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Topological restrictions on Anosov representations

Richard Canary and Konstantinos Tsouvalas

Abstract

We characterize groups admitting Anosov representations into SL(3,R), projective Anosov
representations into SL(4,R), and Borel Anosov representations into SL(4,R). More generally, we
obtain bounds on the cohomological dimension of groups admitting Pk-Anosov representations
into SL(d,R) and offer several characterizations of Benoist representations.

1. Introduction

Anosov representations of hyperbolic groups into higher rank semi-simple Lie groups were intro-
duced by Labourie [39] in his work on Hitchin representations and, after further development by
Guichard–Wienhard [27], Guéritaud–Guichard–Kassel–Wienhard [25], Kapovich–Leeb–Porti
[35, 36], and others, are widely recognized as the natural higher rank analogue of convex
cocompact representations into rank one Lie groups. However, very little is known about which
hyperbolic groups admit Anosov representations. Most known Anosov representations either
have free groups or surface groups as domain groups or arise by considering a convex cocompact
representation ρ into a rank one Lie group H and a ‘nice’ representation τ : H → G of H into a
higher rank Lie group G, and deforming τ ◦ ρ. The only examples which are not of this form
are due to Benoist [10] and Kapovich [33] and, more recently, to Danciger, Guéritaud, Kassel,
Lee, and Marquis [19, 21, 40].

In this paper, we initiate a study of the class of torsion-free hyperbolic groups admitting
Anosov representations into SL(d,R). We begin by characterizing groups admitting projective
Anosov representations into SL(3,R) or SL(4,R). We then obtain, for any d, restrictions on the
cohomological dimension of groups admitting Anosov representations into SL(d,R). We further
show that any group admitting a Borel Anosov representation into SL(4,R) is either a surface
group or a free group. Finally, we study and obtain characterizations of Benoist representations,
that is, those projective Anosov representations whose images act properly and cocompactly
on strictly convex domains in projective space.

We say that a representation ρ : Γ → SL(d,R) is Pk-Anosov if k � d
2 and ρ is Anosov with

respect to the parabolic group which is the stabilizer of a k-plane in R
d. We will refer to P1-

Anosov representations as projective Anosov representations, while representations which are
Pk-Anosov for all k will be called Borel Anosov. See Section 2 for detailed definitions.

Theorem 1.1. If Γ is a torsion-free hyperbolic group and ρ : Γ → SL(3,R) is an Anosov
representation, then Γ is either a free group or a surface group.

Theorem 1.2. If Γ is a torsion-free hyperbolic group and ρ : Γ → SL(4,R) is a projective
Anosov representation, then Γ is isomorphic to a convex cocompact subgroup of PO(3, 1). In
particular, Γ is the fundamental group of a compact hyperbolizable 3-manifold.
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Our most general result is that, with four explicit exceptions, if ρ : Γ → SL(d,R) is Pk-
Anosov, then Γ has cohomological dimension at most d− k. We will see in the proof that each
exception is related to one of the four Hopf fibrations.

Theorem 1.3. Suppose Γ is a torsion-free hyperbolic group and ρ : Γ → SL(d,R) is Pk-
Anosov.

(1) If (d, k) is not (2,1), (4,2), (8,4), or (16,8), then Γ has cohomological dimension at most
d− k.

(2) If (d, k) is (2,1), (4,2), (8,4), or (16,8), then Γ has cohomological dimension at most
d− k + 1. Moreover, if Γ has cohomological dimension d− k + 1, then ∂Γ is homeomorphic to
Sd−k and, if k �= 1, ρ is not projective Anosov.

Benoist representations are one of the richest classes of examples of Anosov representations,
see, for example, [8, 11]. We recall that ρ : Γ → SL(d,R) is a Benoist representation, if ρ
has finite kernel and ρ(Γ) preserves and acts properly discontinuously and cocompactly on
a strictly convex domain in P(Rd). Note that, almost by definition, ρ(Γ) must have virtual
cohomological dimension d− 1 and recall that Benoist representations are projective Anosov
(see [27, Proposition 6.1]). Theorem 1.3 implies that they are only projective Anosov.

Corollary 1.4. If ρ : Γ → SL(d,R) is a Benoist representation and d
2 � k � 2, then ρ is

not Pk-Anosov.

Conversely, we will see that, when d � 4, Benoist representations are characterized, among
Anosov representations, entirely by the cohomological dimension of their domain group. Note
that the Anosov representations of surface groups into SL(3,R) studied by Barbot [5] are
counterexamples to the statement of Theorem 1.5 when d = 3.

Theorem 1.5. If d � 4, an Anosov representation ρ : Γ → SL(d,R) of a torsion-free
hyperbolic group Γ is a Benoist representation if and only if Γ has cohomological dimension
d− 1.

Labourie [39] showed that Hitchin representations are irreducible and Borel Anosov. Andres
Sambarino asked whether any torsion-free Borel Anosov subgroup of SL(d,R) is either free
or a surface group. Theorem 1.1 settles this question in the affirmative when d = 3. Here, we
answer Sambarino’s question when d = 4. Tsouvalas [48] subsequently answered Sambarino’s
questions when d = 4q + 2 for some q ∈ N. We know of no counterexamples in any dimension.

Theorem 1.6. If Γ is a torsion-free hyperbolic group and ρ : Γ → SL(4,R) is Borel Anosov,
then Γ is either a surface group or a free group.

Hitchin representations are the only known Borel Anosov representations of surface groups
when d is even. Hitchin representations are irreducible (see [39, Lemma 10.1]), but whenever
d is odd one may use Barbot’s construction to produce reducible Borel Anosov representations
of surface groups into SL(d,R). In Proposition 7.2, we show that every Borel Anosov
representation of a surface group into SL(4,R) is irreducible. One might hope that all Borel
Anosov representations of surface groups into SL(4,R) are Hitchin. In Proposition 8.1 we show
that the restriction of a Borel Anosov representation to an infinite index surface subgroup
cannot be Hitchin.

We also extend Theorem 1.5 to replace the assumption that ρ is Anosov with the simpler
assumption that ρ admits a non-constant limit map into P(Rd).
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Theorem 1.7. Suppose that d � 4 and Γ is a torsion-free hyperbolic group. A representation
ρ : Γ → SL(d,R) is a Benoist representation if and only if Γ has cohomological dimension d− 1
and there is a ρ-equivariant continuous non-constant map ξ : ∂Γ → P(Rd).

In Section 10 we discuss examples and questions related to our results.

Remark. One can obtain versions of all the results above in the case when Γ has torsion. We
recall that a representation is Pk-Anosov if and only if its restriction to a finite index subgroup
is Pk-Anosov and that finitely generated linear groups have finite index torsion-free subgroups.
It follows that if Γ is not assumed to be torsion-free in the statements of Theorems 1.1 and
1.6, one can still conclude that ρ(Γ) has a finite index subgroup which is a free group or a
surface group, while in Theorem 1.2 one can conclude that ρ(Γ) has a finite index subgroup
isomorphic to a convex cocompact subgroup of PO(3, 1). In Theorem 1.3 one can conclude
that ρ(Γ) has the same bounds on its virtual cohomological dimension, which one obtains on
the cohomological dimension of Γ in the torsion-free setting. If Γ has a finite index torsion-
free subgroup, one gets the same bounds on the virtual cohomological dimension of ρ(Γ). In
Theorems 1.5 and 1.7 one must replace the assumption that Γ has cohomological dimension
d− 1 with the assumption that ρ(Γ) has virtual cohomological dimension d− 1.

2. Background

2.1. Anosov representations

We briefly recall the definition of an Anosov representation and its crucial properties. We first
set some notation. If Γ is a hyperbolic group, we will fix a finite-generating set for Γ and let
|γ| denote the minimal word length of γ and let ||γ|| denote the minimal word length of an
element conjugate to γ (that is, the minimal translation length of the action of γ on Γ). Let
∂Γ denote the Gromov boundary of Γ. If A ∈ GL(d,R), we let

λ1(A) � λ2(A) � · · · � λd(A)

denote the ordered moduli of the eigenvalues of A (with multiplicity).
We will use a recent theorem of Kassel–Potrie [38] (see also [37, Theorem 4.3]) to give a

simple definition of Pk-Anosov representations. If Γ is a hyperbolic group and 1 � k � d
2 , a

representation ρ : Γ → GL(d,R) is said to be Pk-Anosov if there exist constants μ,C > 0 so
that

λk(ρ(γ))
λk+1(ρ(γ))

� Ceμ||γ||

for all γ ∈ Γ. A representation ρ : Γ → SL(d,R) is said to be Anosov if it is Pk-Anosov for
some 1 � k � d

2 and is said to be Borel Anosov if it is Pk-Anosov for every 1 � k � d
2 . It

follows immediately from this definition that Anosov representations have discrete image and
finite kernel. (This definition is based on earlier definitions in terms of singular values due
to Kapovich–Leeb–Porti [36], Guéritaud–Guichard–Kassel–Wienhard [25] and Bochi–Potrie–
Sambarino [14].)

