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Abstract 

Human perception of risks related to economic damages caused by nearby wildlife can be 

transmitted through social networks. Understanding how sharing risk information within a 

human community alters the spatial dynamics of human-wildlife interactions has important 
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implications for the design and implementation of effective conservation actions. We 

developed an agent-based model that simulates farmer livelihood decisions and activities in 

an agricultural landscape shared with a population of a generic wildlife species (wildlife-

human interactions in shared landscapes [WHISL]). In the model, based on risk perception 

and economic information, farmers decide how much labor to allocate to farming and 

whether and where to exclude wildlife from their farms (e.g., through fencing, trenches, or 

vegetation thinning). In scenarios where the risk perception of farmers was strongly 

influenced by other farmers, exclusion of wildlife was widespread, resulting in decreased 

quality of wildlife habitat and frequency of wildlife damages across the landscape. When 

economic losses from encounters with wildlife were high, perception of risk increased and 

led to highly synchronous behaviors by farmers in space and time. Interactions between 

wildlife and farmers sometimes led to a spillover effect of wildlife damage displaced from 

socially and spatially connected communities to less connected neighboring farms. The 

WHISL model is a useful conservation-planning tool because it provides a testbed for 

theories and predictions about human-wildlife dynamics across a range of different 

agricultural landscapes. 

 

人类-野生动物系统中共享风险感知产生的保护结果 

【摘要】人类对附近野生动物造成经济损失的风险感知可以通过社会网络传播。理解人类社会

中共享风险信息如何改变人类与野生动物互作的空间动态，对设计和实施有效保护行动具有重

要意义。我们开发了一种基于主体的模型，以模拟存在野生动物种群的农业景观中农场主的生

计决策和活动（共享景观中的野生动物-人类互作）。在这个模型中，农场主根据风险感知和

经济方面的信息来决定如何分配农作劳动、是否以及在哪里将野生动物驱逐到农场之外（如通

过建围栏、挖沟渠或减少植被覆盖）。在农场主的风险感知受到其它农场主强烈影响的情况

下，农场主普遍会驱逐野生动物，导致整个景观中野生动物生境质量下降，野生动物造成破坏

的频率也下降。当遭遇野生动物造成的经济损失较高时，农场主对风险的感知会增加，从而导

致他们的行为在时空上高度同步。野生动物和农场主之间的互作有时候也会产生溢出效应，使

野生动物造成的破坏从社会及空间上紧密联系的社区转移到联系不够紧密的临近农场。本研究

的共享景观中野生动物-人类互作模型是一种有效的保护规划工具，为不同农业景观中人类-野

生动物动态变化的理论和预测提供了试验平台。【翻译：胡怡思；审校：聂永刚】 

关键词：基于主体的模型，共存，农场主的决策，建围栏，社会网络 
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Introduction 

Co-occurrence between people and wildlife is expected to increase globally (Carter & Linnell 

2016). Interactions in landscapes shared by human and wildlife populations can provide 

greater ecosystem services and assets to humans, including greater wildlife viewing or 

recreational hunting opportunities (O’Bryan et al. 2018). Likewise, some species benefit from 

the use of anthropogenic landscapes where high-quality food is consistently available (West 

et al. 2016). However, increasing encounters also introduce a range of risks to both wildlife 

and humans. Wildlife can eat people’s crops and livestock, damage property, and threaten 

human safety. Humans can, in turn, degrade wildlife habitats and kill animals they perceive 

as a risk (Chapron & Treves 2016). This negative perception of wildlife has put wildlife 

species at greater extinction risk worldwide (Ripple et al. 2014). Policies to enhance wildlife 

conservation are in place in many shared landscapes, but they often do not have the expected 

impact and in some cases have unintended consequences, such as actually increasing risks 

from wildlife to humans (Carter et al. 2017). These unintended consequences can occur when 

key social and ecological processes, and their feedbacks, are overlooked (Carter et al. 2014). 

