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Abstract Vegetation structure and function are key design choices in terrestrial models that affect the
relationship between carbon uptake and environmental drivers. Here, we investigate how representing
canopy vertical structure in a terrestrial biosphere model—that is, micrometeorological, leaf area,
and leaf water profiles—influences carbon uptake at five U.S. temperate deciduous forest sites in July.
Specifically, we test whether the interannual variability (IAV) of gross primary productivity (GPP)
responds differently to four abiotic environmental drivers—air temperature, relative humidity, incoming
shortwave radiation, and soil moisture—using either a Community Land Model multilayer canopy
model (CLM‐ml) or a big‐leaf model (CLM4.5/CLM5). We conclude that vertical leaf area and
microclimatic profiles (temperature, humidity, and wind) do not impact GPP IAV compared to a
single‐layer model when plant hydraulics is excluded. However, with a mechanistic representation of
plant hydraulics there is vertically varying water stress in CLM‐ml, and the sensitivity of carbon uptake
to particular climate variables changes with height, resulting in dampened canopy‐scale GPP IAV
relative to CLM4.5. Dampening is due to both a reduced dependence on soil moisture and opposing
climatic forcing on different leaf layers. Such dampening is not evident in the single‐layer representation
of plant hydraulic water stress implemented in the recently released CLM5. Overall, both model
representations of the canopy fail to accurately simulate observed GPP IAV and this may be related by
their inability to capture the upper range of observed hourly GPP and diffuse light‐GPP relationships
that cannot be resolved by canopy structure alone.

1. Introduction

Interannual variability (IAV) in the growth rate of atmospheric CO2 concentrations is largely dependent on
the variability of the land sink (Keeling et al., 1995; le Quéré et al., 2017; Nevison et al., 2008; Schimel
et al., 2001), and the land sink is closely coupled to climate variability (Ahlström et al., 2015; Beer et al., 2010;
Fu et al., 2017; Poulter et al., 2014; Rödenbeck et al., 2018; Sitch et al., 2015). A quantitative understanding of
the relationship between climate variations and the land sink response is therefore crucial for accurate pre-
diction of carbon‐climate feedbacks. Because photosynthesis represents the pathway by which carbon enters
terrestrial ecosystems, understanding the sensitivity of this process to environmental drivers is necessary to
constrain the terrestrial carbon sink (Anav et al., 2015). The environmental drivers of photosynthesis—tem-
perature, moisture, and radiation—often covary. For example, drought conditions usually reflect both low
precipitation and high temperature, while above‐average precipitation likely cooccurs with high cloud
cover, which reduces radiation. These covariances make it difficult to unambiguously attribute variations
in gross primary productivity (GPP) to the underlying driver.

Terrestrial biosphere models are one way the disambiguation of carbon cycle processes can be achieved.
Earth system models (ESMs) equipped with terrestrial biosphere models can simulate the evolution of the
terrestrial carbon sink under climate change and the sink's coupling with climate (Anav et al., 2013;
Arora et al., 2013). However, modeling estimates of the IAV of the terrestrial carbon sink diverge due to
the uncertainty in terrestrial model processes (Bonan & Doney, 2018; Keenan et al., 2012). Some of this
uncertainty results from simplifications in representing ecological processes within land models. For
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example, most ESM land components simulate the vegetation canopy as a simplified single bulk leaf layer, or
“big‐leaf,” that exchanges mass and energy with the atmosphere (Sinclair et al., 1976). In reality, vertical
structure in the tall canopies of forests may influence the response of carbon uptake to variability in these
drivers, including on the interannual scale.

Forest canopies, including temperate deciduous canopies, exhibit considerable structural heterogeneity
from the top to the bottom that impacts the within‐canopy physical environment, particularly light extinc-
tion, microclimate, and leaf water stress. Leaf area density, leaf angle, and other canopy architectural traits
(e.g., clumping) also vary with height in forest canopies (Niinemets, 1998; Parker et al., 1989; Walcroft
et al., 2005; Zhao et al., 2011). Such vertical architectural heterogeneity can affect radiation extinction from
successive canopy shading and potentially lead to diurnal, seasonal, or spatial differences in carbon uptake
depending on canopy structure (Funk & Lerdau, 2004; Koike et al., 2001; Niinemets & Valladares, 2004;
Parker et al., 2005). The interactions between canopy architecture, the varied light environment, and
within‐canopy turbulence produce a vertically variedmicroclimate (Eliáš et al., 1989; Flerchinger et al., 2015)
capable of moderating weather and climatic extremes (Carlson & Groot, 1997; Chen et al., 1999; de Frenne
et al., 2013; Rambo & North, 2009; von Arx et al., 2012). Because photosynthesis is tightly coupled with
meteorological conditions, carbon uptake in canopies is sensitive to vertical light and meteorological gradi-
ents and the interactions between such gradients, particularly during meteorological extremes (Niinemets &
Valladares, 2004).

Vertically resolved multilayer canopy models have been applied to vegetation‐atmosphere carbon fluxes in
forests and other plant canopies to resolve the impacts of vertical heterogeneity in canopy architecture and
environmental conditions (Baldocchi et al., 2002; Bonan et al., 2014, 2018; Chang & Chen, 2018; Drewry
et al., 2010; Walcroft et al., 2005; Wu et al., 2003). For example, a recent study using the Advanced
Canopy‐Atmosphere‐Soil Algorithm (ACASA) model concluded that resolved scalar profiles (temperature,
humidity, and carbon dioxide) reduced canopy carbon uptake by an average of 10% and that the multilayer
model improved simulated daily fluxes compared to a single layer model at sites where seasonal variability
in canopy structure (leaf area index, LAI) was great (Chang & Chen, 2018). Drewry et al. (2010) and Wu
et al. (2003) both analyzed the sensitivity of canopy CO2 fluxes to meteorological conditions and found that
modeled CO2 flux was sensitive to vertical temperature gradient. Walcroft et al. (2005) found that vertically
varied clumping (i.e., overlap of leaves) increased simulated canopy photosynthesis by 12% relative to ran-
domly distributed leaves. Finally, Bonan et al. (2014) found that including vertically resolved plant hydrau-
lics and water stress improved the simulated diurnal cycle of GPP in forests that were water stressed and
postulated that vertical canopy profiles may be important for accurately simulating vegetation‐atmosphere
fluxes. These studies show that vertical representation in canopy models could be important to photosyn-
thetic carbon uptake and its response to the environment.

Adding further complexity to a forest canopy is the hydraulic architecture of plants by which soil water is
transferred to leaves to maintain moisture during photosynthesis (Tyree & Ewers, 1991). Plant hydraulic
stress occurs when xylem water potential drops below a threshold that causes a loss in hydraulic conductiv-
ity within the plant. Observational studies show that plant hydraulic adaptation to water stress may be
important for photosynthetic performance in relationship to water availability (Aranda et al., 2015; Taylor
& Eamus, 2008; Zhang & Cao, 2009). Therefore, vegetation models may benefit from more realistic plant
hydraulic trait‐based carbon‐water coupling, such as accounting for stomatal responses to reduced xylem
pressure (e.g., Bonan et al., 2014). Plant hydraulic stress is not distributed evenly throughout the canopy,
though, as water potential varies with the vertical canopy light gradient because of covarying leaf tempera-
ture and vapor pressure deficit (VPD; Hellkvist et al., 1974; Niinemets & Valladares, 2004). Models that para-
meterize this behavior have shown that including plant hydraulics creates vertical variation in stomatal
conductance according to a balance between radiative intensity and leaf water status (e.g., Williams
et al., 1996). In the multilayer canopy study by Drewry et al. (2010), the sensitivity of photosynthesis to water
stress was dampened in soybean and maize canopies when leaf stomatal conductance was linked to root
zone water stress via plant hydraulics, instead of linking stomatal conductance directly to soil moisture.
Their results also show the nonuniform soybean canopy was more greatly impacted by water stress in the
upper canopy where leaf area density peaked. While models (e.g., Community Land Model Version 5
[CLM5] and CLM‐ml; Bonan et al., 2014; Kennedy et al., 2019) have begun to depart from arbitrary soil
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moisture stress parameterizations in favor of parameterizations that modulate photosynthesis and evapo-
transpiration via plant hydraulic traits, the impacts of such an advancement on canopy carbon uptake
should be carefully examined against observations at multiple time scales, as well as the differential impacts
of plant hydraulic stress in big‐leaf versus multilayer canopy models.

To date, the difference between multilayer and big‐leaf representations of a forest canopy regarding their
simulation of the response of photosynthesis to interannual climate variations, particularly when canopy
architecture, microclimate, and hydraulic status vary along a vertical gradient, has not been demonstrated.
Here, we evaluate modeled IAV in peak summer GPP in big‐leaf and multilayer models and investigate the
extent to which vertical heterogeneity resolved in a multilayer model affects the simulated GPP response to
climate IAV. We further investigate whether representing vertically varying water stress within the multi-
layer canopy affects the direct response of photosynthesis to interannual soil moisture stress. For this analy-
sis, we compare two versions of a multilayer model (one keeping soil moisture stress constant at each canopy
layer and one that varies soil moisture stress) with similar big‐leaf models at five temperate deciduous broad-
leaved forest (DBF) FLUXNET sites in the Northeastern United States. We focus on these forests because
temperate forests are a growing carbon sink and their sensitivity to climate fluctuations may affect the future
of the Northern Hemisphere land sink (Pan et al., 2011; Shiga et al., 2018). Photosynthesis is a multivariate
response; thus, we use four environmental variables (temperature, humidity, radiation, and soil moisture) to
represent climate IAV. The model results are interpreted with an observationally based GPP product from
eddy covariance flux tower measurements, and the sensitivity of these results to diffuse light representation
in the multilayer model is also examined by using diffuse light measurements from one of the flux towers.
The implications for carbon‐climate coupling in terrestrial forest ecosystems are discussed.

2. Data and Methods
2.1. FLUXNET Eddy Covariance Data

FLUXNET is a global network of eddy covariance towers that measure the flux of energy, water, and CO2

between the ecosystem and atmosphere (Pastorello et al., 2017; Williams et al., 2009). We analyze data from
five temperate DBF FLUXNET sites in the eastern United States with about a decade or more of data.
Harvard Forest (US‐Ha1; 42.54°N, 72.17°W; 1991–2012; DOI: 10.18140/FLX/1440071) is majority red oak
and red maple, mixed with hemlock and white pine. The tower and canopy heights are 30 and 23 m, respec-
tively. Morgan‐Monroe State Forest (US‐MMS; 39.32°N, 86.41°W; 1999–2014; DOI: 10.18140/FLX/1440083)
is a secondary successional forest located across a maple‐beech to oak‐hickory transition zone. Its tower and
canopy heights are 48 and 27 m, respectively. The Oak Openings tower is located within an oak woodland
dominated by red, white and black oak, as well as red maple (US‐Oho; 41.55°N, 83.84°W; 2004–2013;
DOI: 10.18140/FLX/1440088), with tower and canopy heights of 32 and 24 m. University of Michigan
Biological Station (US‐UMB; 45.56°N, 84.71°W; 2000–2014; 10.18140/FLX/1440093) is predominantly
aspen, but the footprint also contains red oak, red maple, and beech, as well as some hemlock and white
pine. Its tower and canopy heights are 46 and 21 m, respectively. Finally, Willow Creek is dominated by
sugar maple and basswood (US‐WCr; 45.81°N, 90.08°W; 1999–2014; DOI: 10.18140/FLX/1440095) with
tower and canopy heights of 48 and 24 m.

Direct meteorological measurements with gap filling are available from each tower and include air tempera-
ture and pressure, wind speed, VPD, net shortwave (SW) and longwave radiative fluxes, and precipitation
flux. These measurements are used as atmospheric forcing both for the CLM simulations described below
(e.g., Pastorello et al., 2017) and for the regression analysis described in section 2.3. Gap‐filled daytime‐
partitioned GPP estimates used here are from the FLUXNET2015 data set and are hereafter referred to as
“observed” GPP (Lasslop et al., 2012). Nighttime‐partitioned GPP estimates are also available from the
FLUXNET2015 data set, and for some site years (e.g., 1997 at US‐Ha1; 2003–2004 at US‐MMS) the nighttime
estimate differs substantially (Figure S1 in the supporting information). However, most of the data from the
nighttime‐partitioned GPP are within error of the daytime‐partitioned estimates based on random error in
carbon flux measurements reported for FLUXNET eddy covariance towers, which is about 20%
(Richardson et al., 2006; shading in Figure S1). Each site has a history of disturbances that have occurred
throughout the measurement period, some of which may have affected GPP at the interannual time scale.
At US‐Ha1, there was an ice storm in the winter of 2008–2009 that caused some canopy damage,
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including a loss of 1.5 MgC ha−2 of woody debris and a reduction of LAI by 1.4 m2 m−2. At US‐MMS, there
was a flood in June 2012 succeeded by drought in July of 2012 directly affecting July GPP, while some insect
damage occurred in 2004 and following the 2012 drought (with minimal impact). At US‐WCr, there was a
tent caterpillar outbreak in June 2001 causing full defoliation, with leaf recovery in July 2001 and a 30% for-
est overstory thinning in 2013–2014. The potential impact of these disturbances on the results is discussed in
section 3.2.

