
BvnB

AuaG
PhgK
OxaD
AsperlicinC_FMO
P. griseofulvum
NotI
NotI'
NotB
BvnB

AuaG
PhgK
OxaD
AsperlicinC_FMO
P. griseofulvum
NotI
NotI'
NotB
BvnB

AuaG
PhgK
OxaD
AsperlicinC_FMO
P. griseofulvum
NotI
NotI'
NotB
BvnB

AuaG
PhgK
OxaD
AsperlicinC_FMO
P. griseofulvum
NotI
NotI'
NotB
BvnB

——————————————————— MKTGLTVLIAGGGIGGLTLGVALRRAGIAFKIFERAPALLR
———————————————— MGSLGEEVQVIIVGLGIVGLAAAIECREKGHSVHAFEKSNILKS
MTVPNSAGPDTTAATRASDRTSDVKVIIVGLGIAGLVAAIECHYQGLTVIGLEKSPEIRV

MAVPVSGPD----- GVARPNSSGIKVIVVGLGVAGLAAATIECHRKGHTVIAFEKVKEMKP
MTVTHSGPN-—---- GIAPPGSSGIKVIIVGLGLAGLTAATIECHRKGHSVIGLEKTPKPTH
---MAIDGS----- GVATPAPSGITVIIVGLGPTGLAAATIECHRRGHKVICFEKNPKSYR
-—--MAIDAS--—--- GAAAPNSSGITVIIVGLGPTGLAAATIECHRRGHKVICFERNPKSYR
MTKSQTNPR-——-—— GPAILSPADLTVIIVGLGIAGLTAATIECHRKGYTVIGLEKKPDANQ
MTRNNTIPR-—-—--— DPVPF--SGITVLIVGLGIAGLTAALECSRRGHKVIGFEKKKDTNQ
HE o HEgH
VGAGISMQOSNAMLAFRTLGVDTAVAAA----GQEIQGGAILNPRGEEISSMPVSKASAEV

IGDCIGLQSNATRIIKRWGDGAVHEAL-RPWIVSSKEIRIHNSSGRLIIRQDLSEVCE--
LGDSIALGSNATKVLHAWDQGSVYREL-LAQSDDVAAMEVLNPAGKLYAIDKMDGYGM-—-
LGDVIAISSNAARVIDKWGGGSVHEAL-YSVTSDLNPAGLYDETGSLKLKSAVPGFRK-—-
LGDIFSISSNGANVIQKWDNGSVARYL-DSVRCDVASITVWDEAANIKLRKDMTGYKE-—
LGDLISVTGNAVRVLQEWGNGSVIKEL-QAFQCNLDTLEVYNETGDLKLSAPYNATQA--
LGDLINVTGNAARVLOGWGNGSVINDL-QAFQCNLDTLEVYDETGDLKLSAPYNANQA-—
LGDIIGLSGNSMRILAEWNNGSLAHLIDDDITCDVTALELFDAEGHRKLAMPYNANNP-—-
LGDVIGLSGNSMRILSQWNQGSLAELVDEDIICAVEALELHDTAGTIRAAMPYHPESP--

.k PR * . .

GAPMITIHRGRLQDVLHQIVG--DDNLVLGAKVEGFRDGPDGLEFVRL---ADG-REFQGD
—QPNYLLPRSELIRVMYEHALKIGVEISLGVEVCEPSEDEEGASVVALTRDGERQIVRGD

—GEGMIIHRGTLITVLHRHAIALGIDLRLGAAVTEYWETEDQAGVTV----DGRERIAAD
—-GEGYLLSRGDLAVTFFEHAKSLNINIRMGICVTEFWETDTSAGVIV----DG-EKIEAD
—GEGLVLNRSTTVCTLYEYGKSLGIDLRFGISVSEYWENDNEAGVIA----NG-ERLSAD
—-KDEYMLRRSRLLDIFLQHLKSLGVEIHLGIQVADYWETESSAGVTV----GG-EKIVGD
—KDNYMLRRSRLLDIFLQHLKNLDVDIHLGTEVTDYWETESSAGVTV----GG-KRIAAD
—IQGYLFRRTGLLTSLCHYASQLGIDLRFGVTVDDYWETDSNAGVYA-—-—--NN-EKITGD
—AQGYLFRRTGLLTKLYELAIRAGIDLRFGVNVMRYWEDADNAGVYI----GE-DRIVGD
* .