Often ignored is how individual decisions to manage conflict in a given location (e.g., lethal 

or nonlethal deterrence of wild carnivores) influence human-wildlife interactions in other 

locations, such as displacing risks from wildlife to new areas. We addressed these challenges 

by incorporating theories of human risk perception into a spatially explicit, agent-based 

model (ABM) that simulates human-wildlife interactions on shared agricultural landscapes. 

 

A number of individual-based theories of human risk perception exist, and some have been 

formalized in ABMs to simulate interactions in social-ecological systems (Schlüter et al. 

2017; Magliocca & Walls 2018; Baeza & Janssen 2018). Such theories emphasize the effects 
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of risk perceptions on individual economic decisions, cognitions, and emotions. Several 

studies, however, show that risk perception is not simply an individual cognitive mechanism, 

but also depends on relational aspects of individuals and their networks of influence (Scherer 

& Cho 2003; Muter et al. 2013). The stronger the tie between two actors in a network, the 

more likely they are to adopt similar attitudes and behaviors. Because wildlife-related risks 

can be contentious or highly salient, one would expect that interactions with wildlife generate 

a great deal of interpersonal discussions (e.g., information flow) about those events and 

facilitate transmission of risk information throughout a community (Muter et al. 2013).  

 

Although there is growing recognition of the influence of social connections on risk 

perceptions within a community (Scherer & Cho 2003; Muter et al. 2013), the role of space in 

mediating the outcomes of socially shared risk perceptions has received little attention. Yet, 

many risks are spatially heterogeneous, such as the location of floods or crop damage from 

herbivores. Risks that vary in space likely intersect with one’s social network, such that 

farmers who experience a risk will likely share information about it with others in a similar 

environmental context. Individual perceptions can directly relate to an individual’s behaviors 

(Bruskotter et al. 2015). Therefore, one would expect that network-propagated risk perception 

as a function of spatial proximity can give rise to spatially nonrandom behaviors in human 

communities. On one hand, these behaviors can represent an effective community response to 

environmental hazards, such as fire or flood. On the other hand, spatially heterogeneous 

human behaviors can also have significant consequences on wildlife populations when they 

involve human-caused mortality (e.g., population sinks) or habitat fragmentation (e.g., forest 

clearing for farms).  
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Investigating social-network influences on risk perception and the emerging spatial patterns 

in coupled human-wildlife systems is much needed. However, obtaining the requisite 

empirical evidence is extremely challenging, and no studies to date have simultaneously 

investigated these processes. To help fill this knowledge gap, we developed WHISL 

(wildlife-human interactions in shared landscapes), an agent-based model that simulates 

human-wildlife interactions in stylized social-ecological conditions. Specifically, WHISL 

simulates individual farmers’ livelihood decisions and activities in an agricultural landscape 

shared with a population of a generic wildlife species. Individuals of the wildlife population 

occasionally damage the farms (i.e., costs associated with crop loss or livestock depredation) 

and the farmers may respond to these encounters by excluding wildlife from their farms (e.g., 

through fences, trenches, or vegetation thinning). These farmer decisions are modulated by 

shared risk perception from other farmers. The goal of the model is therefore to explore the 

patterns that emerge from the behaviors (e.g., perception, learning, adaptation, selection, 

action) of the farmers and the spatial configuration of the landscape (Fig. 1a).  

 

We had 2 objectives: describe how risk perception mediates farmer responses to and negative 

impacts of wildlife encounters under different spatial and social network scenarios and, based 

on these scenarios, generate hypotheses about the causal mechanisms producing different 

outcomes to be tested against empirical data. We used WHISL to test three main hypotheses: 

greater social transmission of risk perception leads farmers to invest in efforts to exclude 

wildlife from their farms, regardless of whether those farmers have directly experienced 

wildlife damage; the greater the social transmission of risk perception the greater the 

spatiotemporal synchronicity among farmers to exclude wildlife from their farms; and 

although high levels of social transmission of risk perception may lead to overall lower 

frequencies of wildlife damages across the landscape, farmers who are disconnected from the 
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social network experience greater likelihood of wildlife damage than those who are 

connected to the social network because wildlife are pushed off other farms (i.e., spillover 

effects). By experimentally testing these hypotheses, we sought to explore how, where, and 

when certain mechanisms are dominant and the effects of those mechanisms on human 

livelihoods and wildlife management. The insights from WHISL can, therefore, shed light on 

processes that enhance human-wildlife coexistence under uncertain and changing social-

ecological conditions. 