Because the model simulations (described in section 2.2) require atmospheric relative humidity (RH) input
and only VPD data are available without gaps, VPD is converted to RH using an empirical estimate of
saturation vapor pressure via Murray (1967). This calculation sometimes results in negative RH values,
which are replaced by linearly interpolating between the nearest positive neighbors. Root‐zone soil water
content (SWC) measurements are available at all FLUXNET sites except US‐Ha1. In addition to the
FLUXNET2015 data described above, we also use diffuse and total photosynthetic active radiation (PAR)
measurements at US‐UMB to explore the role of diffuse light on carbon uptake (see section 2.4 for methodol-
ogy). Diffuse and total PAR are measured by a BF2 (2004–2012) or BF5 (2013–2014) Sunshine Sensor at the
US‐UMBFLUXNET tower for a total period of 2004–2014, which coincides with the FLUXNET2015 data set.

2.2. Land Model Simulations

We used a suite of CLM versions (Table 1) to simulate July GPP IAV at the sites described above. In this ana-
lysis, we focus on how the differences in vertical canopy structure and water stress parameterization
between big‐leaf and multilayer CLM variants affect GPP. When similar parameterizations are used, the
model variants use the same parameters for biogeophysical processes, and it is through these similarities that
we seek to minimize intermodel parametric and structural differences arising from other factors. For exam-
ple, the multilayer version of CLM (CLM‐ml) was developed as an experimental branch of the CLM to test
hypotheses related to a multilayer canopy representation. While some of its physics are by necessity formu-
lated differently from the standard CLM, much of the model structure is adopted from the previous commu-
nity release of CLM (Version 4.5, see section 2.2.1) and a comparison of these twomodel versions isolates the
impact of only a few new physical parameterizations. The newest community release of CLM (CLM5) exhi-
bits several differences compared with CLM4.5; thus, we mainly compare two configurations of CLM5
against one another (see section 2.2.3). We note that this study does not address parametric uncertainty at
the individual sites or for individual species for any of the models; however, the impact of parametric uncer-
tainty on the results is discussed in section 4. The models and simulations are described in detail below.
2.2.1. Big‐Leaf Model: CLM4.5
CLM4.5 is the land surface model within the Community Earth System Model Version 1.2 (CESM1.2)
(Oleson et al., 2013). CLM simulates biogeophysical and biogeochemical processes that control exchanges
of energy, water, and momentum between the soil, plant canopy, and atmosphere. Vegetation is represented
by plant functional types (PFTs), and the canopy in CLM4.5 is modeled as a single, bulk leaf layer, that is, a
“big‐leaf” canopy. The big leaf is apportioned into a sunlit fraction that absorbs direct and diffuse light and a
shaded fraction that absorbs diffuse light only. The sunlit and shaded fractions are characterized by their
own photosynthesis and stomatal conductance, but canopy temperature and energy fluxes are calculated
using an aggregate canopy conductance. Surface layer dynamics controlling momentum, sensible heat,
and latent heat fluxes are given by Monin‐Obukhov Similarity Theory (MOST) (Zeng & Dickinson, 1998).
Photosynthesis (for C3 plants) is modeled using the Farquhar et al. (1980) model, and stomatal conductance
is simulated by the Ball‐Berry model described in Collatz et al. (1991). Water stress is simulated with a soil
moisture stress parameter, βt, which varies from 0 to 1 according to soil water matric potential and scales the
minimum stomatal conductance parameter and also photosynthetic rates. Surface hydrology is represented
by a variety of parameterizations simulating several fluxes (e.g., canopy interception and throughfall, eva-
poration, and infiltration) that contribute to the surface water balance, given by the following equation:

ΔWcanopy þ ΔWsurface þ ΔWsnow þ ΔWaquifer þ ∑
soil levels

Δwliq þ Δwice
� �

¼ Δt qrain þ qsnow − qoverflow − qdrainage − qrunoff − Evegetation − Eground

h i
;

(1)

where each ΔW is the change in water storage in the canopy, at the surface, in the snowpack, in an uncon-
fined aquifer underneath the soil layers, respectively; while each Δw is the change in soil liquid and solid
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water content at each soil layer, summed over soil layers. The change in total water storage during each
time step, Δt, depends on the strength of liquid water and evaporative fluxes represented by q and E,
respectively. A detailed description of the individual parameterizations for each hydrological process is
provided in Oleson et al. (2013).

CLM4.5 simulations are run in off‐line, “single‐point”mode to simulate the fluxes at an eddy covariance flux
tower and use meteorological observations from the tower as atmospheric boundary conditions. Simulations
are run for the years of data available at each site. A representative PFT is used for each site (in this case DBF
at all sites), and only the canopy and soil biogeophysical processes are simulated in response to the atmo-
spheric forcing. Phenology, or the seasonal evolution in LAI, is derived from satellite data and is prescribed
as a climatological monthly mean without IAV (Lawrence & Chase, 2007). The default biogeophysical para-
meters for DBF are used (Oleson et al., 2013), and ambient CO2 is held constant at 360 ppm. All CLM4.5
simulations are initialized from the same “arbitrary initial conditions,” which are preselected in the CLM
code (Oleson et al., 2013, pp. 27). For the land surface, this means that moisture is initialized at
0.15 m3m−3 and soil temperature at 274 K throughout the soil column, while vegetation temperature is initi-
alized at 283 K. These simulations provide a standard big‐leaf baseline for simulation of the response of GPP
to climate and also simulated soil moisture for prescription in CLM‐ml (see section 2.2.2).
2.2.2. Multilayer Model: CLM‐Ml
We use a multilayer version of CLM (CLM‐ml) to test the impacts of resolving the vertically structured
canopymicroenvironment on the IAV of carbon uptake in forests (Bonan et al., 2014, 2018). CLM‐mlmodels
the canopy as a stack of thin (0.5 m) big‐leaf layers, each divided into sunlit and shaded fractions with unique
leaf‐level characteristics (e.g., leaf temperature and stomatal conductance). LAI varies with height according
to a beta distribution function (dLAI in Figure 1e) for a typical DBF canopy, which we refer to as a nonuni-
form distribution throughout the paper. Each bulk leaf layer is associated with and exchanges fluxes with an
individual atmospheric layer, which in turn communicates with each neighboring atmospheric layer. Scalar
profiles (wind speed, temperature, and vapor pressure) are computed using a set of coupled flux‐profile
equations that account for canopy‐induced turbulence above and within the canopy (Bonan et al., 2018).

CLM‐ml has two representations for photosynthesis‐stomatal conductance coupling and water stress: (1) a
conventional, empirical model (Ball‐Berry, βt; same as CLM4.5 but with βt applied equally at all leaf layers)
and the (2) the soil‐plant‐atmosphere model (SPA; Williams et al., 1996, 2001). When the water potential in
vegetation leaves, and by consequence in the stem, drops due to water stress, cavitation (i.e., dissolution of
air and bubble formation) occurs and can lead to embolism (i.e., complete blockage to flow). Trees prevent
this by closing their stomates before the negative pressure grows intense enough to cause cavitation and loss
of hydraulic conductance (Tyree & Ewers, 1991). This process is referred to here as plant hydraulic stress.
Plant hydraulics in SPA are represented by two PFT‐specific parameters, stem hydraulic conductance, and
stem hydraulic capacitance, which moderate leaf water potential (LWP) in each layer depending on
soil water potential, leaf layer transpiration rate, and hydraulic head (i.e., gravitational potential). Stem

Table 1
Model Configuration Descriptions for Each Simulation

Simulation Canopy type Soil moisture Stomatal conductance Water stress type Reference for model

CLM4.5 Big leaf Simulated and coupled
with canopy

Ball‐Berry (Collatz
et al., 1991)

Soil moisture stress factor, βt Oleson et al. (2013)

CLM‐ml‐BB Multilayer Prescribed from CLM4.5
run

Ball‐Berry (Collatz
et al., 1991)

Soil moisture stress factor, βt Bonan et al. (2014, 2018)

CLM‐ml‐SPA Multilayer Prescribed from CLM4.5
run

Water use efficiency
(Bonan et al., 2014;
Williams et al., 1996)

Plant hydraulic stress via minimum
leaf water potential threshold,
ψl,min (Bonan et al., 2014;
Williams et al., 1996)

Bonan et al. (2014, 2018)

CLM5‐PHS Big leaf Simulated and coupled
with canopy

Medlyn (Medlyn
et al., 2011)

Plant hydraulic stress via water potential
threshold for 50% xylem conductivity,
P50, embedded in water stress factor, fw
(Kennedy et al., 2019)

Lawrence et al. (2019)

CLM5‐noPHS Big leaf Simulated and coupled
with canopy

Ball‐Berry (Collatz
et al., 1991)

Soil moisture stress factor, βt Lawrence et al. (2019)

10.1029/2020JG005658Journal of Geophysical Research: Biogeosciences

WOZNIAK ET AL. 5 of 22



hydraulic conductance determines the rate of xylem flow, which transports water from soil to leaf through
the bole and branches of the tree, while stem hydraulic capacitance determines the amount of water
retention in the xylem. Stomatal conductance is calculated to optimize water use efficiency (a PFT‐specific
constant), subject to the constraint that LWP exceeds a defined minimum, also a PFT‐specific constant
(Bonan et al., 2014). Doing so alters the coupling between stomatal conductance and soil moisture by
adding a plant hydraulic mechanism between soil water and water stress in the leaf layer, which is linked
to LWP instead of directly to soil moisture.

Two configurations of the multilayer model are used in this study to parse the effects of the alternative sto-
matal conductance and plant hydraulics representations. The first version, CLM‐ml‐BB, is comparable to
CLM4.5 as it uses Ball‐Berry stomatal conductance and the soil moisture stress (βt) is applied equally to
all leaf layers, though it uses the different turbulence and energy closure methods mentioned above. The sec-
ond version, CLM‐ml‐SPA, uses the SPA model wherein soil moisture stress varies vertically because plant
hydraulics modulate between soil water potential and LWP at each leaf layer. While both configurations of
the model include the multilayer resolution of canopy physics, the effects of vertically varying water stress
are unique to CLM‐ml‐SPA. The plant hydraulics in CLM‐ml‐SPA may change the susceptibility of photo-
synthesis to canopy microclimate by linking water stress to within‐canopy microclimate, that is, by applying
plant hydraulic stress (i.e., closure of stomata) to leaves that have lost moisture by radiation‐transpiration
coupling.

Because CLM‐ml is currently an off‐line model formulation, it is not fully coupled to all CLM processes. In
the simulations presented here, CLM‐ml SWC is decoupled from precipitation and evapotranspiration,
requiring prescribed soil moisture input and limiting simulations to shorter (approximately monthly) time
scales. CLM‐ml simulations are therefore run with volumetric SWC and βt prescribed from the CLM4.5
simulations described in section 2.2.1 and are run for the month of July (peak growing season), only.
These simulations are run in off‐line, single‐point mode for the same years as the CLM4.5 simulations
and are driven by the same FLUXNET atmospheric forcing, also with constant CO2 (360 ppm). The results
of these simulations, along with the CLM4.5 simulations, are discussed in sections 3.1–3.3.
2.2.3. CLM5 and Big‐Leaf Plant Hydraulics
Themost recent implementation of CLM is Version 5 (CLM5), which includes new hydrology, plant hydrau-
lic stress (PHS), and the Medlyn stomatal conductance scheme (Kennedy et al., 2019; Medlyn et al., 2011).
The model, similar to SPA, links stomatal conductance to plant water stress by mediating SWC and tran-
spiration via a plant hydraulics scheme that maintains continuity of water mass throughout the soil‐plant‐
atmosphere system, except that the canopy is modeled by a big‐leaf representation that is divided into sun
and shaded portions, similar to CLM4.5. There are several distinctions to note between CLM5 PHS and
the CLM‐ml‐SPA model that do not allow direct comparisons of their implementation of plant hydraulic

Figure 1. Mean daytime vertical profiles in CLM‐ml (US‐UMB) (averaged over 10 a.m. to 4 p.m. over 2001–2014) for (a) air temperature (T), (b) relative humidity
(RH), (c) absorbed photosynthetic active radiation (APAR), (d) leaf water potential (LWP, here ψl), and (e) gross carbon assimilation rate (ag) and leaf area
density (dLAI) distribution (top axis). z/h is relative height within canopy of height h.
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stress (in addition to the differing canopy physics). For one, plant hydraulic status (i.e., LWP in themodels) is
linked directly to stomatal closure in SPA, while in CLM5 PHS a plant water stress parameter (fw) is calcu-
lated as a sigmoidal function parameterized by threshold LWP corresponding to 50% hydraulic conductance
and applied in the Medlyn equation for stomatal conductance (similar to ßt in CLM4.5). Second, SPA
includes hydraulic capacitance, which represents water storage in the plant hydraulic system, while
CLM5 PHS does not. Third, the iterative process by which stomatal conductance is calculated differs
between SPA and CLM5.

