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ABSTRACT 

While MSCs are being explored in numerous clinical trials as proangiogenic and proregenerative 

agents, the influence of tissue origin on the therapeutic qualities of these cells is poorly 

understood. Complicating the functional comparison of different types of MSCs are the 

confounding effects of donor age, genetic background, and health status of the donor. Leveraging 

a clinical setting where MSCs can be simultaneously isolated from discarded but healthy bone 

and thymus tissues from the same neonatal patients, thereby controlling for these confounding 

factors, we performed an in vitro and in vivo paired comparison of these cells. We found that both 

neonatal thymus (nt)MSCs and neonatal bone (nb)MSCs expressed different pericytic surface 

marker profiles. Further, ntMSCs were more potent in promoting angiogenesis in vitro and in vivo 

and they were also more motile and efficient at invading ECM in vitro. These functional differences 

were in part mediated by an increased ntMSC expression of SLIT3, a factor known to activate 

endothelial cells. Further, we discovered that SLIT3 stimulated MSC motility and fibrin gel invasion 

via ROBO1 in an autocrine fashion. Consistent with our findings in human MSCs, we found that 

SLIT3 and ROBO1 were expressed in the perivascular cells of the neonatal murine thymus gland 

and that global SLIT3 or ROBO1 deficiency resulted in decreased neonatal murine thymus gland 

vascular density. In conclusion, ntMSCs possess increased proangiogenic and invasive 

behaviors which are in part mediated by the paracrine and autocrine effects of SLIT3. 
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INTRODUCTION 

Mesenchymal stem/stromal cells (MSCs) are located in the perivascular region, can be isolated 

from a variety of tissues, and are being evaluated as proangiogenic and proregenerative therapies 

in numerous clinical trials [1-8]. While endothelial cells have been recently recognized to possess 

tissue-specific properties, the influence of tissue origin on MSC therapeutic effects is poorly 

understood [9,10].  

The ability of MSCs to migrate to damaged tissues to exert its proregenerative, antiinflammatory 

and proangiogenic effects also influences their therapeutic potential [11-14]. Infusion of MSCs 

into the venous circulation result in intravascular homing to injured areas, and homing over shorter 

distances through the tissue interstitium are also likely to occur in the setting of local injection 

[15,16]. Requisite for homing is the motile and tissue-invasive abilities of MSCs, and the influence 

of tissue origin on these characteristics is not known [17]. The secreted axon guidance molecule 

SLIT3 has been shown to be an endothelial cell (EC) stimulant [18] and has been associated with 

a bone marrow derived MSC line that is proangiogenic [19]; however, it is not known if this finding 

can be generalized to other MSC lines.  

Knowing these tissue-specific properties of MSCs is important because they may have 

translational implications for MSC therapies [20]. However, comparing MSCs from different 

tissues is confounded by factors such as donor age, presence of systemic disease, and individual 

variability [21-27]. We have been able to simultaneously isolate MSCs from thymus and bone 

tissue from neonates undergoing cardiac surgery, thereby allowing for a paired comparison that 

controls for the above confounding factors [28,29]. These two tissues have disparate perivascular 
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mural cell embryological origin and different degrees of perivascular mural cell coverage of the 

vasculature [30-34]. Based on these differences, we hypothesized that MSCs from the thymus 

and bone would have different proangiogenic, motile, and invasive characteristics. Using both in 

vitro and in vivo assays, we evaluated this hypothesis and identified that SLIT3 contributes to the 

observed differences in these functional properties of MSCs.  

 

MATERIALS AND METHODS 

Cell Isolation and Culture 

Isolation, culture, and characterization of the human ntMSCs and nbMSCs used in these studies 

were previously described [28,29] under a protocol that was approved by the University of 

Michigan Institutional Review Board. Furthermore, Human adult bone marrow-derived 

(ab)MSCs were obtained from Lonza (Basel, Switzerland) and ATCC (Manassas, VA, USA), 

and human umbilical vein endothelial cells (HUVECs) were obtained from Lonza. Unless 

specified otherwise, all experiments utilized cells from passages 3-9. 

Pericytic Signature Analysis 

Pericyte surface markers of ntMSCs and nbMSCs isolated from n=3 patients were 

characterized by flow cytometry using fluorochrome-conjugated anti-human CD140a, CD140b, 

CD146, and CD90 (BD Biosciences, San Jose, CA). The antibodies were incubated with MSCs 

for 60 minutes at room temperature followed by three washes.  MSCs were then analyzed using 
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a MoFlo® Astrios™ flow cytometer (Beckman Coulter, Inc., Pasadena, CA, USA) using the 

appropriate isotype-matched and unstained controls. 

We also measured the transcript expression of TBX18, recently determined to be expressed in 

the perivascular mural cells of mice vasculature [8], in human ntMSCs, nbMSCs, and abMSCs 

using qPCR (see below). 

MSC Conditioned Medium Generation and HUVEC Tube Formation Assay 

Ninety-six-well plates were coated with 60 µl Matrigel matrix (10 mg/mL, Corning, NY, USA) per 

well at 37°C for 30 to 60 minutes. HUVEC suspensions were prepared using the corresponding 

medium at a concentration of 1.5 x 105 /mL. Next, 100 µl (15,000) of cells were added to each 

well (5 wells per group) on top of the gelled Matrigel followed by the addition of 100 µl of MSC 

conditioned medium and then incubated at 37°C, 5% CO2 for 4 to 16 hours. Once tube 

formation was observed, the plate was washed with HBSS, and the cells were labeled with 

Calcein AM (2 μM) (ThermoFisher Scientific, Waltham, MA, USA) for 30 min at 37°C in 5% CO2 

and were photographed using a fluorescent microscope. In subsequent experiments, a blocking 

anti-SLIT3 antibody (5 µg/mL, AF3629, R&D Systems, Minneapolis, MN, USA) was added to 

the ntMSC derived conditioned medium to neutralize the effects of SLIT3. 

Boyden Chamber Assay 

Mesenchymal stromal cell migration was measured using the Boyden chamber assay (Cell 

Biolabs, Inc., San Diego, CA, USA) in a 24-well format with 8 µm pore size according to the 

manufacturer’s instructions. In brief, 5 x 104 cells in 300 µl serum-free medium were seeded in 

the upper compartment (the insert) and then allowed to migrate through the pores of the 
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membrane into the lower compartment. After an appropriate incubation time in a cell culture 

incubator, migratory cells on the bottom of the polycarbonate membrane were stained and 

quantified in a fluorescence plate reader. 

In Vitro Spheroid Angiogenic Sprouting Assay 

Spheroids comprised of 800 MSCs or 400 MSCs/400ECs were generated by hanging drop culture 

as previously described [29]. Spheroids were embedded in fibrin gel and allowed to sprout for 20 

hours. Brightfield images were then acquired digitally and were analyzed using NeuronJ as 

previously described [29]. In some experiments, rhSLIT3 (12.5 µg/ml) (R&D Systems, 

Minneapolis, MN, USA) was added to the media just after spheroids were embedded in fibrin gel. 

In other experiments, SLIT3 or ROBO1 gene targeting in MSCs was performed using siRNA 

(Origene, Rockville, MD, USA). Knockdown of gene expression was confirmed by qPCR before 

use in experiments, and experiments were repeated with at least two different siRNAs. 

qPCR  

Differential gene was performed using qPCR. RNA from cells was extracted according to the 

manufacturer’s instructions using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and 1 µg of 

total RNA was reverse transcribed with qScript cDNA Synthesis Kit (Quantabio, Beverly, MA, 

USA). Quantitative polymerase chain reactions were carried out with PerfeCTa SYBR Green 

supermix (Quantabio) and the Applied Biosystems (Foster City, CA USA), QuantStudio 5 Real-

Time PCR System. Data were analyzed using the 2-ΔΔCт method. The genes and primers used for 

this study are listed in Supplementary Table S1. 

In Vivo Angiogenesis Assay 
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The care of animals was in accordance with institutional guidelines. Constructs (n=5/group) 

containing 2 million cells (HUVECs, MSCs, and HUVECs/MSCs at a 1:1 ratio) or no cells (control 

group) were made in 48-well plates with 200 µl of fibronectin and collagen hydrogel. Subject-

matched ntMSCs and nbMSCs and unrelated abMSCs were utilized. Constructs were implanted 

subcutaneously in the dorsal region of NOD/SCID mice. Constructs were explanted 14 days after 

implantation for histological studies and CD31 immunohistochemistry (IHC) as previously 

described [29].  

Microarray 

Global gene expression from neonate-matched nbMSCs and ntMSCs was performed to gain 

further insight into the differences in their proangiogenic abilities. Total RNA was isolated from 

MSCs grown under standard conditions and then labeled and hybridized to Human Gene ST 2.1 

human cDNA microarrays (Affymetrix, Santa Clara, CA, USA). Five biological replicates 

(individual neonates) were analyzed by the University of Michigan Microarray Core. Human Gene 

ST 2.1 human cDNA microarrays (Affymetrix) were used to compare ntMSCs and nbMSCs. 

Differentially expressed probesets were identified by a log2 fold change >1 and an adjusted p-

value <0.05 (adjusted for multiple comparisons using false discovery rate). Differentially 

expressed genes were further analyzed for gene ontology term overrepresentation analysis using 

the BINGO plugin of Cytoscape [35] as well as functional annotation clustering using DAVID 

[36,37]. The data discussed in this publication have been deposited in NCBI's GeneExpression 

Omnibus [38] and are accessible through GEO Series accession number GSE142563 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142563). 
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Western Blotting 

Protein was isolated from MSCs cultured under standard conditions and then quantified by 

bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA). Next, 25 μg of total protein was 

loaded onto SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose 

membranes. Membranes were blocked in 5% skimmed milk for 1 hour at room temperature and 

then incubated with primary antibody (antibodies against SLIT3, Abcam, ab78365, Cambridge, 

UK) overnight at 4 °C. Goat anti-rabbit IgG (H+L) 800 CW was applied for 1 hour at room 

temperature (1∶5000, LI-COR Biosciences, Lincoln, NE). Visualization and quantification were 

carried out with the LI-COR Odyssey® scanner and software (LI-COR Biosciences).   