 

Methods 

The 3 main elements of WHISL are the agents and their attributes and actions; the attributes 

of the shared landscape; and farmer’s decision-making process, the formulation of risk 

perception, and its relation to spatiotemporal propagation of risk. Information about the 

mathematical details of the model are available in Supporting Information, and model source 

code is available in a public repository (see below).  

 

 

 

Model agents 

The WHISL model included 2 types of agents: farmers and wildlife. Each farmer   (  

       ) was the owner of a subset of cells in a landscape called the farm   . Each farmer 

had as attributes, a time-varying perception of risk of encounters,      , and the amount of 

labor available,   
 . Farmers obtained an income from agricultural production of a good with 

a price determined by an external market, and off-farm wages (Supporting Information).  
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In each annual cycle, farmers decided the amount of labor to invest in agriculture, the cells 

they needed to designate to agriculture production, and how much labor they needed to invest 

in excluding wildlife from their land (Fig. 1a). Each farmer has an aspirational level that 

determined an income target (Supporting Information). The income target was used to decide 

how much labor to invest in agriculture (decision 1). Each farmer shared information about 

the risk of encounters with other farmers in a spatially structured social network. Farmers 

also remembered past encounters with wildlife. The combination of a farmer’s own past 

experience and the experience shared from other farmers was used to reevaluate the 

perception of risk. The risk perception was subsequently used by the farmer to decide to 

either exclude wildlife (e.g., through fencing) or designate more land to production or not 

invest in agriculture at all (decisions 2 and 3). Investing in excluding wildlife at a given farm 

cell in turn reduced its availability,      , to wildlife (i.e., wildlife cannot access that cell). The 

decision-making algorithms and procedures to simulate farmers’ decisions were based on 

prospect-theory principles (Kahneman & Tversky 1979) and on the literature of 

spatiotemporal perception of environmental hazards (Viscusi 1991; Gallagher 2014). From 

the model simulations, we obtained the total number of wildlife encounters for each farmer, 

the total wealth and average income of each farmer, and the total available land to wildlife on 

each farmer’s farm. 

 

The model also included wildlife individuals from a population of size  . Wildlife agents’ 

sole attribute was their position in the landscape, and their only behavior was movement. 

Their location in the landscape was updated using a simple stochastic procedure in which one 

cell was chosen from a subset of cells in a von Neumann neighborhood of predefined radius. 

The probability of a cell being chosen to move to was proportional to the attractiveness of the 
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cell to the wildlife, which depended on the quality of the cell to support wildlife,    ,and its 

availability. 

 

Shared agricultural landscape 

A landscape                 was composed of a set of square grid cells of the same 

size. Each cell was characterized by the productivity of the land,   ; the quality of the cell to 

support wildlife     and the availability of the cell for the wildlife. The productivity of the 

land was defined as the maximum possible yield a farmer could obtain from the cell 

(Supporting Information). Habitat quality represented the primary productivity of the land to 

support wildlife, which in turn affected the attractiveness of the cell. The availability of the 

land to wildlife depended on the decision of farmers to exclude wildlife from all or portions 

of their farm. The availability of a farm cell varied in time as a function of farmers’ decisions 

to invest in excluding wildlife from that cell and the rate at which the effectiveness of the 

exclusion measure decayed,  . For example, fences will degrade over time if not maintained.  

 

Farmer decisions 

Given the maximum possible yield on their farm and exogenous information about prices, 

costs, and off-farm wages, farmers decided how much labor and to which of their farm’s cells 

to invest in farming and from which of the farmed cells to exclude wildlife. Labor allocation 

was based on past gains and an aspirational target. The expected gain in each cell was 

calculated under uncertainty in potential losses due to encounters with wildlife agents. 