Despite these differences, we can infer whether plant hydraulics affect GPP in a big‐leaf representation by
comparing two configurations of CLM5 with different settings: (i) PHS turned on (CLM5‐PHS) and (ii)
PHS turned off (CLM5‐noPHS). When CLM5 is run with PHS turned off, the stomatal conductance parame-
terization is Ball‐Berry and water stress is implemented as in CLM4.5 with a soil moisture stress factor, ßt,
which comes directly from the SWC as opposed to the plant water stress parameter fw used with PHS turned
on. We note that even though these simulations also differ in stomatal conductance parameterization
(Medlyn vs. Ball‐Berry), additional simulations (not shown) showed that the choice of stomatal conductance
parameterization had a small impact on simulated July GPP compared to turning plant hydraulics on and
off. Simulations of CLM5 using each of the two configurations are run at each FLUXNET site similar to
the CLM4.5 and CLM‐ml runs described above, and the resulting IAV in GPP simulated by these model runs
is analyzed with respect to the observations and other models. The CLM5 results are discussed in section 3.5.

2.3. Analysis of IAV

We analyze IAV in the month of July, which represents peak growing season and identifies GPP responses to
the direct effects of local climate variability. Although the FLUXNET observations of July GPP IAV might
reflect lagged responses to climate IAV earlier in the growing season because of phenological responses to
climate (Desai, 2010), the model as described above has a fixed phenological cycle and will only reflect
lagged responses of GPP via lagged responses of soil moisture to prior months' climate. Otherwise, the model
is representing GPP responses to July climate variability only. IAV is defined here as the annual anomaly of
July GPP from the mean of July GPP over all simulated years. We define the magnitude of July IAV as the
standard deviation of the July anomalies from the long‐term trend (SIAV),

SIAV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 yi − yi; fit
� �2

r

N − 1
: (2)

Here, yi is the annual July value (mean or sum) for year i, and yi,fit is simple linear best fit of annual July
values over a time series of N years. Annual July values for GPP and leaf layer gross carbon assimilation
rate (ag) are the sum of hourly carbon uptake over the month of July. For all observed climatic driving
variables (air temperature; RH, and incoming SW radiation, as well as SWC [i.e., soil moisture]) simulated
by CLM4.5, yi is the July mean only including timestamps when GPP > 0. In addition to soil moisture,
which for CLM4.5 and CLM‐ml is simulated by CLM4.5 and also simulated in CLM5, IAV in observed pre-
cipitation accumulated from March–July (which correlates well with simulated SWC, Table 2) is calcu-
lated for additional insight.

The year‐to‐year pattern of variability is quantified as the sample z score of the detrended anomalies:

yIAV ¼ yi − yi; fit
SIAV

× 100 (3)

where yIAV is the annual July anomaly relative to SIAV in units of percent. A z score of 100% indicates a
positive anomaly equal to one standard deviation from the mean. Using a z score allows the patterns of
IAV in carbon flux and driving climate variables to be represented as anomalies relative to the magnitude
of variability (i.e., SIAV) and thus for variables to be compared directly, independent of their units or mag-
nitude. Note that, because the data for one or another variable may not be normally distributed, the z
score as utilized here is not representative of how close a data point is to the most likely values. To deter-
mine the response of GPP to climate IAV, a simple linear regression analysis is performed by regressing
yIAV of whole‐canopy GPP (CLM4.5, CLM‐ml, and observations) with yIAV of climatic drivers as

10.1029/2020JG005658Journal of Geophysical Research: Biogeosciences

WOZNIAK ET AL. 7 of 22



T
ab

le
2

C
oe
ffi
ci
en
t
of

C
or
re
la
ti
on

fo
r
C
an

op
y‐
Sc
al
e
L
in
ea
r
R
eg
re
ss
io
n
s
of

z I
A
V

Si
te

V
ar
ia
bl
e

T
R
H

SW
P
r

SW
C
a

G
P
P,

ob
s

U
S‐
H
a1

R
H

−
0.
17

In
co
m
in
g
SW

0.
20

−
0.
76
**
*

M
A
M
JJ

A
cc
um

.P
re
ci
p.

−
0.
39
*

0.
03

0.
05

SW
C

−
0.
41
*

0.
14

−
0.
04

0.
84
**
*

G
PP

,o
bs

0.
44
**

−
0.
34

0.
51
**

0.
15

N
/A

G
PP

,C
L
M
4.
5

0.
32

−
0.
36
**

0.
46
*

−
0.
39
*

−
0.
49
**

0.
27

G
PP

,C
L
M
‐
m
l‐
B
B

0.
40
*

−
0.
28

0.
41
*

−
0.
39
*

−
0.
50
**

0.
33

G
PP

,C
L
M
‐
m
l‐
SP

A
0.
11

−
0.
47
**

0.
57
**
*

−
0.
23

−
0.
37
*

0.
26

G
PP

,C
L
M
5‐
PH

S
0.
15

−
0.
36

0.
48
**

−
0.
40
*

−
0.
49
**

0.
18

G
PP

,C
L
M
5‐
n
oP

H
S

0.
16

−
0.
35

0.
49
**

−
0.
42
*

−
0.
55
**
*

0.
20

U
S‐
M
M
S

R
H

−
0.
44
*

In
co
m
in
g
SW

0.
37

−
0.
59
*

M
A
M
JJ

A
cc
um

.P
re
ci
p.

−
0.
15

0.
20

0.
06

SW
C

−
0.
68
**

0.
56
*

−
0.
36

0.
62

G
PP

,o
bs

−
0.
52
**

0.
39

0.
13

0.
37

0.
67
**
*

G
PP

,C
L
M
4.
5

−
0.
59
**

0.
72
**

−
0.
12

0.
44
*

0.
77
**
*

0.
87
**
*

G
PP

,C
L
M
‐
m
l‐
B
B

−
0.
59
**

0.
72
**

−
0.
12

0.
45
*

0.
77
**
*

0.
87
**
*

G
PP

,C
L
M
‐
m
l‐
SP

A
−
0.
57
**

0.
58
**

0.
06

0.
26

0.
54
**

0.
81
**
*

G
PP

,C
L
M
5‐
PH

S
−
0.
70
**
*

0.
70
**
*

−
0.
09

0.
47
*

0.
80
**
*

0.
79
**
*

G
PP

,C
L
M
5‐

n
oP

H
S

−
0.
63
**

0.
69
**
*

−
0.
05

0.
47
*

0.
83
**
*

0.
82
**
*

U
S‐
O
h
o

R
H

−
0.
21

In
co
m
in
g
SW

0.
32

−
0.
91
**
*

M
A
M
JJ

A
cc
um

.P
re
ci
p.

−
0.
27

0.
47

−
0.
41

SW
C

−
0.
30

0.
73
**

−
0.
65
*

0.
58

G
PP

,o
bs

−
0.
59
*

−
0.
39

0.
09

0.
03

−
0.
10

G
PP

,C
L
M
4.
5

−
0.
49

0.
74
**

−
0.
67
**

0.
72
**

0.
94
**
*

−
0.
01

G
PP

,C
L
M
‐
m
l‐
B
B

−
0.
47

0.
75
**

−
0.
68
**

0.
74
**

0.
94
**
*

−
0.
02

G
PP

,C
L
M
‐
m
l‐
SP

A
−
0.
89
**
*

0.
25

−
0.
26

0.
36

0.
52

0.
46

G
PP

,C
L
M
5‐
PH

S
−
0.
86
**

−
0.
04

−
0.
06

0.
37

0.
34

0.
36

G
PP

,C
L
M
5‐

n
oP

H
S

−
0.
75
*

0.
06

−
0.
03

0.
21

0.
49

0.
15

10.1029/2020JG005658Journal of Geophysical Research: Biogeosciences

WOZNIAK ET AL. 8 of 22



T
ab

le
2

C
on

ti
n
ue
d

Si
te

V
ar
ia
bl
e

T
R
H

SW
P
r

SW
C
a

G
P
P,

ob
s

U
S‐
U
M
B

R
H

−
0.
48
*

In
co
m
in
g
SW

0.
68
**
*

−
0.
74
**
*

M
A
M
JJ

A
cc
um

.P
re
ci
p.

0.
26

0.
46
**

−
0.
07

SW
C

−
0.
07

0.
46

−
0.
16

0.
82
**
*

G
PP

,o
bs

−
0.
02

0.
23

0.
12

0.
22

0.
33

G
PP

,C
L
M
4.
5

−
0.
11

0.
52
*

−
0.
21

0.
86
**
*

0.
82
**

0.
25

G
PP

,C
L
M
‐
m
l‐
B
B

−
0.
10

0.
52
*

−
0.
20

0.
87
**
*

0.
82
**

0.
26

G
PP

,C
L
M
‐
m
l‐
SP

A
0.
18

0.
34

0.
09

0.
70
**
*

0.
43

0.
25

G
PP

,C
L
M
5‐
PH

S
0.
32

0.
49

−
0.
10

0.
89
**
*

0.
80
**
*

0.
05

G
PP

,C
L
M
5‐

n
oP

H
S

−
0.
39

0.
63
**

−
0.
43

0.
75
**
*

0.
73
**
*

0.
11

U
S‐
W
C
r

R
H

0.
26

In
co
m
in
g
SW

0.
65
**

0.
43

M
A
M
JJ

A
cc
um

.P
re
ci
p.

0.
25

−
0.
04

0.
56
**

SW
C

0.
21

0.
36

0.
67
**
*

0.
74
**
*

G
PP

,o
bs

−
0.
64
**

0.
40

−
0.
17

−
0.
04

−
0.
03

G
PP

,C
L
M
4.
5

0.
33

0.
25

0.
68
**
*

0.
74
**
*

0.
86
**
*

0.
61
**

G
PP

,C
L
M
‐
m
l‐
B
B

0.
30

0.
28

0.
69
**
*

0.
75
**
*

0.
89
**
*

0.
64
*

G
PP

,C
L
M
‐
m
l‐
SP

A
0.
46
*

0.
31

0.
44

0.
47

0.
56
**

0.
54
**

G
PP

,C
L
M
5‐
PH

S
0.
17

−
0.
05

0.
20

0.
45

0.
47
*

0.
50

G
PP

,C
L
M
5‐

n
oP

H
S

−
0.
26

−
0.
13

0.
17

0.
46

0.
54

0.
35

N
ot
e.
G
re
en

sh
ad

ed
ce
lls

ar
e
co
va
ri
an

ce
s
of

dr
iv
er
s,
w
h
ile

bl
ue

sh
ad

ed
ce
lls

ar
e
co
rr
el
at
io
n
s
of

G
PP

w
it
h
dr
iv
er
s.
W
h
it
e
n
um

er
ic
al
ce
ll
s
in

th
e
ri
gh

tm
os
tc
ol
u
m
n
ar
e
co
rr
el
at
io
n
s
of

m
od

el
ed

G
P
P

w
it
h
ob

se
rv
ed

G
PP

.
a O

bs
er
ve
d
G
PP

w
as

re
gr
es
se
d
w
it
h
ob

se
rv
ed

SW
C
.
C
L
M
4.
5
an

d
C
L
M
‐
m
l
G
PP

w
er
e
re
gr
es
se
d
w
it
h
C
L
M
4.
5‐
si
m
ul
at
ed

SW
C
.
C
L
M
5‐
PH

S
an

d
C
L
M
5‐
n
oP

H
S
w
er
e
si
m
u
la
te
d
w
it
h
th
ei
r
ow

n
re
sp
ec
ti
ve

si
m
ul
at
ed

SW
C

* p
<
0.
10
.