If a representation is P1-Anosov, we call it projective Anosov. Projective Anosov repre-
sentations are in some sense the most general class of Anosov representations. If ρ : Γ → G
is an Anosov representation into any semisimple Lie group, then there exists an irreducible
representation τ : G → SL(d,R) so that τ ◦ ρ is projective Anosov (see [27, Proposition 4.3]).
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If a representation ρ : Γ → GL(d,R) is Pk-Anosov representation, then it admits ρ-equivariant
continuous maps

ξkρ : ∂Γ → Grk(Rd) and ξd−k
ρ : ∂Γ → Grd−k(Rd)

into the Grassmanian of k-planes and (d− k)-planes in R
d. (If d = k

2 , then ξkρ = ξd−k
ρ .) If

γ+ ∈ ∂Γ is the attracting fixed point of γ, then ξkρ (γ+) and ξd−k
ρ (γ+) are the attracting k-planes

and (d− k)-planes for ρ(γ). Moreover, if x, y ∈ ∂Γ are distinct, then

ξkρ (x) ⊂ ξd−k
ρ (x) and ξkρ (x) ⊕ ξd−k

ρ (y) = R
d.

If 1 � j < k � d
2 and ρ is both Pj-Anosov and Pk-Anosov, then

ξjρ(x) ⊂ ξkρ (x) ⊂ ξd−k
ρ (x) ⊂ ξd−j

ρ (x)

for all x ∈ ∂Γ. (See Guichard–Wienhard [27, Section 2] for a careful discussion of limit maps
of Anosov representations.)

If ρ : Γ → SL(d,R) is a Pk-Anosov representation, we may define a sphere bundle

Eρ,k =
⋃

x∈∂Γ

S(ξk(x)) ⊂ S(Rd)

over ∂Γ where if V is subspace of R
d, then S(V ) is the unit sphere of V . The bundle map

pρ,k : Eρ,k → ∂Γ is defined so that pρ,k(S(ξk(x)) = x. Note that pρ,k is well defined, since, by
transversality, S(ξk(x)) is disjoint from S(ξk(y)) if x �= y.

Lemma 2.1. If ρ : Γ → SL(d,R) is a Pk-Anosov representation, then pρ,k : Eρ,k → ∂Γ is a
fiber bundle with fibers homeomorphic to Sk−1. In particular, if ∂Γ has topological dimension
m, then Eρ,k has topological dimension m + k − 1.

Proof. If y �= x, let πx,y : ξk(y) → ξk(x) denote orthogonal projection and note that there
exists an open neighborhood Ux of x in ∂Γ such that if y ∈ Ux, then πx,y is an isomorphism.
Then there is a homeomorphism φx : p−1

ρ,k(Ux) → Ux × S(ξk(x)) where

φx(z) =
(
pρ,k(z),

πx,p(z)(z)
||πx,p(z)(z)||

)
.

Therefore, pρ,k is a fiber bundle with fibers homeomorphic to Sk−1. Since Eρ,k is locally a
topological product of R

k−1 and a compact Hausdorff space ∂Γ of topological dimension m, it
has topological dimension m + k − 1 (see [29]). �

2.2. Semisimple representations

We recall that a representation ρ : Γ → SL(d,R) is said to be semisimple if the Zariski closure
of ρ(Γ) in SL(d,R) is a reductive real algebraic Lie group. Moreover, if ρ is semisimple, there
exists a decomposition R

d = V1 ⊕ · · · ⊕ Vk into irreducible ρ(Γ)-modules.
If ρ is a semisimple projective Anosov representation, then the restriction of ρ to the subspace

spanned by the image of its limit map is irreducible.

Proposition 2.2. If Γ is a non-elementary hyperbolic group and ρ : Γ → SL(d,R) is
a semisimple projective Anosov representation, then the action of ρ(Γ) on the subspace
W ⊂ R

d spanned by ξ1
ρ(∂Γ) is irreducible. Moreover, if ρW : Γ → SL±(W ) is given by

ρW (γ) = |det(ρ(γ)|W )|−1/dim(W )ρ(γ)|W , then ρW is projective Anosov.

Proof. Let R
d = V1 ⊕ · · · ⊕ Vk be the decomposition into irreducible ρ(Γ)-modules. Let γ

be an infinite-order element of Γ. Then, since ρ is projective Anosov, ρ(γ) is proximal and
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ξ1
ρ(γ

+) is the attracting eigenline of ρ(γ). Since ξ1
ρ(γ

+) is an attracting eigenline, it must be
contained in one of the Vi, so we may assume ξ1

ρ(γ
+) ⊂ V1. Since V1 is ρ(Γ)-invariant, we have

that ξ1
ρ(α(γ+)) = ρ(α)(ξ1

ρ(γ
+)) ⊂ V1 for all α ∈ Γ. Moreover, since the orbit of γ+ is dense in

∂Γ, we conclude that 〈ξ(∂∞Γ)〉 is a ρ(Γ)-invariant vector subspace of V1. The restriction of ρ
to V1 is irreducible, so it follows that 〈ξ1

ρ(∂Γ)〉 = V1.
Note that ρW is projective Anosov, since ρ is projective Anosov and

λ1(ρ(γ)|W ) = |det(ρ(γ)|W )|−1/dim(W )λ1(ρ(γ)) and

λ2(ρ(γ)|W ) � |det(ρ(γ)|W )|−1/dim(W )λ2(ρ(γ))

for all γ ∈ Γ. �

Benoist [6] used work of Abels–Margulis–Soifer [1] to establish the following useful relation-
ship between eigenvalues and singular values for semisimple representation (see [25, Theorem
4.12] for a proof).

Theorem 2.3. If Γ is a finitely generated group and ρ : Γ → SL(d,R) is semisimple, then
there exists a finite subset A of Γ and M > 0 so that if γ ∈ Γ, then there exists α ∈ A so that

| log λi(ρ(γα)) − log σi(ρ(γ))| � M

for all i, where σi(ρ(γ)) is the ith singular value of ρ(γ).

Gueritaud, Guichard, Kassel, and Wienhard [25, Section 2.5.4] observe that given any
representation ρ : Γ → SL(d,R), one may define a semisimplification ρss : Γ → SL(d,R). They
further show that the Jordan projections agree, so ρ and ρss share the same Anosov qualities.

Lemma 2.4 [25, Proposition 2.39, Lemma 2.40]. If ρ : Γ → SL(d,R) is a representation of a
hyperbolic group and ρss is a semisimplification of ρ, then λi(ρss(γ)) = λi(ρ(γ)) for all i and
all γ ∈ Γ. In particular, ρ is Pk-Anosov if and only if ρss is Pk-Anosov.

Proposition 2.2 and Lemma 2.4 have the following useful corollary.

Corollary 2.5. If ρ : Γ → SL(d,R) is a reducible projective Anosov representation and ρss

is its semisimplification, then the action of ρss(Γ) on the proper subspace W of R
d spanned by

ξ1
ρss(∂Γ) is irreducible. Moreover, ρssW is projective Anosov.

2.3. Convex cocompactness

Danciger–Guéritaud–Kassel [19, 20] and Zimmer [51] have recently shown that many
projective Anosov representations can be understood as convex cocompact actions on properly
convex domains in projective space. We recall that a domain Ω ⊂ P(Rd) is said to be properly
convex if it is a bounded subset of an affine chart A = P(Rd − V ) where V is a (d− 1)-plane
in R

d and Ω is convex in A. The domain Ω is strictly convex if it is a bounded, strictly
convex subset of some affine chart. We say that ρ(Γ) is a convex cocompact subgroup of
Aut(Ω) if ρ(Γ) preserves Ω and there is a closed convex ρ(Γ)-invariant subset C of Ω so
that C/ρ(Γ) is compact. See [20] or [51] for details. (We note that in [20], they require
convex cocompact groups to act cocompactly on the convex hull of the full orbital limit
set in Ω and refer to groups which merely act cocompactly on some convex subset of Ω as
naively convex cocompact. In the setting of projective Anosov groups, the two definitions are
equivalent.)
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Theorem 2.6 (Zimmer [51, Theorem 1.25]). Suppose that Γ is a torsion-free hyperbolic
group with connected boundary ∂Γ which is not a surface group and ρ : Γ → SL(d,R) is
an irreducible projective Anosov representation. Then there exists a properly convex domain
Ω ⊂ P(Rd) so that ρ(Γ) is a convex cocompact subgroup of Aut(Ω).

We recall that a hyperbolic group has connected boundary if and only if it is one-ended.
Danciger, Gueritaud, and Kassel [20] describe the maximal domain that a convex cocompact

group acts on.

Proposition 2.7 [20, Proposition 8.1; 51, Theorem 1.27]. Suppose ρ : Γ → SL(d,R) is an
irreducible projective Anosov representation and ρ(Γ) preserves a properly convex open subset
of P(Rd). Then ρ(Γ) acts convex cocompactly on

Ωmax = P(Rd) −
⋃

x∈∂Γ

P(ξd−1
ρ (x))

and ξ1
ρ(∂Γ) ⊂ ∂Ωmax.

We will also need the following result which is implicit in Zimmer’s work [51].

Proposition 2.8. Suppose that Γ is a hyperbolic group with connected boundary ∂Γ,
ρ : Γ → SL(d,R) is a representation, and ξ : ∂Γ → P(Rd) is a ρ-equivariant continuous map.
If ξ(∂Γ) spans R

d and lies inside an affine chart, then there exists a properly convex domain
Ω ⊂ P(Rd) so that ρ(Γ) preserves Ω.

Proof. By assumption S = ξ(∂Γ) is a connected, compact subset of an affine chart
A ⊂ P(Rd). We may assume that

A =
{
[x1 : · · · : xd]

∣∣ x1 �= 0
}
,

so every point in A has a unique representative of the form [1 : u] where u ∈ {0} × R
d−1. Then

CH(S) =

{
[1 : u]

∣∣∣ u =
d∑

i=1

tiui,

d∑
i=1

ti = 1, ti � 0 and [1 : ui] ∈ S for all i

}

is the convex hull of S in the affine chart A. Since S spans R
d, CH(S) has non-empty interior.