 

Land-use outcomes were modeled as the result of each farmer’s annual labor allocation 

decisions, the rules for which were derived from smallholder household economic theories 

(Netting 1993) and implemented in Magliocca et al. (2013, 2014). We assumed that the total 
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labor needed was proportional to the farm size, |  |. Labor allocated to agriculture was 

adjusted each decision cycle to meet an aspirational target income (including production for 

subsistence). Target income was defined as a moving-average reference point, set to 80% of 

past earnings (Bert et al. 2011). Expected income from agriculture was calculated by farmers 

considering information about land production, prices, labor and production costs, and the 

perception of risk and damage from wildlife. Land was then allocated for agricultural 

production to meet the agricultural portion of income aspirations. For example, a farmer 

might produce more crops than were needed for own consumption in a given year and reduce 

the amount of labor allocated to agriculture in the subsequent year to minimize labor in 

production and risk of losses; and vice versa (e.g., decreasing food stocks result in increased 

farm labor). Given farm-level expected income and income aspirations, annual labor for 

agriculture was allocated and total land under production was defined. Once total labor was 

allocated, each farmer selected a subset of farm cells that maximized return based on 

agricultural productivity and varying production costs. In addition, the farmer decided if the 

action of excluding wildlife would maximize returns net of construction and maintenance 

costs.  

 

Substantial empirical evidence from natural-hazards research suggests that individual risk 

perceptions are biased, or subjective (Ludy & Kondolf 2012), and risk perceptions change 

over time as new risk information is presented through either direct experience of hazards or 

indirect information channels (Magliocca & Walls 2018). Acknowledging the socially 

constructed nature of risk (Kahneman et al. 1982; Slovic et al. 2007), we defined objective 

risk as the probability of a hazard event based on directly measurable causal factors. In this 

context, objective risk was calculated as the probability of a wildlife agent’s presence at a 

given time and location based on model parameters of habitat quality and the density of 
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wildlife agents in the landscape. We defined subjective risk as the expected probability of an 

event based on both direct and indirect (e.g., socially communicated) experiences with hazard 

events. Thus, subjective risk perception may diverge from and be compared with the 

objective probability of a hazard event in response to the number and frequency of events 

over time. In particular, risk perception may undergo large and immediate changes after a 

hazard event (Gallagher 2014). A common Bayesian learning model (Viscusi 1991) provides 

a formalization of dynamic risk perception in which an individual observes the occurrence of 

a hazard event and updates their expected probability of future events (Davis 2004). Further, 

additional empirical evidence demonstrates that risk perception diverges from objective 

levels over time and the rate at which it diverges varies in relation to time since a hazard 

event (i.e., time weighting [Gallagher 2014]).  

 

Following the time-weighting formalization by Gallagher (2014), we developed a farmer 

subjective risk perception of detrimental wildlife interactions that was a function of the 

expected frequency of encounters, the time-horizon for remembering past events, and the risk 

perceptions of other farmers’ within the given farmer’s social network. Farmers were 

assumed to have prior information about the average risk of encounters per cell based on the 

quality of the land to support wildlife, the available area to wildlife, and the wildlife 

population size. We assumed that farmers give more attention to encounters that occurred 

more recently and share risk information with their social network.  

 

Each farmer shared information about risk perception with a subset of other farmers 

connected in a social network. Only the most salient information was shared through the 

social network, which we assumed was information limited to only negative encounters with 

wildlife. In the model, a farmer’s network was formally defined by the graph         , 
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where   is the subset of farmers connected to farmer   and   is the link between farmers. 