**
p
<
0.
05
.

**
* p

<
0.
01
.

10.1029/2020JG005658Journal of Geophysical Research: Biogeosciences

WOZNIAK ET AL. 9 of 22



independent variables. Regressions are also performed between ag at individual leaf layers (CLM‐ml, only)
and climatic drivers to determine if there is a vertically varied response of carbon uptake to interannual
climate variability. Finally, all of the climatic variables are regressed with one another to determine the
linear covariance between drivers. Stepwise multiple linear regressions were also calculated for GPP and
ag IAV using the four drivers as possible independent variables (not shown); however, the results for
the multiple linear regression analysis (i.e., the significant drivers it identified) were similar to the simple
linear regression, so we show the simple linear regression only for clarity.

In CLM‐ml, the top of the canopy is represented by a height, h. Therefore, all multilayer results displayed as a
function of height are presented using relative height within the canopy, or z/h, where height varies from 0
(ground) to 1 (canopy top, h).

2.4. Simulating Diffuse Light Effects on GPP in CLM‐Ml

We additionally evaluate the partitioning of diffuse versus direct light in CLM to determine whether canopy
complexity influences the sensitivity of carbon uptake to radiation. The radiation scheme in off‐line CLM
equally partitions SW radiation into visible and near‐infrared energy. The visible and near‐infrared bands
are further partitioned into direct and diffuse light using an empirical polynomial fit to the climatological
diurnal cycle of surface‐level radiation simulated by the Community Atmosphere Model Version 3
(Oleson et al., 2013). In this parameterization, diffuse fraction always decreases as total visible light intensity
increases, while diffuse light intensity is nonlinearly related to visible intensity (Figure S2). We perform
additional linear regressions of gross carbon assimilation in each leaf layer (CLM‐ml, only) with direct
and diffuse visible intensity.

Because the direct‐diffuse partitioning parameterization is based on climatology, we test the sensitivity of the
multilayer model regressions to this parameterization by running simulations with diffuse fraction pre-
scribed from the available hourly PAR measurements at US‐UMB from 2004 to 2014. Observed diffuse
fraction behaves differently as a function of total radiation compared to the climatological CLM parameter-
ization. Instead of early decline of diffuse fraction at low SW irradiance like in the parameterization, observed
diffuse fraction remains high at lower irradiance and begins to steeply fall off at higher SW intensities
(Figure S3). Moreover, observed diffuse fraction depends on zenith angle (i.e., time of day) and also exhibits
substantial variability aside from its relationship to solar intensity and zenith angle, likely due to changes in
clouds and aerosols. The observed diffuse fraction tends to be higher than that of the parameterization and is
partly decoupled from total visible intensity. To verify whether the diffuse fraction parameterization affected
the simulated carbon uptake, we analyze an additional simulation using the prescribed diffuse fraction.
Because diffuse fraction data are only available from 2004–2014, we repeat the regressions of the simulations
with parameterized diffuse fraction for model output from 2004–2014 only for consistency.

3. Results
3.1. Canopy Vertical Structure in CLM‐Ml

Vertical structure in CLM‐ml manifests in vertically varying environmental conditions, of which radiation
primarily controls the average daytime profile of carbon assimilation rate, together with leaf area density
(Figure 1). At US‐UMB, temperature and RH nonmonotonically vary throughout the canopy, where tem-
perature has a maximum and RH, a minimum in the middle of the canopy (Figures 1a and 1b). The exact
position of these maxima varies in shorter or taller canopies, but these profiles are similar for all sites based
on the same leaf area distribution. CLM‐ml‐BB is warmer and drier than CLM‐ml‐SPA throughout the
canopy, although vertical variations in temperature and RH are small at all sites (T within 0.5 K and RH
within 0.85%). Light is extinguished exponentially from the topmost layers to the bottom (Figure 1c) in both
model versions. LWP, only modeled in CLM‐ml‐SPA, is depleted in the upper canopy where the rate of
photosynthesis is highest and therefore stomata are most open, coinciding with high VPD driven by high
direct insolation. Water stress is mostly limited to z/h > 0.6, since below this level, leaves are more shaded,
and LWP is maintained at roughly −0.5 MPa (Figure 1d). The profile of gross carbon assimilation rate per
leaf area (Figure 1e, solid line) is primarily controlled by absorbed photosynthetic active radiation
(APAR), and it follows the same exponential decline from top to bottom of canopy. However, when the leaf
area density distribution is taken into account (Figure 1e, dashed line), gross carbon assimilation rate
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increases to a maximum near z/h ¼ 0.8 and then decreases exponentially to the canopy bottom. Integrated
canopy GPP relies on this gross carbon assimilation rate adjusted for leaf area density and indicates that the
maximum contribution in the canopy to GPP is from the upper midcanopy.

3.2. Canopy‐Scale IAV of GPP and Its Response to Climate Variability

The response of observed July GPP to climate variability at each site generally depends on the climatic
driver(s) with the most pronounced IAV (Tables 2 and S1). US‐Ha1 is the most humid and cool of all the sites
and receives the least insolation on average. Despite low average values, incoming SW radiation is charac-
terized by larger IAV than other driver variables at the site, and GPP IAV at US‐Ha1 is most highly correlated
with SW radiation (r¼ 0.51; Table 2). These regressions at US‐Ha1 are robust even when the years of notable
disturbance (see section 2.1) are removed (Table S2). US‐MMS is the warmest site, receives the most preci-
pitation, and also has the highest temperature and precipitation IAV. US‐MMS has the highest IAV of
observed July GPP (SIAV ¼ 55.54 gC m−2 month−1; Table S1), and this is most highly correlated with IAV
in soil moisture (r ¼ 0.65; Table 2), which is mediated by evaporative demand and precipitation. GPP IAV
at US‐MMS is anticorrelated with temperature (r ¼ −0.52; Table 2), and we note that temperature is antic-
orrelated with soil moisture. We note that 2012 was a drought year at US‐MMS characterized by very low RH
and soil moisture, which is a strong driver of the correlations at US‐MMS. The linear correlation of GPP with
soil moisture is substantially weakened (r¼ 0.29; p > 0.10) when the year 2012 is removed from the analysis,
as is the correlation of GPP with temperature (r ¼ −0.21; p > 0.10) while the only significant correlation
(p < 0.01) becomes that of observed GPP and RH (Table S2). This suggests that outside of a drought at a
relatively well watered site like US‐MMS, GPP may be far more responsive to atmospheric conditions than
soil conditions. GPP at US‐Oho is the highest in magnitude, which may be due to this site having the highest
SW radiation but lowest in IAV. Like US‐MMS, GPP at US‐Oho is anticorrelated with temperature. US‐UMB
exhibits the lowest climate variability of all of the sites, which may account for the lack of strong (|r| > 0.5) or
significant (p< 0.05) correlations between GPP IAV and any of the observed climate drivers given by the lin-
ear regressions (Table 2). Finally, at US‐WCr, GPP is anticorrelated with temperature, while temperature at
US‐WCr has the second highest IAV among the sites. RH becomes a significant driver at US‐WCr, as well,
when accounting for disturbance history (Table S2); otherwise, the regressions remain qualitatively similar.

Figure 2. Time series of mean July GPP for the FLUXNET daytime‐partitioned estimate and various configurations of
CLM models (see Table 1) for sites (a) US‐Ha1, (b) US‐MMS, (c) US‐Oho, (d) US‐UMB, and (e) US‐WCr. The US‐WCr
site is missing data from years 2007–2010.
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The models consistently underestimate observed July GPP at all sites by 11–46% (Figure 2 and Table S1),
which may be due to either parameter or model structural uncertainty (see section 4). The simulations do,
however, capture some of the observed patterns of GPP (Table 2). For example, the models capture the posi-
tive correlations of GPP with incoming SW radiation and temperature and negative correlation with RH at
US‐Ha1. They also capture the anticorrelation of GPP with temperature at US‐Oho. However, some of that
agreement diminishes when disturbance years are removed from the analysis, like at US‐Ha1 (Table S2).
Model‐observation agreement on the whole is fairly weak, disturbances or not, as correlations of observed
GPP with SWC are weak while the models still simulate a strong sensitivity of simulated GPP to SWC.
Therefore, the modeled GPP IAV does not correlate well with observed GPP IAV at any of these sites.
These results suggest that either the models overemphasize the role of soil moisture variability in GPP
IAV or that there are errors between CLM4.5 simulated SWC and real‐world soil moisture.

Differences between GPP IAV simulated by CLM‐ml‐BB and CLM4.5 and their regressions with climatic
drivers are negligible for all sites (Tables 2 and S1 and Figure S4), implying that vertically varying microcli-
mate and leaf area profile did not substantially impact the response of GPP to climate IAV. However, the
results are notably different when using SPA, indicating that simulating plant hydraulics and LWP in a mul-
tilayer model may influence the IAV of GPP. CLM‐ml‐SPA simulations dampen July GPP IAV relative to
CLM‐ml‐BB and CLM4.5 at all sites except US‐Ha1 (Table S1 and Figures S4a–S4d). At US‐Ha1, simulated
July GPP IAV at was slightly greater in CLM‐ml‐SPA than it was for CLM4.5 and CLM‐ml‐BB (Table S1).
Moreover, at all sites except US‐Ha1, SPA alters the pattern of GPP IAV relative to the Ball‐Berry simula-
tions, causing yIAV for some years to differ by over 100% between simulations (Figures 3b–3e). At US‐Ha1,
the pattern of CLM‐ml‐SPA simulated July GPP IAV changes little relative to that of CLM‐ml‐BB and
CLM4.5 (Figure 3a). To explain why the multilayer model only made a difference when using SPA, we ana-
lyze the individual leaf layers simulated in CLM‐ml in section 3.3.

3.3. IAV of Gross Carbon Uptake and Response to Climate Variability in Individual Leaf Layers

In the multilayer model simulations, IAV of gross carbon assimilation rate (ag) differs among individual leaf
layers (Figures 3f–3o), indicating that each layer can respond independently to climate IAV. This is most
apparent in the CLM‐ml‐SPA simulations, where vertical gradients in ag IAV are very strong. Moreover,

Figure 3. yIAV for (a–e) GPP at the canopy scale, (f–j) carbon assimilation rate at each leaf layer in CLM‐ml‐BB, and (k–o) carbon assimilation rate at each leaf
layer in CLM‐ml‐SPA. Note the different years for each site. z/h is relative height within canopy of height h.
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at some layers the sign may be opposite to that of other layers and even the canopy integrated GPP
(Figures 3a–3e), indicating that the climate‐driven anomalies at some layers oppose the anomalies at
other layers in the same year. In fact, these vertical gradients are explained by a vertically varying
response to climate variability (i.e., different dominant drivers at each layer), as measured by the
correlations between yIAV of gross carbon assimilation rate (ag) at individual canopy layers with the yIAV
of four climate drivers (Figure 4). To elucidate how either multilayer parameterization, CLM‐ml‐BB or
CLM‐ml‐SPA, affects these results, we analyze Figures 3 and 4 in the context of each simulation across all
five sites.

In the CLM‐ml‐BB simulations, vertical gradients in ag IAV are most apparent at US‐Ha1 within the upper
part of the canopy (Figure 3f), with vertical gradients present at all sites we simulated (Figures 3g–3j). For
CLM‐ml‐BB simulations, the sign of the ag anomaly at each layer is fairly uniform throughout the canopy,
with some exceptions where there are sign changes in the mid and lower canopy (e.g., 2003 and 2008 at
US‐UMB, Figure 3i; 2000 at US‐WCr, Figure 3j). For most years, the sign of the anomaly in each canopy layer
corresponds to the sign of the integrated GPP IAV time series for CLM‐ml‐BB in Figures 3a–3e. At all sites
except US‐Ha1, soil moisture was the main limiting climate variable throughout the canopy, shown by the
significant (p < 0.05), positive correlation coefficients in the linear regressions at most layers
(Figures 4b–4e). This relatively consistent soil moisture response throughout the canopy explains why GPP
IAV is so similar between CLM‐ml‐BB and CLM4.5. The sign of the correlations changes within the canopy
in the CLM‐ml‐BB simulations at some sites (excluding US‐Ha1) because of the increasing dependence of ag
on radiation, in tandem with incoming SW radiation anomalies that have the opposite impact on ag of soil
moisture. For example, in years 2003 and 2008 at US‐UMB (Figure 3i), negative radiation anomalies
(Figure S4d) drove negative ag anomalies at z/h<0.4, while positive SWCanomalies drove positive ag anoma-
lies at z/h > 0.4, resulting in positive anomalies in canopy‐integrated GPP. Of the five deciduous sites evalu-
ated, US‐Ha1 exhibits different behavior with CLM‐ml‐BB and ismainly limited by radiation (Figure 4a). The
transition from temperature‐limited carbon uptake to radiation‐limited carbon uptake at around z/h ~ 0.84
caused strong vertical variation in leaf layer ag IAV near that height (Figure 3f). However, radiation was still
the main driver throughout the canopy, which accounts for the similarities between CLM‐ml‐BB and
CLM4.5 simulations at this site.