It only remains to show that CH(S) is Γ-invariant. Suppose γ ∈ ρ(Γ). If [1 : u] ∈ S, then
γ([1 : u]) = [γ(e1) + γ(u)] ∈ S ⊂ A, so

〈γ(e1) + γ(u), e1〉 �= 0.

Since S is connected, 〈γ(e1) + γ(u), e1〉 always has the same sign if [1 : u] ∈ S. If

x = [1 : u] =

[
d∑

i=1

ti :
d∑

i=1

tiui

]
∈ CH(S),

let

Bi(x) = 〈γ(e1) + γ(ui), e1〉 and B(x) =
d∑

i=1

tiBi(x),
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so

γ(x) =

[
B(x) :

d∑
i=1

ti(γ(ui) + γ(e1) −Bi(x)e1)

]

=

[
1 :

d∑
i=1

tiBi(x)
B(x)

(
1

Bi(x)
(γ(ui) + γ(e1) −Bi(x)e1)

)]

=

[
d∑

i=1

si :
d∑

i=1

si
γ(ei) + γ(ui) −Bi(x)e1

Bi(x)

]
=

[
d∑

i=1

siγ(1 : ui)

]
,

where

si =
tiBi(x)
B(x)

.

Note that si � 0 for all i, since ti � 0 and Bi(x) and B(x) have the same sign. Therefore,
γ(x) ∈ CH(S), so CH(S) is Γ-invariant as required. �

We combine Propositions 2.8 and 2.7 to show that an irreducible projective Anosov surface
group whose limit set lies in an affine chart preserves a properly convex domain of the form
given by Proposition 2.7.

Corollary 2.9. Suppose that Γ is a surface group and ρ : Γ → SL(d,R) is a projective
Anosov representation. If ξ1

ρ(∂Γ) spans R
d and lies inside an affine chart for R

d, then ρ(Γ) acts
convex cocompactly on the properly convex domain

Ω = P(Rd) −
⋃

x∈∂Γ

P(ξd−1
ρ (x))

and ξ1
ρ(∂Γ) ⊂ ∂Ω.

3. Anosov representations into SL(3,R)

We first characterize Anosov representations into SL(3,R).

Theorem 1.1. If Γ is a torsion-free hyperbolic group and ρ : Γ → SL(3,R) is an Anosov
representation, then Γ is either a free group or a surface group.

Proof. Note that an Anosov representation into SL(3,R) is, by definition, projective Anosov.
If Γ is not free or a surface group, let Γ = Γ1 ∗ · · · ∗ Γr ∗ Fs be the free product decomposition
of Γ where each Γi is one-ended, r � 1, and s � 0. Recall that Γ1 is quasiconvex in Γ (see [15,
Proposition 1.2]), so ρ|Γ1 is projective Anosov [17, Lemma 2.3].

If ρ|Γ1 is reducible, then Corollary 2.5 implies that there exists a projective Anosov
representation of Γ1 into SL±(W ) where W is a proper subspace of R

3. However, every torsion-
free discrete subgroup of SL±(W ) is either a free group or a surface group if W is one or
two dimensional.

If ρ|Γ1 is irreducible and Γ1 is not a surface group, then Theorem 2.6 implies that ρ(Γ) acts
convex cocompactly on a properly convex domain Ω ⊂ P(R3), but then Γ is isomorphic to the
fundamental group of the surface Ω/ρ(Γ) which is a contradiction. We conclude that Γ1 is a
surface group.

Suppose that Γ1 has infinite index in Γ (that is, suppose that there is more than one factor).
Then ∂Γ1 is a proper subset of ∂Γ. Let z ∈ ∂Γ − ∂Γ1. Note that ξρ(∂Γ1) is a compact subset
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of the affine chart P(R3 − ξ2
ρ(z)). Since ξ1

ρ(∂Γ1) is an embedded circle in A, ξ1
ρ(∂Γ1) must

span R
3 (otherwise, ξ1

ρ(∂Γ) would be contained in the intersection of a projective line with A).
Corollary 2.9 then implies that ρ(Γ1) acts cocompactly on

Ω = P(R3) −
⋃

x∈∂Γ1

P(ξ2
ρ(x))

and that ∂Ω = ξ1
ρ(∂Γ1). In particular, either ξ1

ρ(z) is contained in ξ2
ρ(x) for some x ∈ ∂Γ1,

which violates transversality, or ξ1
ρ(z) is contained in Ω which would imply that ξ2

ρ(z) must
intersect ∂Ω = ξ1

ρ(∂Γ1), which again violates transversality. This final contradiction completes
the proof. �

4. Projective Anosov representations into SL(4,R)

The inclusion of any convex cocompact subgroup of SO0(3, 1) into SL(4,R) is a projective
Anosov representation (see [27, Section 6.1]). We use work of Danciger–Guérituad–Kassel [20]
and Zimmer [51] and the Geometrization Theorem to show that these are the only groups
admitting projective Anosov representations into SL(4,R).

Theorem 1.2. If Γ is a torsion-free hyperbolic group and ρ : Γ → SL(4,R) is a projective
Anosov representation, then Γ is isomorphic to a convex cocompact subgroup of PO(3, 1).

Proof of Theorem 1.2. We decompose Γ = Γ1 ∗ · · · ∗ Γp ∗ Fr where each Γi is one-ended.
Note that Fr is the fundamental group of a handlebody of genus r, which is a compact
irreducible 3-manifold with non-empty boundary. If Γi is a surface group, then it is the
fundamental group of an interval bundle Mi, so Mi is irreducible and has non-empty boundary.

Now suppose that Γi is not a surface group. Since Γi is a quasiconvex subgroup of Γ (see [15,
Proposition 1.2]), ρi = ρ|Γi

is also projective Anosov (see [17, Lemma 2.3]). If ρi is reducible,
then Corollary 2.5 gives a proper subspace W of R

4 and an irreducible projective Anosov
representation

ρ̂i = (ρi)ssW : Γi → SL±(W ).

If W is one-dimensional, then Γi is not one-ended. If W is two-dimensional, then ρ̂i is a
Fuchsian representation, so Γi is either a free group or a surface group, both of which have
been disallowed. If W is three-dimensional, then Theorem 1.1 again implies that Γi is either a
free group or a surface group, which is impossible. Therefore, ρi is irreducible.

Since ρi is irreducible and Γi is one-ended and not a surface group, Theorem 2.7 implies that
ρ(Γi) acts convex cocompactly on a properly convex domain

Ωi = P

(
R

4 −
⋃

x∈∂Γi

ξ3
ρ(x)

)
⊂ P(R4).

In particular, Γi is the fundamental group of an irreducible 3-manifold Ni = Ωi/Γi.
If Ni is a closed 3-manifold, then ρi is a Benoist representation. If Γ �= Γi, then there exists

z ∈ ∂Γ − ∂Γi. By transversality, ξ1
ρ(z) cannot lie in P(R4) − Ωi. On the other hand, if z ∈ Ωi,

then ξ3
ρ(z) intersects ∂Ωi = ξ1

ρ(∂Γi), which also violates transversality. Therefore, if Ni is closed,
Γ = Γi, ρ is a Benoist representation, and the Geometrization Theorem [43] implies that Γ is
isomorphic to a convex cocompact subgroup of PO(3, 1)).

If Ni is not a closed 3-manifold, then the Scott core theorem [46] implies that Ni contains
a compact, irreducible submanifold Mi with non-empty boundary and fundamental group Γi.

Therefore, if ρ is not a Benoist representation, Γ is the fundamental group of the boundary
connected sum M of the Mi and a handlebody of genus r. Since M is irreducible, π1(M) is
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word hyperbolic, torsion-free, and infinite, and M has non-empty boundary, it follows from
Thurston’s original Geometrization Theorem (see Morgan [42]) that the interior of M admits
a convex cocompact hyperbolic structure, so Γ is isomorphic to a convex cocompact subgroup
of PO(3, 1). �

5. Cohomological restrictions on Pk-Anosov representations

In this section, we place cohomological restrictions on Pk-Anosov subgroups of SL(d,R). Benoist
[9, Proposition 1.3] previously proved that a discrete hyperbolic subgroup of SL(d,R) consisting
entirely of positively semi-proximal elements has virtual cohomological dimension at most
d− 1, with equality if and only if the inclusion map is a Benoist representation. Guichard
and Wienhard [27, Proposition 8.3] obtained bounds on cohomological dimension for various
classes of Anosov representations into specified Lie subgroups of SL(d,R).

Theorem 1.3. Suppose Γ is a torsion-free hyperbolic group and ρ : Γ → SL(d,R) is
Pk-Anosov.

(1) If (d, k) is not (2,1), (4,2), (8,4), or (16,8), then Γ has cohomological dimension at most
d− k.

(2) If (d, k) is (2,1), (4,2), (8,4), or (16,8), then Γ has virtual cohomological dimension at
most d− k + 1. Moreover, if Γ has cohomological dimension d− k + 1 and (d, k) is (4,2), (8,4),
or (16,8), then ∂Γ is homeomorphic to Sd−k and ρ is not projective Anosov.

Proof of Theorem 1.3. If d = 2, then k = 1 and ρ : Γ → SL(2,R) is Fuchsian, so either Γ has
cohomological dimension d− k = 1 (if Γ is free) or 2 (if Γ is a surface group), which corresponds
to the first exceptional case in item (2). Theorem 1.1 handles the case where d = 3.