Transgenic Mice. 

Slit3+/+ and Slit3-/- mice on a CD-1 background were obtained from Dr. Sean Mclean (University 

of North Carolina). Robo1+/+ and Robo1-/- mice (CD-1 background) were obtained from Dr. Marc 

Tessier-Lavigne (Stanford University). Neonatal mice (n = 3-5 per genotype group) at postnatal 

day 8-10 were anesthetized with isoflurane, and the whole thymus was obtained for IHC studies 

for CD31, SLIT3, and ROBO1. Thymus tissue was fixed with 10% formalin and embedded in 

paraffin using standard protocols. The paraffin blocks were sectioned at 5 µm thickness. For 

immunohistochemistry, the sections were deparaffinized with xylene and rehydrated through a 

graded ethanol series of solutions. The sections were then subjected to heat-induced antigen 

retrieval in citrate buffer (pH 6.0), blocked with 5% BSA PBS buffer and incubated with primary 

antibodies at 4°C overnight. Anti-SLIT3 (1:100, Sigma-Aldrich, SAB2104337, St. Louis, MO), anti-

ROBO1 (1:100, ab7279, Abcam, Cambridge, UK), and anti-CD31 (1:40, Novus Biologicals, 
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Littleton, CO, USA) antibodies were used. The appropriate secondary antibody Alexa Fluor® 

(ThermoFisher Scientific) were used at a dilution of 1:200. Hoechst was used for nuclear 

counterstaining and all sections were mounted in Prolong Diamond Antifade Mountant 

(ThermoFisher Scientific). Images were obtained by confocal microscopy (Nikon A1Si, Melville, 

NY, USA). 

In a separate experiment, the thymus was removed from Slit3+/+ and Slit3-/- neonatal mice (n = 8 

per genotype group) and mechanically minced into 1- 2 mm pieces. Explant culture was then 

performed as described for the isolation of human ntMSCs [29]. After 7 to 10 days, tissue 

fragments were removed, and migrated MSCs from tissue fragments were cultured until they 

reached 80% confluence. 

Statistical Analysis 

Statistical analysis was performed using a ratio t test of paired data or unpaired two-tailed 

Student’s t-test using GraphPad Prism 9 (GraphPad Software, La Jolla, CA) when appropriate, 

and p<0.05 was considered significant. Data are presented as mean ± SD. 

 

RESULTS 

Neonatal thymus and bone MSCs possess unique pericytic signatures 

We previously determined that human ntMSCs and nbMSCs could undergo in vitro multilineage 

differentiation and shared many surface markers expressed by abMSCs [28,29]. To further 

characterize these neonatal MSCs, we determined the expression of surface markers that have 
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been previously associated with perivascular cells [39]. With flow cytometry, we observed that 

ntMSCs expressed higher levels of CD140b (PDGFRβ), lower levels of CD146 (MCAM/MUC18), 

equivalently low levels of CD140a (PDGFRα), and equivalently high levels of CD90 (Thy1) as 

compared to subject-matched nbMSCs (Fig. 1A and Supplementary Table S2). Furthermore, as 

compared to abMSCs and subject-matched nbMSCs, ntMSCs possessed a significantly higher 

transcript level of TBX18 (Fig. 1B), which encodes for a transcription factor that is expressed in 

the perivascular cells of many organs in mice [8]. These results demonstrate that MSCs possess 

a tissue-specific pericytic phenotype. 

 

Neonatal thymus MSCs are more proangiogenic than subject-matched nbMSCs.  

After identifying that ntMSCs and nbMSCs possessed different pericytic signatures, we next 

assessed if ntMSCs would be functionally different than subject-matched nbMSCs in promoting 

neovascularization in vitro and in vivo. Since the primary mechanism by which MSCs stimulate 

angiogenesis is thought to be via the secretion of proangiogenic factors [40,41], we first 

determined if the secretome from these two types of MSCs would vary in their ability to promote 

HUVEC tube formation in vitro. HUVECs in Matrigel were exposed to conditioned medium 

obtained from ntMSC and nbMSC cultures. HUVEC tube and network formation were significantly 

increased in the group exposed to conditioned medium from ntMSCs as compared to that 

obtained from matched nbMSCs, as well as from cultures of unrelated abMSCs (Figs. 2A and 

2B). We then observed that ntMSCs possessed increased transcript levels of the proangiogenic 

factors VEGFA, FGF2, ANGPT1, and HIF1A (Fig. 2C). The expression of CXCL12 and HGF, both 
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of which have been shown to encode factors involved in bone marrow-derived MSC mediated 

angiogenesis [42,43], were similar to subject-matched nbMSCs (Fig. 2C). These results suggest 

that the secretome of ntMSCs is more proangiogenic than that of bone-derived MSCs. 

Next, we determined the ability of ntMSCs and nbMSCs to promote angiogenesis in vivo by 

encapsulating them in a collagen-fibronectin plug along with HUVECs and then implanting them 

subcutaneously in NOD-SCID mice. Plugs were explanted after two weeks and were assessed 

for the presence of human CD31+ luminal structures containing red blood cells. We found that 

ntMSCs and HUVECs generated more perfused human CD31+ blood vessels as compared to 

nbMSCs and HUVECs (Figs. 2D and 2E). When compared to abMSCs, we also found that 

ntMSCs stimulated angiogenesis to a greater degree in vivo (Supplementary Figs. S1A and S1B). 

Collectively, these results indicate that MSCs isolated from the human neonatal thymus gland are 

more efficient in promoting angiogenesis in vitro and in vivo as compared to bone-derived MSCs.  

 

Neonatal thymus MSCs are more motile and invasive than nbMSCs in vitro. 

Perivascular cells such as MSCs are recruited and extend from adjacent areas to neovessels or 

capillaries that lack perivascular coverage [44,45], indicating that MSCs must be motile and be 

able to negotiate the extracellular matrix (ECM) to reach its appropriate destination.  Further, 

MSCs must be motile and tissue invasive in order to home to areas of injury to impart their 

therapeutic effects [16].  

Using a Boyden chamber assay, we first observed that ntMSCs had increased motility as 

compared to subject-matched nbMSCs (Fig. 3A). Next, we determined the ability of ntMSCs and 
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nbMSCs to invade and migrate through fibrin, a key component of the early provisional matrix 

that is important for tissue repair [46]. We used a spheroid invasion assay [29,47] and determined 

that ntMSCs invaded fibrin more rapidly than nbMSCs (Figs. 3B and 3C). Altogether, this pairwise 

comparison indicates that ntMSCs are consistently more motile and invasive than subject-

matched nbMSCs. 

 

Neonatal thymus MSCs have increased expression of SLIT3. 

To further understand the mechanisms underlying the functional differences between ntMSCs 

and nbMSCs, we performed genome-wide profiling with microarray in pairs of MSCs isolated from 

5 neonatal subjects. We found 116 genes that were at least 2x fold upregulated and 105 genes 

that were downregulated in ntMSCs as compared to nbMSCs (Fig. 4A, Supplementary Tables S3 

and S4). Gene ontology category overrepresentation analysis revealed many processes related 

to tissue development in ntMSCs (Fig. 4B). Although functional annotation clustering did not 

identify any clusters related to angiogenesis, it did identify a cluster of genes (Annotation Cluster 

5) enriched in ntMSCs that were related to axon guidance and Roundabout signaling 

(Supplementary Table S5), processes that have also been shown to regulate angiogenic 

sprouting [48,49]. Specifically, the secreted axon guidance molecule SLIT3 [50], also known to a 

proangiogenic factor [18,19], was found to be more highly expressed in ntMSCs (Supplementary 

Table S3), which we confirmed with qPCR and Western Blotting (Figs. 4C-E). Indeed, neutralizing 

SLIT3 in ntMSC conditioned medium with a specific antibody resulted in decreased HUVEC 
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network formation in vitro, indicating that SLIT3 contributes to the paracrine effects of ntMSCs 

(Fig. 4F and Fig. S2). 

 

SLIT3 is important for neonatal thymus vascularity 

Global deficiency of SLIT3 causes congenital diaphragmatic hernia in mice that is due to a defect 

diaphragmatic angiogenesis, however the impact of SLIT3 on the vascular beds of other tissues 

is unknown [18]. We first investigated the spatial expression of SLIT3 in murine neonatal thymus 

tissue since we had established that it was highly expressed in human ntMSCs. We found that 

SLIT3 is most dominantly in the peri-arteriolar region as well as within the stroma of the thymic 

cortex (Fig. 5A). Given the role of perivascular MSCs in thymus angiogenesis [51] and localization 

of SLIT3 expression to the perivascular cells in the neonatal thymus (Fig. 5A), we next postulated 

that SLIT3 played a role in thymus vascularization. To investigated this, we determined the CD31+ 

vascular density of thymus glands obtained from neonatal Slit3+/+ and Slit3-/- mice. We found that 

vascular density was significantly decreased in thymus tissue from Slit3 null mice (Figs. 5B and 

5C). Altogether, these results confirm that SLIT3 is highly expressed in perivascular cells within 

the neonatal thymus gland and is important for thymus angiogenesis.  

 

SLIT3 promotes the motile and invasive behavior of ntMSCs via ROBO1.  

Given its ability to regulate the motility of various cell types [18,52-54], we investigated if SLIT3 

could influence ntMSC invasive behavior in an autocrine fashion. We first determined the effects 
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of rhSLIT3 on ntMSC and nbMSC spheroids and found that it increased invasion in fibrin gel but 

as a collective migration from the central mass of the spheroid and not as individual sprouts (Fig. 

