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Abstract Agricultural activity is a significant source of greenhouse gas emissions. The fertilizer
production process emits N2O, CO2, and CH4, and fertilized croplands emit N2O. We present continuous
airborne observations of these trace gases in the Lower Mississippi River Basin to quantify emissions from
both fertilizer plants and croplands during the early growing season. Observed hourly emission rates
from two fertilizer plants are compared with reported inventory values, showing agreement for N2O and
CO2 emissions but large underestimation in reported CH4 emissions by up to a factor of 100. These CH4
emissions are consistent with loss rates of 0.6–1.2%. We quantify regional emission fluxes (100 km) of N2O
using the airborne mass balance technique, a first application for N2O, and explore linkages to controlling
processes. Finally, we demonstrate the ability to use airborne measurements to distinguish N2O emission
differences between neighboring fields, determining we can distinguish different emission behaviors of
regions on the order of 2.5 km2 with emissions differences of approximately 0.026 μmol m−2 s−1. This
suggests airborne approaches such as outlined here could be used to evaluate the impact of different
agricultural practices at critical field-size spatial scales.

1. Introduction
Nitrous oxide (N2O) is the third most important long-lived anthropogenic greenhouse gas (Myhre et al.,
2013). It is also currently the most significant anthropogenically emitted gas that depletes stratospheric
ozone (Ravishankara et al., 2009). An estimated 16 Tg N2O-N year−1 was emitted globally in the 1990s,
with about half coming from anthropogenic sources including agricultural land management, sewage,
and biomass burning (Reay et al., 2012). The estimated magnitude of agricultural emissions ranges from
4–7 Tg N year−1 and is predicted to rise in the next decade as developing nations increase agricultural produc-
tivity (FAO, 2017). The large uncertainty in emissions estimates is a result of both infrequent measurements
with limited coverage being insufficient to characterize emissions that exhibit high spatial and temporal
variability (Monni et al., 2007) and the lack of direct measurements to get accurate emission factors from all
sources (Brown et al., 2001).

A dominant source of anthropogenic N2O has been the mass production and application of fertilizer. Since
1908 the Haber-Bosch process of synthesizing ammonia and producing nitric acid, ammonium nitrate, and
other compounds has allowed for mass production of synthetic fertilizer, with current global production
levels near 100 Tg N year−1 (Erisman et al., 2008; Smil, 2011). Between 1961 and 2013 global N fertilizer
consumption increased by a factor of nearly 10, with five countries accounting for over 60% of the consump-
tion (Lu & Tian, 2017). In the United States the current fertilizer application rate is 11.4 Tg N year−1, a ∼40
times increase since 1940 (Cao et al., 2018). Fertilizers provide essential nutrients to plants that enhance
their growth and yield, but soils have a limited nutrient uptake capacity, and overapplication of nitrogen
fertilizer can cause a nonlinear increase in N2O emissions (Grant et al., 2006).

Fertilizer production itself also emits greenhouse gases, and differences in production type and efficiency
affect the total footprint of synthetic fertilizer (Fossum, 2014). Ammonia production is energy intensive,
requiring the combustion of natural gas or other fuels to synthesize nitrogen and hydrogen (Gellings &
Parmenter, 2016). Facilities may then oxidize ammonia to produce nitric acid, which is used to manufac-
ture ammonium nitrate fertilizer (EFMA, 2000). Ammonia oxidation emits waste gases, including N2O
(EFMA, 2000). In 2017 fertilizer plants accounting for 73% of total U.S. nitrogen production capacity emitted
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23 Tg of CO2 equivalent (CO2e) greenhouse gas emissions (TFI, 2017). N2O and CH4 emissions are con-
verted to CO2e values by multiplying by global warming potential values of 298 and 25, respectively. Though
facilities report emissions, independent objective observations of production sources have been limited.

While fertilizer is arguably the strongest driver of N2O soil emissions, various factors including climate, soil
conditions, planted crop type, and management practices can impact N2O emissions, leading to large spa-
tial and temporal heterogeneity in emissions. Increased N2O emissions can positively correlate with higher
soil temperature and moisture, particularly after precipitation (Dobbie et al., 1999; Griffis et al., 2017). The
positive relationship between N2O emissions and soil moisture has been observed in various environments
and soil conditions (Marinho et al., 2004; Smith et al., 1998; Smith, Ball, et al., 2003; Schindlbacher et al.,
2004; Pattey et al., 2008). Crop species and type of residue crop cover can also affect emissions (Lemke et al.,
2018; Parkin & Kaspar, 2006).