Now suppose d
2 � k � 1 and d > 3. Let m be the topological dimension of ∂Γ. Fix x0 ∈ ∂Γ

and a (d− k + 1)-plane V in R
d which contains ξd−k(x0). We define a map

F : ∂Γ − {x0} → P(V − ξk(x0))

by letting F (y) be the line which is the intersection of ξk(y) with V . (Transversality implies
that the intersection of ξk(y) and ξd−k(x0) is trivial if y �= x0, so the intersection of ξk(y) with
V must be a line.)

One sees that F is injective, since if x �= y ∈ ∂Γ, then ξk(x) and ξk(y) have trivial intersection
(by transversality). Moreover, F is proper, since if {yn} is a sequence in ∂Γ − {x0} converging
to x0, then, by continuity of limit maps, {ξkρ (yn)} is converging to ξkρ (x0), so {F (yn)} leaves
every compact subset of P(V − ξk(x0)). Therefore, F is an embedding. Since ∂Γ − {x0} embeds
in a (d− k)-manifold, ∂Γ has topological dimension at most d− k (see [30, Theorem III.1]).

Now suppose that ∂Γ has topological dimension exactly d− k. Then, F (∂Γ) contains an
open subset of P(V ) (see [30, Theorem IV.3/Corollary 1]). So, since ∂Γ has a manifold point,
∂Γ is homeomorphic to Sd−k, by Kapovich–Benakli [34, Theorem 4.4]. Let p : E → ∂Γ be the
fiber bundle provided by Lemma 2.1, where

E =
⋃

x∈∂Γ

S(ξk(x)) ⊂ S(Rd).

Then E has topological dimension (d− k) + k − 1 = d− 1. Since ∂Γ is homeomorphic to Sd−k,
E is a closed submanifold of S(Rd) ∼= Sd−1 of dimension d− 1, which implies E = S(Rd).
However, by the classification of sphere fibrations ([3]), this is only possible if (d− 1, k − 1)
is (3,1), (7,3), or (15,7). Moreover, in these cases, ρ cannot be projective Anosov, since if ρ
is projective Anosov, ξ1

ρ : ∂Γ → P(R2k) lifts to a section s : ∂Γ → E of p, which is impossible
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(since p ◦ s = id, p∗ ◦ s∗ is the identity map on Hd−k(Sd−k) ∼= Z, while, p∗ is the zero map on
Hd−k(E).)

If ∂Γ has topological dimension at most d− k − 1, then, by Bestvina–Mess [12, Corollary
1.4], Γ has cohomological dimension at most d− k. If ∂Γ has topological dimension d− k, then
Γ has cohomological dimension d− k + 1, again by [12, Corollary 1.4], and, by the previous
paragraph, (d, k) is (2,1), (4,2), (8,4), or (16,8), ∂Γ ∼= Sd−k, and ρ is not projective Anosov if
(d, k) is (4,2), (8,4), or (16,8). �

6. Benoist representations

The prototypical example of a Benoist representation is the inclusion of a cocompact discrete
subgroup of SO0(n, 1) into SL(n + 1,R). The image acts convex cocompactly on a round disk
in P(Rn+1) which is the Beltrami–Klein model for H

n. Johnson and Millson [31] showed
that although the inclusion map is rigid in SO0(n, 1) if n � 3, it often admits non-trivial
deformations in SL(n + 1,R). Benoist [7–9] showed that these deformations are always Benoist
representations and developed an extensive theory of groups of projective automorphisms
preserving properly convex subsets of P(Rd).

If ρ is a Benoist representation, then ρ(Γ) has virtual cohomological dimension d− 1, so,
Theorem 1.3 immediately implies that Benoist representations are only projective Anosov.

Corollary 1.4. If ρ : Γ → SL(d,R) is a Benoist representation, and k is an integer such
that d

2 � k � 2, then ρ is not Pk-Anosov.

We characterize Benoist representations in terms of the cohomological dimension of their
domain groups.

Theorem 1.5. If d � 4, an Anosov representation ρ : Γ → SL(d,R) of a torsion-free
hyperbolic group Γ is a Benoist representation if and only if Γ has cohomological dimension
d− 1.

Proof of Theorem 1.5. It is immediate from the definition that if Γ is torsion-free and
ρ : Γ → SL(d,R) is a Benoist representation, then Γ has cohomological dimension d− 1.

Now suppose that Γ is a torsion-free hyperbolic group of cohomological dimension d− 1
and ρ : Γ → SL(d,R) is an Anosov representation. Note that, by Theorem 1.3, ρ cannot be
Pk-Anosov for any k � 2, so ρ must be projective Anosov.

There exists a free decomposition Γ = Γ1 ∗ · · · ∗ Γs ∗ Fr, where each Γi is one-ended. Since
the cohomological dimension of Γ is the maximum of the cohomological dimensions of its
one-ended factors, we may assume that Γ1 has cohomological dimension d− 1. Since Γ1 is a
quasiconvex subgroup of Γ (see [15, Proposition 1.2]), the restriction ρ1 = ρ|Γ1 of ρ to Γ1 is
projective Anosov [17, Lemma 2.3]. Moreover, ξ1

ρ1
is the restriction of ξ1

ρ to ∂Γ1 ⊂ ∂Γ.
We first claim that ρ1 is irreducible. If not, Corollary 2.5 provides a proper ρss(Γ1)-invariant

subspace W of R
d and an irreducible projective Anosov representation (ρ1)ssW : Γ → SL±(W ).

However, Theorem 1.3 would then imply that Γ has cohomological dimension at most
dim(W ) − 1 � d− 2, which would be a contradiction.

Since ρ1 is irreducible and Γ is one-ended and not a surface group, Theorem 2.6 implies that
there exists a properly convex open domain Ω ⊂ P(Rd) preserved by ρ(Γ1). Proposition 2.7
implies that we may assume that Ω has the form

Ω = P(Rd) −
⋃

x∈∂Γ1

P(ξd−1
ρ (x)).
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Since Ω/ρ(Γ1) is an aspherical (d− 1)-manifold and Γ1 has cohomological dimension d− 1,
Ω/ρ(Γ1) must be a closed manifold. Therefore, by Benoist [8, Theorem 1.1], Ω is strictly
convex, so ρ1 is a Benoist representation.

If there existed another one-ended or free factor in the free decomposition of Γ, then there
would exist an infinite-order element t in the other factor. In particular, t+ does not lie in
∂Γ1. Since, by transversality, ξ1

ρ(t
+) cannot intersect ξd−1

ρ (x) for any x in ∂Γ1, ξ1
ρ(t

+) must
lie in Ω. However, if ξ1

ρ(t
+) ∈ Ω, then the hyperplane ξd−1

ρ (t+) must intersect the boundary
∂Ω, which again violates transversality of the limit maps. Therefore, Γ = Γ1 and ρ is a Benoist
representation. �

7. Borel Anosov representations

The only known examples of Borel Anosov representations into SL(d,R) have domain groups
which contain finite index subgroups which are either free or surface groups. Andres Sambarino
asked whether this is always the case.

Sambarino’s Question. If a torsion-free hyperbolic group admits a Borel Anosov
representation into SL(d,R), must it be either a free group or a surface group?

We do know, by Theorem 1.3, that Borel Anosov representations must have ‘small’
cohomological dimension.

Corollary 7.1. Suppose that Γ is a torsion-free hyperbolic group, d � 3 and
ρ : Γ → SL(d,R) is Borel Anosov.

(1) If d is odd, then Γ has cohomological dimension at most d+1
2 .

(2) If d is even, then Γ has cohomological dimension at most d
2 .

Theorem 1.1 answers the question in the positive when d = 3. In this section, we handle the
case when d = 4. We first observe that every Borel Anosov representation of a surface group
into SL(d,R) is irreducible.

Proposition 7.2. If Γ is a surface group and ρ : Γ → SL(4,R) is Borel Anosov, then ρ
is irreducible.

Proof. Suppose not. Then we may assume that ρ is a reducible, semisimple, Borel Anosov,
representation, since the semisimplification of ρ remains reducible and Borel Anosov. Let
W be the subspace spanned by ξ1

ρ(∂Γ). Then the restriction of ρ to W is irreducible, by
Proposition 2.2. Let V be the complementary subspace of R

4 which is also preserved by ρ(Γ).
The subspace W cannot be one-dimensional, since ξρ is injective.
If W is three-dimensional, then V is an eigenline of each ρ(γ) so, for all γ, V lies in either

ξ2
ρ(γ

+) or in ξ2
ρ((γ

−1)+). However, this is impossible since ξ2
ρ(α

+) and ξ2
ρ(β

+) are transverse
for all α and β in distinct maximal cyclic subgroups.

If W is two-dimensional, then we may pass to a subgroup of index at most 4, still called Γ,
so that ρ(γ)|V and ρ(γ)|W both have positive determinant for all γ ∈ Γ. Let

a(γ) =
√

det(ρ(γ)|W )

for all γ ∈ Γ and define ρ1 : Γ → SL(W ) by ρ1(γ) = a(γ)−1ρ(γ)|W and ρ2 : Γ → SL(V ) by
ρ2(γ) = a(γ)ρ(γ)|V . Since

λ1(ρ1(γ))
λ2(ρ1(γ))

=
λ1(ρ(γ))
λ4(ρ(γ))

and
λ1(ρ2(γ))
λ2(ρ2(γ))

=
λ2(ρ(γ))
λ3(ρ(γ))

for all γ ∈ Γ and ρ is Borel Anosov, we see that ρ1 and ρ2 are Fuchsian.
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Since ρ is projective Anosov, there exists s > 0 so that

λ1(ρ(γ)) > es||γ||λ2(ρ(γ)),

where ||γ|| is the cyclically reduced word length of γ. Observe that

λ1(ρ(γ)) = a(γ)λ1(ρ1(γ)) and λ2(ρ(γ)) = a(γ)−1λ1(ρ2(γ))

for all γ ∈ Γ, so

λ1(ρ1(γ)) > es||γ||a(γ)−2λ2(ρ(γ)).