The topology of the network was defined based on a distance-weighting function between 

farmers, such that 2 farmers that were close in space were more likely to share a link.  We 

used the concept of “ego-network topology” to represent the extent of the social connections 

that each farmer shared information with (Everett & Borgatti 2005). Generally, the ego-

network of a farmer, j, had a group of first- and second-degree connections we defined as   
  

and   
  respectively. Using this network, the perceived risk sensed by farmer   was defined as 

     
                   

               
        

with           (1) 

            

All experiments were simulated on a 100 x 100 landscape 10 times to capture the variation in 

wildlife distributions, damages, and habitat quality. Two landscape scenarios were explored 

by manipulating the spatial structure of the agricultural productivity,   , and quality for 

wildlife. The first scenario was a mixed landscape, where each cell was randomly assigned a 

value for agriculture productivity and wildlife quality with a uniform random number 

generator (Fig. 1b). The second scenario was the protected area or gradient landscape, where 

the agricultural productivity and the quality for wildlife both were gradually varied from east 

to west, but in opposite directions. That is, as    increased from east to west,    decreased 

from east to west (Fig. 1b). We tested two social scenarios. First, farmers formed risk 

perceptions by placing more combined weight on information from their social network than 

their own experiences (i.e.,         ), high social influence. Second, T farmers formed 

risk perceptions by weighting their own experiences more than socially transmitted risk 

information (i.e.,         ), low social influence. We performed a sensitivity analysis 

to evaluate the effect of parameters with high uncertainty. The sensitivity analysis was 
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conducted to assess the degree to which model outcomes changed when we varied several 

key parameters: distance between houses (        ), size of farms (|  |), the price per unit of 

yield (  , and damage from wildlife per encounter (   (Supporting Information).  

 

Results 

Synchronicity in human decision making 

Farmers who were part of a spatially proximate social network were more likely to behave 

the same way (i.e., exclude wildlife) in both space and time (Fig. 2) than farmers who were 

not part of such a network. Thus, the more the risk was shared among the social network, the 

more likely those farmers behaved identically in response to the risks. In the mixed 

landscape, even with low social network influence, the landscape pattern generated clusters 

of risk from wildlife that facilitate synchronous behaviors by farmers to exclude wildlife from 

their farms (Fig. 2a). This synchronicity was substantially elevated when the level of social 

network influence was high. In the mixed landscape, the correlation extended to 30 cells, or 

almost one-third of the entire landscape (Fig. 2a). However, in the protected-area landscape 

with low social network influence, the degree of correlation among farmers to exclude 

wildlife was near zero, indicating that landscape patterns of risk and social sharing of risk 

perception were not concentrated in space and time (Fig. 2b).  

 

Human-wildlife interactions across agricultural landscapes 

In general, the average number of wildlife encounters per farmer gradually decreased as 

damage levels increased, corresponding to the declining area available to wildlife due to 

farmers excluding them from their farms (Fig. 3). The spatial structure of the landscape and 

level of social influence augmented this overall trend. In the simulation experiments with the 

mixed landscape, available habitat for wildlife (i.e., not excluded) and the average number of 



 

 

 
This article is protected by copyright. All rights reserved. 

13 
 

encounters per farmer were lower when social influence was high (Fig. 3a, c), and increasing 

damage per wildlife encounter amplified these relationships. For example, available habitat 

decreased by approximately 70% across the range of damage levels when social influence 

was high, compared with only 20% when social influence was low (Fig. 3a). As damage 

levels increased, the average number of encounters per farmer in the mixed landscape 

decreased by approximately 50% (Fig. 3c). Decreases in available habitat and encounters also 

decreased in protected area landscape when social influence was high, although the degree of 

change was much less pronounced (Fig. 3b, d). Moreover, average farmer income did not 

differ between low or high levels of social network influence, independent of landscape 

configuration (Supporting Information). Nor did income change with increasing damage 

levels, suggesting that farmers in all simulation experiments were successfully maintaining 

income by excluding portions of their farms to wildlife in response to increased damage.  