. .. .k * . * *

LLVGADGLRSAVRAQLLKEP-SPRYSGYTS VCDVSEGVRRD---YTSES-WGPGMRF
FIICSDGVHSKMRKAIMPQPVEPRPSGY LVDTETLKGDPEASWVFEG-VEENDRF
CVIGMDGVHSRTRDYVLGHRISTHNSGL CFSAELVANDPDAAWILEE-VGKRDRM
CVIASDGVHSKARVPITGETPRIMSSGRAI WCDASVLEVDPKTKWLTESGSDGGDDS
CVIASDGIHSKARPVITGDNKPLNKSGAAT, GYPAEVLDNHPDAQWILEG-TEKADQL
CVVVADGVHSKGRPQVSGEPFALEATDGI FENASEISQDPEASWILRD-AGEKDCF
CVVVADGVHSKGRPQVSAEPFDLPSTDGT FFHASEIAQDPEASWILQD-AGEGDCFE
CVVAADGFHSKARGIITGENPEPKDIGVYV, IFDANAIADVPEAQWILKN-AQTADIF
CVIAADGFYSAGRTAITNEDPVQQPIGAV] IFDAQEIAHVPEAAWLLKK-APTADVL

.. * * * * . . %

GVV-===——————— PIGEG-QTYWFATATAPE-GG---VDH--PDARTELLQRFSGWHA-
DVFFL-SGAQIALQSCNKGKVFSWFCIHQDT-RNLLDVWTS—--PADPNEMLDLIKVWPIG
RRYITDGGLGLTLATGKRGONIIWQVWHRNDA-KSAEFWENTTQARVEDALSLLODWPIY
HVFMA-KDVTMVMSTTKNHSLINWSCFHLDS-RGATDLFYY--PATADQVLEYIKVWPVR
NHFIG-KDIAVIMGTGRHGKDVYWGCLHRSS-DGVSKSWLQ--PSDVTKALALIENWPAK
KTFYG-KGLVMMVGTAENHEYVFWSCGHKENV-—----— MAH--PSSVATVLDLIRDWPVS
KTFYG-KGLVMMLGTAENHEYIFWSCGSKENV—-—-—---— LAQ--SSAVAQVLDLIGDWPVS
HSYYG-KDTMVAIGTAARGRYVHWGCAVRGALEEKYEAWMQ--PAPPDPILKCLESWPVG
PSFYG-KDVMVMMGTAAKGRYVHWACTIRGEVQQASEAWMQ--PASVEPVLDCVRNWPAA
*

* *

-PIPQLIENTPSSAIMRTDIHDRVPIRQWV--0Q
QRLWSVIRHTQPQKFINYPLLNHKPLDHWVSSH
PKIAAVLRHTPSGTLADYKIVARDPIPGWISSQ
EKLESVIRRTPPDNLIDYPLVTFEPAKNWVSKG
DKVGAVIKCTPNNTCYDHLVMAVDPLSRWVSEK]
TRLAPLISKTPGDNCLNQTLYTRPPLKKWVSSN
KRLAPLISKTPSDNCLDQTLFTRSPLNKWVSRK|
SKLAAGIARTPPGKCFQQSLRAMPPLKRWVSTG|
SKLNAVLSRTPPGACEFNHTMLATPPLRTWVSHK]

. . * . * * .