Now, since λ1(ρi(γ−1)) = λ1(ρi(γ)) and a(γ−1) = a(γ)−1, we see that

λ1(ρ1(γ)) > es||γ||λ2(ρ(γ))

for all γ ∈ Γ. However, this is impossible, since

h(ρi) = lim
1
T

log #{[γ] ∈ [Γ] | 2 log λ1(ρi(γ)) � T} = 1

for both i = 1, 2 (see [44]). �

We are now ready to answer Sambarino’s question when d = 4.

Theorem 1.6. If Γ is a torsion-free hyperbolic group and ρ : Γ → SL(4,R) is Borel Anosov,
then Γ is either a surface group or a free group.

Proof of Theorem 1.6. By Theorem 1.2, we know that Γ is isomorphic to a convex cocompact
subgroup Δ of PO(3, 1). Moreover, by Theorem 1.3, Γ has cohomological dimension at most
2, so Δ is not cocompact. Therefore, if Γ is not free or a surface group, Γ contains infinitely
many quasiconvex surface subgroups with mutually disjoint boundaries in ∂Γ (see [2]).

Let H and J be quasiconvex surface subgroups of Γ so that ∂H and ∂J are disjoint in ∂Γ.
Choose z ∈ ∂Γ − (∂J ∪ ∂H). By transversality, both ξ1

ρ(∂H) and ξ1
ρ(∂J) are disjoint from the

projective plane P(ξ3
ρ(z)), so are contained in the affine chart A = P(R4 − ξ3

ρ(z)).
Since ρ|H is irreducible, by Proposition 7.2, Corollary 2.9 implies

ΩH = P

(
R

4 −
⋃

x∈∂H

ξ3
ρ(x)

)

is a properly convex domain which is ρ(H)-invariant and ξ1
ρ(∂H) ⊂ ∂ΩH . Let

TH = P

( ⋃
x∈∂H

ξ2
ρ(x)

)
.

By transversality, TH is a disjoint union of projective lines, so it is a S1-bundle over the circle
∂H. It follows that TH is a Klein bottle or a torus. Since the Klein bottle does not embed in
P(R4) (see [16]), TH is a torus. Note that TH separates since H2(P(R4)) = 0.

If x ∈ ∂H, the projective line P(ξ2
ρ(x)) intersects the projective plane P(ξ3

ρ(z)) in exactly one
point, so CH = TH ∩ P(ξ3

ρ(z)) is a simple closed curve. Since, by transversality, CH is disjoint
from the projective line P(ξ2

ρ(z)) in P(ξ3
ρ(z)), CH bounds a disk DH in the disk P(ξ3

ρ(z)) \
P(ξ2

ρ(z)). Note that DH is unique, since the other component of P(ξ3
ρ(z)) − CH is an open

Möbius band.
The boundary of the regular neighborhood of DH ∪ TH has a spherical component SH

contained in A, which bounds a ball BH in A, since A is irreducible. Therefore, TH bounds an
open solid torus VH which contains BH and intersects P(ξ3

ρ(z)) exactly in DH . Since ξ1
ρ(∂H)

is homotopic to CH , it also bounds a disk in VH . However, since ξ1
ρ(∂H) is homotopically
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non-trivial in TH , it cannot also bound a disk in P(R4) − VH . (If it bounds a disk both in VH

and in its complement, then the sphere SH made from the two disks intersects each projective
line in TH exactly once, which contradicts the fact that every sphere in P(R4) bounds a ball.)

Since ΩH is disjoint from TH and ξ1
ρ(∂H) bounds a disk in ΩH , we must have ΩH contained

in VH .
Now consider the torus

TJ = P

( ⋃
x∈∂J

ξ2
ρ(x)

)
,

simple closed curve CJ = TJ ∩ P(ξ3
ρ(z)), disk DJ ⊂ P(ξ3

ρ(z)) bounded by CJ , and open solid
torus VJ bounded by TJ so that

ΩJ = P

(
R

4 −
⋃

x∈∂J

ξ3
ρ(x)

)

and DJ are both contained in VJ .
Since ξ1

ρ(∂J) ⊂ ΩH ⊂ VH and TJ is disjoint from TH = ∂VH , by transversality, TJ is
contained in int(VH). Therefore, CJ is contained in DH which implies that DJ is contained in
DH . So the regular neighborhood of DJ ∪ TJ can be taken to have a spherical component SJ

contained in BH , so SJ bounds a ball BJ contained in BH . Putting this all together, we see
that VJ must be contained in VH . Therefore, ξ1

ρ(∂H) is contained in the complement of VJ and
hence in the complement of ΩJ . It follows that

ξ1
ρ(∂H) ⊂

⋃
x∈∂J

P(ξ3
ρ(x))

which contradicts transversality. Therefore, Γ is either a surface group or a free group. �

8. Hyperconvexity

Labourie [39] introduced the theory of Anosov representations in his study of Hitchin
representations. Recall that a representation is d-Fuchsian if it is the composition of a Fuchsian
representation of a surface group into SL(2,R) with an irreducible representation of SL(2,R)
into SL(d,R). Hitchin representations [28] are representations of a surface group into SL(d,R)
which can be continuously deformed to a d-Fuchsian representation. Labourie showed that
Hitchin representations are irreducible and Borel Anosov.

Labourie [39] and Guichard [26] proved that a representation ρ : π1(S) → SL(d,R) is Hitchin
if and only if there exists a hyperconvex limit map, that is, a ρ-equivariant map ξ1

ρ : ∂π1(S) →
P(Rd) so that if {x1, . . . , xd} are distinct points in ∂Γ, then ξ1

ρ(x1) ⊕ · · · ⊕ ξ1
ρ(xd) = R

d.
Labourie further shows that if ρ is Hitchin, n1, . . . , nk ∈ N, n1 + · · · + nk = d and {x1, . . . , xk}
are distinct points in ∂π1(S), then ξn1

ρ (x1) ⊕ · · · ⊕ ξnk
ρ (xk) = R

d and that if {(yn, zn)} is a
sequence in ∂Γ × ∂Γ, with yn �= zn for all n, converging to (x, x), and p, q, r ∈ {1, . . . , d− 1}
with p + q = r, then {ξpρ(yn) ⊕ ξqρ(zn)} converges to ξrρ(x).

We use these hyperconvexity properties to show that Hitchin representations cannot be
extended to representations of larger groups which are P1-Anosov and P2-Anosov. We consider
this to be more evidence for a positive answer to Sambarino’s question.

Proposition 8.1. Suppose Γ contains a surface subgroup Γ0, ρ : Γ → SL(d,R) is projective
Anosov and ρ|Γ0 is Hitchin.

(1) If d is even, then Γ0 has finite index in Γ.
(2) If d is odd, and ρ is also P2-Anosov, then Γ0 has finite index in Γ.
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Proof. Suppose that Γ0 has infinite index in Γ. Since ρ|Γ0 is projective Anosov, Γ0 is
quasiconvex in Γ (see [17, Lemma 2.3]), so ∂Γ0 embeds in ∂Γ. Choose z ∈ ∂Γ − ∂Γ0 and let A
be the affine chart P(Rd − ξd−1

ρ (z)). By transversality, ξ1
ρ(∂Γ0) ⊂ A.

If d is even, we have obtained a contradiction to Lemma 12.3 in Danciger–Guéritaud–Kassel
[20], which asserts that if ρ|Γ0 is a Hitchin representation, then ξ1

ρ(∂Γ0) cannot lie in any
affine chart.

Now suppose that d is odd, and that ρ is P2-Anosov. There exists a continuous map
h : D2 → A and a homeomorphism g : ∂Γ0 → S1 so that ξ1

ρ|∂Γ0 = h ◦ g. Let V = ξd−2
ρ (z)⊥ and

define the continuous map

F : D2 → P(V ) ∼= S1

by letting

F (x) =
[(
h(x) ⊕ ξd−2

ρ (z)
) ∩ V

]
.

We now claim that F |∂Γ0 is locally injective. If not there exist sequences {xn} and {yn} in
∂Γ0 so that xn �= yn (for any n), limxn = q = lim yn, and F (xn) = F (yn) for all n. Since ρ|Γ0

is Hitchin, the sequence {ξ1
ρ(xn) ⊕ ξ1

ρ(yn)} converges to ξ2
ρ(q). So, for all n, we may choose

vectors un, vn, and wn in ξ1
ρ(xn), ξ1

ρ(yn), and ξd−2
ρ (z) so that un + vn = wn and wn is unit

length. Up to subsequence, {wn} converges to a unit vector w, but then w ∈ ξ2
ρ(q), since

wn ∈ ξ1
ρ(xn) ⊕ ξ1

ρ(yn) for all n, and w ∈ ξd−2
ρ (z), since wn ∈ ξd−2

ρ (z) for all n. However, this
violates transversality, since q �= z. Therefore, F |∂Γ0 is a covering map, which is impossible
since (F |∂Γ0)∗ is trivial on π1. We have obtained contradictions when d is either even or odd,
which completes the proof. �

Pozzetti, Sambarino, and Wienhard [45] recently introduced the notion of (p, q, r)-
hyperconvex representations which share specific transversality properties with Hitchin
representations. A representation ρ : Γ → SL(d,R) is said to be (p, q, r)-hyperconvex, where
p + q � r, if ρ is Pp, Pq, and Pr (or Pd−r)-Anosov and whenever x, y, z ∈ ∂Γ are distinct,(

ξpρ(x) ⊕ ξqρ(y)
) ∩ ξd−r(z) = {0}.