6A). We next isolated ntMSCs from Slit3-/- mice and found that they demonstrated blunted invasive 

behavior as compared to ntMSCs from Slit3+/+ mice (Fig. 6B). Given the possibility that SLIT3 

deficiency may have interfered with the development (and subsequent ability to migrate and 

invade) of the ntMSCs from these global kockout mice, we targeted SLIT3 transcription in human 

ntMSCs with siRNA and found that decreasing SLIT3 expression also resulted in decreased 

length and number of sprouts from ntMSC spheroids, indicating that SLIT3 can directly regulate 

postnatal MSC motility and invasion in an autocrine fashion (Fig. 6C).  

Given that ROBO1 and ROBO4 are potential receptors for the SLIT3 ligand [18], we first evaluated 

the transcript expression of the genes for both of these receptors in human MSCs (Fig. 6D). We 

discovered that ROBO1 transcript levels were up to 20-80 times more abundant than that of 

ROBO4 transcripts in human MSCs (Fig. 6D). In the MSC pairs that we isolated from three 

patients, we found that ntMSCs had a higher ROBO1 transcript levels as compared to nbMSCs, 

but this was not significant (Fig. 6E). These results implied that ROBO1 (and not ROBO4) is likely 

the dominant receptor for SLIT3 in MSCs. To further confirm this, we targeted ROBO1 

transcription with specific siRNA and determined the effects on human ntMSC spheroid invasive 

sprouting. We found that targeting ROBO1 transcription resulted in significantly decreased 

invasive ntMSC behavior (Fig. 6F). Altogether, these results demonstrate that SLIT3 promotes 

ntMSC invasion and motility in fibrin in an autocrine fashion via ROBO1.  
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ROBO1 participates in neonatal thymus angiogenesis. 

The above findings indicated that MSCs can promote thymus angiogenesis via SLIT3 and that 

SLIT3 can act in an autocrine fashion to stimulate MSC motility and invasion. However, it is 

unclear how important MSC motility is to in vivo angiogenesis since sprouting is primarily formed 

by tip ECs [55]. To determine the presence of any relationship between ROBO1-mediated MSC 

motility and invasion and MSC-facilitated in vivo angiogenesis, we evaluated the vascularity of 

thymus glands from neonatal Robo1+/+ and Robo1-/- mice. In wild-type mice, ROBO1 was found 

to be localized to the perivascular region of larger vessels, but not in the endothelium (Fig. 7A). 

ROBO1 deficiency resulted in a significantly decreased CD31+ blood vessel density within the 

cortex of the neonatal thymus gland (Fig. 7B and 7C), phenocopying the observations made in 

the thymus glands of Slit3-/- neonatal mice. Altogether, these results indicate that ROBO1 is 

important for neonatal thymus angiogenesis, in part by possibly mediating the autocrine effects 

of SLIT3 on ntMSC motility and invasion. 

 

DISCUSSION 

MSCs are currently being investigated in about 500 clinical trials for a variety of diseases [56]. 

The therapeutic activity of MSCs is thought to be in part due to its ability to secrete beneficial 

factors that promote survival, rejuvenation, and regeneration of diseased or stressed parenchymal 

cells [57]. A universal effect of exogenously transplanted MSCs is its ability to stimulate 

angiogenesis in the surrounding parenchyma, which may also contribute to the therapeutic effects 

of MSCs, especially in the setting of ischemia [58,59]. MSCs from a variety of tissues are being 
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investigated as therapeutic agents, and our findings indicate that tissue source may be an 

important factor in determining their potency. 

Our results of subject-matched MSCs also reveal that the secreted axon guidance molecule 

SLIT3 contributes to the proangiogenic effects of ntMSCs and that increased expression of SLIT3 

may partly explain why these MSCs were consistently found to be more potent at promoting 

angiogenesis as compared to subject-matched nbMSCs. These findings are consistent with the 

results of a prior study based on a comparison of bone marrow-derived MSC lines from two 

different individuals, and the MSC line that had a higher expression of SLIT3 was more 

proangiogenic [19]. SLIT3 is known to act in a paracrine fashion to stimulate ECs and sprouting 

angiogenesis [18]. Interestingly, our studies indicate that SLIT3 may also act in an autocrine 

fashion via ROBO1 to stimulate MSC invasion and motility. Therefore SLIT3 expression in MSCs 

may be a surrogate of their therapeutic potency, as it can stimulate both angiogenesis and MSC 

homing. Furthermore, our transcriptome analysis suggests that the tissue-specific properties of 

ntSMCs may extend beyond a difference in proangiogenic qualities as ntMSCs may have 

tendencies towards tissue development, formation, and regeneration. 

The thymus gland is a highly vascular organ that can regenerate after injury and stress, and a 

marked angiogenic response mediated by MSCs supports thymus regeneration [51,60]. Further, 

a distinguishing characteristic of the thymus is that the entire vasculature, from the artery to 

microvascular bed to vein, is completely invested by pericytes [31]. On the other hand, the 

vasculature and blood vascular sinusoids of the bone marrow have incomplete pericyte coverage, 

as with the vasculature from many other organs and tissues [30,32]. Our results suggest that 

ROBO1-mediated effects on MSCs, such as invasion and motility, are also important for thymus 
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vascularization, indicating that SLIT3 exerts an autocrine effect on MSCs (Figs. 6A and 6B) that 

is independent of its paracrine effects on ECs that is mediated via ROBO4 [18]. MSC and pericyte 

motility are needed for neoangiogenesis as these cells are recruited from adjacent blood vessels 

to stabilize neovessels in a PDGFβ−dependent fashion [61]. Therefore a defect in SLIT3-ROBO1 

signaling may result in defective MSC recruitment to neovasculature, leading to decreased 

stability of neovasculature, ultimately leading to decreased vascular density, similar to what is 

seen in EC-specific PDGFβ deficient mice [61]. Although SLIT3 and ROBO1 expression are 

generally found in the perivascular region, future studies will need to directly investigate the 

contribution of the SLIT3-ROBO1 signaling activity in perivascular MSCs on thymus angiogenesis 

and development by specific targeting using conditional knockout mouse models. 

Portions of the thymus gland are routinely removed during neonatal and infant cardiac surgery, 

and thus this tissue presents as an ample and untapped source of neonatal MSCs, which we 

have previously shown to have therapeutic effects [29,59,62,63]. The results of this study further 

support the ntMSC as an attractive candidate for cell therapy given their superior proangiogenic 

properties. Patients with congenital heart disease who undergo cardiac surgery in the neonatal 

or early infancy periods are at risk of developing medical conditions secondary to defective 

perfusion or angiogenesis, such as capillary rarefaction from ventricular pressure overload which 

can contribute to heart failure [64-66], cerebral damage from complications of cardiopulmonary 

bypass and cardiac surgery [67,68], and myocardial ischemia and eventual heart failure from 

coronary obstruction after surgery [69]. Conceivably, autologous MSCs can be isolated from 

discarded thymus tissue obtained during neonatal or infant cardiac surgery, expanded and 

cryopreserved in vitro, and then thawed and utilized when medically indicated. 
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In conclusion, our results have important implications for the translational efforts of MSCs into 

clinical therapy. MSC proangiogenic characteristics are tissue source-dependent and are related 

to the activity of an autocrine SLIT3-ROBO1 signaling axis. Neonatal thymus MSCs, which have 

high endogenous SLIT3-ROBO1 activity and proangiogenic behavior, warrants further evaluation 

as therapy for ischemic disease. 
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FIGURE TITLES AND LEGENDS 

Figure 1. Pericytic signature of human neonate-matched MSCs.  

A, Neonatal thymus MSCs possessed a surface marker expression as determined by flow 

cytometry that was more pericyte-like as compared to nbMSCs (also see Table S1, n=3 subjects). 

B, Transcript expression of perivascular cell-associated factor TBX18 in subject-matched ntMSCs 

and nbMSCs as determined by qPCR. Each data pair represents ntMSCs and nbMSCs that were 

isolated from a single patient and all data compared with a ratio t test. 

Figure 2. Neonatal thymus MSCs are more proangiogenic than subject-matched nbMSCs. 

A, Conditioned medium (CM) from ntMSCs promoted greater HUVEC network formation as 

conditioned medium from nbMSCs and abMSCs. Scale bar = 200 µm. B, Quantification of HUVEC 

network formation in A. Each data point represents a randomly selected field of analysis. (Results 

are from n=3 subjects). C, Neonatal thymus MSCs had greater transcript levels of ANGPT1 and 

HIF1A as compared to matched nbMSCs. Each data pair represents ntMSCs and nbMSCs that 

were isolated from a single patient and all data compared with a ratio t test. D, CD31 

immunohistochemistry of MSC/HUVEC-seeded collagen/fibronectin constructs implanted in NOD 

SCID mice for 14 days. Scale bars = 50 µm. E, Quantification of CD31 vascular density of 

constructs in D, showing that ntMSCs stimulated more angiogenesis in vivo (n=5 animals with 

two constructs per animal; ntMSCs and nbMSCs isolated from the same subject). Each data point 

represents a randomly selected field of analysis. 

Figure 3. Neonatal thymus MSCs are more invasive and motile than bone MSCs. 
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A, Quantification of Boyden chamber assay results for subject-matched ntMSCs and nbMSCs 

(n=3 subjects). Each data point represents the average of four technical replicates for each cell 

line and averaged data points were compared with a ratio t test. B, Spheroid comprised of ntMSCs 

manifested more sprouting/invasion in fibrin as compared to those made with matched nbMSCs. 

Scale bars = 100 µm. C, Quantification of number and length of branches from spheroids in B 

(n=3 subjects) with each data point representing analysis from a single, independent spheroid.  

Figure 4. SLIT3 is upregulated in ntMSCs and is important for their proangiogenic 

paracrine effects. A, Heatmap of differentially expressed genes in subject-matched ntMSCs and 

nbMSCs as determined by microarray (also see Supplementary Tables S3 and S4, n=5 subjects). 

B, Network of gene ontology overrepresentation analysis of overexpressed genes in ntMSCs 

(Supplementary Table S3) indicate enrichment for development and morphogenesis processes. 

