Emergent conservation outcomes of shared risk perception in human-wildlife systems
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Article imgct statement: Sharing of risk perception in social networks alters spatial patterns

of human-@interactions, sometimes creating spillover effects.
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Abstract
Human p o of risks related to economic damages caused by nearby wildlife can be
transmij ugh social networks. Understanding how sharing risk information within a

human commuii#¥ alters the spatial dynamics of human-wildlife interactions has important
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implications for the design and implementation of effective conservation actions. We
developed an agent-based model that simulates farmer livelihood decisions and activities in
an agricul!u ndscape shared with a population of a generic wildlife species (wildlife-
human int, il shared landscapes [WHISL]). In the model, based on risk perception
H . . .
and econoslc information, farmers decide how much labor to allocate to farming and
whether ame to exclude wildlife from their farms (e.g., through fencing, trenches, or
vegetation g). In scenarios where the risk perception of farmers was strongly

influence th@r farmers, exclusion of wildlife was widespread, resulting in decreased

quality of W1E!15 habitat and frequency of wildlife damages across the landscape. When

economic | om encounters with wildlife were high, perception of risk increased and
led to higﬁronous behaviors by farmers in space and time. Interactions between
wildlife a rs sometimes led to a spillover effect of wildlife damage displaced from
sociall ially connected communities to less connected neighboring farms. The
WHISL mod useful conservation-planning tool because it provides a testbed for

theories and predictions about human-wildlife dynamics across a range of different

agriculturs landscapes.
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Introduction

Co-occmween people and wildlife is expected to increase globally (Carter & Linnell
2016). Int in landscapes shared by human and wildlife populations can provide
greater%c services and assets to humans, including greater wildlife viewing or
recreationalghunting opportunities (O’Bryan et al. 2018). Likewise, some species benefit from
the use ofuogenic landscapes where high-quality food is consistently available (West
et al. ZOIWVer, increasing encounters also introduce a range of risks to both wildlife
and humamlife can eat people’s crops and livestock, damage property, and threaten

human safety. Humans can, in turn, degrade wildlife habitats and kill animals they perceive
as arisk (@ & Treves 2016). This negative perception of wildlife has put wildlife
species at xtinction risk worldwide (Ripple et al. 2014). Policies to enhance wildlife
conservation are in place in many shared landscapes, but they often do not have the expected
impact and in e cases have unintended consequences, such as actually increasing risks
from mans (Carter et al. 2017). These unintended consequences can occur when

key socialg@and ecological processes, and their feedbacks, are overlooked (Carter et al. 2014).

[

Often igno ow individual decisions to manage conflict in a given location (e.g., lethal

O

or nonleth ence of wild carnivores) influence human-wildlife interactions in other

locations, Such as displacing risks from wildlife to new areas. We addressed these challenges

g

by inco

L

eories of human risk perception into a spatially explicit, agent-based

model (ABM) tES simulates human-wildlife interactions on shared agricultural landscapes.

A num dividual-based theories of human risk perception exist, and some have been
formalized in ABMs to simulate interactions in social-ecological systems (Schliiter et al.

2017; Magliocca & Walls 2018; Baeza & Janssen 2018). Such theories emphasize the effects
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of risk perceptions on individual economic decisions, cognitions, and emotions. Several
studies, however, show that risk perception is not simply an individual cognitive mechanism,
but also de on relational aspects of individuals and their networks of influence (Scherer
& Cho 20 t al. 2013). The stronger the tie between two actors in a network, the
more 11ke\s they are to adopt similar attitudes and behaviors. Because wildlife-related risks
can be coxmi or highly salient, one would expect that interactions with wildlife generate
erpersonal discussions (e.g., information flow) about those events and

a great dea

facilitate igsion of risk information throughout a community (Muter et al. 2013).