 

Spillover effects on disconnected farmers 

When social network influence was high, farmers excluded more of their farms from wildlife 

as the number of connections to neighbors increased (Fig. 4a, b). This pattern was amplified 

in the mixed landscape, in which farmers with 15 connections were using exclusionary 

measures about 8 times more often per year when social influence was high than when it was 

low (Fig. 4a). Overall encounters per year were higher in the mixed landscape than the 

protected area (Fig. 4c, d), indicating that the mixture of agricultural productivity and habitat 

quality provided more opportunities for encounters. Farmers in the mixed landscape with <5 

connections experienced a greater number of encounters per year when social influence was 

high compared with when it was low; completely disconnected farmers experiencing almost 3 

times as many (Fig. 4c).  
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Holding constant the initial habitat quality of farmers’ locations and their social network 

connections, any changes in the number, timing, or location of wildlife encounters was an 

emergent outcome resulting from farmers’ responses to wildlife encounters and altered 

wildlife movements resulting from farmers’ responses. Although a large portion of farmers in 

the mixed landscape had less overall number of encounters with wildlife when social 

influence was high compared to low (Supporting Information), some farmers were more 

likely to experience much greater number of encounters (i.e., over 40). In contrast, all the 

farmers in the protected-area landscape experienced fewer encounters with wildlife when 

social influence was high than when it was low (Supporting Information). As social influence 

increased, wildlife encounters disproportionately increased for farmers with low initial 

habitat quality and low social connections. This was illustrated by a shift toward the upper-

right quadrant in the (log) mean values of encounters between high and low social influence 

scenarios in the mixed landscape (Fig. 5). In contrast, the shift in (log) mean encounters to 

the lower-left indicated the opposite effect in the protected area landscape, suggesting that 

excluding wildlife did not demonstrably displace encounters to other farms in a spatially 

structured landscape (Fig. 5).  

 

Discussion 

We found evidence that socially transmitted risk perception created a feedback between 

wildlife and human behaviors. Notably, disconnected farmers in the mixed landscape 

incurred greater damage from wildlife displaced from well-connected farms (Fig. 4c). This is 

because well-connected farms effectively, and synchronously, excluded wildlife from large 

portions of their farms to create a spillover effect on disconnected farmers. Several empirical 

studies have alluded to similar spillover effects. A recent study showed that, despite the 

challenges associated with maintenance responsibility and costs, fencing designed to mitigate 
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human-elephant conflict on the border of Kenya and Tanzania could bring immediate, 

localized relief from crop losses by African elephants (Loxodonta africana). However, 

connectivity models indicated that the fencing could shift the regional patterns of elephant 

habitat use, potentially displacing conflicts to new agricultural areas (Osipova et al. 2018). 

Another study in Kenya around Nairobi National Park showed that the use of LED flashlights 

on bomas displaced lion (Panthera leo) depredation toward bomas without the flashlights 

(Lesilau et al. 2018). In Alberta, Canada, and Idaho, United States, the use of fladry barriers 

(flags hanging from ropes) on some ranches likely shifted depredation by wolves (Canis 

lupus) onto neighboring ranches that did not use fladry (Musiani et al. 2003). In Norway, 

Asheim and Mysterud (2005) reassessed data on sheep losses to conclude that when 

livestock-guarding dogs had prevented predators from hunting a particular area, the predators 

switched locations to prey on domestic sheep in another area. Unanticipated consequences 

such as these could diminish local support for conservation actions. Thus, there is a need and 

opportunity for future work on spatial spillover effects in human-wildlife systems. 

 

In addition to socially transmitted risk perception, our model indicated that the spatial 

configuration of farms and wildlife habitat strongly influences the dynamics of human-

wildlife interactions. The two configurations we used in the model generally correspond to 

landscapes that are shared (i.e., mixed landscape experimental setup) or spared for wildlife 

(i.e., protected area experimental setup). The importance of these 2 landscape configurations 

is a major topic in conservation now because they have implications for spatial zoning, land 

use, and animal-dispersal corridors (Luskin et al. 2018). For example, in northern Tanzania, 

elephants use small farms as “stepping stones” between the refuges and contiguous farmland 

increased habitat connectivity for elephants (Pittiglio et al. 2014). However, in Gujarat, India, 

shifts in agricultural patterns led to a significant increase in the livestock being killed by lions 
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and leopards (Panthera pardus). As a result, more of those predators were found dead in 

farmlands, presumably killed by farmers, during that period of time (Vijayan & Pati 2002). 