C, SLIT3 transcript expression in subject-matched ntMSCs and nbMSCs as determined by qPCR. 

Each data pair represents ntMSCs and nbMSCs that were isolated from a single patient. D and 

E, SLIT3 expression in subject-matched ntMSCs and nbMSCs as determined by Western blotting 

with quantification (results are representative of n=2 subjects). F, Neutralizing SLIT3 in the 

conditioned medium (CM) obtained from ntMSCs decreases their ability to promote HUVEC 

network formation in vitro. Experiments were performed wtih conditioned medium generated from 

three different ntMSC lines. Three random fields were analyzed per group, averaged, and then 

compared with a Student’s t test. 

Figure 5. SLIT3 is important for neonatal thymus angiogenesis. A, Immunohistochemistry of 

wildtype Slit3+/+ mouse neonatal thymus gland showing localization of SLIT3 to the perivascular 

region of arterioles (results representative of samples from n=3 animals). Scale bars = 50 µm. B 
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and C, CD31 immunohistochemistry of thymus glands from Slit3+/+ and Slit3-/- neonatal mice with 

quantification of CD31 vascular density (n=5 thymus glands per group). Each data point 

represents a randomly selected field of analysis. Scale bars= 60 µm. 

Figure 6. ROBO1 mediates SLIT3 invasive motile effects on ntMSCs. A, Recombinant human 

SLIT3 promotes a general spreading of ntMSC spheroids in fibrin gel. B, ntMSCs from Slit3-/- 

neonatal mice have decreased invasive motile activity than ntMSCs from Slit3+/+ neonatal mice. 

ntMSCs were pooled from n=8 animals/genotype group. C, Targeting SLIT3 transcription with 

siRNA inhibits ntMSC spheroid invasive sprouting. D, ROBO1 is expressed 20-80 times more 

than ROBO4 in MSCs. Each data pair represents ntMSCs and nbMSCs that were isolated from 

a single patient and data were compared with a ratio t test. E, ROBO1 transcript levels in paired 

human nbMSCs and ntMSCs as determined by qPCR and data were compared with a ratio t test. 

Each data pair represents ntMSCs and nbMSCs that were isolated from a single patient. F, 

Targeting ROBO1 transcription with siRNA inhibits ntMSC spheroid invasive sprouting. Spheroid 

experiment results (A, C, and F) are representative of at least four independent experiments 

utilizing MSCs isolated from n=4 subjects. Data points for qPCR of siRNA treated MSCs represent 

technical replicates and data points for spheroid branching analysis represent a single spheroid. 

Spheroid experimental results were analyzed with a Student’s t test. Scale bars = 100 µm. 

Figure 7. ROBO1 participates in neonatal thymus angiogenesis. A, Immunohistochemistry of 

wildtype Robo1+/+ mouse neonatal thymus gland showing localization of ROBO1 to the 

perivascular region of arterioles (Results representative tissue from n=3 animals). Scale bars = 

10 µm. B and C, CD31 immunohistochemistry of thymus glands from Robo1+/+ and Robo1-/- 

neonatal mice with quantification of CD31 vascular density (At least n=5 sections were analyzed 
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from n=3 thymus glands per genotype group). Each data point represents a randomly selected 

field of analysis. Scale bars = 60 µm. 

 

 

SUPPLEMENTARY FIGURES AND TABLES 

Supplementary Figure S1. Neontatal thymus MSCs was superior to adult bone marrow-derived 

MSCs in promoting angiogenesis in vivo. A and B, CD31 immunohistochemistry of 

abMSC/HUVEC-seeded collagen/fibronectin (A) and ntMSC/HUVEC-seeded collagen/fibronectin 

(B) constructs implanted in NOD SCID mice for 14 days. Scale bars = 50 µm. Only 20% (1/5 

constructs) of explanted constructs from the abMSC/HUVEC group demonstrated CD31 positive 

luminal structures whereas 100% of ntMSC/HUVEC constructs possessed numerous CD31 

positive vessels (n=5 animals with two constructs per animal). 

Supplementary Figure S2. Neutralizing SLIT3 in the conditioned medium (CM) obtained from 

ntMSCs decreases their ability to promote HUVEC network formation in vitro. A specific anti-

SLIT3 antibody can decrease the ability of conditioned medium from ntMSCs to promote HUVEC 

network formation in vitro. Data from these experiments are quantified and analyzed in Fig. 4F. 

Supplementary Table S1. qPCR primers used in this study. 

Supplementary Table S2. Pericytic surface marker expression of three subject-matched 

neonatal thymus and bone MSCs as determined by flow cytometry. 
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Supplementary Table S3. Upregulated genes (> 2.0x fold) in ntMSCs as compared to subject-

matched nbMSCs as determined by microarray analysis. 

Supplementary Table S4. Down-regulated genes in ntMSCs as compared to subject-matched 

nbMSCs determined by microarray analysis. 

Supplementary Table S5. Functional annotation analysis using DAVID of overexpressed genes 

in ntMSCs as identified by microarray. 

Supplementary Table S6. Details of the cell lines and subjects.  

Supplementary Table S7. Specific cell lines used in each experiment. 

Supplementary Table S8. Individual data values and cell lines used for qPCR gene expression 

shown in Figs. 1B, 2C, 4C, 6D, and 6E. 
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ABSTRACT 

While MSCs are being explored in numerous clinical trials as proangiogenic and proregenerative 

agents, the influence of tissue origin on the therapeutic qualities of these cells is poorly 

understood. Complicating the functional comparison of different types of MSCs are the 

confounding effects of donor age, genetic background, and health status of the donor. Leveraging 

a clinical setting where MSCs can be simultaneously isolated from discarded but healthy bone 

and thymus tissues from the same neonatal patients, thereby controlling for these confounding 

factors, we performed an in vitro and in vivo paired comparison of these cells. We found that both 

neonatal thymus (nt)MSCs and neonatal bone (nb)MSCs expressed different pericytic surface 

marker profiles. Further, ntMSCs were more potent in promoting angiogenesis in vitro and in vivo 

and they were also more motile and efficient at invading ECM in vitro. These functional differences 

were in part mediated by an increased ntMSC expression of SLIT3, a factor known to activate 

endothelial cells. Further, we discovered that SLIT3 stimulated MSC motility and fibrin gel invasion 

via ROBO1 in an autocrine fashion. Consistent with our findings in human MSCs, we found that 

SLIT3 and ROBO1 were expressed in the perivascular cells of the neonatal murine thymus gland 

and that global SLIT3 or ROBO1 deficiency resulted in decreased neonatal murine thymus gland 

vascular density. In conclusion, ntMSCs possess increased proangiogenic and invasive 

behaviors which are in part mediated by the paracrine and autocrine effects of SLIT3. 
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INTRODUCTION 

Mesenchymal stem/stromal cells (MSCs) are located in the perivascular region, can be isolated 

from a variety of tissues, and are being evaluated as proangiogenic and proregenerative therapies 

in numerous clinical trials [1-8]. While endothelial cells have been recently recognized to possess 

tissue-specific properties, the influence of tissue origin on MSC therapeutic effects is poorly 

understood [9,10].  

The ability of MSCs to migrate to damaged tissues to exert its proregenerative, antiinflammatory 

and proangiogenic effects also influences their therapeutic potential [11-14]. Infusion of MSCs 

into the venous circulation result in intravascular homing to injured areas, and homing over shorter 

distances through the tissue interstitium are also likely to occur in the setting of local injection 

[15,16]. Requisite for homing is the motile and tissue-invasive abilities of MSCs, and the influence 

of tissue origin on these characteristics is not known [17]. The secreted axon guidance molecule 

SLIT3 has been shown to be an endothelial cell (EC) stimulant [18] and has been associated with 

a bone marrow derived MSC line that is proangiogenic [19]; however, it is not known if this finding 

can be generalized to other MSC lines.  

Knowing these tissue-specific properties of MSCs is important because they may have 

translational implications for MSC therapies [20]. However, comparing MSCs from different 

tissues is confounded by factors such as donor age, presence of systemic disease, and individual 

variability [21-27]. We have been able to simultaneously isolate MSCs from thymus and bone 

tissue from neonates undergoing cardiac surgery, thereby allowing for a paired comparison that 

controls for the above confounding factors [28,29]. These two tissues have disparate perivascular 

mural cell embryological origin and different degrees of perivascular mural cell coverage of the 

vasculature [30-34]. Based on these differences, we hypothesized that MSCs from the thymus 

and bone would have different proangiogenic, motile, and invasive characteristics. Using both in 
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vitro and in vivo assays, we evaluated this hypothesis and identified that SLIT3 contributes to the 

observed differences in these functional properties of MSCs.  

 

MATERIALS AND METHODS 

Cell Isolation and Culture 

Isolation, culture, and characterization of the human ntMSCs and nbMSCs used in these studies 

were previously described [28,29] under a protocol that was approved by the University of 

Michigan Institutional Review Board. Furthermore, Human adult bone marrow-derived 

(ab)MSCs were obtained from Lonza (Basel, Switzerland) and ATCC (Manassas, VA, USA), 

and human umbilical vein endothelial cells (HUVECs) were obtained from Lonza. Unless 

specified otherwise, all experiments utilized cells from passages 3-9. 

Pericytic Signature Analysis 

Pericyte surface markers of ntMSCs and nbMSCs isolated from n=3 patients were 

characterized by flow cytometry using fluorochrome-conjugated anti-human CD140a, CD140b, 

CD146, and CD90 (BD Biosciences, San Jose, CA). The antibodies were incubated with MSCs 

for 60 minutes at room temperature followed by three washes.  MSCs were then analyzed using 

a MoFlo® Astrios™ flow cytometer (Beckman Coulter, Inc., Pasadena, CA, USA) using the 

appropriate isotype-matched and unstained controls. 