NUS

Although t rowing recognition of the influence of social connections on risk

perceptio a community (Scherer & Cho 2003; Muter et al. 2013), the role of space in
mediating@omes of socially shared risk perceptions has received little attention. Yet,
many rj tially heterogeneous, such as the location of floods or crop damage from
herbivores. Ri hat vary in space likely intersect with one’s social network, such that

farmers who experience a risk will likely share information about it with others in a similar
environméfital context. Individual perceptions can directly relate to an individual’s behaviors

(BruskottQOlS). Therefore, one would expect that network-propagated risk perception
10

as a funct patial proximity can give rise to spatially nonrandom behaviors in human
communitg: On one hand, these behaviors can represent an effective community response to
environwards, such as fire or flood. On the other hand, spatially heterogeneous

human behaviorsfgan also have significant consequences on wildlife populations when they

involve hu sed mortality (e.g., population sinks) or habitat fragmentation (e.g., forest
clearing S).

This article is protected by copyright. All rights reserved.
4



Investigating social-network influences on risk perception and the emerging spatial patterns
in coupled human-wildlife systems is much needed. However, obtaining the requisite
empirical eyidence is extremely challenging, and no studies to date have simultaneously
investigat cesses. To help fill this knowledge gap, we developed WHISL
(wildlifg-lsmneractions in shared landscapes), an agent-based model that simulates
human-wildlifemgteractions in stylized social-ecological conditions. Specifically, WHISL
simulates mal farmers’ livelihood decisions and activities in an agricultural landscape
shared wiwmtion of a generic wildlife species. Individuals of the wildlife population
occasionally damage the farms (i.e., costs associated with crop loss or livestock depredation)
and the ny respond to these encounters by excluding wildlife from their farms (e.g.,

through fi nches, or vegetation thinning). These farmer decisions are modulated by
shared rision from other farmers. The goal of the model is therefore to explore the

attern e from the behaviors (e.g., perception, learning, adaptation, selection,
p g., percep g p

action) of th ers and the spatial configuration of the landscape (Fig. 1a).

We had 2 @bjectives: describe how risk perception mediates farmer responses to and negative
impacts o encounters under different spatial and social network scenarios and, based
on these sce s, generate hypotheses about the causal mechanisms producing different
outcomes e tested against empirical data. We used WHISL to test three main hypotheses:
greater Hsmission of risk perception leads farmers to invest in efforts to exclude
wildlife from thes farms, regardless of whether those farmers have directly experienced
wildlife da e greater the social transmission of risk perception the greater the
spatiotem nchronicity among farmers to exclude wildlife from their farms; and
although high levels of social transmission of risk perception may lead to overall lower

frequencies of wildlife damages across the landscape, farmers who are disconnected from the
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social network experience greater likelihood of wildlife damage than those who are
connected to the social network because wildlife are pushed off other farms (i.e., spillover
effects). gy ﬁrimentally testing these hypotheses, we sought to explore how, where, and

when cert isms are dominant and the effects of those mechanisms on human

hvehhoodsand wildlife management. The insights from WHISL can, therefore, shed light on

processes mance human-wildlife coexistence under uncertain and changing social-

ecological 10nS.

)
Methods
The 3 main ts of WHISL are the agents and their attributes and actions; the attributes
of the shaﬁcape; and farmer’s decision-making process, the formulation of risk
perceptiony a relation to spatiotemporal propagation of risk. Information about the
mathergati ils of the model are available in Supporting Information, and model source
code is avail a public repository (see below).

L

Model ag(p

The W@l included 2 types of agents: farmers and wildlife. Each farmer j (j =

{1, .., ]Mewner of a subset of cells in a landscape called the farm F;. Each farmer

had as attributes @ time-varying perception of risk of encounters, 7; . , and the amount of

U

labor avai ;- Farmers obtained an income from agricultural production of a good with

a price dete by an external market, and off-farm wages (Supporting Information).
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In each annual cycle, farmers decided the amount of labor to invest in agriculture, the cells
they needed to designate to agriculture production, and how much labor they needed to invest
in excludinggaildlife from their land (Fig. 1a). Each farmer has an aspirational level that
determine target (Supporting Information). The income target was used to decide
how mucl!abor to invest in agriculture (decision 1). Each farmer shared information about
the risk of Qers with other farmers in a spatially structured social network. Farmers
also remem past encounters with wildlife. The combination of a farmer’s own past

experienc the experience shared from other farmers was used to reevaluate the

S

perception of risR The risk perception was subsequently used by the farmer to decide to