One may view the following as a generalization of Corollary 6.6 of Pozzetti–Sambarino–
Wienhard [45] which asserts that if ρ : Γ → SL(d,R) is (1, 1, r)-hyperconvex and x0 ∈ ∂Γ,
then there is a continuous injection of ∂Γ − {x0} into P(Rr), see also Lemma 4.10 in Zhang–
Zimmer [50]. (Pozzetti, Sambarino, and Wienhard’s result [45, Corollary 6.6] also applies to
representations into SL(d,K) where K is any local field.)

Proposition 8.2. Suppose that Γ is a torsion-free hyperbolic group and ρ : Γ → SL(d,R)
is Pp-Anosov. If there exists a (d− r)-plane V such that

V ∩ (ξp(x) ⊕ ξp(y)) = {0}
if x, y ∈ ∂Γ, then Γ has cohomological dimension at most r − p + 1. If Γ has cohomological
dimension r − p + 1, then ∂Γ ∼= Sr−p and (r − p, p) is either (1,1), (2,2), (4,4), or (8,8).

Moreover, if ρ is (p, p, r)-hyperconvex, then Γ has cohomological dimension at most r − p + 1
and if Γ has cohomological dimension r − p + 1, then ∂Γ ∼= Sr−p.

Note that if p � q, then (p, q, r)-hyperconvex representations are (p, p, r)-hyperconvex, so
we may conclude that if ρ : Γ → SL(d,R) is (p, q, r)-hyperconvex, then Γ has cohomological
dimension at most r + 1 − min{p, q}. Pozzetti, Sambarino, and Wienhard [45, Corollary
7.6] observe that if k � 2 and ρ : Γ → PO(d, 1), then the kth symmetric power Skρ : Γ →
PGL(Sk(Rd+1)) is (1, 1, d)-hyperconvex, so one obtains no additional topological restrictions in
the case where ρ is (1, 1, d)-hyperconvex and Γ has maximal cohomological dimension d.
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Proof. Let p : E → ∂Γ be the fiber bundle provided by Lemma 2.1 where

E =
⋃

x∈∂Γ

S(ξpρ(x)) ⊂ S(Rd).

If ∂Γ has topological dimension m, then E has topological dimension m + p− 1.
Let π : R

d → V be orthogonal projection (with respect to some fixed background metric on
R

d). Let

f : R
d − V → S(V ⊥) ∼= Sr−1

be the continuous map given by

f(u) =
u− π(u)

||u− π(u)|| .

Note that if f(u) = f(v), then ||u− π(u)||u− ||v − π(v)||v ∈ V . Suppose u ∈ S(ξpρ(x)) and
v ∈ S(ξpρ(y)) and f(u) = f(v), then since (ξpρ(x) ⊕ ξpρ(y)) ∩ V = {0}, it must be the case that
u = v and, since ξpρ(x) ∩ ξpρ(y) = {0} if x �= y, it must be the case that x = y. Therefore, the
restriction f |E of f to E is injective and hence a topological embedding. It follows, since E
has topological dimension m + p− 1, that m + p− 1 � r − 1, so m � r − p, which implies, by
[12, Corollary 1.4], that Γ has cohomological dimension at most r − p + 1.

Suppose m = r − p. We first show that ∂Γ ∼= Sm = Sr−p. Fix x0 ∈ ∂Γ. Choose a (r − p)-
dimensional subspace W1 ⊂ R

d so that ξpρ(x0) ⊕W1 ⊕ V = R
d. Pick a line L ⊂ ξpρ(x0) and let

W = W1 ⊕ L. There exists a neighborhood U of x0 in ∂Γ so that (ξpρ(x) ⊕ V ) ∩W is a line if
x ∈ U . Consider the continuous map F : U → P(W ) given by

F (x) =
[(
ξpρ(x) ⊕ V

) ∩W
]
.

We argue as above to show that F is injective. If F (x1) = [u1 + v1] and F (x2) = [u2 + v2],
where ui ∈ ξpρ(xi) and vi ∈ V , and F (x1) = F (x2), we may assume that u1 + v1 = u2 + v2, so
u1 − u2 = v2 − v1 ∈ (ξpρ(x1) ⊕ ξpρ(x2)) ∩ V = {0}. Therefore, u1 = u2 (and each ui is non-zero,
since V ∩W = {0}), which implies that ξpρ(x1) ∩ ξpρ(x2) �= {0}, so x1 = x2. Therefore, F is a
topological embedding. Since U and P(W ) both have topological dimension m = r − p, U and
hence ∂Γ contains a manifold point. Thus, by Kapovich–Benakli [34, Theorem 4.4], ∂Γ ∼= Sm.
Moreover, f |E is one of the four Hopf fibrations, so the only possibilities for (r − p, p) are (1,1),
(2,2), (4,4), and (8,8).

If ρ is (p, p, r)-hyperconvex, we choose x0 ∈ ∂Γ and let V = ξd−r
ρ (x0) and apply the same

argument to conclude that E − S(ξpρ(x0)) has topological dimension m + p− 1 and every
compact subset embeds in a sphere of dimension r − 1. We again conclude that Γ has
cohomological dimension at most r − p + 1. Similarly, we may show that if Γ has cohomological
dimension r − p + 1, then a neighborhood of a point z0 �= x0 ∈ ∂Γ embeds in a projective space
of dimension r − p, so ∂Γ ∼= Sr−p. �

9. Characterizing Benoist representations by limit maps

In this section we obtain characterizations of Benoist representations purely in terms of limit
maps. We first work in the setting where the domain group does not split over a cyclic subgroup.

Theorem 9.1. Suppose that d � 4 and Γ is a torsion-free hyperbolic group. A representation
ρ : Γ → SL(d,R) is a Benoist representation if and only if Γ has cohomological dimension d− 1,
Γ does not split over a cyclic subgroup, and there is a ρ-equivariant continuous non-constant
map ξ : ∂Γ → P(Rd).
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Proof. If ρ is a Benoist representation, then Γ has cohomological dimension d− 1, ρ is
projective Anosov, and ξ1

ρ is a ρ-equivariant continuous non-constant map. Moreover, since
∂Γ ∼= Sd−2 and d � 4, Γ does not split over a cyclic subgroup ([15, Theorem 6.2]). So, the bulk
of our work is in establishing the converse.

We first prove a general result about representations admitting a limit map whose image
spans. We recall that ρ is said to be P1-divergent if whenever {γn} is a sequence of distinct
elements in Γ, then

lim
σ2(ρ(γn))
σ1(ρ(γn))

= 0,

where σi(ρ(γn)) is the ith singular value of ρ(γn).

Lemma 9.2. Suppose that Γ is a non-elementary hyperbolic group, d � 2, and ρ : Γ →
SL(d,R) admits a continuous ρ-equivariant map ξ : ∂Γ → P(Rd) such that ξ(∂Γ) spans R

d.
Then the representation ρ is P1-divergent and if ρ(γ) ∈ ρ(Γ) is proximal, then ξ(γ+) is the
attracting eigenline of ρ(γ). In particular, ρ(Γ) is discrete and ρ has finite kernel.

Moreover, if in addition, ρ is irreducible, then ρ(Γ) contains a biproximal element.

Proof. If ρ is not P1-divergent, then there exists a sequence {γn} of distinct elements of Γ
so that lim σ2(ρ(γn))

σ1(ρ(γn)) = C > 0. Since Γ acts a convergence group on ∂Γ, we may pass to another
subsequence so that there exist η and η′ such that if x �= η′, then lim γnx = η. Since ξ(∂Γ)
spans R

d and ∂Γ is perfect, there exist x1, . . . , xd �= η′ such that R
d = ⊕ξ(xi). Suppose that

ξ(xi) = [lie1] for each i and ξ(η) = [lηei] where li, lη ∈ O(d). We write each ρ(γn) = knank
′
n in

the Cartan decomposition where kn, k
′
n ∈ O(d) and an is the diagonal matrix so that (an)ii =

σi(ρ(γn)) for all n. We may pass to another subsequence so that {kn} and {k′n} converge to
k and k′. Then, since ξ is ρ-equivariant, lim ρ(γn)ξ(xi) = ξ(η), so {[knank′nlie1]} converges
to [lηe1], which implies that {[ank′nlie1]} converges to [k−1lηe1] in P(Rd). So, perhaps after
replacing li with −li,

lim
ank

′
nlie1

||ank′nlie1|| = k−1lηe1

for all i. We pass to a subsequence so that

νi = lim
||ank′nlie1||
σ1(ρ(γn))

exists for all i. Then,

νi
〈
k−1lηe1, e1

〉
= lim

( ||ank′nlie1||
σ1(ρ(γn))

)〈
ank

′
nlie1

||ank′nlie1|| , e1

〉

= lim
〈
ank

′
nlie1,

e1

σ1(ρ(γn))

〉

= lim 〈k′nliei, e1〉 = 〈k′lie1, e1〉.
A similar calculation, and the fact that lim σ2(ρ(γn))

σ1(ρ(γn)) = C > 0, yields

〈k′lie1, e2〉 =
νi
C

〈
k−1lηe1, e2

〉
.

Since the vectors {k′lie1}i=1,..,d span R
d, there exists i0 such that νi0 �= 0. Then we further

observe that 〈
k′lie1 − νi

νi0
k′li0e1, e1

〉
=

〈
νik

−1lηe1 − νi
νi0

νi0k
−1lηe1, e1

〉
= 0
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and similarly that

〈
k′lie1 − νi

νi0
k′li0e1, e2

〉
= 0.