Flux chambers are a commonly used method to quantify N2O emissions from soils. They are relatively
inexpensive and easy to deploy but measure small areas (1 m2), can perturb the area of study, and are con-
strained by manpower (Rapson & Dacres, 2014). Scaling up singular chamber measurements for greater
representation of emissions is hampered by soil diversity and spatial variability (Parkin et al., 2012; Scaroni
et al., 2014), necessitating data at larger regional spatial resolution. Studies at larger scales can also capture
indirect emissions from nitrogen runoff and leaching. Process-based models work at a range of scales (Del
Grosso et al., 2006; Tian et al., 2012) but have uncertainty in their representation, demand high computa-
tional power, and often have large input uncertainties. This increases the need to use observational data at
a range of scales to reduce uncertainty (Butterbach-Bahl et al., 2013; Ehrhardt et al., 2017). Improved obser-
vational quantification of emissions on varying spatial scales will be critical to improve our understanding
of the heterogeneous processes controlling N2O emissions.

Many studies of U.S. N2O emissions have investigated the Corn Belt region of the Upper Mississippi River
Basin (Chen et al., 2016; Nevison et al., 2018; Parkin & Kaspar, 2006). Relatively less attention has been
paid to the Lower Mississippi River Basin (LMRB) downstream in the southeast United States, which was
only recently added in 2014 to the USDA's Long-Term Agroecosystem Research (LTAR) network (USDA
ARS, 2014). With ∼20 million acres—∼30% of total area—as cropland, much of it intensely developed and
irrigated, the LMRB is a highly productive agricultural region responsible for a quarter of the United States's
corn production and two thirds of its rice (Lund et al., 2013; USDA ARS, 2012).

Here we analyze continuous airborne observations of N2O, CO2, and CH4 from research flights in the LMRB
in May 2017 during the early growing season (Padgitt et al., 2000; Snipes et al., 2004). The campaign took
place immediately following a heavy rainfall and flooding event in the northern part of the region (Heimann
et al., 2018). We quantify emissions of N2O, CO2, and CH4 from two large fertilizer plant point sources
and compare to reported emissions from the Greenhouse Gas Reporting Program (GHGRP). We apply the
airborne mass balance technique to N2O to quantify emission fluxes on scales on the order of 100 km2 and
evaluate relationship with crop type, applied fertilizer, soil moisture, and soil temperature. We further use a
Bayesian inversion method to determine the potential of this type of airborne data to distinguish emission
differences from neighboring agricultural fields.

2. Methods
2.1. Flights

Research flights were conducted on a Mooney M20R single-engine aircraft (Scientific Aviation, Inc.) as part
of the Fertilizer Emissions Airborne STudy (FEAST) (Gvakharia et al., 2018; Kort et al., 2018). Six research
flights took place from 2–10 May 2017, based out of West Memphis, Arkansas. Each flight typically lasted
∼6 hr from 12:00–18:00 local time (17:00–23:00 UTC), sampling once a well-mixed boundary layer devel-
oped. Combined, the flights covered most of the LMRB region, from 31◦ to 38◦N and 88◦ to 93◦W. The
plane flew at an average altitude of 550 m above ground level (magl), with multiple crosswind transects
designed to capture emissions plumes from agricultural activity in the river valley. During each flight, at
least one vertical profile was completed, circling the plane up past the mixing layer and back down while
tracking atmospheric conditions and trace gases to determine the mixed layer depth. On two flights, two
high-production fertilizer plants were circled to quantify point source emissions. Figure 1 shows the region
of study with flight paths, along with land use for four major crops: soybean, corn, cotton, and rice.
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Figure 1. Map of the LMRB. FEAST research flight paths are traced with different colors for each flight. Green, yellow,
red, and blue pixels, respectively, indicate cropland for soybean, corn, cotton, and rice at 30 m by 30 m resolution
(USDA, 2017).

2.2. Instrumentation

An Aerodyne laser absorption spectrometer measured N2O, CO2, CO, and H2O mole fractions at 1 Hz
frequency with an in-flight high-frequency, flow-controlled calibration method (Frequent Calibration
High-performance Airborne Observation System [FCHAOS]) as described in Gvakharia et al. (2018).
In-flight 1 s precisions were ±0.05 ppb, ±0.10 ppm, ±1.00 ppb, and ±10 ppm, respectively, for N2O, CO2,
CO, and H2O. Water vapor corrections were applied to the data in postprocessing to eliminate the effect of
dilution and water line broadening—all measurements reported herein are dry molar fractions.