Ul

either exclu ildlife (e.g., through fencing) or designate more land to production or not

N

invest in agni e at all (decisions 2 and 3). Investing in excluding wildlife at a given farm

cell in tur@re its availability, a; . , to wildlife (i.e., wildlife cannot access that cell). The

a

decisio lgorithms and procedures to simulate farmers’ decisions were based on

prospect-th inciples (Kahneman & Tversky 1979) and on the literature of

\;

spatiotemporal perception of environmental hazards (Viscusi 1991; Gallagher 2014). From

the modelS§imulations, we obtained the total number of wildlife encounters for each farmer,

the total w@d average income of each farmer, and the total available land to wildlife on
rm.

each farmer
The mo cluded wildlife individuals from a population of size N. Wildlife agents’

sole attribute wagitheir position in the landscape, and their only behavior was movement.
Their locati e landscape was updated using a simple stochastic procedure in which one
cell waﬁm a subset of cells in a von Neumann neighborhood of predefined radius.
The probability of a cell being chosen to move to was proportional to the attractiveness of the

This article is protected by copyright. All rights reserved.
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cell to the wildlife, which depended on the quality of the cell to support wildlife, q; ,and its

availability.

Shared a@andscape

A lands-caE{L ..., |, ... Imax} was composed of a set of square grid cells of the same
size. Each g@ll characterized by the productivity of the land, y;; the quality of the cell to
support WQ} and the availability of the cell for the wildlife. The productivity of the
land was edgds the maximum possible yield a farmer could obtain from the cell
(Supportin@ation). Habitat quality represented the primary productivity of the land to
support wildl hich in turn affected the attractiveness of the cell. The availability of the
land to wi&pended on the decision of farmers to exclude wildlife from all or portions
of their famavailability of a farm cell varied in time as a function of farmers’ decisions

to invegipl ing wildlife from that cell and the rate at which the effectiveness of the

exclusion decayed, d. For example, fences will degrade over time if not maintained.

Farmer dw

Given the @ m possible yield on their farm and exogenous information about prices,
costs, and off-farm wages, farmers decided how much labor and to which of their farm’s cells
to Investyd e and from which of the farmed cells to exclude wildlife. Labor allocation
was baw gains and an aspirational target. The expected gain in each cell was

calculated under Sncertainty in potential losses due to encounters with wildlife agents.

Land-uﬂs were modeled as the result of each farmer’s annual labor allocation

decisions, the rules for which were derived from smallholder household economic theories
(Netting 1993) and implemented in Magliocca et al. (2013, 2014). We assumed that the total

This article is protected by copyright. All rights reserved.
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labor needed was proportional to the farm size, |F] | Labor allocated to agriculture was

adjusted each decision cycle to meet an aspirational target income (including production for

subsistenc et income was defined as a moving-average reference point, set to 80% of
past earni al. 2011). Expected income from agriculture was calculated by farmers
 EE—

considerin@ information about land production, prices, labor and production costs, and the
perceptior@and damage from wildlife. Land was then allocated for agricultural
production eet the agricultural portion of income aspirations. For example, a farmer
might pro re crops than were needed for own consumption in a given year and reduce

the amount of 1aBer allocated to agriculture in the subsequent year to minimize labor in

LS

productio isk of losses; and vice versa (e.g., decreasing food stocks result in increased
farm labo wen farm-level expected income and income aspirations, annual labor for

agricultur@ocated and total land under production was defined. Once total labor was
allocat er selected a subset of farm cells that maximized return based on
agriculEvity and varying production costs. In addition, the farmer decided if the
action of excluding wildlife would maximize returns net of construction and maintenance
-

o,

Substantial emflrical evidence from natural-hazards research suggests that individual risk

costs.

percepti iased, or subjective (Ludy & Kondolf 2012), and risk perceptions change
over tinerisk information is presented through either direct experience of hazards or
indirect in@n channels (Magliocca & Walls 2018). Acknowledging the socially
constructe of risk (Kahneman et al. 1982; Slovic et al. 2007), we defined objective
risk as the ility of a hazard event based on directly measurable causal factors. In this
context, objective risk was calculated as the probability of a wildlife agent’s presence at a

given time and location based on model parameters of habitat quality and the density of