Therefore, each k′lie1 lies in the subspace of R
d spanned by k′li0e1 and e⊥1 ∩ e⊥2 , which has

codimension at least one. This, however, contradicts the fact that {k′lie1}i=1,..,d spans R
d.

Therefore, ρ is P1-divergent. Note that if ρ(γ) ∈ ρ(Γ) is proximal, then there exists x ∈ ∂Γ so
that ξ(x) does not lie in the repelling hyperplane of ρ(γ), so ρ(γn)(x) converges to the attracting
eigenline of ρ(γ). Since ξ is ρ-equivariant and lim γn(x) = γ+, ξ(γ+) is the attracting eigenline
of ρ(γ).

We now assume that ρ is also irreducible. Theorem 2.3 provides a finite subset A of Γ and
M > 0 so that if γ ∈ Γ, then there exists α ∈ A so that

| log λi(ρ(γα)) − log σi(ρ(γ))| � M

for all i. Let {γn} be an infinite sequence of distinct elements in Γ and let {αn} be the associated
sequence of elements of A. Since ρ is P1-divergent, λ1(ρ(γnαn))

λ2(ρ(γnαn)) → ∞ and λd−1(ρ(γnαn))
λd(ρ(γnαn)) → ∞,

so ρ(γnαn) is biproximal for all large enough n. �

We now complete the proof of Theorem 9.1 in the case where ρ is irreducible.

Proposition 9.3. Suppose that Γ is a torsion-free hyperbolic group of cohomological
dimension m � d− 1 � 2 which does not admit a cyclic splitting. If ρ : Γ → SL(d,R) is
irreducible and there exists a ρ-equivariant continuous map ξ : ∂Γ → P(Rd), then m = d− 1
and ρ is a Benoist representation.

Proof. Since ρ is irreducible, ξ(∂Γ) spans R
d, since ρ(Γ) preserves the space spanned by

ξ(∂Γ). Lemma 9.2 allows us to choose γ0 ∈ Γ so that ρ(γ0) is biproximal. We may assume
that the attracting eigenlines of ρ(γ0) and ρ(γ−1

0 ) are 〈e1〉 and 〈ed〉, respectively, and the
corresponding attracting hyperplanes are e⊥d and e⊥1 . In particular, ξ(γ+

0 ) = [e1] and ξ(γ−
0 ) =

[ed]. Suppose x ∈ ∂Γ − {γ+
0 , γ−

0 }. Since lim γn
0 (x) = γ+

0 and lim γ−n
0 (x) = γ−

0 , ξ(x) cannot lie
in either P(e⊥1 ) or P(e⊥d ). Since the group Γ does not split over a cyclic subgroup, the set
∂Γ − {γ±

0 } is connected (see [15, Theorem 6.2]), so we may assume that ξ(∂Γ − {γ±
0 }) is

contained in the connected component {[1 : x2 : · · · : xd] | xd > 0} of P(Rd) − P(e⊥1 ) ∪ P(e⊥d ). It
follows that ξ(∂Γ) lies in the affine chart P(Rd) − P(V ) where V = {(x1, . . . , xd) ∈ R

n+1 | x1 =
−xd}. Lemma 2.8 then implies that ρ(Γ) preserves a properly convex domain Ω in P(Rd).
Since ρ(Γ) is P1-divergent, it is discrete and faithful, so it must act properly discontinuously
on Ω (see [9, Fact 2.10]). Since ρ(Γ) has cohomological dimension m � d− 1, it must have
compact quotient. Hence, by Benoist [8, Theorem 1.1], Ω is strictly convex, so ρ is a Benoist
representation and m = d− 1. �

It remains to rule out the case where ρ is reducible. We first deal with the case where ξ(∂Γ)
spans R

d.

Proposition 9.4. Suppose that Γ is a torsion-free hyperbolic group of cohomological
dimension m � d− 1 � 2 which does not admit a cyclic splitting. If ρ : Γ → SL(d,R) is a
representation and there exists a ρ-equivariant continuous non-constant map ξ : ∂Γ → P(Rd)
so that ξ(∂Γ) spans R

d, then ρ is irredicuble.
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Proof. If ρ is reducible, one may conjugate it to have the form⎡
⎢⎢⎢⎣
ρ1 ∗ ∗ ∗
0 ρ2 ∗ ∗
0 0

. . . ∗
0 0 0 ρk

⎤
⎥⎥⎥⎦

where k � 2, each ρi : Γ → GL(Vi) is a di-dimensional irreducible representation and
R

d = ⊕k
i=1Vi. Note that if x ∈ ∂Γ and ξ(x) lies in V̂ = (⊕k−1

i=1 Vi) × {0}dk , then, since Γ
acts minimally on ∂Γ and ρ(Γ) preserves V̂ , ξ(∂Γ) would be contained in the proper
subspace V̂ , which would contradict our assumption that ξ(∂Γ) spans R

d. It follows that
there exists a ρk-equivariant map ξk : ∂Γ → P(Vk), obtained by letting ξk(x) denote the
orthogonal projection of ξ(x) onto Vk. Note that ξk(∂Γ) spans Vk, since ξ(∂Γ) spans R

d. Let
πk : GL(Vk) → SL±(Vk) be the obvious projection map and let Γ1 be the finite index subgroup
of Γ given by (π ◦ ρk)−1(SL(Vk)). Since ξk is (πk ◦ ρk)-equivariant, Proposition 9.3, applied to
the representation (πk ◦ ρk)|Γ1 , implies that Γ1, and hence Γ has cohomological dimension at
most dk − 1, which is a contradiction. �

In the final case of the proof of Theorem 9.1, W = 〈ξ(∂Γ)〉 is a proper subspace of R
d. Let

πW : GL(W ) → SL±(W ) be the obvious projection map. Consider ρ̂ = πW ◦ ρ|W : Γ → SL±(W )
and the non-constant ρ̂-equivariant map ξ̂ : ∂Γ → P(W ) (which is simply ξ with the range
regarded as P(W )). Since ξ is non-constant, W has dimension at least 2. If W has dimension 2,
then, by Lemma 9.2, ρ is discrete and faithful, which implies that Γ is a free group or surface
group, contradicting our assumptions on Γ. If W has dimension at least 3, then Proposition 9.4
implies that ρ̂ is irreducible, while Proposition 9.3 provides a contradiction in this case. �

We next observe that if ρ : Γ → SL(d,R) has a non-constant spanning limit map, then the
restriction to the boundary of any non-abelian quasiconvex subgroup is also non-constant.

Lemma 9.5. Suppose that Γ is a torsion-free hyperbolic group and Γ0 is a non-abelian
quasiconvex subgroup of Γ. If ρ : Γ → SL(d,R) admits a continuous ρ-equivariant map ξ :
∂Γ → P(Rd) so that ξ(∂Γ) spans R

d, then the restriction of ξ to ∂Γ0 is non-constant.

Proof. Lemma 9.2 implies that ρ is discrete and faithful. Suppose that ξ is constant on ∂Γ0.
By conjugating, we may assume ξ(∂Γ0) = {[e1]}. Then ρ|Γ0 has the form

ρ(γ) =
[
ε(γ) u(γ)
0 |ε(γ)|−1/(d−1)ρ0(γ)

]

for some homomorphism ε : Γ → R
∗ and some representation ρ0 : Γ0 → SL(d− 1,R). Note that

the representation of ρ̂ : Γ0 → SL(d,R) given by

ρ̂(γ) =
[
ε(γ) 0
0 |ε(γ)|−1/(d−1)ρ0(γ)

]

is the limit of the discrete faithful representations {Q−1
n ◦ ρ|Γ0 ◦Qn}, where Qn is a diagonal

matrix with a11 = n and all other diagonal entries equal to 1, so ρ̂ is discrete and faithful (see
Kapovich [32, Thm. 8.4]).

We next show that if γ ∈ Γ0 and ε(γ) = 1, then λi(ρ̂(γ)) = 1 for all i. If not, consider the
Jordan normal formal for ρ0(γ), regarded as a matrix in SL(d− 1,C), that is,

ρ0(γ) = P

⎡
⎢⎣
Jq1,k1

. . .
Jqr,kr

⎤
⎥⎦P−1
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where P ∈ SL(d− 1,C) and Jq,k is the k-dimensional Jordan block with the value q ∈ C along
the diagonal. We may assume that |q1| � · · · � |qr| and that if |qi| = |qi+1|, then ki � ki+1.
Note that, if n is sufficiently large, the co-efficient of Jn

q,k with largest modulus has modulus
exactly

(
n

k−1

)|q|n−k+1 It follows that there exists C > 1 so that

1
C

(
n

k1 − 1

)
|q1|n−k1+1 � ‖ρ0(γn)‖ � C

(
n

k1 − 1

)
|q1|n−k1+1

for all n ∈ N. Therefore, {(( n
k1−1

)|q1|n−k1+1)−1
ρ̂(γn)} has a subsequence which converges to a

non-zero matrix A∞. One may then show that if w ∈ R
d, does not lie in the kernel K of A∞,

then {[ρ(γ)n(w)]} does not converge to [e1]. Since ξ(∂Γ) spans R
d and K is a proper subspace

of R
d, there exists x ∈ ∂Γ − ∂Γ0 so that ξ(x) does not lie in K. Since ξ is ρ-equivariant,

{ρ(γ)n(ξ(x))} must converge to ξ(γ+) = [e1], which is a contradiction.
Note that if N is the commutator subgroup of Γ0, then ε(N) = {1}. Since Γ0 is a non-

abelian torsion-free hyperbolic group, N contains a free subgroup Δ of rank 2. Let ψ = ρ̂|ssΔ
be a semisimplification of ρ̂|Δ. Since ψ is a limit of conjugates of ρ̂|Δ and ρ̂|Δ is discrete and
faithful, ψ is also discrete and faithful [32, Theorem 8.4]. Since log λi(ψ(γ)) = log λi(ρ̂(γ)) = 0
for all γ ∈ Δ and all i, Theorem 2.3 guarantees that there exists M so that || log σi(ψ(γ)|| � M
for all γ ∈ Δ and all i. Therefore, ψ(Δ) is bounded which contradicts the fact that ψ is discrete
and faithful and that Δ is infinite. �

The work of Louder–Touikan [41] allows us to find cohomologically large quasiconvex
subgroups which do not split.