Other climatic drivers that have significant correlations in the CLM‐ml‐BB simulations can be explained via
their covariation with the main driving climate variable (SWC or radiation) at any site. The negative trends
of carbon uptake with SWC and RH at US‐Ha1 (Figure 4a) likely stem from their opposing relationship with
radiation (Figure 2a). Temperature is significantly negatively correlated with carbon uptake at US‐MMS in
z/h> 0.45 (Figure 4b), but this may arise from an anticorrelation between temperature and SWC at US‐MMS

Figure 4. Correlation coefficients between yIAV of carbon assimilation rate at each leaf layer and yIAV of the climate
drivers in CLM‐ml‐BB (a–e) and CLM‐ml‐SPA (f–j). Stippled (+) points represent p < 0.05. z/h is relative height
within canopy of height h.
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(Table 2). Likewise, at US‐Oho radiation is strongly anticorrelated, and temperature weakly anticorrelated,
with SWC and RH.

In contrast, the CLM‐ml‐SPA simulations show stronger vertical gradients, and there are frequently sign
changes within the canopy, especially at US‐UMB. The vertically varying water stress in CLM‐ml‐SPA is pre-
dominantly why it produces qualitatively and quantitatively different regression coefficients at each layer
compared to those from CLM‐ml‐BB, mainly at soil moisture‐limited sites (Figures 4g–4j). In CLM‐ml‐
SPA, soil moisture dependence is limited to the uppermost leaf layers, which results in other climatic vari-
ables driving IAV in photosynthesis lower in the canopy. At US‐MMS, US‐UMB, and US‐Oho, there are
three different regimes of photosynthetic response to climate variability: The upper canopy is mainly limited
by soil moisture, the middle, by temperature, and the lower, by radiation (Figures 4g–4i). At US‐WCr, there
are only two vertical regimes—one driven by a combination of SWC, RH and temperature at the top, and one
dominated by radiation at the bottom (Figure 4j). Different drivers at different layers result in the transitions
between positive and negative IAV among the leaf layers (Figures 3l–3o). This occurs because since some
years have anomalies in one climatic driver that oppositely affect carbon uptake compared to the effect of
another climatic driver. A clear example is at US‐UMB in year 2011, when high radiation and relatively
higher SWC caused positive anomalies at the top and bottom of canopy, while high temperature caused a
negative anomaly in the middle of the canopy (Figures 3n and 2d). Many of the site years characterized
by sign changes within the canopy were associated with damped GPP IAV in CLM‐ml‐SPA relative to
CLM‐ml‐BB, as is evident, for example, at US‐Oho in 2006 and 2007 (Figures 3c and 3m), or at US‐UMB
in 2004 and 2006 (Figures 3d and 3n). In fact, damped response to soil moisture can also explain why
CLM‐ml‐SPA would predict in one year a canopy‐integrated GPP anomaly of opposite sign to that predicted
by CLM‐ml‐BB. For example, at US‐UMB in 2003, a year with positive soil moisture anomaly and negative
radiation and humidity anomalies (Figure S4d), CLM‐ml‐BB predicted a positive anomaly in GPP due
mainly to positive ag anomalies in the upper two thirds of the canopy while CLM‐ml‐SPA predicted a
negative GPP anomaly mainly due to the lower three quarters of the canopy (Figure 3d). In this example,
CLM‐ml‐BB was responding to the positive soil moisture anomaly, while CLM‐ml‐SPA with a damped soil
moisture dependence was responding more to the negative radiation and humidity anomalies. In contrast to
soil moisture‐limited sites, at US‐Ha1 where radiation was the dominant driver, the layer‐by‐layer correla-
tions are similar to those of the CLM‐ml‐BB simulation (Figure 4f), and the patterns of IAV in the multilayer
canopy are also similar (Figures 3f and 3k), further suggesting that SPA has a stronger impact on GPP at soil
moisture limited sites.

3.4. Diffuse Light Effect on GPP

The results presented in section 3.3 suggest that multilayer canopy structure may affect the response of GPP
IAV to climate variability when plant hydraulic stress is vertically resolved, exposing radiation limitation in
the lower part of the canopy that was overshadowed by soil moisture limitation in traditional schemes
(Figures 4f–4j). We therefore test whether the GPP IAV is sensitive to the diffuse parameterization used in
the model because these lower canopy layers receive mostly diffuse light. Previous studies have shown that
increased diffuse light fraction increases GPP (Gu et al., 2002; Niyogi, 2004), although other studies suggest
that this effect is weak in forests (Cheng et al., 2015). Simulations using prescribed diffuse fraction from
measured PAR at US‐UMB reveal that variations in radiation were an important driver of GPP IAV at
z/h ¼ 0.6–0.8 (Figure 5c), whereas the radiation trends at these leaf layers were not significant when diffuse
fraction was parameterized (Figure 5a). Diffuse evaluations at other sites were not possible due to the lack of
historical diffuse radiation measurements.

Regressions with the direct and diffuse components of the visible spectrum show that the increased depen-
dence of ag on diffuse radiation in the middle layers of the canopy is cause for the increased dependence on
total SW radiation. Diffuse light positively drives ag in the midcanopy in simulations with prescribed diffuse
fraction, and conversely, direct visible light has a negative impact on ag, likely because it increases tempera-
ture and VPD which have a negative impact on photosynthesis.

July GPPmagnitude increased for all years with prescribed diffuse fraction relative to simulations with para-
meterized diffuse fraction (Figure 6a). The prescribed diffuse shows some cases where it influences IAV, for
example, the large decrease in IAV from 2004–2006 (Figure 6a), but overall, the impact on GPP IAV does not
improve agreement with observations (Figure 6b). On hourly time scales of the light response curves, the
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sensitivity of GPP to diffuse fraction is different for the prescribed diffuse simulation compared to the
parameterized diffuse simulation and closer to the observed response of GPP to diffuse fraction (Figure 7).
However, the positive response of GPP to diffuse fraction in CLM‐ml shows a stronger gradient than
observed (e.g., higher GPP with higher diffuse fractions), indicating that the model may be overestimating
the impact of diffuse light on the DBF canopy (cf. Figure 7b with Figure 7c). Thus, the resulting increased
dependence of midcanopy ag should be considered with the knowledge that the model does not capture
the observed diffuse light response.

Figure 5. Correlation coefficients (as in Figure 4) for CLM‐ml‐SPA simulations at US‐UMB, 2004–2014 using (a, b)
parameterized diffuse visible light fraction. (c, d) Prescribed diffuse visible light fraction.

Figure 6. (a) Mean July GPP and (b) July GPP yIAV for US‐UMB comparing CLM‐ml‐SPA simulations using either
parameterized (solid orange) or prescribed (dashed orange) diffuse fraction and observations.
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3.5. Big‐Leaf Plant Hydraulic Stress

As described in section 3.3, the use of the plant hydraulic stress parameterization in CLM‐ml‐SPA shows that
within‐canopy gradients can influence the GPP response. To see whether this result also applies to a big‐leaf
model, we compare two CLM5 simulations: one that uses soil moisture stress (e.g., Ball‐Berry; CLM5‐
noPHS) and one that uses plant hydraulic stress (e.g., SPA; CLM5‐PHS). The CLM5 analyses yield values
of GPP SIAV that are at some sites more similar to CLM4.5 and CLM‐ml‐BB (US‐Ha1, US MMS, and
US‐UMB), and other sites more similar CLM‐ml‐SPA (US‐Oho and US‐WCr) (Figure 2 and Table S1).
Both CLM5‐PHS (PHS on) and CLM5‐noPHS (PHS off) underestimate GPP magnitude more than the other
simulations (Figure 2 and Table S1). CLM5‐noPHSJuly mean GPP is somewhat lower than CLM5‐PHS, but a
previous study has shown these differences to be due to the default parameters in CLM for DBF and there-
fore not to the implementation of PHS (Franks et al., 2017). Overall, our results suggest that the CLM5 simu-
lations do not improve the simulation of GPP magnitude and IAV with respect to FLUXNET observations
relative to the other CLM simulations.

There is no clear impact of PHS in CLM5‐PHS compared to CLM5‐noPHSon the standard deviation of July
GPP (SIAV). At US‐MMS and US‐WCr, PHS decreased SIAV (from 35.32 to 25.85 gC m2 month−1 and from
20.69 to 16.28 gC m2 month−1, respectively), while at US‐Oho and US‐UMB it increased SIAV (from 7.36
to 9.2 gCm2month−1 and from 25.55 to 38.35 gCm2month−1, respectively). At US‐Ha1, there was negligible
difference (<1 gC m2 month−1). It should be noted that at US‐MMS, US‐Oho, and US‐WCr, both CLM5
simulations (CLM5‐PHS and CLM5‐noPHS) showed decreased GPP IAV relative to that of CLM4.5, suggest-
ing that a process other than PHS dampens GPP in the CLM5model. The two CLM5 configurations are very
similar when evaluating the regression coefficients between GPP and climate variables (Table 2). Thus,
unlike the impacts of using SPA in CLM‐ml instead of Ball‐Berry and soil moisture stress, the use of PHS
in CLM5 simulations did not have a large impact on GPP variability.

4. Discussion

Single‐point runs at five DBF FLUXNET sites indicate that the default CLM4.5 underestimated both mean
GPP and its IAV. Our comparison with CLM variants with more complex representations of canopy struc-
ture and/or mechanistically sound representations of the influence of soil moisture stress on the vegetation
canopy suggests that these more sophisticated model structures did not improve GPP IAV relative to obser-
vations, as will be discussed below.

When comparing CLM‐ml‐BB simulations with CLM4.5 simulations, the multilayer canopy representation
(including micrometeorological profiles, a leaf area profile, and explicit leaf layers) does not substantially
impact GPP IAV or its response to interannual climate variability relative to a big‐leaf scheme. Although
simulations using CLM‐ml‐BB show vertical variation in carbon uptake, the difference in canopy‐integrated
GPP is negligible relative to CLM4.5. The lack of substantial vertical gradients in productivity could be due in
part to the weak vertical microclimatic gradients in air temperature and RH in these simulations (Figures 1a

Figure 7. For the US‐UMB site (2004–2014) and the CLM‐ml‐SPA, the total visible light intensity (W m−2) at the top of the canopy versus the hourly simulated
GPP, colored by diffuse light fraction (color bar) (a) parameterized diffuse fraction and (b) prescribed diffuse fraction. Panel (c) shows the observed
relationship based on FLUXNET data.
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and 1b). A comparison of simulated and observed air temperature and RH gradients indicates that CLM‐ml
captures the qualities of the observed vertical variability in mean daytime temperature and RH profiles at
US‐UMB, although it tends to underestimate its within‐canopy variability of air temperature by a half degree
(~0.5°C in the model vs. 1°C in the observations) (Figure S5). Other studies have reported larger vertical
micrometeorological variations of about 1–2°C (up to about 3°C in the case of the fir) throughout aspen,
fir, and oak‐hornbeam canopies (Eliáš et al., 1989; Flerchinger et al., 2015), so the effects of larger microme-
teorological gradients may be stronger in other forest types. Another factor that could play a role in the weak
vertical microclimatic variations is the leaf area distribution, as the CLM‐ml prescribes a beta leaf area den-
sity (Figure 1e), and this may influence the microclimatic gradient. However, in a sensitivity test running
CLM‐ml‐BB with a uniform leaf area among all layers, neither GPP IAV nor its regressions with climate
IAV were different from simulations using the nonuniform distribution (not shown). Taken together, these
results suggest that the multilayer representation in CLM‐ml‐BB does not influence the magnitude and IAV
of GPP in deciduous forests compared to a big‐leaf model.