We also measured the transcript expression of TBX18, recently determined to be expressed in 

the perivascular mural cells of mice vasculature [8], in human ntMSCs, nbMSCs, and abMSCs 

using qPCR (see below). 

MSC Conditioned Medium Generation and HUVEC Tube Formation Assay 
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Ninety-six-well plates were coated with 60 µl Matrigel matrix (10 mg/mL, Corning, NY, USA) per 

well at 37°C for 30 to 60 minutes. HUVEC suspensions were prepared using the corresponding 

medium at a concentration of 1.5 x 105 /mL. Next, 100 µl (15,000) of cells were added to each 

well (5 wells per group) on top of the gelled Matrigel followed by the addition of 100 µl of MSC 

conditioned medium and then incubated at 37°C, 5% CO2 for 4 to 16 hours. Once tube 

formation was observed, the plate was washed with HBSS, and the cells were labeled with 

Calcein AM (2 μM) (ThermoFisher Scientific, Waltham, MA, USA) for 30 min at 37°C in 5% CO2 

and were photographed using a fluorescent microscope. In subsequent experiments, a blocking 

anti-SLIT3 antibody (5 µg/mL, AF3629, R&D Systems, Minneapolis, MN, USA) was added to 

the ntMSC derived conditioned medium to neutralize the effects of SLIT3. 

Boyden Chamber Assay 

Mesenchymal stromal cell migration was measured using the Boyden chamber assay (Cell 

Biolabs, Inc., San Diego, CA, USA) in a 24-well format with 8 µm pore size according to the 

manufacturer’s instructions. In brief, 5 x 104 cells in 300 µl serum-free medium were seeded in 

the upper compartment (the insert) and then allowed to migrate through the pores of the 

membrane into the lower compartment. After an appropriate incubation time in a cell culture 

incubator, migratory cells on the bottom of the polycarbonate membrane were stained and 

quantified in a fluorescence plate reader. 

In Vitro Spheroid Angiogenic Sprouting Assay 

Spheroids comprised of 800 MSCs or 400 MSCs/400ECs were generated by hanging drop culture 

as previously described [29]. Spheroids were embedded in fibrin gel and allowed to sprout for 20 

hours. Brightfield images were then acquired digitally and were analyzed using NeuronJ as 

previously described [29]. In some experiments, rhSLIT3 (12.5 µg/ml) (R&D Systems, 

Minneapolis, MN, USA) was added to the media just after spheroids were embedded in fibrin gel. 
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In other experiments, SLIT3 or ROBO1 gene targeting in MSCs was performed using siRNA 

(Origene, Rockville, MD, USA). Knockdown of gene expression was confirmed by qPCR before 

use in experiments, and experiments were repeated with at least two different siRNAs. 

qPCR  

Differential gene was performed using qPCR. RNA from cells was extracted according to the 

manufacturer’s instructions using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and 1 µg of 

total RNA was reverse transcribed with qScript cDNA Synthesis Kit (Quantabio, Beverly, MA, 

USA). Quantitative polymerase chain reactions were carried out with PerfeCTa SYBR Green 

supermix (Quantabio) and the Applied Biosystems (Foster City, CA USA), QuantStudio 5 Real-

Time PCR System. Data were analyzed using the 2-ΔΔCт method. The genes and primers used for 

this study are listed in Supplementary Table S1. 

In Vivo Angiogenesis Assay 

The care of animals was in accordance with institutional guidelines. Constructs (n=5/group) 

containing 2 million cells (HUVECs, MSCs, and HUVECs/MSCs at a 1:1 ratio) or no cells (control 

group) were made in 48-well plates with 200 µl of fibronectin and collagen hydrogel. Subject-

matched ntMSCs and nbMSCs and unrelated abMSCs were utilized. Constructs were implanted 

subcutaneously in the dorsal region of NOD/SCID mice. Constructs were explanted 14 days after 

implantation for histological studies and CD31 immunohistochemistry (IHC) as previously 

described [29].  

Microarray 

Global gene expression from neonate-matched nbMSCs and ntMSCs was performed to gain 

further insight into the differences in their proangiogenic abilities. Total RNA was isolated from 

MSCs grown under standard conditions and then labeled and hybridized to Human Gene ST 2.1 

human cDNA microarrays (Affymetrix, Santa Clara, CA, USA). Five biological replicates 
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(individual neonates) were analyzed by the University of Michigan Microarray Core. Human Gene 

ST 2.1 human cDNA microarrays (Affymetrix) were used to compare ntMSCs and nbMSCs. 

Differentially expressed probesets were identified by a log2 fold change >1 and an adjusted p-

value <0.05 (adjusted for multiple comparisons using false discovery rate). Differentially 

expressed genes were further analyzed for gene ontology term overrepresentation analysis using 

the BINGO plugin of Cytoscape [35] as well as functional annotation clustering using DAVID 

[36,37]. The data discussed in this publication have been deposited in NCBI's GeneExpression 

Omnibus [38] and are accessible through GEO Series accession number GSE142563 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE142563). 

Western Blotting 

Protein was isolated from MSCs cultured under standard conditions and then quantified by 

bicinchoninic acid (BCA) assay (Pierce, Rockford, IL, USA). Next, 25 μg of total protein was 

loaded onto SDS-polyacrylamide gel electrophoresis and transferred to nitrocellulose 

membranes. Membranes were blocked in 5% skimmed milk for 1 hour at room temperature and 

then incubated with primary antibody (antibodies against SLIT3, Abcam, ab78365, Cambridge, 

UK) overnight at 4 °C. Goat anti-rabbit IgG (H+L) 800 CW was applied for 1 hour at room 

temperature (1∶5000, LI-COR Biosciences, Lincoln, NE). Visualization and quantification were 

carried out with the LI-COR Odyssey® scanner and software (LI-COR Biosciences).   

Transgenic Mice. 

Slit3+/+ and Slit3-/- mice on a CD-1 background were obtained from Dr. Sean Mclean (University 

of North Carolina). Robo1+/+ and Robo1-/- mice (CD-1 background) were obtained from Dr. Marc 

Tessier-Lavigne (Stanford University). Neonatal mice (n = 3-5 per genotype group) at postnatal 

day 8-10 were anesthetized with isoflurane, and the whole thymus was obtained for IHC studies 

for CD31, SLIT3, and ROBO1. Thymus tissue was fixed with 10% formalin and embedded in 
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paraffin using standard protocols. The paraffin blocks were sectioned at 5 µm thickness. For 

immunohistochemistry, the sections were deparaffinized with xylene and rehydrated through a 

graded ethanol series of solutions. The sections were then subjected to heat-induced antigen 

retrieval in citrate buffer (pH 6.0), blocked with 5% BSA PBS buffer and incubated with primary 

antibodies at 4°C overnight. Anti-SLIT3 (1:100, Sigma-Aldrich, SAB2104337, St. Louis, MO), anti-

ROBO1 (1:100, ab7279, Abcam, Cambridge, UK), and anti-CD31 (1:40, Novus Biologicals, 

Littleton, CO, USA) antibodies were used. The appropriate secondary antibody Alexa Fluor® 

(ThermoFisher Scientific) were used at a dilution of 1:200. Hoechst was used for nuclear 

counterstaining and all sections were mounted in Prolong Diamond Antifade Mountant 

(ThermoFisher Scientific). Images were obtained by confocal microscopy (Nikon A1Si, Melville, 

NY, USA). 

In a separate experiment, the thymus was removed from Slit3+/+ and Slit3-/- neonatal mice (n = 8 

per genotype group) and mechanically minced into 1- 2 mm pieces. Explant culture was then 

performed as described for the isolation of human ntMSCs [29]. After 7 to 10 days, tissue 

fragments were removed, and migrated MSCs from tissue fragments were cultured until they 

reached 80% confluence. 

Statistical Analysis 

Statistical analysis was performed using a ratio t test of paired data or unpaired two-tailed 

Student’s t-test using GraphPad Prism 9 (GraphPad Software, La Jolla, CA) when appropriate, 

and p<0.05 was considered significant. Data are presented as mean ± SD. 

 

RESULTS 

Neonatal thymus and bone MSCs possess unique pericytic signatures 
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We previously determined that human ntMSCs and nbMSCs could undergo in vitro multilineage 

differentiation and shared many surface markers expressed by abMSCs [28,29]. To further 

characterize these neonatal MSCs, we determined the expression of surface markers that have 

been previously associated with perivascular cells [39]. With flow cytometry, we observed that 

ntMSCs expressed higher levels of CD140b (PDGFRβ), lower levels of CD146 (MCAM/MUC18), 

equivalently low levels of CD140a (PDGFRα), and equivalently high levels of CD90 (Thy1) as 

compared to subject-matched nbMSCs (Fig. 1A and Supplementary Table S2). Furthermore, as 

compared to abMSCs and subject-matched nbMSCs, ntMSCs possessed a significantly higher 

transcript level of TBX18 (Fig. 1B), which encodes for a transcription factor that is expressed in 

the perivascular cells of many organs in mice [8]. These results demonstrate that MSCs possess 

a tissue-specific pericytic phenotype. 

 

Neonatal thymus MSCs are more proangiogenic than subject-matched nbMSCs.  

After identifying that ntMSCs and nbMSCs possessed different pericytic signatures, we next 

assessed if ntMSCs would be functionally different than subject-matched nbMSCs in promoting 

neovascularization in vitro and in vivo. Since the primary mechanism by which MSCs stimulate 

angiogenesis is thought to be via the secretion of proangiogenic factors [40,41], we first 

determined if the secretome from these two types of MSCs would vary in their ability to promote 

HUVEC tube formation in vitro. HUVECs in Matrigel were exposed to conditioned medium 

obtained from ntMSC and nbMSC cultures. HUVEC tube and network formation were significantly 

increased in the group exposed to conditioned medium from ntMSCs as compared to that 

obtained from matched nbMSCs, as well as from cultures of unrelated abMSCs (Figs. 2A and 

2B). We then observed that ntMSCs possessed increased transcript levels of the proangiogenic 

factors VEGFA, FGF2, ANGPT1, and HIF1A (Fig. 2C). The expression of CXCL12 and HGF, both 

of which have been shown to encode factors involved in bone marrow-derived MSC mediated 
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angiogenesis [42,43], were similar to subject-matched nbMSCs (Fig. 2C). These results suggest 

that the secretome of ntMSCs is more proangiogenic than that of bone-derived MSCs. 