This article is protected by copyright. All rights reserved.
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wildlife agents in the landscape. We defined subjective risk as the expected probability of an
event based on both direct and indirect (e.g., socially communicated) experiences with hazard
events. Thu jective risk perception may diverge from and be compared with the
objective iygof a hazard event in response to the number and frequency of events
over tir:e.@cular, risk perception may undergo large and immediate changes after a
hazard eveas (Gallagher 2014). A common Bayesian learning model (Viscusi 1991) provides
a formalizmdynamic risk perception in which an individual observes the occurrence of
a hazard ew updates their expected probability of future events (Davis 2004). Further,
additional empirigal evidence demonstrates that risk perception diverges from objective
levels oveﬁd the rate at which it diverges varies in relation to time since a hazard

event (i.c. ghi ighting [Gallagher 2014]).

-weighting formalization by Gallagher (2014), we developed a farmer

subjective ri ception of detrimental wildlife interactions that was a function of the
requency of encounters, the time-horizon for remembering past events, and the risk
perceptiors of other farmers’ within the given farmer’s social network. Farmers were
assumed t rior information about the average risk of encounters per cell based on the
quality of t d to support wildlife, the available area to wildlife, and the wildlife
populatiomsize. We assumed that farmers give more attention to encounters that occurred
more reH share risk information with their social network.

-
Each farmer information about risk perception with a subset of other farmers
connecte cial network. Only the most salient information was shared through the
social network, which we assumed was information limited to only negative encounters with

wildlife. In the model, a farmer’s network was formally defined by the graph G; = (¥, E),

This article is protected by copyright. All rights reserved.
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where ¥ is the subset of farmers connected to farmer j and E is the link between farmers.

The topology of the network was defined based on a distance-weighting function between

farmers, su t 2 farmers that were close in space were more likely to share a link. We

used the ¢ scgo-network topology” to represent the extent of the social connections
 E— ) ) . .

that each farmer shared information with (Everett & Borgatti 2005). Generally, the ego-

network ofgd fafer, j, had a group of first- and second-degree connections we defined as GJ-1
and sz respectiyely. Using this network, the perceived risk sensed by farmer j was defined as
U 5 s
m,

N _
it = W17Tj,t + Wy manEG} T[g,t + W3 maneG]g T[g,t'

D 0
! Wl + WZ + W3 == 1

All experi ere simulated on a 100 x 100 landscape 10 times to capture the variation in
wildlife diSgi ns, damages, and habitat quality. Two landscape scenarios were explored
by man ing the spatial structure of the agricultural productivity, y;, and quality for
wildlif cenario was a mixed landscape, where each cell was randomly assigned a

value for agriculture productivity and wildlife quality with a uniform random number

generator h The second scenario was the protected area or gradient landscape, where

the agricu @ pductivity and the quality for wildlife both were gradually varied from east

to west, b opposite directions. That is, as y; increased from east to west, g; decreased
from eas [0 west Fig. 1b). We tested two social scenarios. First, farmers formed risk

perceptio cing more combined weight on information from their social network than

their own ces (i.e., w; K w, + wy), high social influence. Second, T farmers formed

4@ s by weighting their own experiences more than socially transmitted risk
information (i.e., Wy > w, + ws), low social influence. We performed a sensitivity analysis

to evaluate the effect of parameters with high uncertainty. The sensitivity analysis was

This article is protected by copyright. All rights reserved.
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conducted to assess the degree to which model outcomes changed when we varied several

key parameters: distance between houses (min_dist), size of farms (|F] |), the price per unit of

yield (p), &e from wildlife per encounter (&) (Supporting Information).