Importantly, it was in the mixed landscape that we observed the largest spillover effect of 

wildlife damages onto farmers that were disconnected from the social network. Examining 

human-wildlife dynamics on mixed landscapes warrants more attention as many wildlife 

species range well outside of protected areas (Carter & Linnell 2016). Furthermore, the Aichi 

Biodiversity Target 7 of the Conservation of Biological Diversity stresses that lands used for 

agriculture also be compatible with biological conservation (Convention on Biological 

Diversity 2010). However, to date, very little work has integrated human-wildlife conflict 

into discussions on the relative benefits of land-sharing approaches (López-Bao et al. 2017; 

Crespin & Simonetti 2018).  

 

We also found that socially transmitted risk perception influenced the degree to which human 

behaviors in response to wildlife are spatiotemporally correlated. This has implications on 

conservation outcomes. Tightly knit communities that share information instantaneously 

through cellular phones, for example, might exhibit behaviors in which there is a widespread 

and rapid response to wildlife. Although such responses could be detrimental to wildlife, such 

as the illegal killing of protected species (Chapron & Treves 2016), they could also be used to 

help spread pro-conservation behaviors, particularly if such behaviors are also linked with 

improved livelihood and wellbeing measures. For example, virtual geofences provide near 

real-time information about approaching carnivores to those livestock owners participating in 

the program (Weise et al. 2019). Livestock owners in that network can therefore rapidly place 

their livestock in corrals, helping reduce livestock depredation and retaliatory killing of 

carnivores.  
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Farmers in the model could only respond to wildlife damage by excluding wildlife from their 

farms. A primary way to do that is through fencing, a common practice that is a contentious 

issue in conservation. On one hand, fences might be the best way to mitigate human 

disturbance and human-wildlife conflicts for certain species, such as lions (but see Creel et al. 

2013; Packer et al. 2013). On the other hand, fencing is associated with detrimental impacts, 

such as edge effects on wildlife in protected areas (Massey et al. 2014) and disrupting 

important migration routes (Linnell et al. 2016). As a first pass, our model provides an 

experimental environment to simulate and explore interactions between individual economic 

decisions under risk, social processes of risk communication, wildlife movement, and 

landscape structure.  Such an experimental environment enables interrogations of complex 

socioecological processes, such as identifying places where fences are more likely to be 

erected and maintained and potential consequences for regional human-wildlife interactions. 

In addition, the model allows testing different hypotheses about network topology and rates 

of information flow in space and time (e.g., spatially proximal to spatially distal, rapid, or 

delayed).  

 

Several factors not included in our model, or only examined in a limited context, could be 

explored in future iterations. These include the valuation and the degree of trust among 

landowners, policies that limit or facilitate farmer activities, dynamic markets, and the 

behavioral and ecological attributes of the wildlife species interacting with farmers, among 

others. Including other human responses to wildlife, especially lethal removal would also 

expand the utility of the model. The social-psychological factors motivating an individual’s 

decision to kill an animal in order to reduce risks have been the subject of much recent 

literature (Chapron & Treves 2016; Carter et al. 2017; St. John et al. 2018). Understanding 

the social, spatial, and policy processes that influence those decisions can have profound 
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implications on wildlife conservation. Indeed, if lethal control were to exhibit similar levels 

of spatiotemporal synchronicity in farmer behaviors in our model that could create wildlife 

population sinks and threaten their long-term persistence. Similarly, noneconomic 

motivations, such as cultural values and norms or other forms of ecological knowledge, are 

known to influence farming household decision making (Huber et al., 2018). We excluded 

such influences on farmer decision making for the sake of simplicity, but values or norms for 

or against wildlife deterrence (e.g., fencing) or ecological knowledge of unintended 

consequences of various deterrence actions could introduce another source of spatiotemporal 

synchronicity. 