Next, we determined the ability of ntMSCs and nbMSCs to promote angiogenesis in vivo by 

encapsulating them in a collagen-fibronectin plug along with HUVECs and then implanting them 

subcutaneously in NOD-SCID mice. Plugs were explanted after two weeks and were assessed 

for the presence of human CD31+ luminal structures containing red blood cells. We found that 

ntMSCs and HUVECs generated more perfused human CD31+ blood vessels as compared to 

nbMSCs and HUVECs (Figs. 2D and 2E). When compared to abMSCs, we also found that 

ntMSCs stimulated angiogenesis to a greater degree in vivo (Supplementary Figs. S1A and S1B). 

Collectively, these results indicate that MSCs isolated from the human neonatal thymus gland are 

more efficient in promoting angiogenesis in vitro and in vivo as compared to bone-derived MSCs.  

 

Neonatal thymus MSCs are more motile and invasive than nbMSCs in vitro. 

Perivascular cells such as MSCs are recruited and extend from adjacent areas to neovessels or 

capillaries that lack perivascular coverage [44,45], indicating that MSCs must be motile and be 

able to negotiate the extracellular matrix (ECM) to reach its appropriate destination.  Further, 

MSCs must be motile and tissue invasive in order to home to areas of injury to impart their 

therapeutic effects [16].  

Using a Boyden chamber assay, we first observed that ntMSCs had increased motility as 

compared to subject-matched nbMSCs (Fig. 3A). Next, we determined the ability of ntMSCs and 

nbMSCs to invade and migrate through fibrin, a key component of the early provisional matrix 

that is important for tissue repair [46]. We used a spheroid invasion assay [29,47] and determined 

that ntMSCs invaded fibrin more rapidly than nbMSCs (Figs. 3B and 3C). Altogether, this pairwise 
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comparison indicates that ntMSCs are consistently more motile and invasive than subject-

matched nbMSCs. 

 

Neonatal thymus MSCs have increased expression of SLIT3. 

To further understand the mechanisms underlying the functional differences between ntMSCs 

and nbMSCs, we performed genome-wide profiling with microarray in pairs of MSCs isolated from 

5 neonatal subjects. We found 116 genes that were at least 2x fold upregulated and 105 genes 

that were downregulated in ntMSCs as compared to nbMSCs (Fig. 4A, Supplementary Tables S3 

and S4). Gene ontology category overrepresentation analysis revealed many processes related 

to tissue development in ntMSCs (Fig. 4B). Although functional annotation clustering did not 

identify any clusters related to angiogenesis, it did identify a cluster of genes (Annotation Cluster 

5) enriched in ntMSCs that were related to axon guidance and Roundabout signaling 

(Supplementary Table S5), processes that have also been shown to regulate angiogenic 

sprouting [48,49]. Specifically, the secreted axon guidance molecule SLIT3 [50], also known to a 

proangiogenic factor [18,19], was found to be more highly expressed in ntMSCs (Supplementary 

Table S3), which we confirmed with qPCR and Western Blotting (Figs. 4C-E). Indeed, neutralizing 

SLIT3 in ntMSC conditioned medium with a specific antibody resulted in decreased HUVEC 

network formation in vitro, indicating that SLIT3 contributes to the paracrine effects of ntMSCs 

(Fig. 4F and Fig. S2). 

 

SLIT3 is important for neonatal thymus vascularity 

Global deficiency of SLIT3 causes congenital diaphragmatic hernia in mice that is due to a defect 

diaphragmatic angiogenesis, however the impact of SLIT3 on the vascular beds of other tissues 

is unknown [18]. We first investigated the spatial expression of SLIT3 in murine neonatal thymus 
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tissue since we had established that it was highly expressed in human ntMSCs. We found that 

SLIT3 is most dominantly in the peri-arteriolar region as well as within the stroma of the thymic 

cortex (Fig. 5A). Given the role of perivascular MSCs in thymus angiogenesis [51] and localization 

of SLIT3 expression to the perivascular cells in the neonatal thymus (Fig. 5A), we next postulated 

that SLIT3 played a role in thymus vascularization. To investigated this, we determined the CD31+ 

vascular density of thymus glands obtained from neonatal Slit3+/+ and Slit3-/- mice. We found that 

vascular density was significantly decreased in thymus tissue from Slit3 null mice (Figs. 5B and 

5C). Altogether, these results confirm that SLIT3 is highly expressed in perivascular cells within 

the neonatal thymus gland and is important for thymus angiogenesis.  

 

SLIT3 promotes the motile and invasive behavior of ntMSCs via ROBO1.  

Given its ability to regulate the motility of various cell types [18,52-54], we investigated if SLIT3 

could influence ntMSC invasive behavior in an autocrine fashion. We first determined the effects 

of rhSLIT3 on ntMSC and nbMSC spheroids and found that it increased invasion in fibrin gel but 

as a collective migration from the central mass of the spheroid and not as individual sprouts (Fig. 

6A). We next isolated ntMSCs from Slit3-/- mice and found that they demonstrated blunted invasive 

behavior as compared to ntMSCs from Slit3+/+ mice (Fig. 6B). Given the possibility that SLIT3 

deficiency may have interfered with the development (and subsequent ability to migrate and 

invade) of the ntMSCs from these global kockout mice, we targeted SLIT3 transcription in human 

ntMSCs with siRNA and found that decreasing SLIT3 expression also resulted in decreased 

length and number of sprouts from ntMSC spheroids, indicating that SLIT3 can directly regulate 

postnatal MSC motility and invasion in an autocrine fashion (Fig. 6C).  

Given that ROBO1 and ROBO4 are potential receptors for the SLIT3 ligand [18], we first evaluated 

the transcript expression of the genes for both of these receptors in human MSCs (Fig. 6D). We 
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discovered that ROBO1 transcript levels were up to 20-80 times more abundant than that of 

ROBO4 transcripts in human MSCs (Fig. 6D). In the MSC pairs that we isolated from three 

patients, we found that ntMSCs had a higher ROBO1 transcript levels as compared to nbMSCs, 

but this was not significant (Fig. 6E). These results implied that ROBO1 (and not ROBO4) is likely 

the dominant receptor for SLIT3 in MSCs. To further confirm this, we targeted ROBO1 

transcription with specific siRNA and determined the effects on human ntMSC spheroid invasive 

sprouting. We found that targeting ROBO1 transcription resulted in significantly decreased 

invasive ntMSC behavior (Fig. 6F). Altogether, these results demonstrate that SLIT3 promotes 

ntMSC invasion and motility in fibrin in an autocrine fashion via ROBO1.  

 

ROBO1 participates in neonatal thymus angiogenesis. 

The above findings indicated that MSCs can promote thymus angiogenesis via SLIT3 and that 

SLIT3 can act in an autocrine fashion to stimulate MSC motility and invasion. However, it is 

unclear how important MSC motility is to in vivo angiogenesis since sprouting is primarily formed 

by tip ECs [55]. To determine the presence of any relationship between ROBO1-mediated MSC 

motility and invasion and MSC-facilitated in vivo angiogenesis, we evaluated the vascularity of 

thymus glands from neonatal Robo1+/+ and Robo1-/- mice. In wild-type mice, ROBO1 was found 

to be localized to the perivascular region of larger vessels, but not in the endothelium (Fig. 7A). 

ROBO1 deficiency resulted in a significantly decreased CD31+ blood vessel density within the 

cortex of the neonatal thymus gland (Fig. 7B and 7C), phenocopying the observations made in 

the thymus glands of Slit3-/- neonatal mice. Altogether, these results indicate that ROBO1 is 

important for neonatal thymus angiogenesis, in part by possibly mediating the autocrine effects 

of SLIT3 on ntMSC motility and invasion. 
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DISCUSSION 

MSCs are currently being investigated in about 500 clinical trials for a variety of diseases [56]. 

The therapeutic activity of MSCs is thought to be in part due to its ability to secrete beneficial 

factors that promote survival, rejuvenation, and regeneration of diseased or stressed parenchymal 

cells [57]. A universal effect of exogenously transplanted MSCs is its ability to stimulate 

angiogenesis in the surrounding parenchyma, which may also contribute to the therapeutic effects 

of MSCs, especially in the setting of ischemia [58,59]. MSCs from a variety of tissues are being 

investigated as therapeutic agents, and our findings indicate that tissue source may be an 

important factor in determining their potency. 

Our results of subject-matched MSCs also reveal that the secreted axon guidance molecule 

SLIT3 contributes to the proangiogenic effects of ntMSCs and that increased expression of SLIT3 

may partly explain why these MSCs were consistently found to be more potent at promoting 

angiogenesis as compared to subject-matched nbMSCs. These findings are consistent with the 

results of a prior study based on a comparison of bone marrow-derived MSC lines from two 

different individuals, and the MSC line that had a higher expression of SLIT3 was more 

proangiogenic [19]. SLIT3 is known to act in a paracrine fashion to stimulate ECs and sprouting 

angiogenesis [18]. Interestingly, our studies indicate that SLIT3 may also act in an autocrine 

fashion via ROBO1 to stimulate MSC invasion and motility. Therefore SLIT3 expression in MSCs 

may be a surrogate of their therapeutic potency, as it can stimulate both angiogenesis and MSC 

homing. Furthermore, our transcriptome analysis suggests that the tissue-specific properties of 

ntSMCs may extend beyond a difference in proangiogenic qualities as ntMSCs may have 

tendencies towards tissue development, formation, and regeneration. 