Results s

Synchronwuman decision making
Farmers who Were part of a spatially proximate social network were more likely to behave

the same gV, exclude wildlife) in both space and time (Fig. 2) than farmers who were
not part of such s'network. Thus, the more the risk was shared among the social network, the
more likelﬁarmers behaved identically in response to the risks. In the mixed

landscape ith low social network influence, the landscape pattern generated clusters

of risk frofe that facilitate synchronous behaviors by farmers to exclude wildlife from
their f: i ). This synchronicity was substantially elevated when the level of social
network i was high. In the mixed landscape, the correlation extended to 30 cells, or
almost one-third of the entire landscape (Fig. 2a). However, in the protected-area landscape
with low sOgi twork influence, the degree of correlation among farmers to exclude

wildlife w; @ zero, indicating that landscape patterns of risk and social sharing of risk

perception Wfrf not concentrated in space and time (Fig. 2b).

Human- ife interactions across agricultural landscapes

<

In general, the ay@rage number of wildlife encounters per farmer gradually decreased as

L

damage le reased, corresponding to the declining area available to wildlife due to

A

farmers exc them from their farms (Fig. 3). The spatial structure of the landscape and
level of social influence augmented this overall trend. In the simulation experiments with the
mixed landscape, available habitat for wildlife (i.e., not excluded) and the average number of

This article is protected by copyright. All rights reserved.
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encounters per farmer were lower when social influence was high (Fig. 3a, c), and increasing
damage per wildlife encounter amplified these relationships. For example, available habitat
decreased t roximately 70% across the range of damage levels when social influence
was high, mith only 20% when social influence was low (Fig. 3a). As damage

H — . ‘
levels 1nc1§sed, the average number of encounters per farmer in the mixed landscape
decreased oy approximately 50% (Fig. 3¢). Decreases in available habitat and encounters also

decreased 1 ected area landscape when social influence was high, although the degree of

change wWess pronounced (Fig. 3b, d). Moreover, average farmer income did not

differ between or high levels of social network influence, independent of landscape
configurati porting Information). Nor did income change with increasing damage
levels, su iiggthat farmers in all simulation experiments were successfully maintaining

income b@ng portions of their farms to wildlife in response to increased damage.

Spillover eff n disconnected farmers

When social network influence was high, farmers excluded more of their farms from wildlife
as the nunSer of connections to neighbors increased (Fig. 4a, b). This pattern was amplified
in the mix cape, in which farmers with 15 connections were using exclusionary
measures a times more often per year when social influence was high than when it was
low (Fig. s;: Overall encounters per year were higher in the mixed landscape than the
protectm. 4c, d), indicating that the mixture of agricultural productivity and habitat
quality provided iwore opportunities for encounters. Farmers in the mixed landscape with <5
connections ienced a greater number of encounters per year when social influence was

high com ith when it was low; completely disconnected farmers experiencing almost 3

times as many (Fig. 4c).
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Holding constant the initial habitat quality of farmers’ locations and their social network

connections, any changes in the number, timing, or location of wildlife encounters was an
emergent O e resulting from farmers’ responses to wildlife encounters and altered
wildlife esulting from farmers’ responses. Although a large portion of farmers in

. — . e .
the mixedgiandscape had less overall number of encounters with wildlife when social

influence was high compared to low (Supporting Information), some farmers were more
likely to ex ce much greater number of encounters (i.e., over 40). In contrast, all the
farmers i ected-area landscape experienced fewer encounters with wildlife when

social inﬂuencejas high than when it was low (Supporting Information). As social influence
increased, wildlife encounters disproportionately increased for farmers with low initial
habitat qughi low social connections. This was illustrated by a shift toward the upper-

right qua@w (log) mean values of encounters between high and low social influence

scenari ixed landscape (Fig. 5). In contrast, the shift in (log) mean encounters to

the lower-left adicated the opposite effect in the protected area landscape, suggesting that

excluding wildlife did not demonstrably displace encounters to other farms in a spatially
structured¥andscape (Fig. 5).

O

Discussion
We foundgidence that socially transmitted risk perception created a feedback between
wildlifeﬁn behaviors. Notably, disconnected farmers in the mixed landscape
incurred g@mage from wildlife displaced from well-connected farms (Fig. 4c). This is
because well, ected farms effectively, and synchronously, excluded wildlife from large
poﬁion@u‘ms to create a spillover effect on disconnected farmers. Several empirical
studies have alluded to similar spillover effects. A recent study showed that, despite the

challenges associated with maintenance responsibility and costs, fencing designed to mitigate

This article is protected by copyright. All rights reserved.
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human-elephant conflict on the border of Kenya and Tanzania could bring immediate,

localized relief from crop losses by African elephants (Loxodonta africana). However,

connectiw! els indicated that the fencing could shift the regional patterns of elephant
habitat us iahly displacing conflicts to new agricultural areas (Osipova et al. 2018).