 

The model also substantially simplified wildlife population dynamics because we assumed 

the population size remained constant throughout the simulation. This model design choice 

was made for two reasons. First, maintaining the wildlife population facilitated isolation and 

attribution of changes in human-wildlife encounters stemming from spatial and social 

processes of risk perception and farmer behavior alone. Although wildlife population 

dynamics are undoubtedly important, this simplification greatly eased the interpretation of 

already complex model behavior. Second, in the current model version, wildlife population 

dynamics were omitted to maintain generality, but variations in population dynamics and 

other important characteristics (e.g., range size and mobility) will be explored in future model 

applications. 

 

This work underscores the importance of collecting geospatial attributes of social norms and 

networks to validate the model structure and examine how different social-ecological 

conditions may limit or facilitate human-wildlife encounters (Bullock et al. 2018). Studies on 

human-wildlife interactions are increasingly calling for coordinated collection of social and 
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ecological data (Carter et al. 2014; Lischka et al. 2018) to reveal important causal 

relationships that might affect conservation. For example, a recent study in Sumatra indicated 

that integrated social-ecological models yielded predictions of human tolerance to tigers that 

were 32 times better than models using social predictors alone (Struebig et al. 2018). The 

authors argue that using these models to preemptively direct interventions would have 

averted approximately 50% of tiger attacks on livestock and people and saved 15 tigers from 

retaliatory killing (Struebig et al. 2018). However, collecting sufficient social and ecological 

data to make predictions is time and resource intensive. In the absence of sufficient empirical 

data, our model provides a means for addressing these challenges. Social and ecological 

theories can be integrated and interrogated to tease out key variables and causal relationships 

influencing human-wildlife interactions, which supports more targeted data collection efforts 

to test hypotheses about mechanisms producing specific feedbacks and emergent outcomes. 
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Supporting Information 

Detailed model description (Appendix S1); relationship between income and damage, 

relationship between number of farmers and number of encounters, and relationship between 

land available to wildlife and crop prices, distance between farmers, farm size, and farmer 

social connections (Appendix S2); and details on farmer state variables and parameters for 

numerical scenarios and additional references (Appendix S3) are available online. The 

authors are solely responsible for the content and functionality of these materials. Queries 
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(other than absence of the material) should be directed to the corresponding author. Model 

source code is available from https://www.comses.net/codebase-release/f142ddf1-c653-40b0-

9fe6-29f91d80cf79/. 
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Figure Captions 

 

Figure 1: Diagram of human-behavior modeling showing (a) key components of an agent-

based model of wildlife-human interactions in shared landscapes (WHISL). Model interface 

for the (b) mixed landscape and (c) protected area show low- (dark shading) to high-quality 
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wildlife habitat (light shading) in the background and the location of farmer households 

(house icons) and their connections to each other (lines).  

 

Figure 2: Model results showing the degree of spatiotemporal correlation in fencing 

behaviors by farmers for the (a) mixed and (b) protected-area landscapes for simulations with 

high (solid line) and low (dashed line) social influence among farmers. Distance was 

measured as cells in the landscape. 
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Figure 3: Percentage of the landscape available to wildlife and encounters with wildlife per 

farmer as damage per encounter with wildlife increases (lines, mean of 10 iterations for each 

parameter combination; shading, 95% CI). Each outcome was compared between simulations 

with high (solid line) and low (dashed line) social influence and between the mixed (a, c) and 

protected-area (b, d) landscapes.  
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Figure 4: Number of wildlife exclusion behaviors and encounters per year for farmers with 

varying levels of connections to others in their social network. Each outcome was compared 

between simulations with high (solid line) and low (dashed line) social influence and between 

(a, c) mixed and (b, d) protected-area landscapes (lines, mean of 10 iterations for each 

parameter combination; shading, 95% CIs). 
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Figure 5: Relative number of total encounters (dot size) over the entire simulation for every 

farmer relative to the initial habitat quality on the farm and number of connections in the 

farmer’s social network (log scale on y- and x-axes). Simulations were run with high 

(diamond) and low (circle) social influence and for both mixed and protected-area landscapes 

(solid lines, log of mean values for each outcome; location of a point on both x- and y-axes 

represent the degree to which farmers deviate from the means of the entire population of 

farmers).  

 

 