Additional payload on the aircraft, listed in Conley et al. (2014, 2017), included a Picarro G2301-f cavity ring-
down spectrometer to measure CH4, CO2, and H2O (with in-flight precision of ±0.3 ppb and ±0.04 ppm for
CH4 and CO2, respectively Karion et al., 2013), a Vaisala HMP60 probe to measure temperature and rela-
tive humidity, and a 2B Technologies 202 ozone monitor. The Picarro measurements were sampled at 0.5 Hz
and interpolated to acquire 1 Hz data. The Picarro was calibrated on the ground by sequentially sampling
two gravimetrically prepared NOAA WMO standards (Dlugokencky et al., 2005). Wind speed and direc-
tion were calculated using a differential GPS system as described in Conley et al. (2014). Ambient air was
sampled from an inlet installed underneath the aircraft wing and traveled through ∼5 m of tubing to the
instruments. Lag time between when air enters the inlet line and when it is sampled by the instruments
was determined by breathing near the inlet and observing spikes in CO2 and H2O, resulting in lag times of 3
and 5 s for the Aerodyne and Picarro instruments, respectively. These lag times were confirmed in flight by
comparing peaks in CO2 and H2O from both instruments. The lag times are used in postprocessing to align
all instruments and sensors on a unified time basis.

GVAKHARIA ET AL. 3 of 13



Journal of Geophysical Research: Atmospheres 10.1029/2020JD032815

Figure 2. Flight pattern during point source quantification. The blue square shows the location of the emitting source,
in this case a fertilizer plant, and the black arrow indicates wind direction. N2O molar fraction is given both by the
color bar and the point size. The plane circles the source upwind and downwind at several altitudes, capturing the
emissions plume, and the data are then processed to quantify an emissions flux.

2.3. Point Source Quantification

Emission rates from point sources are quantified following the methodology first described in Conley et al.
(2017) and used by Mehrotra et al. (2017) and Vaughn et al. (2017). Figure 2 illustrates the technique. The
plane circles a source at constant radius and at discrete altitudes, starting near 200 magl and ascending until
the plume is no longer detectable, then descending back down. By measuring the atmospheric concentration
upwind and downwind of the source simultaneously with the wind, an emission rate is calculated for a
given trace gas. As described in Conley et al. (2017), the method integrates sources and sinks of a gas species
within a cylindrical volume V around an emission source. Using Gauss's theorem, the volume integral can
be converted into a surface integral decomposing the cylinder into three surfaces: bounded vertically at
the bottom by the ground and at the top by the altitude where the plume is no longer detected (zmax), and
horizontally by the radius of the flight loops. The basis for the methodology is given by Equation 1:

Qc =
⟨
𝜕m
𝜕t

⟩
+

zmax

∫
0

∮ c′uh · n̂dldz, (1)

where
⟨

𝜕m
𝜕t

⟩
is the average rate of change of mass in the volume, c′ is the deviation of the gas species of

interest from the loop average, uh is the horizontal wind vectors, and n̂ is an outward pointing unit vector
normal to the surface. Large-eddy simulations results from Conley et al. (2017) show that the flux diver-
gence changes quickest closer to the source, making it more difficult to measure, while further away from
the source, the plume is weaker and susceptible to entrainment fluxes. An appropriate sampling radius is
determined in-flight based on the boundary layer height and horizontal wind speeds to ensure that the plane
is far enough so the plume has time to loft vertically, minimizing change in flux divergence, but not too far
that the plume signal is difficult to detect against background. The loops are then divided into bins, with
the lowest bin extending to the ground. Individual bin uncertainty is given by the standard deviation of hor-
izontal flux uncertainty, which is higher at lower altitudes where the flux divergence has a higher rate of
change. The total uncertainty is then obtained by summing all bin uncertainties in quadrature (along with
uncertainty from the time rate of change term from Equation 1, which is determined using a least squares
fit on the gas density with time and altitude).

Due to the FCHAOS system's frequent calibrations to on-board gas standards, 15 s of data was not sampled
every 120 s. When quantifying N2O and CO2 emission rates, the FCHAOS data are interpolated to fill in
gaps throughout the loops. As seen in Table 1, CO2 estimates agree between the FCHAOS and the Picarro
(which has no data gaps), suggesting this interpolation does not significantly impact this analysis.
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Table 1
CO2 Emission Rates Based on Both FCHAOS and Picarro Observations From
Two Fertilizer Facilities

Plant FCHAOS CO2 (Mg hr−1) Picarro CO2 (Mg hr−1)
1 98.3 ± 24 94.6 ± 21.4
1 94.4 ± 17.6 109.1 ± 24.7
2 73.6 ± 15.7 88.1 ± 19.3

2.4. Mass Balance Technique

Using the mass balance method (White et al., 1976), atmospheric N2O fluxes are quantified for regions in the
LMRB. The usefulness of this approach has been well documented in estimates of methane (Karion et al.,
2015; Peischl et al., 2015; Smith et al., 2017), ethane (Kort et al., 2016; Smith, Kort, et al., 2015), and black
carbon (Schwarz et al., 2015) emissions from oil and natural gas activity. The flux during a flight transect is
given by Equation 2:

𝑓 luxN2O = 𝜈 cos𝜃 ∫
x𝑓

xi

XN2O dx ∫
z1

zg

nair dz, (2)

where 𝜈 cos𝜃 is the horizontal wind component perpendicular to the airplane's heading, xi and xf define
the width of the flight transect over ground, XN2O is the N2O molar fraction enhancement over background
during the transect, and zg is the terrain height above sea level. z1 is the adjusted mixed layer height as
defined in Peischl et al. (2015), z1 = (3zPBL + ze)/4 where zPBL is the planetary boundary layer depth and ze
is the entrainment height at which mixing below the boundary layer finally reaches free troposphere levels
(always ≥ zPBL). nair is the molar density of air. Background N2O is determined by averaging 30 s of data at
the start and end of a plume, that is, the times defining the width of the transect with enhancement over
background. Uncertainty for mixing layer height is defined asΔz = z1 − zPBL, while for the other components
it is defined by the 1𝜎 value. All uncertainties are then propagated by summing in quadrature for the total
flux uncertainty, assuming independent and normally distributed errors.

For each flight mass balance transects are identified, and an N2O flux is calculated using Equation 2. Emis-
sions are then quantified from a subregion bounded by two transects by subtracting the flux of the upwind
transect (or “flux in”) from the flux of the downwind transect (or “flux out”). Transects are chosen such
that a transect with length li and mean angle of wind normal to the aircraft 𝜃i has a similar li cos𝜃i value as
another transect with lj cos𝜃j. The air mass passes through two planes with equal areas defined by l cos𝜃 z1,
allowing comparison of fluxes from different transects.

We compare regional mass balance fluxes with crop type, applied fertilizer, soil moisture, and soil temper-
ature. Crop land cover for 2017 is provided by the Cropland Data Layer (CDL) at 30 m resolution (USDA,
2017). A 5 km resolution gridded data set of annual applied nitrogen fertilizer provides nitrogen input infor-
mation (Cao et al., 2017). The data used are from 2015, the most recent year available in the data set. As of
writing, gridded U.S. fertilizer application data with high spatial resolution for 2017 had not been identi-
fied. Two soil moisture data sets are used in this analysis. The first is the SMAP Enhanced L3 Radiometer
Global Daily 9 km EASE-Grid Soil Moisture, Version 2 data product from the Soil Moisture Active Passive
(SMAP) satellite (O'Neill et al., 2018). While the satellite provides good spatial resolution, the area it scans
on each pass of the Earth does not always coincide with the flight path. In order to estimate regional soil
moisture during a flight, the SMAP products from 1–10 May 2017 are averaged over the LMRB region. The
second soil moisture data set is the North American Regional Reanalysis (NARR) product, which combines
model output and assimilated precipitation data at 0.3◦ resolution (Mesinger et al., 2006). To complement
volumetric water content, water-filled pore space (WFPS) is also calculated to better relate soil properties.
WFPS is defined by Linn and Doran (1984) in Equation 3:

WFPS =
Θv

1 − PB
PP

, (3)

where Θv is volumetric water content, PP is soil particle density, and PB is soil bulk density. A common
PP value of 2.65 g cm−3 is used (Soane, 1990). For PB, an average value of 1.385 g cm−3 is used based on
measurements of soil density in the LMRB (Römkens et al., 1986; Selim et al., 1987; Scott et al., 1998). NARR
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is also used for soil temperature data (Mesinger et al., 2006). The mass balance fluxes are correlated with
environmental drivers using observed hourly flux values and comparing with environmental data averaged
over the spatial region defined by the mass balance transect.

2.5. Bayesian Inversion and STILT

To evaluate the spatial scales and flux magnitudes, we can associate with small scale observed airborne
variability, we use a simple inversion approach. First, we selectively focus on small-scale features (plumes,
∼10 s) observed in the aircraft data. By isolating this portion of our data set, we can then use an inversion
method to determine areal extent and flux magnitudes that explain the observed signals. We calculate pos-
terior fluxes of N2O in the LMRB using the Bayesian solution to the inverse problem given by Equation 4
(Rodgers, 2000):

ŝ = s0 + (Q−1 + HTR−1H)−1HTR−1(z − Hs0), (4)

where ŝ is a vectorized gridding of posterior fluxes with length m and units μmol m−2 s−1, s0 is the vectorized
gridding of prior flux with length m and units μmol m−2 s−1, z is a vector of N2O enhancements from flight
observations with length n and units ppm, H is the Jacobian matrix of sensitivity in the transport model
with size n×m and units ppm/(μmol m−2 s−1), Q is the prior error covariance matrix with size m×m and
units (μmol m−2 s−1)2, and R is the model-data mismatch covariance matrix with size n×n and units ppm2.