While the role of temperature and atmospheric water vapor within a canopy did not have a strong impact,
the role of leaf water and plant hydraulic stress did yield a stronger response in GPP in the multilayer model.
When we replaced the Ball‐Berry stomatal conductance with SPA, GPP IAV was dampened compared to
CLM4.5 and CLM‐ml‐BB and altered the relationships between carbon uptake and climate IAV. The dam-
pened IAV is traceable to the impact of plant hydraulic stress, which limits the impact of soil moisture stress
to the uppermost canopy layers where radiation drives high transpiration and depletes leaf water (Figures 1c
and 1d). The high transpiration rates in the upper leaf layers (z/h > 0.6) can only be maintained if adequate
soil water is available to replenish their LWP, which often results in LWP falling below the threshold for
stomata to remain open (−2 MPa). Meanwhile, there is less transpiration and water loss at lower leaf layers
(z/h< 0.6), allowing these layers to maintain LWP above−1MPa and to continue photosynthesizing even at
low values of soil water (Figure S6). The result is that the midcanopy and lower canopy are not sensitive to
soil moisture and thus yield a negative correlation with temperature and a positive correlation with radia-
tion. As the lower canopy layers decouple from soil water limitation, their sensitivity to other drivers
becomes more important and can result in sharp transitions in the sign of IAV within the canopy. Since
these transitions usually occur in the upper half of the canopy where most of the leaf area is distributed
(Figure 1e) and the impact on GPP is greatest, these sign transitions can result in canopy‐integrated IAV near
0. The representation of alternatively water limited and temperature (or radiation) limited leaf layers and the
cancelation between the ag anomalies in these layers would not be captured by a single leaf layer. Thus,
when SPA is used, the multilayer representation of the canopy significantly modifies IAV in GPP compared
to the default model.

FLUXNET carbon fluxes (including partitioned fluxes like GPP) are subject to an ~20% random error
(Richardson et al., 2006), and observational GPP IAV (up to ~10–15% of the mean, on average) is encom-
passed within that error range. Thus, the models' performance with respect to observed GPP IAV should
be interpreted with caution. However, with respect to mean July GPP, all of the CLM variants have a nega-
tive bias relative to the observations well outside of the 20% error range. An analysis of hourly GPP at all sites
shows that not a single model variant can simulate the highest values of GPP in the hourly observations
(Figure 8). A previous analysis of FLUXNET data showed that hours with the highest GPP explained most
of the IAV in annual GPP (Zscheischler et al., 2016), and the inability of the model to capture the upper
range of variability may be one of the reasons that monthly scale GPP, and possibly its IAV, were not simu-
lated accurately in this study. Our analyses in section 3.2 also showed that disturbances at some sites may
have greatly impacted the regressions of GPP with climate drivers, implying that disturbances are an impor-
tant source of error both in the flux observations as well as in the models (given that the models as config-
ured here do not simulate disturbance events).

The representation of the IAV of hydrologic factors like soil moisture and evapotranspiration in CLM also
show biases relative to observations (Figures S7 and S8). Soil moisture at all but one site (US‐MMS) is either
overestimated or underestimated and does not exhibit the same interannual pattern as in the observations
(Figure S7). Like GPP, latent heat flux is predominantly underestimated by all model versions (Figure S8).
Including plant hydraulics in CLM‐ml and CLM5 increase mean latent heat exchange, improving some
biases; however, where there was little bias in latent heat exchange simulated by CLM5‐noPHS (US‐WCr),
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CLM‐PHS overestimated latent heat exchange. Given that evapotranspiration is inherently linked to
photosynthesis via stomatal opening in the model parameterizations, it is not surprising that these biases
persist in the water budget. According to our regressions between GPP and soil moisture for the
simulations and FLUXNET observations, CLM appears to overestimate the influence of soil moisture on
GPP IAV when using traditional soil moisture stress, which might affect the timing of the positive and
negative anomalies. However, it is unclear how simulated soil moisture may have affected the distribution
of simulated hourly GPP. Two central pieces in model development leading from CLM4.5 to CLM5 were
soil hydrology and plant hydraulics (Kennedy et al., 2019), which, like SPA, modulates photosynthesis via
plant water status rather than soil water status. Using the eddy covariance observations as a constraint,
our analysis suggests that plant hydraulics in CLM5, as well as SPA in CLM‐ml, do not improve GPP
variability relative to the observed range of GPP nor do they improve simulated GPP IAV. While improved
vegetation and soil hydrological state and its coupling to carbon remain an important model development
area, future modifications to stomatal conductance and photosynthesis in CLM should also address
factors, or interactions among multiple factors, that contribute to periods of high GPP.

The influence of parametric uncertainty on modeled GPP IAV and magnitude could be an important com-
ponent in disentangling model biases. Studies show that model parameters at single sites differ from default
parameters utilized in global‐scale simulation of PFTs (e.g., Post et al., 2018). Our study did not address the
parametric uncertainty in these models at the selected study sites but instead focused on model structural
differences. Additional model sensitivity studies would be required to fully explore the parameter space
within the CLM model versions. By example, Figure S9 demonstrates the effects of varying parameter
choices related to stomatal conductance and plant hydraulics on simulated July GPP at US‐UMB and high-
lights the challenges at using parameteric changes to improve the simulation of GPP IAV. Selecting optimal
parameters may not be straightforward or even productive, as Bonan et al. (2014) showed that optimizing
these parameters alone for a single site may not lead to improved model representativeness given large
uncertainty in optimal parameter values (see Figure 17 in Bonan et al., 2014).

In addition to the model structural and parametric uncertainties in vegetation and soil hydrology discussed
above, the model‐data discrepancy could be due to other canopy structural factors, as well as biophysical or
biochemical processes not represented in this study. For example, leaf clumping (i.e., the tendency of leaves
to overlap in “clumps”) and leaf angle are both found to vary with height and enhance canopy response to
the light environment. Several modeling studies show that clumping increases canopy carbon uptake,

Figure 8. Histograms of daytime hourly GPP (GPP > 0) for FLUXNET observations and model simulations at all five
study sites.
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primarily by increasing intercepted radiation in shaded leaves (Baldocchi & Harley, 1995; Chen et al., 2003;
Walcroft et al., 2005). The carbon gains from leaf clumping (vs. randomly distributed leaves) is even greater
when the vertical heterogeneity of leaf clumping is included (Walcroft et al., 2005). Another notable, verti-
cally distributed canopy architectural trait is leaf angle, which may optimize trade‐offs between
radiation‐induced leaf stresses and intercepted photosynthetic radiation and serve to increase carbon uptake
in shaded leaves (Niinemets, 1998). Perhaps these architectural traits would serve to improve the models'
negative biases. Vegetation phenology and pregrowing season climatological impacts, oversimplified by
these models, could have affected simulated GPP IAV, as observational evidence shows that the seasonal
maximum GPP (i.e., July GPP) in temperate forests exhibits lagged relationships to variability in spring cli-
mate and bud burst phenology (Baldocchi et al., 2018; Ouimette et al., 2018). Another study shows that forest
stands that are older and/or exhibit higher species diversity tend to dampen IAV of net carbon uptake in for-
ests, a feature that is not simulated in CLM (Musavi et al., 2017). Finally, coupled carbon‐nitrogen biogeo-
chemistry may greatly affect modeled responses of land carbon exchange to climate variability (Thornton
et al., 2007), which could be especially important in the multilayer model setting since some deciduous for-
ests have significant vertical variation in leaf nitrogen (Ellsworth & Reich, 1993).

5. Conclusions

The results of the multilayer canopy model simulations show that the influence of the multilayer canopy
representation on simulated GPP IAV and its response to climate variability depended on the model stoma-
tal conductance and water stress that was used. This result was consistent at five DBF sites with differing
climates in the Northern United States. Among four soil moisture‐limited sites (US‐MMS, US‐Oho, US‐
UMB, and US‐WCr), CLM‐ml simulations using Ball‐Berry stomatal conductance showed that soil moisture
was the dominant driver at all canopy layers, while radiation was the main driver at US‐Ha1. Simulating ver-
tically resolved LWP profiles and plant hydraulic stress at individual leaf layers (CLM‐ml‐SPA) dampens
total GPP IAV due to a combination of the reduced impact of soil moisture and opposing leaf layer anomalies
at different regimes in the canopy.

The simulated soil moisture response at the four soil moisture‐limited sites was limited to the upper canopy
layers, diminishing the overall impact of soil moisture on the canopy. Other drivers—temperature and
radiation—take precedence in the middle and lower canopy leaf layers, altering the pattern of GPP IAV
and ultimately dampening it. Because radiation IAV dominated the climatic influence on GPP IAV at
US‐Ha1, the particular moisture stress treatment (e.g., Ball‐Berry or SPA) does not have an impact at this
site. However, relative to FLUXNET observations, CLM‐ml‐SPA has a larger bias with observations than
models without vertically resolved leaf water stress with respect to GPP IAV magnitude and yIAV.
Despite the realism when simulating plant hydraulic stress, a multilayer canopy representation does not
make gains in terms of representativeness of the observations. The same GPP IAV dampening was not
observed between single‐layer canopy simulations of CLM5 with and without plant hydraulic stress, indi-
cating that the dampening was unique to the multilayer implementation. However, it cannot be certain
whether the dampening in the multilayer model was because stomatal conductance in SPA is designed
to optimize water use efficiency, which differs from the empirical stomatal conductance in Ball‐Berry, or
because water stress varied by leaf layer.

Additionally, it was also shown that on diffuse light effects on canopy carbon uptake did not improve the
simulation of GPP IAV, although it did cause the midcanopy to become more sensitive to SW radiation.
Forcing model simulations with observed diffuse fraction slightly increased the magnitude of simulated car-
bon uptake, which is more consistent with observations. However, the overall impact of diffuse light in the
model was not consistent with observations and model‐predicted diffuse effect when prescribing observed
diffuse fraction was considerably overestimated relative to the observed diffuse effect. Future work is needed
to ensure that diffuse light impacts on canopy carbon uptake are accurately modeled with respect to
observations.

Understanding the evolution of the terrestrial carbon sink is critical to the carbon balance in the atmosphere
and the mitigation of anthropogenic climate change, and this study attempts to use a model to delineate the
response of individual terrestrial carbon processes to climate variability. Our analysis shows that CLM4.5,
CLM5, and CLM‐ml all grossly underestimate GPP at midlatitude DBF FLUXNET sites and underestimate
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the GPP response to climate variability. We show that increasing the complexity of the canopy structure to
better capture vegetation‐atmosphere coupling does not ameliorate model deficiencies nor does increasing
the complexity of the moisture stress function within the model. In fact, adding these two changes together
damps overall GPP variability as described above. Together, these results suggest that adding complexity in
the canopy structure is alone not sufficient to resolve the fundamental biases that are present when models
simulate the variability of carbon uptake, especially with outstanding parametric uncertainty, and that atten-
tion to the environmental drivers that influence variability is still required.

Conflict of Interest

The authors declare no competing interests.

Data Availability Statement

Model simulation data can be found on University of Michigan's Deep Blue data repository (at https://doi.
org/10.7302/scmk-rf50).

References
Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., et al. (2015). The dominant role of semi‐arid ecosystems in the

trend and variability of the land CO2 sink. Science, 348(6237), 895–899. https://doi.org/10.1126/science.aaa1668
Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., et al. (2015). Spatiotemporal patterns of terrestrial gross primary

production: A review. Reviews of Geophysics, 53, 785–818. https://doi.org/10.1002/2015RG000483
Anav, A., Friedlingstein, P., Kidston, M., Bopp, L., Ciais, P., Cox, P., et al. (2013). Evaluating the land and ocean components of the global

carbon cycle in the CMIP5 Earth System Models. Journal of Climate, 26(18), 6801–6843. https://doi.org/10.1175/JCLI-D-12-00417.1
Aranda, I., Cano, F. J., Gasco, A., Cochard, H., Nardini, A., Mancha, J. A., et al. (2015). Variation in photosynthetic performance and

hydraulic architecture across European beech (Fagus sylvatica L.) populations supports the case for local adaptation to water stress. Tree
Physiology, 35(1), 34–46. https://doi.org/10.1093/treephys/tpu101

Arora, V. K., Boer, G. J., Friedlingstein, P., Eby, M., Jones, C. D., Christian, J. R., et al. (2013). Carbon‐concentration and carbon‐climate
feedbacks in CMIP5 Earth system models. Journal of Climate, 26(15), 5289–5314. https://doi.org/10.1175/JCLI-D-12-00494.1

Baldocchi, D., Chu, H., & Reichstein, M. (2018). Inter‐annual variability of net and gross ecosystem carbon fluxes: A review. Agricultural
and Forest Meteorology, 249, 520–533. https://doi.org/10.1016/j.agrformet.2017.05.015

Baldocchi, D. D., & Harley, P. C. (1995). Scaling carbon dioxide and water vapour exchange from leaf to canopy in a deciduous forest. II.
Model testing and application. Plant, Cell & Environment, 18(10), 1157–1173. https://doi.org/10.1111/j.1365-3040.1995.tb00626.x

Baldocchi, D. D., Wilson, K. B., & Gu, L. (2002). How the environment, canopy structure and canopy physiological functioning influence
carbon, water and energy fluxes of a temperate broad‐leaved deciduous forest—An assessment with the biophysical model CANOAK.
Tree Physiology, 22(15–16), 1065–1077. https://doi.org/10.1093/treephys/22.15-16.1065

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al. (2010). Terrestrial gross carbon dioxide uptake: Global
distribution and covariation with climate. Science, 329(5993), 834–838. https://doi.org/10.1126/science.1184984

Bonan, G. B., & Doney, S. C. (2018). Climate, ecosystems, and planetary futures: The challenge to predict life in earth system models.
Science, 359(6375), eaam8328.