H E—— o ) .
Another s!dy in Kenya around Nairobi National Park showed that the use of LED flashlights
on bomas Qd lion (Panthera leo) depredation toward bomas without the flashlights

t ae

(Lesilau e 8). In Alberta, Canada, and Idaho, United States, the use of fladry barriers

(flags hanw ropes) on some ranches likely shifted depredation by wolves (Canis
lupus) onto neighboring ranches that did not use fladry (Musiani et al. 2003). In Norway,
Asheim an rud (2005) reassessed data on sheep losses to conclude that when

livestock- dogs had prevented predators from hunting a particular area, the predators
switched to prey on domestic sheep in another area. Unanticipated consequences

such a diminish local support for conservation actions. Thus, there is a need and

opportunity ure work on spatial spillover effects in human-wildlife systems.

In additioﬂo socially transmitted risk perception, our model indicated that the spatial
configuratj rms and wildlife habitat strongly influences the dynamics of human-
wildlife inte ons. The two configurations we used in the model generally correspond to
landscagegat are shared (i.e., mixed landscape experimental setup) or spared for wildlife
(i.e., era experimental setup). The importance of these 2 landscape configurations
1S a major topic iSConservation now because they have implications for spatial zoning, land
use, and ani spersal corridors (Luskin et al. 2018). For example, in northern Tanzania,
elephants all farms as “stepping stones” between the refuges and contiguous farmland
increased habitat connectivity for elephants (Pittiglio et al. 2014). However, in Gujarat, India,

shifts in agricultural patterns led to a significant increase in the livestock being killed by lions

This article is protected by copyright. All rights reserved.
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and leopards (Panthera pardus). As a result, more of those predators were found dead in
farmlands, presumably killed by farmers, during that period of time (Vijayan & Pati 2002).
Imporths in the mixed landscape that we observed the largest spillover effect of
wildlife da farmers that were disconnected from the social network. Examining
human-w'?edynamics on mixed landscapes warrants more attention as many wildlife
species ra outside of protected areas (Carter & Linnell 2016). Furthermore, the Aichi
Biodiversmt 7 of the Conservation of Biological Diversity stresses that lands used for
compatible with biological conservation (Convention on Biological

agricultur

Diversity ~Slowever, to date, very little work has integrated human-wildlife conflict

Us

into discussj the relative benefits of land-sharing approaches (Lopez-Bao et al. 2017;

n

Crespin i tti 2018).

d

We als t socially transmitted risk perception influenced the degree to which human

behaviors in nse to wildlife are spatiotemporally correlated. This has implications on

M

conservation outcomes. Tightly knit communities that share information instantaneously

through céflular phones, for example, might exhibit behaviors in which there is a widespread

[

and rapid to wildlife. Although such responses could be detrimental to wildlife, such

O

as the illega ing of protected species (Chapron & Treves 2016), they could also be used to

h

help spreahpro-conservation behaviors, particularly if such behaviors are also linked with

improv d and wellbeing measures. For example, virtual geofences provide near

L

real-time informd#ion about approaching carnivores to those livestock owners participating in

G

the program e et al. 2019). Livestock owners in that network can therefore rapidly place

A

their live corrals, helping reduce livestock depredation and retaliatory killing of

carnivores.
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Farmers in the model could only respond to wildlife damage by excluding wildlife from their
farms. A primary way to do that is through fencing, a common practice that is a contentious
issue in co tion. On one hand, fences might be the best way to mitigate human
disturbanan-wildlife conflicts for certain species, such as lions (but see Creel et al.
N .. : : _ .
2013; Pacsr et al. 2013). On the other hand, fencing is associated with detrimental impacts,
such as edge effigets on wildlife in protected areas (Massey et al. 2014) and disrupting
important on routes (Linnell et al. 2016). As a first pass, our model provides an

experimetWonment to simulate and explore interactions between individual economic

decisions unEerjk, social processes of risk communication, wildlife movement, and

landscape (&: Such an experimental environment enables interrogations of complex

socioecol cesses, such as identifying places where fences are more likely to be
erected a ined and potential consequences for regional human-wildlife interactions.
In addigi del allows testing different hypotheses about network topology and rates

of informatig in space and time (e.g., spatially proximal to spatially distal, rapid, or