We assume model-data mismatch errors are uncorrelated and construct R as a diagonal matrix with 𝜎2
R as

its components, with 𝜎R = 0.01 ppb, the 1 s precision for our N2O observations. Similarly, for Q we construct
a diagonal matrix with 𝜎2

Q components, with the value of 𝜎Q = 0.01 μmol m−2 s−1 based on optimizing
predicted enhancements. We used a flat prior of 0.0001 μmol m−2 s−1 based on typical values from flux
chamber studies such as Marinho et al. (2004) and Parkin and Kaspar (2006). Our input parameters for the
Bayesian inversion are not optimized to provide true absolute estimates of fluxes in the entire region; rather,
we are interested in quantifying relative fluxes and spatial extents at a spatial scale between that of the point
source quantification and the regional mass balance. Instead of performing a full campaign inversion to
calculate gridded optimized fluxes, we are evaluating the spatial scales and magnitudes of fluxes from local
enhancements to assess the airborne measurement system's performance and ability to resolve individual
field-scale emissions.

We construct the Jacobian H using footprints obtained from running the Stochastic Time-Inverted
Lagrangian Transport (STILT) model (Gerbig et al., 2003; Lin et al., 2003) using the High-Resolution Rapid
Refresh (HRRR) meteorology data (Benjamin et al., 2016). We run STILT for 102 receptors from the 2 May
research flight, sending 333 particles back in time for 4 hr (sufficient for the trajectories to clear the LMRB
cropland) for each receptor at 1 min resolution. All the receptors come from two eastern transects in the
flight that experienced a large regional N2O enhancement. The receptors were chosen by identifying local
N2O features (coherent enhancements or plumes) and were organized into 13 distinct enhancements for
individual evaluation to determine what upwind area and emissions produced these observed signals. The
lowest observed N2O concentration in each group was used as a local background value and subtracted from
the group to obtain enhancements used in the z vectors in Equation 4. Footprints were calculated from the
particle trajectories as in Lin et al. (2003) with a 0.005◦ resolution in latitude and longitude, or about 500 m.

3. Results
3.1. Fertilizer Plant Emissions

Two large fertilizer plants with significant greenhouse gas emissions are investigated. These are 2 of 19
facilities in the United States with reported N2O emissions greater than 100 Gg CO2e (EPA, 2017). Plant
1 was responsible for 5% of all US emissions of N2O in 2017, and Plant 2 contributed 1% (EPA, 2017). In
terms of ammonia production, 32 plants in the United States accounted for 10,500 Gg N (USGS, 2018).
Plant 1's ammonia production capacity is equal to 4% of the total U.S. ammonia production, while Plant 2's
capacity is 3.5% (Nutrien, 2018). Figure 3 shows N2O and CO2 quantified emission rates from the FCHAOS
system, CO2 and CH4 emission rates from the Picarro, and reported GHGRP emissions for both plants. The
GHGRP emissions are scaled down from Tg year−1 to kg hr−1 accounting for 340 days of effective production
capability (USGS, 2019), as fertilizer production facilities typically operate nonstop throughout the year with
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Figure 3. Observed emissions for N2O, CO2, and CH4 (FHCAOS in orange,
Picarro in blue) along with 2017 GHGRP data (gray) for two fertilizer plants
from EPA (2017). Black error bars indicate 1𝜎 uncertainty.

some periodic maintenance, resulting in low temporal variability (TFI,
2017). Plant 1 was observed on both 9 and 10 May, while Plant 2 was
observed only on 10 May. Estimates for N2O and CO2 agree well within
uncertainty with emissions reported in the GHGRP. For Plant 1, there is
also consistency in emissions from one day to the next.

CH4 estimates are underestimated in the reported values compared to our
observations, by a factor of 100 for Plant 1 and 20 for Plant 2. According to
the GHGRP, 100% of the CH4 emissions from both plants is a result of sta-
tionary fuel combustion (EPA, 2017). Using the amount of gas combusted,
a leakage rate is calculated to account for the discrepancy in observed and
reported emissions. Plant 1 directly reports the amount of natural gas con-
sumed while Plant 2 does not, but the value is calculated using reported
emissions and GHGRP-defined emission factors. Using a typical natural
gas composition range of 70–90% CH4 (Speight, 2007) results in a range
in leakage rates of 0.6–0.8% for Plant 1 and 0.9–1.2% for Plant 2. However,
CH4 accounts for ∼0.01% of total GHGRP-reported CO2e emissions for
both plants, with N2O and CO2 contributing essentially all of the GHG
emissions. Adding in observed CH4 emissions changes the contribution

of methane to 0.9% for Plant 1, a factor of 90 increase, and 1.8% for Plant 2, a factor of 180 increase. This find-
ing is in agreement with observations of CH4 from six different fertilizer plants by Zhou et al. (2019). Their
study found CH4 to be underestimated relative to the GHGRP by factors of 50–175 for five of the plants and
by 3,250 for the sixth, resulting in a worst-case leakage rates of 1.22% and a nominal-case rate of 0.34%.