Bonan, G. B., Patton, E. G., Harman, I. N., Oleson, K. W., Finnigan, J. J., Lu, Y., & Burakowski, E. A. (2018). Modeling canopy‐induced
turbulence in the Earth system: A unified parameterization of turbulent exchange within plant canopies and the roughness sublayer
(CLM‐ml v0). Geoscientific Model Development.

Bonan, G. B., Williams, M., Fisher, R. A., & Oleson, K. W. (2014). Modeling stomatal conductance in the Earth system: Linking leaf
water‐use efficiency and water transport along the soil‐plant‐atmosphere continuum. Geoscientific Model Development, 7(5), 2193–2222.
https://doi.org/10.5194/gmd-7-2193-2014

Carlson, D.W., & Groot, A. (1997). Microclimate of clear‐cut, forest interior, and small openings in trembling aspen forest. Agricultural and
Forest Meteorology, 87(4), 313–329. https://doi.org/10.1016/S0168-1923(95)02305-4

Chang, K. Y., & Chen, S. H. (2018). Canopy profile sensitivity on surface layer simulations evaluated by a multiple canopy layer
higher order closure land surface model. Agricultural and Forest Meteorology, 252, 192–207. https://doi.org/10.1016/
j.agrformet.2018.01.027

Chen, J., Saunders, S. C., Crow, T. R., Naiman, R. J., Brosofske, K. D., Mroz, G. D., et al. (1999). Microclimate in forest ecosystem and
landscape ecology: Variations in local climate can be used to monitor and compare the effects of different management regimes.
Bioscience, 49(4), 288–297. https://doi.org/10.2307/1313612

Chen, J. M., Liu, J., Leblanc, S. G., Lacaze, R., & Roujean, J.‐L. (2003). Multi‐angular optical remote sensing for assessing vegetation
structure and carbon absorption. Remote Sensing of Environment, 84(4), 516–525. https://doi.org/10.1016/S0034-4257(02)00150-5

Cheng, S. J., Bohrer, G., Steiner, A. L., Hollinger, D. Y., Suyker, A., Phillips, R. P., & Nadelhoffer, K. J. (2015). Variations in the influence of
diffuse light on gross primary productivity in temperate ecosystems. Agricultural and Forest Meteorology, 201, 98–110. https://doi.org/
10.1016/j.agrformet.2014.11.002

Collatz, G. J., Ball, J. T., Grivet, C., & Berry, J. A. (1991). Physiological and environmental regulation of stomatal conductance, photo-
synthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2–4), 107–136.
https://doi.org/10.1016/0168-1923(91)90002-8

de Frenne, P., Rodriguez‐Sanchez, F., Coomes, D. A., Baeten, L., Verstraeten, G., Vellend, M., et al. (2013). Microclimate moderates plant
responses to macroclimate warming. Proceedings of the National Academy of Sciences, 110(46), 18,561–18,565. https://doi.org/10.1073/
pnas.1311190110

Desai, A. R. (2010). Climatic and phenological controls on coherent regional interannual variability of carbon dioxide flux in a
heterogeneous landscape. Journal of Geophysical Research, 115, G00J02. https://doi.org/10.1029/2010JG001423

10.1029/2020JG005658Journal of Geophysical Research: Biogeosciences

WOZNIAK ET AL. 20 of 22

Acknowledgments
We would like to thank NASA
Interdisciplinary Science and
Terrestrial Ecology for funding this
work via Grant NNX17AK19G. The
National Center for Atmospheric
Research is a major facility sponsored
by the National Science Foundation
under Cooperative Agreement 1852977.
We thank the FLUXNET2015 data set
contributors for acquiring,
maintaining, and providing data used
in this study, specifically Chris Vogel at
University of Michigan Biological
Station for providing additional
meteorological data for US‐UMB, as
well as site PIs and data managers for
communicating site disturbances. We
additionally thank Thiago Dos Santos
for providing single‐point CLM5
simulations and Zachary Butterfield for
editorial advice.

https://doi.org/10.7302/scmk-rf50
https://doi.org/10.7302/scmk-rf50
https://doi.org/10.1126/science.aaa1668
https://doi.org/10.1002/2015RG000483
https://doi.org/10.1175/JCLI-D-12-00417.1
https://doi.org/10.1093/treephys/tpu101
https://doi.org/10.1175/JCLI-D-12-00494.1
https://doi.org/10.1016/j.agrformet.2017.05.015
https://doi.org/10.1111/j.1365-3040.1995.tb00626.x
https://doi.org/10.1093/treephys/22.15-16.1065
https://doi.org/10.1126/science.1184984
https://doi.org/10.5194/gmd-7-2193-2014
https://doi.org/10.1016/S0168-1923(95)02305-4
https://doi.org/10.1016/j.agrformet.2018.01.027
https://doi.org/10.1016/j.agrformet.2018.01.027
https://doi.org/10.2307/1313612
https://doi.org/10.1016/S0034-4257(02)00150-5
https://doi.org/10.1016/j.agrformet.2014.11.002
https://doi.org/10.1016/j.agrformet.2014.11.002
https://doi.org/10.1016/0168-1923(91)90002-8
https://doi.org/10.1073/pnas.1311190110
https://doi.org/10.1073/pnas.1311190110
https://doi.org/10.1029/2010JG001423


Drewry, D. T., Kumar, P., Long, S., Bernacchi, C., Liang, X. Z., & Sivapalan, M. (2010). Ecohydrological responses of dense canopies to
environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. Journal of Geophysical Research, 115,
G04022. https://doi.org/10.1029/2010JG001340

Eliáš, P., Kratochvílová, I., Janouš, D., Marek, M., &Masarovičová, E. (1989). Stand microclimate and physiological activity of tree leaves in
an oak‐hornbeam forest. Trees, 3(4), 227–233. https://doi.org/10.1007/BF00225356

Ellsworth, D. S., & Reich, P. B. (1993). Canopy structure and vertical patterns of photosynthesis and related leaf traits in a deciduous forest.
Oecologia, 96(2), 169–178. https://doi.org/10.1007/BF00317729

Farquhar, G. D., von Caemmerer, S. V., & Berry, J. A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3

species. Planta, 149(1), 78–90. https://doi.org/10.1007/BF00386231
Flerchinger, G. N., Reba, M. L., Link, T. E., & Marks, D. (2015). Modeling temperature and humidity profiles within forest canopies.

Agricultural and Forest Meteorology, 213, 251–262. https://doi.org/10.1016/j.agrformet.2015.07.007
Franks, P. J., Berry, J. A., Lombardozzi, D. L., & Bonan, G. B. (2017). Stomatal function across temporal and spatial scales: Deep‐time

trends, land‐atmosphere coupling and global models. Plant Physiology, 174(2), 583–602. https://doi.org/10.1104/pp.17.00287
Fu, Z., Dong, J., Zhou, Y., Stoy, P. C., & Niu, S. (2017). Long term trend and interannual variability of land carbon uptake—The attribution

and processes. Environmental Research Letters, 12(1), 014018. https://doi.org/10.1088/1748-9326/aa5685
Funk, J. L., & Lerdau, M. T. (2004). Photosynthesis in forest canopies. Forest canopies, 2, 335–358.
Gu, L., Baldocchi, D., Verma, S. B., Black, T. A., Vesala, T., Falge, E. M., & Dowty, P. R. (2002). Advantages of diffuse radiation for terrestrial

ecosystem productivity. Journal of Geophysical Research, 107(D6), ACL 2–1. https://doi.org/10.1029/2001jd001242
Hellkvist, J., Richards, G., & Jarvis, P. G. (1974). Vertical gradients of water potential and tissue water relations in Sitka spruce trees

measured with the pressure chamber. Journal of Applied Ecology, 11(2), 637. https://doi.org/10.2307/2402215
Keeling, C. D., Whorf, T. P., Wahlen, M., & van der Plichtt, J. (1995). Interannual extremes in the rate of rise of atmospheric carbon dioxide

since 1980. Nature, 375(6533), 666–670. https://doi.org/10.1038/375666a0
Keenan, T. F., Baker, I., Barr, A., Ciais, P., Davis, K., Dietze, M., et al. (2012). Terrestrial biosphere model performance for inter‐annual

variability of land‐atmosphere CO2 exchange. Global Change Biology, 18(6), 1971–1987. https://doi.org/10.1111/j.1365-2486.2012.
02678.x

Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, R., Lola da Costa, A. C., & Gentine, P. (2019). Implementing plant
hydraulics in the Community Land Model, Version 5. Journal of Advances in Modeling Earth Systems, 11, 485–513. https://doi.org/
10.1029/2018MS001500

Koike, T., Kitao, M., Maruyama, Y., Mori, S., & Lei, T. T. (2001). Leaf morphology and photosynthetic adjustments among deciduous
broad‐leaved trees within the vertical canopy profile. Tree Physiology, 21(12–13), 951–958. https://doi.org/10.1093/treephys/21.12-13.951

Lasslop, G., Migliavacca, M., Bohrer, G., Reichstein, M., Bahn, M., Ibrom, A., et al. (2012). On the choice of the driving temperature for
eddy‐covariance carbon dioxide flux partitioning. Biogeosciences, 9(12), 5243–5259. https://doi.org/10.5194/bg-9-5243-2012

Lawrence, D. M., Fisher, R. A., Koven, C. D., Oleson, K.W., Swenson, S. C., Bonan, G., et al. (2019). The Community LandModel Version 5:
Description of new features, benchmarking, and impact of forcing uncertainty. Journal of Advances in Modeling Earth Systems, 11,
4245–4287. https://doi.org/10.1029/2018MS001583

Lawrence, P. J., & Chase, T. N. (2007). Representing a new MODIS consistent land surface in the Community Land Model (CLM 3.0).
Journal of Geophysical Research, 112, G01023. https://doi.org/10.1029/2006JG000168

le Quéré, C., Andrew, R. M., Friedlingstein, P., Sitch, S., Pongratz, J., Manning, A. C., et al. (2017). Global carbon budget 2017. Earth System
Science Data Discussions, 1–79.

Medlyn, B. E., Duursma, R. A., Eamus, D., Ellsworth, D. S., Prentice, I. C., Barton, C. V., et al. (2011). Reconciling the optimal and empirical
approaches to modelling stomatal conductance. Global Change Biology, 17(6), 2134–2144. https://doi.org/10.1111/j.1365-
2486.2010.02375.x

Murray, F. W. (1967). On the computation of saturation vapor pressure. Rand Corp Santa Monica California, (P‐3423).
Musavi, T., Migliavacca, M., Reichstein, M., Kattge, J., Wirth, C., Black, T. A., et al. (2017). Stand age and species richness dampen inter-

annual variation of ecosystem‐level photosynthetic capacity. Nature ecology & evolution, 1(2), 0048. https://doi.org/10.1038/s41559-016-
0048

Nevison, C. D., Mahowald, N. M., Doney, S. C., Lima, I. D., van der Werf, G. R., Randerson, J. T., et al. (2008). Contribution of ocean, fossil
fuel, land biosphere, and biomass burning carbon fluxes to seasonal and interannual variability in atmospheric CO2. Journal of
Geophysical Research, 113, G01010. https://doi.org/10.1029/2007JG000408

Niinemets, Ü. (1998). Adjustment of foliage structure and function to a canopy light gradient in two co‐existing deciduous trees. Variability
in leaf inclination angles in relation to petiole morphology. Trees, 12(7), 446–451. https://doi.org/10.1007/s004680050173

Niinemets, Ü., & Valladares, F. (2004). Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural
light gradients: Optimality and constraints. Plant Biology, 6(3), 254–268. https://doi.org/10.1055/s-2004-817881

Niyogi, D. (2004). Direct observations of the effects of aerosol loading on net ecosystem CO2 exchanges over different landscapes.
Geophysical Research Letters, 31(20). https://doi.org/10.1029/2004gl020915

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Drewniack, B., Huang, M., Koven, C. D., et al. (2013). Technical description of version 4.5 of
the Community Land Model (CLM) (Technical Note No. NCAR/TN‐503+ STR). Boulder, CO: National Center for Atmospheric Research
Earth System Laboratory.