The thymus gland is a highly vascular organ that can regenerate after injury and stress, and a 

marked angiogenic response mediated by MSCs supports thymus regeneration [51,62]. Further, 

a distinguishing characteristic of the thymus is that the entire vasculature, from the artery to 
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microvascular bed to vein, is completely invested by pericytes [31]. On the other hand, the 

vasculature and blood vascular sinusoids of the bone marrow have incomplete pericyte coverage, 

as with the vasculature from many other organs and tissues [30,32]. Our results suggest that 

ROBO1-mediated effects on MSCs, such as invasion and motility, are also important for thymus 

vascularization, indicating that SLIT3 exerts an autocrine effect on MSCs (Figs. 6A and 6B) that 

is independent of its paracrine effects on ECs that is mediated via ROBO4 [18]. MSC and pericyte 

motility are needed for neoangiogenesis as these cells are recruited from adjacent blood vessels 

to stabilize neovessels in a PDGFβ−dependent fashion [63]. Therefore a defect in SLIT3-ROBO1 

signaling may result in defective MSC recruitment to neovasculature, leading to decreased 

stability of neovasculature, ultimately leading to decreased vascular density, similar to what is 

seen in EC-specific PDGFβ deficient mice [63]. Although SLIT3 and ROBO1 expression are 

generally found in the perivascular region, future studies will need to directly investigate the 

contribution of the SLIT3-ROBO1 signaling activity in perivascular MSCs on thymus angiogenesis 

and development by specific targeting using conditional knockout mouse models. 

Portions of the thymus gland are routinely removed during neonatal and infant cardiac surgery, 

and thus this tissue presents as an ample and untapped source of neonatal MSCs, which we 

have previously shown to have therapeutic effects [29,59-61]. The results of this study further 

support the ntMSC as an attractive candidate for cell therapy given their superior proangiogenic 

properties. Patients with congenital heart disease who undergo cardiac surgery in the neonatal 

or early infancy periods are at risk of developing medical conditions secondary to defective 

perfusion or angiogenesis, such as capillary rarefaction from ventricular pressure overload which 

can contribute to heart failure [64-66], cerebral damage from complications of cardiopulmonary 

bypass and cardiac surgery [67,68], and myocardial ischemia and eventual heart failure from 

coronary obstruction after surgery [69]. Conceivably, autologous MSCs can be isolated from 
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discarded thymus tissue obtained during neonatal or infant cardiac surgery, expanded and 

cryopreserved in vitro, and then thawed and utilized when medically indicated. 

In conclusion, our results have important implications for the translational efforts of MSCs into 

clinical therapy. MSC proangiogenic characteristics are tissue source-dependent and are related 

to the activity of an autocrine SLIT3-ROBO1 signaling axis. Neonatal thymus MSCs, which have 

high endogenous SLIT3-ROBO1 activity and proangiogenic behavior, warrants further evaluation 

as therapy for ischemic disease. 
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FIGURE TITLES AND LEGENDS 

Figure 1. Pericytic signature of human neonate-matched MSCs.  

A, Neonatal thymus MSCs possessed a surface marker expression as determined by flow 

cytometry that was more pericyte-like as compared to nbMSCs (also see Table S1, n=3 subjects). 

B, Transcript expression of perivascular cell-associated factor TBX18 in subject-matched ntMSCs 

and nbMSCs as determined by qPCR. Each data pair represents ntMSCs and nbMSCs that were 

isolated from a single patient and all data compared with a ratio t test. 

Figure 2. Neonatal thymus MSCs are more proangiogenic than subject-matched nbMSCs. 

A, Conditioned medium (CM) from ntMSCs promoted greater HUVEC network formation as 

conditioned medium from nbMSCs and abMSCs. Scale bar = 200 µm. B, Quantification of HUVEC 

network formation in A. Each data point represents a randomly selected field of analysis. (Results 

are from n=3 subjects). C, Neonatal thymus MSCs had greater transcript levels of ANGPT1 and 

HIF1A as compared to matched nbMSCs. Each data pair represents ntMSCs and nbMSCs that 

were isolated from a single patient and all data compared with a ratio t test. D, CD31 

immunohistochemistry of MSC/HUVEC-seeded collagen/fibronectin constructs implanted in NOD 
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SCID mice for 14 days. Scale bars = 50 µm. E, Quantification of CD31 vascular density of 

constructs in D, showing that ntMSCs stimulated more angiogenesis in vivo (n=5 animals with 

two constructs per animal; ntMSCs and nbMSCs isolated from the same subject). Each data point 

represents a randomly selected field of analysis. 

Figure 3. Neonatal thymus MSCs are more invasive and motile than bone MSCs. 

A, Quantification of Boyden chamber assay results for subject-matched ntMSCs and nbMSCs 

(n=3 subjects). Each data point represents the average of four technical replicates for each cell 

line and averaged data points were compared with a ratio t test. B, Spheroid comprised of ntMSCs 

manifested more sprouting/invasion in fibrin as compared to those made with matched nbMSCs. 

Scale bars = 100 µm. C, Quantification of number and length of branches from spheroids in B 

(n=3 subjects) with each data point representing analysis from a single, independent spheroid.  

Figure 4. SLIT3 is upregulated in ntMSCs and is important for their proangiogenic 

paracrine effects. A, Heatmap of differentially expressed genes in subject-matched ntMSCs and 

nbMSCs as determined by microarray (also see Supplementary Tables S3 and S4, n=5 subjects). 

B, Network of gene ontology overrepresentation analysis of overexpressed genes in ntMSCs 

(Supplementary Table S3) indicate enrichment for development and morphogenesis processes. 

C, SLIT3 transcript expression in subject-matched ntMSCs and nbMSCs as determined by qPCR. 

Each data pair represents ntMSCs and nbMSCs that were isolated from a single patient. D and 

E, SLIT3 expression in subject-matched ntMSCs and nbMSCs as determined by Western blotting 

with quantification (results are representative of n=2 subjects). F, Neutralizing SLIT3 in the 

conditioned medium (CM) obtained from ntMSCs decreases their ability to promote HUVEC 

network formation in vitro. Experiments were performed wtih conditioned medium generated from 

three different ntMSC lines. Three random fields were analyzed per group, averaged, and then 

compared with a Student’s t test. 
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Figure 5. SLIT3 is important for neonatal thymus angiogenesis. A, Immunohistochemistry of 

wildtype Slit3+/+ mouse neonatal thymus gland showing localization of SLIT3 to the perivascular 

region of arterioles (results representative of samples from n=3 animals). Scale bars = 50 µm. B 

and C, CD31 immunohistochemistry of thymus glands from Slit3+/+ and Slit3-/- neonatal mice with 

quantification of CD31 vascular density (n=5 thymus glands per group). Each data point 

represents a randomly selected field of analysis. Scale bars= 60 µm. 

Figure 6. ROBO1 mediates SLIT3 invasive motile effects on ntMSCs. A, Recombinant human 

SLIT3 promotes a general spreading of ntMSC spheroids in fibrin gel. B, ntMSCs from Slit3-/- 

neonatal mice have decreased invasive motile activity than ntMSCs from Slit3+/+ neonatal mice. 

ntMSCs were pooled from n=8 animals/genotype group. C, Targeting SLIT3 transcription with 

siRNA inhibits ntMSC spheroid invasive sprouting. D, ROBO1 is expressed 20-80 times more 

than ROBO4 in MSCs. Each data pair represents ntMSCs and nbMSCs that were isolated from 

a single patient and data were compared with a ratio t test. E, ROBO1 transcript levels in paired 

human nbMSCs and ntMSCs as determined by qPCR and data were compared with a ratio t test. 

Each data pair represents ntMSCs and nbMSCs that were isolated from a single patient. F, 

Targeting ROBO1 transcription with siRNA inhibits ntMSC spheroid invasive sprouting. Spheroid 

experiment results (A, C, and F) are representative of at least four independent experiments 

utilizing MSCs isolated from n=4 subjects. Data points for qPCR of siRNA treated MSCs represent 

technical replicates and data points for spheroid branching analysis represent a single spheroid. 

Spheroid experimental results were analyzed with a Student’s t test. Scale bars = 100 µm. 

Figure 7. ROBO1 participates in neonatal thymus angiogenesis. A, Immunohistochemistry of 

wildtype Robo1+/+ mouse neonatal thymus gland showing localization of ROBO1 to the 

perivascular region of arterioles (Results representative tissue from n=3 animals). Scale bars = 

10 µm. B and C, CD31 immunohistochemistry of thymus glands from Robo1+/+ and Robo1-/- 

neonatal mice with quantification of CD31 vascular density (At least n=5 sections were analyzed 
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from n=3 thymus glands per genotype group). Each data point represents a randomly selected 

field of analysis. Scale bars = 60 µm. 

 

 

SUPPLEMENTARY FIGURES AND TABLES 

Supplementary Figure S1. Neontatal thymus MSCs was superior to adult bone marrow-derived 

MSCs in promoting angiogenesis in vivo. A and B, CD31 immunohistochemistry of 

abMSC/HUVEC-seeded collagen/fibronectin (A) and ntMSC/HUVEC-seeded collagen/fibronectin 

(B) constructs implanted in NOD SCID mice for 14 days. Scale bars = 50 µm. Only 20% (1/5 

constructs) of explanted constructs from the abMSC/HUVEC group demonstrated CD31 positive 

luminal structures whereas 100% of ntMSC/HUVEC constructs possessed numerous CD31 

positive vessels (n=5 animals with two constructs per animal). 

Supplementary Figure S2. Neutralizing SLIT3 in the conditioned medium (CM) obtained from 

ntMSCs decreases their ability to promote HUVEC network formation in vitro. A specific anti-

SLIT3 antibody can decrease the ability of conditioned medium from ntMSCs to promote HUVEC 

network formation in vitro. Data from these experiments are quantified and analyzed in Fig. 4F. 

Supplementary Table S1. qPCR primers used in this study. 

Supplementary Table S2. Pericytic surface marker expression of three subject-matched 

neonatal thymus and bone MSCs as determined by flow cytometry. 