3.2. Regional N2O Fluxes

N2O fluxes are calculated from mass balance transects for 26 regions, ranging from the northern end of the
LMRB near the Missouri/Kentucky border down to the southern end of the valley in northern Louisiana.
Figure 4 illustrates an example flight path and N2O enhancement from 9 May. The typical background
approach is to use the edges of the enhancement, as shown in Figure 4. For some enhancements the aircraft
did not fully exit the area of enhancement in the valley. In these situations, background values from upwind
transects are used to account for passive enhancement captured in the downwind transect.

For all regions, the mean emission flux is 1.0 ± 0.7 g N2O-N ha−1 hr−1. Marinho et al. (2004) observed emis-
sions from Mississippi Alluvial Plain soils of 1.5 g N2O-N ha−1 hr−1 following rainfall in mid-June during
the growing season, while Scaroni et al. (2014) reported emissions of 0.1 g N2O-N ha−1 hr−1 from soils in
the Louisiana river basin in June and July. From a flux chamber study in Iowa, Parkin and Kaspar (2006)
reported soybean crop emissions of ∼2,500 g N2O-N ha−1 year−1, with typical hourly fluxes on the order
of 1.5–2.4 g N2O-N ha−1 hr−1 from soybean, consistent with the results of this analysis. Parkin and Kaspar

Figure 4. (a) Flight path for 9 May 2017, colored by N2O mole fraction. Black arrows indicate wind direction and
relative magnitude. The black box highlights a transect used for mass balance. (b) The N2O mole fraction along the
transect indicated by the black box in (a). The first and last 30 s of the transect is used to find the mean background and
its 1𝜎 uncertainty (solid black line and dashed lines, respectively).
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Figure 5. (a) Observed (blue points) and predicted (orange points) N2O enhancements for a group of three receptors in
a feature. (b) Predicted enhancement grid for the peak enhancement (middle receptor from a), with a contour around
the grid cells that contribute 50% of the total enhancement.

(2006) report fertilizer application in Iowa occurring on Day 155 of the year, while the FEAST campaign
took place from Days 122 to 130. However, crop planting in the LMRB typically occurs earlier than the Corn
Belt according to the USDA's Crop Progress Reports (USDA NASS, 2017a). By 7 May 2017, based on fraction
of state crop acreage for a particular crop, Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Ten-
nessee had planted 50–76% of soybean, 50–77% of corn, 7–68% of cotton, and 67–92% of rice (USDA NASS,
2017a, 2017b).

The regional mass balance fluxes are compared with crop type, applied fertilizer, soil moisture, and soil
temperature. When we consider environmental drivers individually, we do not find strong empirical linkages
to emissions at this scale. For crop type and fertilizer application, there is no evident relationship. A weak
linear dependence is observed for soil moisture (R2 = 0.19) from SMAP, in line with literature (Dobbie et al.,
1999, 2017b; Smith et al., 1998; Schindlbacher et al., 2004), and a WFPS relationship similar to that observed
by Smith et al. (1998), but not for NARR data. With soil temperature, we observed a temporal gradient, with
higher temperatures during later flights, but temperature alone does not appear to be a strong predictor
of N2O flux compared with exponential relationships in literature (Smith et al., 1998). The WFPS analysis
would potentially be improved using a gridded soil product to provide more refined values of PP and PB.

To assess the relative emergent role of these driving variables, we perform a multiple linear regression anal-
ysis with crop type, applied fertilizer, soil moisture, and soil temperature to predict N2O flux. The resultant
fit has R2 = 0.64, p = 0.01. By considering multiple environmental driver simultaneously, we find signifi-
cant empirical relationships between drivers and emissions. The strongest predictors that emerge from this
analysis are soil moisture from SMAP, and total planted area of soybean, cotton, and rice. A multiple linear
regression model with only those four variables has R2 = 0.54, p = 0.001. Although fertilizer is expected to
be a strong driver of N2O emissions, the temporal elements of its application are not represented by annual
data. Since this analysis relates hourly N2O emissions to annual fertilizer application, it is understandable
that the fertilizer does not significantly predict N2O. The crop type may be acting as a proxy for the actual
applied fertilizer amount, capturing fertilizer timing and variation in management practice. While previous
studies have observed a positive relationship between emissions and soil temperature, it is possible that the
soil temperature effect is being dwarfed by other factors such as soil moisture.