PMTPNMGQGGCQAVED
PLSPAAGQGASQGIED
MSPIAGQGGGQSIED
PFLPTSGQGACQGIED
FIPTSGQGASQSIED
PFLPHAGQGANQGIED
PFLPHAGQGANQGIED
SFLPYAGQGGNQAIED
PFLPYAGQGANQAIED

* * KKk * ek Kk

s e Kk Kk ek

AVVLARCLSLEAE--LPAALARYQAVRVE-RANDEFVAGSYRIGQ---IGQWENA-—----—
ANVLATSLSLAGRQRVSLALHVAERIRYA-RASAVQLISHRVNEGWRNQDWDAYEPNEQN
AVTLALCLAQAGKSCVPLGLRAVEALRYQ-RTRLIQESGNSIYGOMRDPDWDAIEKNPEM
GAVVAIALELAEKGNIRQALEVTNKIYRRERTVQIYNLGLFALETVSNPDWSEAEKNSKL
GAVIAICLELAGKKQIPLALSVMEKLRYQ-RISLIGEGSAKMLESLHGANWDAKQQDKQP
GAVLALCLEITSKKDVPLALRVTEKLRYQ-RVAAIQQRGVEARDQSLNVDWGNGGFSKK-
AAVLALCLQIAGKDDVPLALRVTEKLRYQ-RVAAIQKRGVEARDQSLSVDWENGGEFTKK-
AAVLGICLELAGTSNVPLALRVVEKLRHK-RVSLIQKGSAEAGDSFLNAAWESDNAAEKP
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IASLPLETWIYGHDSQAYTEQEFEMVVRAVQEGEEYHATNLPDKLRVQLG--IRNVDVKE
I-KFPRPQWIFGYDARRDVSEEFPTVKKAIEEGSEYRPRNIPEDCQYQIVHDYKKTVST-
F-AIPNPEWVLNHNCQKSAYDEYHKIAESIANGTEYTPONIPSSAVRS————————————
T-LIARAMWIFDHDCQKSTYEEFEKAAEAVVSGSTYVPANIPNDGRHGIVEEEGKSTVKV
—--LTLHPAWLHDHDCIKQVYEEFDKAADAVTKGHEHTFGGIPVG----—-———————————
--LTLYPAWLHDQODCIKQVYEEFDKAVAAVTKGHECTFGGIPVD----—-———————————
T-AFTHQAWVYAHNCVDHAYEQFNAAAEAVMNGWEYTPTNIPANGKFRQEEG--NI----
S—-AYLHQSWVYNHDCVQHVVEEFQTAADAIRHGRKYIPTNVPVDGKYRQE-—-—————-—--—
* . .

——————————— 383
PLONKSP---~- 459
——————————— 467
——————————— 449
PSAHSAPISAE 470
——————————— 433
——————————— 433
——————————— 455
——————————— 449

383
452
467
449
459
433
433
455
449

Figure S11. Sequence alignment of flavin-dependent monooxygenases (FMOs) including AuaG,!!) PhgK,?!
OxaD,P! asperlicin C monooxygenase (GenBank: GBF62818.1), FMO from Penicillium griseofulvum
(GenBank: KXG49074.1), Notl, Notl’, NotB,[*, and BvnB® performed using Clustal2.1.l®) The proposed
catalytic arginine is highlighted in bold in the green section. The first FAD-binding motif or the Rossmann fold
(Bap-fold, containing GxGxxG) is shown highlighted in cyan, the second FAD-binding motif (GD sequence) is
shown highlighted in magenta, and the DG motif is highlighted in yellow.[”]
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Figure S12. Substrates and products from reactions with Notl and Notl'. (-)-versicolamide B (11) has not been
isolated from Aspergillus amoenus or Aspergillus protuberus.
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Figure S13. Mass spectra (MS) of (A) (-)-stephacidin A (4), expected [M+H]" = 432.2287; (B) (+)-notoamide
B (5) formed from reaction with Notl, expected [M+H]" = 448.2236; (C) (+)-notoamide B (5) formed from
reaction with Notl’), expected [M+H]" = 448.2236. Data were measured on an Agilent Q-TOF LC-MS.
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Figure S14. Mass spectra of (A) (+)-stephacidin A (9) standard expected [M+H]" = 432.2287; (B) (-)-
notoamide B (10) produced by Notl, expected [M+H]" = 448.2236; (C) (-)-notoamide B (10) produced by NotI’
expected [M+H]" = 448.2236. Data were measured on an Agilent Q-TOF LC-MS.
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Figure S15. Q-TOF LC-MS analysis depicting EICs of (a) Notl’ reaction with deoxybrevianamide E (13); (b)
Notl reaction with 13; (¢) no enzyme control with 13. Product formed is denoted with P. Data were measured
on an Agilent Q-TOF LC-MS.
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Figure S16. Mass spectra of (A) deoxybrevianamide E (13) standard, expected [M+H]" = 352.2025; (B)
Product formed from Notl reaction with 13, expected [M+H]" = 368.1974. Data were measured on an Agilent
Q-TOF LC-MS.
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Figure S17. Q-TOF LC-MS analysis depicting EICs of (a) Notl’ reaction with 6-OH-deoxybrevianamide E