Supplementary Table S3. Upregulated genes (> 2.0x fold) in ntMSCs as compared to subject-

matched nbMSCs as determined by microarray analysis. 

Supplementary Table S4. Down-regulated genes in ntMSCs as compared to subject-matched 

nbMSCs determined by microarray analysis. 
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Supplementary Table S5. Functional annotation analysis using DAVID of overexpressed genes 

in ntMSCs as identified by microarray. 

Supplementary Table S6. Details of the cell lines and subjects.  

Supplementary Table S7. Specific cell lines used in each experiment. 

Supplementary Table S8. Individual data values and cell lines used for qPCR gene expression 

shown in Figs. 1B, 2C, 4C, 6D, and 6E. 
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4/5/2020 

 

Dear Dr. Atala,  

We thank the reviewers for their critical, detailed appraisal of our manuscript and their insightful 
suggestions. We have performed extensive revisions as suggested and have included new data and 
analyses. Overall the conclusions have not changed, but the manuscript is much stronger and we feel 
that it will be interesting for the audience of Stem Cells Translational Medicine.  

Here are our specific responses to the Reviewers: 

Reviewer 1 

 Comments: 

1) The authors should investigate the exact mechanism by which ROBO mediates angiogenesis and 
the molecular pathways involved.  
 
We appreciate the comment from the reviewer and we certainly share the reviewer’s viewpoint. 
In this study we have identified the importance of SLIT3-ROBO1 signaling in angiogenesis, 
something that has never been described in detail. Current and future studies will focus on the 
molecular mechanisms in MSCs which mediate ROBO1’s effects on this cell type.  
 

2) A thorough bioinformatics analysis should be performed related to differentially expressed 
genes between neonatal thymus MSCs and neonatal bone MSCs and additional experiments 
should be conducted for a more detailed functional analysis.  
 
With the assistance of our DNA microarray core facility and the use of the open-source 
bioinformatics software platform Cytoscape, we feel that we have performed a thorough 
bioinformatics analysis. Remarkably, a relatively small number of genes were differentially 
expressed (106 were more than two-fold upregulated in ntMSCs). The results of this microarray 
led us to focus on SLIT3, however we also share the reviewer’s opinion that other factors may play 
an important role in the motile, invasive and proangiogenic behavior of ntMSCs and should be the 
topic of future investigations. The last sentence of the second paragraph on page 15 discusses this 
sentiment. Also, the microarray data has been deposited in the NCBI repository for other 
investigators to analyze and we hope that this stimulates additional lines of research. 
 

3) The authors also claim that their results have important implications for the translational efforts 
of MSCs into the clinical therapy. However, they shoud provide evidence and discuss in more 
detail the clinical importance and the potential use of the neonatal thymus MSCs. Questions like 
how can be this approach transferred to the clinic and what is the optimal number of cells for 
such therapeutic modalities are of high importance for the novelty of this study.  
 
We agree with the reviewer that we had neglected to expand on the translational implications 
further. We have done so in the second to the last paragraph of the Discussion section. Specifics of 
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optimal route of administration, cell dosing, and timing of therapy would need to be rigorously 
determined from multiple additional animal studies.  

 Minor comments 

1) Molecular weight (MW) information should be included in western blot images. 
 
We have included the MW. 
 

2) Images of low quality.  
 
We have now included high quality images with the resubmission. 

Reviewer 2 

1.      While the manuscript provided important mechanistic studies for the tissue-specific differences 
of MSCs in their proangiogenic and motility property, to better align with the scope of the journal 
SCTM, it needs to put more effort into highlighting the clinical relevance of their study.  

We thank the reviewer for pointing this out and have added a paragraph in the Discussion section that 
describes the translational implications of our results.  

 2.      In the last sentence of the abstract, the author concluded that “ntMSCs possess increased 
proangiogenic and invasive behaviors which are in part mediated by the paracrine and autocrine 
effects of SLIT3.” However, only the autocrine effect is supported by the study and discussed in the 
manuscript.  

The paracrine behavior of SLIT3, i.e., the effects on endothelial cells, have been described in detail by 
prior studies and we have referenced them. But we also agree with the reviewer that we did not provide 
direct evidence that the paracrine proangiogenic effects of ntMSCs on ECs is in part mediated by SLIT3. 
Therefore, we have determined the importance of SLIT3 in the secretome of ntMSCs with a new 
conditioned medium experiment. The results of this new experiment are shown in Fig. 4F and Fig. S2 
and described in the corresponding Results section and Figure Legends. We neutralized SLIT3 in the 
ntMSC conditioned medium with a specific antibody and determined the effects on HUVEC network 
formation in vitro. We found that blocking SLIT3 with the specific antibody significantly decreased the 
stimulatory effects of ntMSC conditioned medium on HUVEC network formation in vitro. These results 
indicate that SLIT3 does contribute to the proangiogenic paracrine effects of ntMSCs and furthers 
strengthens this study. 

 3.      The number of subjects studied does not correlate with the dot plots in the figures. That might 
be caused by multiple images/samples that are analyzed for the same donor cells. However, for 
statistical analysis and presentation purposes, the mean for samples from the same donor should be 
shown instead of all the data points. Please make sure statistical analysis was performed with the 
claimed number of subjects rather than the number of data in the set.  

The reviewer has astutely pointed out several critical mistakes (due to the figure legends not being 
updated as additional experiments were performed). We have performed the analysis as the reviewer 
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has suggested.  We have also clarified in the legends of each figure as to what the data points represent 
in graphs and plots. 

 4.      For Figure 2C, the author concluded that the transcript levels of VEGFA, FGF2, ANGPT1, and 
HIF1A are higher. However, there is donor to donor variations as in some donor cells, the transcript 
levels are decreased. The reader will be interested to know whether those showing lower transcript 
levels for different genes are all from the same donor. It will be more helpful if the author could show 
the transcript level by labeling individual donors (or show that in a table form).  

We have analyzed the gene expression data as the reviewer suggested in point 3. In the new analysis of 
qPCR data, which impacts Fig. 1B, Fig. 2C, Fig. 4C, Fig. 6D, and Fig. 6E, TBX18, ANGPT1, HIF1A, and SLIT3 
are significantly different while the other genes are not. We have modified the corresponding Results 
section as well as Figure Legends to reflect this. We have also included Supplementary Table S6 which 
includes the cell lines that were used this study, Supplementary Table S7 which specifies which cell lines 
were used for each experiment, and Supplementary Table S8 which include the data for the qPCR 
experiments for each cell line. Importantly, the new analysis of the results do not change our overall 
conclusions. 

 5.      Similarly to point 4, for the different experiments, a different number of subjects were used. 
This raises the question of which sets of experiments are from the same donor. It will be helpful to 
provide more information about the donors (a list of donor/patient) for each experiment performed.  

Please see response to point 4. 

 6.      In figure 6D, it is not clear why the ratio of ROBO1/ROBO4 is shown and what do the results that 
ROBO1/ROBO4 levels are higher in nbMSCs imply and relates to other results. ROBO4 is an 
endothelial-specific receptor for SLIT3; its levels in MSCs will be expected to be low.  

We appreciate the comment and realize that the intent of this experiment and data was not clearly 
defined. We determined that SLIT3 promoted MSC invasive and motile behavior (Figs. 6A and 6B). Since 
ROBO1 and ROBO4 have been shown to bind the SLIT3 ligand (reference 18), we reasoned that either 
ROBO1 or ROBO4 (or both), could be mediating the autocrine effects of SLIT3 in MSCs. Therefore, to 
determine which ROBO receptor was mediating the autocrine effects, we ascertained the level of 
expression for both in MSCs, which is shown in Fig 6D (ROBO1 expression relative to ROBO4 in each MSC 
line evaluated).  The reviewer is correct in mentioning that ROBO4 is considered an endothelial specific 
receptor however we wanted to be thorough in examining all possibilities. To clarify the ambiguities in 
our original submission, we have made several changes to the sentences in the Results section “SLIT3 
promotes the motile and invasive behavior of ntMSCs via ROBO1.” 

7.      Page 16 line 3, “SLIT3 exerts an autocrine…that is independent of its paracrine effects…” The 
data from the current study, which only showed a relative expression level of ROBO4 to ROBO1, is 
insufficient to support this conclusion.  

We appreciate the comment and realize that the sentence was written ambiguously. The first part of the 
sentence mentions the autocrine effects of MSC mediated SLIT3 via the ROBO1 receptor. Figure 6 
provides proof for this statement.The last part of the sentence that is concerning the paracrine effects 
of MSC mediated SLIT3 is concerning the endothelial cell as the target (via the EC-specific ROBO4 
receptor). The effects of SLIT3 on ECs via ROBO4 has been documented by Zhang et al, which is cited. 
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We have also included a new experiment to neutralize SLIT3 in the MSC secretome as described in 
response to point #2 above. We have revised this sentence to make it more clear. 

 8.      The manuscript also has a few typos and formatting errors that need to be corrected. 

We have corrected these errors. 

a. Terms like in vitro and in vivo need to be italicized.  

We thank the reviewer for pointing out these errors and we have made these corrections. 

b. In the abstract and first paragraph, “pro-angiogenic and pro-regenerative” were used, whereas 
in other parts, “proangiogenic and proregenerative” were used.  
 
The spelling of the words needs to be consistent. We thank the reviewer for pointing out these 
inconsistencies and we have made these corrections. 
 

c. Page 4, line 32, “it is not know” should be “it is not known”.  
 
We thank the reviewer for pointing out this error and we have made this correction. 
 

d. Page 24, line 8 and 10 “flow cytoemtry” should be “flow cytometry”.  
 
We thank the reviewer for pointing out this error and we have made this correction. 

 

 

In summary we again thank the reviewers for taking the time to critically read our manuscript and 
provide very useful suggestions. Please let me know if you have any questions. 

 

Thanks,  

 

Ming-Sing Si, MD 
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