Ouimette, A. P., Ollinger, S. V., Richardson, A. D., Hollinger, D. Y., Keenan, T. F., Lepine, L. C., & Vadeboncoeur, M. A. (2018). Carbon
fluxes and interannual drivers in a temperate forest ecosystem assessed through comparison of top‐down and bottom‐up approaches.
Agricultural and Forest Meteorology, 256, 420–430.

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world's
forests. Science, 333(6045), 988–993. https://doi.org/10.1126/science.1201609

Parker, G., Tinoco‐Ojanguren, C., Martínez‐Yrízar, A., & Maass, M. (2005). Seasonal balance and vertical pattern of photosynthetically
active radiation within canopies of a tropical dry deciduous forest ecosystem in Mexico. Journal of Tropical Ecology, 21(3), 283–295.
https://doi.org/10.1017/S0266467405002282

Parker, G. G., O'Neill, J. P., & Higman, D. (1989). Vertical profile and canopy organization in a mixed deciduous forest. Vegetatio, 85(1–2),
1–11. https://doi.org/10.1007/BF00042250

Pastorello, G., Papale, D., Chu, H., Trotta, C., Agarwal, D., Canfora, E., et al. (2017). A new data set to keep a sharper eye on land‐air
exchanges. Eos, Transactions American Geophysical Union (Online), 98(8).

Post, H., Hendricks Franssen, H.‐J., Han, X., Baatz, R., Montzka, C., Schmidt, M., & Vereecken, H. (2018). Evaluation and uncertainty
analysis of regional‐scale CLM4.5 net carbon flux estimates. Biogeosciences, 15(1), 187–208. https://doi.org/10.5194/bg-15-187-2018

10.1029/2020JG005658Journal of Geophysical Research: Biogeosciences

WOZNIAK ET AL. 21 of 22

https://doi.org/10.1029/2010JG001340
https://doi.org/10.1007/BF00225356
https://doi.org/10.1007/BF00317729
https://doi.org/10.1007/BF00386231
https://doi.org/10.1016/j.agrformet.2015.07.007
https://doi.org/10.1104/pp.17.00287
https://doi.org/10.1088/1748-9326/aa5685
https://doi.org/10.1029/2001jd001242
https://doi.org/10.2307/2402215
https://doi.org/10.1038/375666a0
https://doi.org/10.1111/j.1365-2486.2012.02678.x
https://doi.org/10.1111/j.1365-2486.2012.02678.x
https://doi.org/10.1029/2018MS001500
https://doi.org/10.1029/2018MS001500
https://doi.org/10.1093/treephys/21.12-13.951
https://doi.org/10.5194/bg-9-5243-2012
https://doi.org/10.1029/2018MS001583
https://doi.org/10.1029/2006JG000168
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.1111/j.1365-2486.2010.02375.x
https://doi.org/10.1038/s41559-016-0048
https://doi.org/10.1038/s41559-016-0048
https://doi.org/10.1029/2007JG000408
https://doi.org/10.1007/s004680050173
https://doi.org/10.1055/s-2004-817881
https://doi.org/10.1029/2004gl020915
https://doi.org/10.1126/science.1201609
https://doi.org/10.1017/S0266467405002282
https://doi.org/10.1007/BF00042250
https://doi.org/10.5194/bg-15-187-2018


Poulter, B., Frank, D., Ciais, P., Myneni, R. B., Andela, N., Bi, J., et al. (2014). Contribution of semi‐arid ecosystems to interannual varia-
bility of the global carbon cycle. Nature, 509(7502), 600–603. https://doi.org/10.1038/nature13376

Rambo, T. R., & North, M. P. (2009). Canopy microclimate response to pattern and density of thinning in a Sierra Nevada forest. Forest
Ecology and Management, 257(2), 435–442. https://doi.org/10.1016/j.foreco.2008.09.029

Richardson, A. D., Hollinger, D. Y., Burba, G. G., Davis, K. J., Flanagan, L. B., Katul, G. G., et al. (2006). A multi‐site analysis of random
error in tower‐based measurements of carbon and energy fluxes. Agricultural and Forest Meteorology, 136(1–2), 1–18. https://doi.org/
10.1016/j.agrformet.2006.01.007

Rödenbeck, C., Zaehle, S., Keeling, R., & Heimann, M. (2018). How does the terrestrial carbon exchange respond to inter‐annual climatic
variations? Biogeosciences, 15(8), 2481–2498. https://doi.org/10.5194/bg-15-2481-2018

Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., et al. (2001). Recent patterns and mechanisms of carbon
exchange by terrestrial ecosystems. Nature, 414(6860), 169–172. https://doi.org/10.1038/35102500

Shiga, Y. P., Michalak, A. M., Fang, Y., Schaefer, K., Andrews, A. E., Huntzinger, D. H., et al. (2018). Forests dominate the interannual
variability of the North American carbon sink. Environmental Research Letters, 13(8), 084015. https://doi.org/10.1088/1748-9326/aad505

Sinclair, T. R., Murphy, C. E., & Knoerr, K. R. (1976). Development and evaluation of simplified models for simulating canopy photo-
synthesis and transpiration. Journal of Applied Ecology, 13(3), 813. https://doi.org/10.2307/2402257

Sitch, S., Friedlingstein, P., Gruber, N., Jones, S. D., Murray‐Tortarolo, G., Ahlström, A., et al. (2015). Recent trends and drivers of regional
sources and sinks of carbon dioxide. Biogeosciences, 12(3), 653–679. https://doi.org/10.5194/bg-12-653-2015

Taylor, D., & Eamus, D. (2008). Coordinating leaf functional traits with branch hydraulic conductivity: Resource substitution and impli-
cations for carbon gain. Tree Physiology, 28(8), 1169–1177. https://doi.org/10.1093/treephys/28.8.1169

Thornton, P. E., Lamarque, J. F., Rosenbloom, N. A., &Mahowald, N. M. (2007). Influence of carbon‐nitrogen cycle coupling on landmodel
response to CO2 fertilization and climate variability. Global Biogeochemical Cycles, 21, GB4018. https://doi.org/10.1029/2006GB002868

Tyree, M. T., & Ewers, F. W. (1991). The hydraulic architecture of trees and other woody plants. New Phytologist, 119(3), 345–360. https://
doi.org/10.1111/j.1469-8137.1991.tb00035.x

von Arx, G., Dobbertin, M., & Rebetez, M. (2012). Spatio‐temporal effects of forest canopy on understory microclimate in a long‐term
experiment in Switzerland. Agricultural and Forest Meteorology, 166, 144–155.

Walcroft, A. S., Brown, K. J., Schuster, W. S. F., Tissue, D. T., Turnbull, M. H., Griffin, K. L., &Whitehead, D. (2005). Radiative transfer and
carbon assimilation in relation to canopy architecture, foliage area distribution and clumping in amature temperate rainforest canopy in
New Zealand. Agricultural and Forest Meteorology, 135(1‐4), 326–339. https://doi.org/10.1016/j.agrformet.2005.12.010

Williams, M., Bond, B. J., & Ryan, M. G. (2001). Evaluating different soil and plant hydraulic constraints on tree function using amodel and
sap flow data from ponderosa pine. Plant, Cell & Environment, 24(7), 679–690. https://doi.org/10.1046/j.1365-3040.2001.00715.x

Williams, M., Rastetter, E. B., Fernandes, D. N., Goulden, M. L., Wofsy, S. C., Shaver, G. R., et al. (1996). Modelling the soil‐plant‐
atmosphere continuum in a Quercus‐Acer stand at Harvard Forest: The regulation of stomatal conductance by light, nitrogen and
soil/plant hydraulic properties. Plant, Cell & Environment, 19(8), 911–927. https://doi.org/10.1111/j.1365-3040.1996.tb00456.x

Williams, M., Richardson, A. D., Reichstein, M., Stoy, P. C., Peylin, P., Verbeeck, H., et al. (2009). Improving land surface models with
FLUXNET data. Biogeosciences, 6(7), 1341–1359. https://doi.org/10.5194/bg-6-1341-2009

Wu, Y., Brashers, B., Finkelstein, P. L., & Pleim, J. E. (2003). Amultilayer biochemical dry deposition model 2. Model evaluation. Journal of
Geophysical Research, 108(D1), 4014. https://doi.org/10.1029/2002JD002306

Zeng, X., & Dickinson, R. E. (1998). Effect of surface sublayer on surface skin temperature and fluxes. Journal of Climate, 11(4), 537–550.
https://doi.org/10.1175/1520-0442(1998)011<0537:EOSSOS>2.0.CO;2

Zhang, J.‐L., & Cao, K.‐F. (2009). Stem hydraulics mediates leaf water status, carbon gain, nutrient use efficiencies and plant growth rates
across dipterocarp species. Functional Ecology, 23(4), 658–667. https://doi.org/10.1111/j.1365-2435.2009.01552.x

Zhao, F., Yang, X., Schull, M. A., Román‐Colón, M. O., Yao, T., Wang, Z., et al. (2011). Measuring effective leaf area index, foliage profile,
and stand height in New England forest stands using a full‐waveform ground‐based lidar. Remote Sensing of Environment, 115(11),
2954–2964. https://doi.org/10.1016/j.rse.2010.08.030

Zscheischler, J., Fatichi, S., Wolf, S., Blanken, P. D., Bohrer, G., Clark, K., et al. (2016). Short‐term favorable weather conditions are an
important control of interannual variability in carbon and water fluxes. Journal of Geophysical Research: Biogeosciences, 121, 2186–2198.
https://doi.org/10.1002/2016JG003503

10.1029/2020JG005658Journal of Geophysical Research: Biogeosciences

WOZNIAK ET AL. 22 of 22

https://doi.org/10.1038/nature13376
https://doi.org/10.1016/j.foreco.2008.09.029
https://doi.org/10.1016/j.agrformet.2006.01.007
https://doi.org/10.1016/j.agrformet.2006.01.007
https://doi.org/10.5194/bg-15-2481-2018
https://doi.org/10.1038/35102500
https://doi.org/10.1088/1748-9326/aad505
https://doi.org/10.2307/2402257
https://doi.org/10.5194/bg-12-653-2015
https://doi.org/10.1093/treephys/28.8.1169
https://doi.org/10.1029/2006GB002868
https://doi.org/10.1111/j.1469-8137.1991.tb00035.x
https://doi.org/10.1111/j.1469-8137.1991.tb00035.x
https://doi.org/10.1016/j.agrformet.2005.12.010
https://doi.org/10.1046/j.1365-3040.2001.00715.x
https://doi.org/10.1111/j.1365-3040.1996.tb00456.x
https://doi.org/10.5194/bg-6-1341-2009
https://doi.org/10.1029/2002JD002306
https://doi.org/10.1175/1520-0442(1998)011%3C0537:EOSSOS%3E2.0.CO;2
https://doi.org/10.1111/j.1365-2435.2009.01552.x
https://doi.org/10.1016/j.rse.2010.08.030
https://doi.org/10.1002/2016JG003503


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends false
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage false
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck true
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (Euroscale Coated v2)
  /PDFXOutputConditionIdentifier (FOGRA1)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <>
    /CHT <>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF che devono essere conformi o verificati in base a PDF/X-1a:2001, uno standard ISO per lo scambio di contenuto grafico. Per ulteriori informazioni sulla creazione di documenti PDF compatibili con PDF/X-1a, consultare la Guida dell'utente di Acrobat. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 4.0 e versioni successive.)
    /JPN <>
    /KOR <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die moeten worden gecontroleerd of moeten voldoen aan PDF/X-1a:2001, een ISO-standaard voor het uitwisselen van grafische gegevens. Raadpleeg de gebruikershandleiding van Acrobat voor meer informatie over het maken van PDF-documenten die compatibel zijn met PDF/X-1a. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 4.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENG (Modified PDFX1a settings for Blackwell publications)
    /ENU (Use these settings to create Adobe PDF documents that are to be checked or must conform to PDF/X-1a:2001, an ISO standard for graphic content exchange.  For more information on creating PDF/X-1a compliant PDF documents, please refer to the Acrobat User Guide.  Created PDF documents can be opened with Acrobat and Adobe Reader 4.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /HighResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