3.3. Discriminating Field-Scale Emission Differences

Whereas the mass balance approach enables robust quantification of large regional areas, a different
approach is warranted to evaluate if specific agricultural fields (or clusters of fields) exhibit different emis-
sions. We consider a feature in the airborne measurements such as illustrated in Figure 5. Using the STILT
inversion approach described earlier, we then derive optimized emission fields that produce the observed
N2O enhancement in this small time window.

To evaluate what area most contributed to the observed peak, we consider a 50% threshold value, identifying
the highest-enhancement grid cells, which contributes 50% of the predicted enhancement. These are the
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most intense local sources responsible for the observed N2O concentration. We then use the boundaries
defined by these grid cells to quantify the magnitude of fluxes and the areas that contribute the most to
the enhancement—determining the area responsible for the observed feature. Finally, we can compare the
average flux of the peak enhancement to the fluxes of the shoulders, defining the relative flux responsible
for the observed local feature. Figure 5 illustrates the observed and predicted enhancements for one group
of receptors. We perform this exercise for 13 different cases.

We find an average relative flux of 0.026 ± 0.01 μmol m−2 s−1 in the 50% threshold grid cells when comparing
the peak enhancement from each group to the local background. The average observed peak enhancement
linked to these fluxes is 0.79 ± 0.26 ppb N2O. Our airborne instrument precision is 0.05 ppb with traceability
to standards of 0.28 ppb. In conditions experienced in these flights, we thus can robustly detect these signals
associated with emissions of this magnitude. The linkage between observed enhancements and emissions
depends on atmospheric conditions, so this detection threshold could be larger or smaller with variability
in the atmosphere.

The average area of the grid cells contributing 50% of enhancement for the peaks in the features is
2.5 ± 1 km2. Comparatively, the average total flux field for the receptors is 614 ± 243 km2, and setting the
threshold value to just the top 90% of the enhancement results in an average area of 35 ± 21 km2. Compar-
ing the CDL to satellite imagery of the LMRB, the typical field size is ∼0.25 km2, so peak enhancements
can be attributed to an area equal to approximately 10 fields. Halving our grid resolution to 0.01◦ in lati-
tude and longitude, we find the result is consistent, with an average area of 2.5 ± 1.5 km2 and average flux
of 0.023 ± 0.015 μmol m−2 s−1 from the 50% threshold cells. Further reducing the resolution to 0.02◦, the
average area is 5.9 ± 5.6 km2 and average flux is 0.019 ± 0.017 μmol m−2 s−1, as each grid cell is roughly 4.2
km2, larger than the 2.5 km2 threshold area from the finer resolutions. The winds during the 05/02 transects
were relatively steady and stable, resulting in narrow cones of particle trajectories from the west, resulting
in spatial extents of 7 ± 2.5 km in longitude and 1.3 ± 0.4 km in latitude for the peak enhancements. This
inversion approach is intended to highlight near-field local enhancements and is not evaluating fluxes for
the entire region. In the a posteriori grids, typically 70% of the grid cells were below the mean flux value,
and ∼2% of the grid cells had negative fluxes. These fluxes are not designed to be representative of absolute
values, but by comparing the shoulders of the plume to points above the background, we can attribute and
identify the spatial scales and magnitudes of the local enhancements.

4. Implications
Observed N2O and CO2 emissions from two productive fertilizer plants agree with reported emissions,
showing no evidence that emissions of these greenhouse gases are underestimated or overestimated in
self-reporting. Our observed emissions of CH4 from the two plants, however, are greatly in excess of reported
emissions, a phenomenon observed in other fertilizer plants in the country (Zhou et al., 2019). Though emis-
sions exceeding expectation by multiple orders of magnitude may appear to be unrealistic, these emissions
imply a fugitive emission rate of ∼1%, a leakage rate consistent with observations from other parts of the
natural gas supply chain (Schwietzke et al., 2014). Although the observed emissions are orders of magni-
tude higher than expected, the increased CH4 emissions do not significantly impact the overall footprint of
the fertilizer plants, corresponding to a 0.9% increase in total CO2e emissions for Plant 1 and a 0.2% increase
for Plant 2. The large emissions of CO2 and N2O dominate any additional fugitive CH4 emissions. The
fugitive CH4 emissions may be modest in this case, but it is an addressable emissions source and is under-
estimated in current CH4 inventories, thus representing another discrepancy in inventory representation of
CH4 emissions.