(14); (b) Notl reaction with 14; (¢) no enzyme control with 14. Products formed are denoted with P. Asterisk

denotes a possible diastereomer of 14. Data were measured on an Agilent Q-TOF LC-MS.
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Figure S18. Mass spectra of (A) 6-OH-deoxybrevianamide E (14) standard labelled with three *C atoms,
expected [M+H]" = 371.1974; (B) Product formed from Notl reaction with 14, expected [M+H]" = 387.1923;
(C) Product formed from Notl’ reaction with 14, expected [M+H]" = 387.1923. Data were measured on an
Agilent Q-TOF LC-MS.
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Figure S19. Q-TOF LC-MS analysis depicting EICs of (a) Notl" reaction with notoamide S (15); (b) Notl

reaction with 15; (c¢) no enzyme control with 15. Product(s) formed are denoted with P. Data were measured on

an Agilent Q-TOF LC-MS.
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Figure S20. Mass spectra of (A) notoamide S (15) standard, expected [M+H]" = 436.2600; (B) Product formed
from reaction of Notl with 15 observed at 594.3 seconds; (C) Product formed from reaction of Notl with 15
observed at 540.0 seconds; (D) Product formed from reaction of Notl with 15 observed at 526.6 seconds; (E)
Product formed from reaction of Notl" with 15 observed at 595.7 seconds; (F) Product formed from Notl" in
reaction with 15 observed at 538.5 seconds; (G) Product formed from Notl’ in reaction with 15 observed at
526.0 seconds. Oxidized products have an expected [M+H]" of 452.2549. Data were measured on an Agilent Q-
TOF LC-MS.
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Figure S21. Q-TOF LC-MS analysis depicting EICs of (a) Notl' reaction with notoamide E (1); (b) Notl
reaction with 1; (c) no enzyme control with 1. Products formed are denoted with P. Asterisk denotes possible
diastereomer of 1. Data were measured on an Agilent Q-TOF LC-MS.
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Figure S22. Mass spectra of (A) notoamide E (1) standard labelled with two 3C atoms, expected [M+H]" =
436.2444; (B) Product formed from reaction of Notl with 1 observed at 621.5 seconds; (C) Product formed
from reaction of Notl with 1 observed at 573.0 seconds; (D) Product formed from reaction of Notl’ with 1
observed at 620.2 seconds; (E) Product formed from reaction of Notl’ with 1 observed at 573.1 seconds.
Oxidized products have an expected [M+H]" of 452.2393. Data were measured on an Agilent Q-TOF LC-MS.
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Figure S23. Q-TOF LC-MS analysis depicting EICs of (a) Notl reaction with notoamide T (16/17); (b) Notl’

reaction with 16/17; (c) No enzyme control with 16/17. Products formed are denoted with 18 (notoamide TI).
Asterisk denotes possible diastereomers of 16/17. Data were measured on an Agilent Q-TOF LC-MS.
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Figure S24. Mass spectra of (A) (+)- and (-)-notoamide T (16 and 17) standards in racemic mixture, expected
[M+H]" = 434.2444; (B) Product formed from reaction of Notl with the racemic 16/17, expected [M+H]" =
450.2392; (C) Product formed from reaction of Notl’ with the racemic 16/17, expected [M+H]" = 450.2392.
Data were measured on an Agilent Q-TOF LC-MS.
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Figure S25. 'H-NMR spectrum of Notoamide TI (18) recorded at 700 MHz in (CD3)2SO-ds.
S22