Several fa t included in our model, or only examined in a limited context, could be

explored in ¢ iterations. These include the valuation and the degree of trust among

h

landowne olicies that limit or facilitate farmer activities, dynamic markets, and the

behavio

[

logical attributes of the wildlife species interacting with farmers, among

others. Including@ther human responses to wildlife, especially lethal removal would also

Ll

expand the f the model. The social-psychological factors motivating an individual’s

decision

A

animal in order to reduce risks have been the subject of much recent
literature (Chapron & Treves 2016; Carter et al. 2017; St. John et al. 2018). Understanding

the social, spatial, and policy processes that influence those decisions can have profound
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implications on wildlife conservation. Indeed, if lethal control were to exhibit similar levels
of spatiotemporal synchronicity in farmer behaviors in our model that could create wildlife
population siaks and threaten their long-term persistence. Similarly, noneconomic
motivatio ultural values and norms or other forms of ecological knowledge, are
N . .. .
known to sﬂuence farming household decision making (Huber et al., 2018). We excluded
such inﬂuQ farmer decision making for the sake of simplicity, but values or norms for
or against

¢ deterrence (e.g., fencing) or ecological knowledge of unintended

conseque arious deterrence actions could introduce another source of spatiotemporal

synchronimE

The modecbstantially simplified wildlife population dynamics because we assumed
the populm; remained constant throughout the simulation. This model design choice
reasons. First, maintaining the wildlife population facilitated isolation and

ges in human-wildlife encounters stemming from spatial and social

processes of risk perception and farmer behavior alone. Although wildlife population
dynamics Se undoubtedly important, this simplification greatly eased the interpretation of
already co, odel behavior. Second, in the current model version, wildlife population
dynamics w mitted to maintain generality, but variations in population dynamics and
other imgsznt characteristics (e.g., range size and mobility) will be explored in future model
applical#

-
This work u ores the importance of collecting geospatial attributes of social norms and
networmte the model structure and examine how different social-ecological
conditions may limit or facilitate human-wildlife encounters (Bullock et al. 2018). Studies on

human-wildlife interactions are increasingly calling for coordinated collection of social and
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ecological data (Carter et al. 2014; Lischka et al. 2018) to reveal important causal
relationships that might affect conservation. For example, a recent study in Sumatra indicated

that integraiﬁcial-ecological models yielded predictions of human tolerance to tigers that

were 32 ti han models using social predictors alone (Struebig et al. 2018). The

N . ) ) .
authors ars:e that using these models to preemptively direct interventions would have
averted apmtely 50% of tiger attacks on livestock and people and saved 15 tigers from

retaliatory (Struebig et al. 2018). However, collecting sufficient social and ecological

S

data to m. redictions is time and resource intensive. In the absence of sufficient empirical

data, our model Mgovides a means for addressing these challenges. Social and ecological

U

theories ca egrated and interrogated to tease out key variables and causal relationships

[

influencin, -wildlife interactions, which supports more targeted data collection efforts

to test hypoth % about mechanisms producing specific feedbacks and emergent outcomes.
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(other than absence of the material) should be directed to the corresponding author. Model

source code is available from https://www.comses.net/codebase-release/f142ddf1-c653-40b0-

9fe6-2919 'ﬁ i9/ .
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wildlife habitat (light shading) in the background and the location of farmer households

(house icons) and their connections to each other (lines).
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sults showing the degree of spatiotemporal correlation in fencing
behaviors by rs for the (a) mixed and (b) protected-area landscapes for simulations with
high (solid Tine) and low (dashed line) social influence among farmers. Distance was

measured @ cells in the landscape.
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with hi@e) and low (dashed line) social influence and between the mixed (a, ¢) and
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