Regional sampling of the LMRB enabled the investigation of emissions at a unique spatial scale. We observed
significant variability in N2O emissions in the various subregions sampled. Though the emission magni-
tude and variability we observed are consistent with flux chamber measurements, we might have expected
less variability in the regional flights that integrate over many fields with different crops and farming prac-
tices. Considering the variability observed, soil moisture and crop type proved to be the strongest emergent
predictors of emissions. This suggests knowing the crop (and inherently thus the soil type and fertilizer prac-
tice) combined with soil moisture can predict N2O variability at 100 km scales and highlights the role of soil
moisture in predicting N2O flux. Future work evaluating how process-based models predict N2O emissions
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to vary in this domain will enable evaluation of process representations on regional spatial scales. Compar-
ing emissions from plants to those from cropped soils, we observe 521.4 ± 92.8 kg/hr of N2O from the two
fertilizer plants (averaging the 2 days for Plant 1). From soils we observe around 15,000 ± 7,000 kg/hr of
N2O from a combined 92,000 km2 of area. This value provides a snapshot of our domain at time of mea-
surement, given how important seasonality and spatial variability are to N2O emissions from soil, and is not
representative of larger trends, while the hourly plant emissions can be reasonably extrapolated.

We also assess our observed N2O concentrations to define the ability of this type of sampling to distin-
guish field-scale emissions, a critical spatial extent in-between the facility-level analysis provided by the
point-source quantification and the regional fluxes from the mass balance calculations. We find that 50% of
the total peak enhancement in local features comes from areas with an average size of 2.5 ± 1 km2 and aver-
age flux magnitude of 0.026 ± 0.01 μmol m−2 s−1. These suggests that this method can potentially be used
to compare crop-management practices occurring on those spatial scales, such as no-till farming and/or
different cover crops, to better assess the atmospheric impact from different practices.

5. Conclusions
This work highlights the capability of continuous airborne observations to quantify atmospheric green-
house gas emissions from agricultural activity. We report greenhouse gas emissions from two productive
fertilizer plants with large production capacity of ammonia and nitric acid and find good agreement with
GHGRP-reported emissions and observed N2O and CO2 emission rates. Observed CH4 emissions are sev-
eral orders of magnitude higher and suggest a natural gas leakage rate of ∼1%. Replacing GHGRP-reported
values with the observed emissions raises the CH4 fractional contribution to total plant emissions by a fac-
tor of 100, but the overall footprint of the facilities is not substantially increased, as the total footprint is
dominated by reported N2O and CO2 emissions.

We quantify regional N2O fluxes using the mass balance technique, the first example of this approach
to agricultural N2O emissions, demonstrating proof of concept. We find fluxes on the order of
1.0 ± 0.7 g N2O-N ha−1 hr−1, with large variability between regions. We investigate relationships between
emissions and several factors known to impact N2O: crop type, nitrogen from fertilizer application, soil
moisture, and soil temperature. For our flights we find the strongest predictors of N2O emissions are soil
moisture, soybean area, cotton area, and rice area. Soil temperature and annual applied fertilizer appear
less predictive. The emission fluxes are broadly consistent with fluxes reported in literature. Our method
encompasses all emissions from the agricultural regions, with total areas ranging from 5,000 to 37,000 km2.

We estimate relative flux magnitudes and areas at local farm-level spatial scales using a Bayesian
inversion approach and the STILT model. We find an average flux of 0.026 ± 0.01 μmol m−2 s−1

(26 ± 10 g N2O-N ha−1 hr−1) from an average area of 2.5 ± 1 km2 is responsible for 50% of the total peak
enhancement in a local N2O feature. This highlights the possibility to use airborne sampling to distinguish
emission differences at these spatial scales.

Future studies would benefit from observations of more fertilizer plants. Direct knowledge of a facility's
production rate would help reduce variability in scaling from annual to hourly emissions, though that infor-
mation may not be easily available. Comparing the results of these flights with output from a process-based
model for May 2017 in the region of interest would allow direct comparison with expected N2O fluxes as
well as evaluation of the model's predicted sensitivity to underlying variables such as applied fertilizer, soil
moisture, or soil temperature. Another potential analysis would be comparing the fluxes with measure-
ments from an eddy covariance tower with appropriate footprint sizes. The type of airborne observations
presented here could potentially be used to assess the efficiency of various management practices by farms,
evaluating if whole field emissions vary depending on specific practices.

Data Availability Statement

The data are available at the following: Kort E. A., Gvakharia A., Smith M. L., Conley S. Airborne Data
from the Fertilizer Emissions Airborne Study (FEAST); Nitrous Oxide, Carbon Dioxide, Carbon Monoxide,
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Methane, Ozone, Water Vapor, and meteorological variables over the Mississippi River Valley (data set); and
University of Michigan Deep Blue Data Repository (https://doi.org/10.7302/Z2XK8CRG).
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