110

—3.50
—3.34

100

80 375 370 365 360 355 350 3.45 3.40f1 ?.35) 330 325 320 315 310 3.05 3.00 295
ppm

Figure S26. Zoomed view of 'H-NMR spectrum of Notoamide TI (18) recorded at 700 MHz in (CD3)>SO-ds to
show multiplets at 3.17ppm (CHa, position 23) and 3.24ppm (CH, position 6).
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Figure S27. Zoomed view of 'H-NMR spectrum of Notoamide TI (18) recorded at 700 MHz in (CD3)>SO-ds to
show a triplet at 5.13 ppm (CH, position 24).
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Figure S28. 3C-NMR spectrum of Notoamide TI (18) recorded at 176 MHz in (CD3)2SO-ds.
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Figure S29. gHSQCAD spectrum of Notoamide TI (18) recorded at 700 MHz in (CD3)2SO-de.
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Figure S30. Zoomed view of the gHSQCAD spectrum of Notoamide TI (18) recorded at 700 MHz in
(CD3)2S0-ds to display the solvent-obscured peaks at (C2, 2.50/29.06 ppm) and (C1, 3.38/43.39 ppm). The

peaks for positions 2 and 1 are indicated with asterisks.

S27



Notoamide-Rxn-Prod_gHSQCAD_190713

Notoamide Rxn Prod

700 MHz {1.69,17.89)
DMSO-d6 k‘@

{1.99,24.37),{1.78,24.43), *
GO
{1\61,25.61

L

0

0
{2.50,29.06
{1.92,29.60}{1.72,29.
2%
8,29.23}

{2.79,33.35} b (2.15,33.43%3

oo

N

Q
- oim\ﬁl

(1.23,29.03@

0

0
(0469,19.62)@/
)

O

{0.68,23.18@
Y

0

15

30

-35

28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 1.0 09 0.8 0.7 06

2 (ppm)

1 (ppm)

Figure S31. Zoomed view of the gHSQCAD spectrum of Notoamide TI (18) recorded at 700 MHz in
(CD3)2S0-ds to display the peaks for C2 and C3, for which the proton signals overlap at 1.78. The peaks for

positions 2 and 3 are indicated with asterisks.
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Figure S32. gCOSY spectrum of Notoamide TI (18) recorded at 700 MHz in (CD3)2SO-de.
S29



L °
° oo -9
° Q
000
1 e ® Y-
1
L o o &
o o
- =4 ] @
® N
o L]
o ®
° o
e %0
° (.-
o o
e a
9
o] o]
%o
o ®

11.0 10.5 10.0 9.5

90 85 80 75 70 65 6.0 55 50 45 40 35 30 25 20 15 10 05 0.0
f2 (ppm)

~60

~80

~100

~120

~140

~160

~180

~200

220

f1 (ppm)
Figure S33. gHMBCAD spectrum of Notoamide TI (18) recorded at 700 MHz in (CD3)2SO-ds.
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Figure S34. Zoomed view of the gHMBCAD spectrum of Notoamide TI (18) recorded at 700 MHz in
(CD3)2S0-ds to display the correlations from the solvent-obscured peak at 2.50 ppm (indicated by asterisks).
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Figure S35. Zoomed view of the gHMBCAD spectrum of Notoamide TI (18) recorded at 700 MHz in
(CD3)2S0O-ds to display the correlations from the solvent-obscured peak at 2.50 ppm to C2, indicated by an
asterisk.
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Figure S36. Zoomed view of the gHMBCAD spectrum of Notoamide TI (18) recorded at 700 MHz in

(CD3)2S0O-ds to display the correlations from NH(22) at 9.07ppm to C4 at 68.07ppm, indicated by an asterisk.
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