Proposition 9.6. If Γ is a torsion-free hyperbolic group of cohomological dimension m � 3
which splits over a cyclic subgroup, then Γ contains an infinite index, quasiconvex subgroup of
cohomological dimension m which does not split over a cyclic subgroup.

Proof. One first considers a maximal splitting of Γ along cyclic subgroups. One of the factors,
say Δ has cohomological dimension m (see [13, Corollary 4.1; 47, Theorem 2.3]). A result of
Bowditch [15, Proposition 1.2], implies that Δ is a quasiconvex subgroup of Γ. If Δ itself
splits along a cyclic subgroup, we consider a maximal splitting of Δ along cyclic subgroups.
We then again find a factor Δ1 of this decomposition which has cohomological dimension m
and is quasiconvex in Δ, hence in Γ. Louder and Touikan [41, Corollary 2.7] implies that this
process terminates after finitely many steps, so one obtains the desired quasiconvex subgroup
of cohomological dimension m. �

We now combine the above results to establish Theorem 1.7.

Theorem 1.7. If d � 4 and Γ is a torsion-free hyperbolic group, a representation ρ : Γ →
SL(d,R) is a Benoist representation if and only if Γ has cohomological dimension d− 1 and
there is a non-constant ρ-equivariant continuous map ξ : ∂Γ → P(Rd).

Proof. If ρ is a Benoist representation, then Γ has cohomological dimension d− 1 and ξ1
ρ is

a continuous, non-constant ρ-equivariant map.
Now suppose that Γ has cohomological dimension d− 1 and there is a non-constant

ρ-equivariant map ξ : ∂Γ → P(Rd). If Γ does not split over a cyclic subgroup, then Theorem 9.1
implies that ρ is a Benoist representation. If Γ does split over a cyclic group, let Γ1 be an infinite
index, quasiconvex subgroup of Γ of cohomological dimension d− 1 which does not split over
a cyclic subgroup.
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We next observe that ξ(∂Γ) must span R
d. If it does not, let W be the subspace spanned

by ξ(∂Γ). We obtain a representation ρ̂ : Γ → SL±(W ), given by πW ◦ ρ|W and a continuous
ρ̂-equivariant map ξ̂ : ∂Γ → P(W ), which is simply ξ with the range regarded as P(W ), so that
ξ̂(∂Γ) spans W . There exists a subgroup Γ2 of index at most two in Γ1, so that ρ̂(Γ2) lies in
SL(W ). Note that Γ2 also has cohomological dimension d− 1 and does not split over a cyclic
subgroup. By Proposition 9.5, ξ̂|∂Γ2 is non-constant, so Propositions 9.3 and 9.4 imply that
ρ̂|Γ2 is a Benoist representation and that W has dimension d, which is a contradiction.

Since ξ(∂Γ) spans R
d, Proposition 9.5 implies that ξ|∂Γ1 is non-constant, so Theo-

rem 9.1 implies that ρ1 = ρ|Γ1 is a Benoist representation. Therefore, ρ(Γ1) acts properly
discontinuously and cocompactly on

Ω = P

(
R

d −
⋃

x∈∂Γ1

ξd−1
ρ1

(x)

)

where ξd−1
ρ1

is the limit map for ρ1. Moreover, ξ(∂Γ1) = ∂Ω.
Suppose that α ∈ Γ − Γ1 and ρ(α) is biproximal. Let V (α) be the repelling hyperplane

of ρ(α). Since ξ is equivariant, if x ∈ ∂Ω, then {ρ(αn)(x)} converges to ξ(α+). Therefore,
V (α) is disjoint from ∂Ω. It follows that P(Rd) − Ω is the closure of the set of repelling
hyperplanes of biproximal elements of ρ(Γ). Therefore, the complement of Ω, and hence Ω
itself, is invariant under the full group ρ(Γ). Lemma 9.2 implies that ρ is discrete and faithful.
Since ρ(Γ) is discrete and ρ(Γ1) acts cocompactly on Ω, ρ(Γ1) must have finite index in ρ(Γ)
which contradicts the fact that ρ is faithful. �

Remarks. (1) In the three-dimensional case, one may show that if Γ is a torsion-free
hyperbolic group and ρ : Γ → SL(3,R) admits a non-constant continuous ρ-equivariant map
ξ : ∂Γ → P(R3), then Γ is a surface group or a free group. If the space W spanned by ξ(∂Γ) is
two-dimensional, then it follows from Lemma 9.2 that ρ|W : Γ → SL(W ) is discrete and faithful,
so Γ is a surface group or a free group. Thus, we may assume that ξ(∂Γ) spans R

3, so, again
by Lemma 9.2, ρ is discrete and faithful and ρ(Γ) contains a biproximal element.

Corollary B of Wilton [49] gives that if Γ is not free or a surface group, then Γ contains
either an infinite index quasiconvex surface subgroup or a quasiconvex group which does not
split over a cyclic subgroup. If Γ contains a quasiconvex subgroup Δ which does not split over
a cyclic subgroup, then Propositions 9.3 and 9.4 imply that ρ|Δ is a Benoist representation,
and thus, by Theorem 1.1, Δ is a surface group, which is a contradiction. If Γ contains a
quasiconvex surface subgroup Γ0 of infinite index, then, by Lemma 9.5, ξ|∂Γ0 is non-constant.
There exists a biproximal element ρ(α) ∈ ρ(Γ) − ρ(Γ0), and, since ξ is ρ-equivariant, ξ(∂Γ0)
cannot intersect P(V (α)) where V (α) is the repelling hyperplane of ρ(α), which implies that
ρ(∂Γ0) lies in an affine chart. If the span W0 of ξ(∂Γ0) is a proper subspace of R

3, then, since
(ρ|Γ0)|W0 : Γ0 → SL(W0) is discrete and faithful, ξ(∂Γ0) = P(W0) intersects P(V (α)), which is
a contradiction. We then argue, just as in the proof of Proposition 9.3, that ρ|Γ0 is a Benoist
representation. We further argue, as in the proof of Theorem 1.7, that this is impossible if Γ0

has infinite index in Γ.
(2) One may use similar techniques to show that in three of the four exceptional cases in

Theorem 1.3 one does not even have a non-constant limit map into P(Rd). More precisely, if k
is 2, 4, or 8, Γ is torsion-free hyperbolic group, ∂Γ ∼= Sk and ρ : Γ → SL(2k,R) is Pk-Anosov,
then there does not exist a non-constant, continuous ρ-equivariant map ξ : ∂Γ → P(R2k).

Suppose that ξ : ∂Γ → P(R2k) is a non-constant, continuous ρ-equivariant map. If ρ is not
irreducible, then let W be a proper ρ(Γ)-invariant subspace of R

d. One may show that the
dimension W ∩ ξk(x) is constant, say r, over ∂Γ. Let p = pρ,k : E → ∂Γ be the fiber bundle
given by Lemma 2.1. Recall, from the proof of Theorem 1.3, that in these exceptional cases
E = S(R2k). The restriction q = p|S(W ) : S(W ) → ∂Γ is then a fiber bundle with base space
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Sk, fibers homeomorphic to Sr−1 and total space S(W ). However, since dim(W ) < 2k, this
is impossible, by the classification of sphere fibrations ([3]). So, we may assume that ρ is
irreducible. Lemma 9.2 then implies that ρ is P1-divergent and that there exists a biproximal
element ρ(γ) ∈ ρ(Γ) and ξ(γ+) is the attracting eigenline of ρ(γ). Therefore, since ρ is
Pk-Anosov, ξ(γ+) ⊂ ξkρ (γ+). Since ξ and ξkρ are both ρ-equivariant and Γ acts minimally on ∂Γ,
we see that ξ(x) ⊂ ξkρ (x) for all x ∈ ∂Γ. Therefore, ξ lifts to a section of the spherical fibration
p, which we have already seen is impossible.

10. Examples and questions

In this section, we collect examples related to our results and discuss questions that arise.
It is natural to ask when the cohomological dimension bounds provided by Theorem 1.3 are

sharp. Cocompact lattices in SO(d, 1) ⊂ SL(d + 1,R) have cohomological dimension d and the
inclusion map is a projective Anosov, so our results are sharp whenever k = 1. Cocompact
lattices in SU(d, 1) ⊂ SL(2d + 2,R) have cohomological dimension 2d and are P2-Anosov, so
our results are sharp when k = 2 and d > 4 is even. Similarly, cocompact lattices in Sp(n, 1) ⊂
SL(4n + 4,R) demonstrate sharpness when k = 4 and d = 4n + 4 > 8

We also note that all the exceptional cases in part (2) of Theorem 1.3 occur. If ρ : Γ →
SL(2,R) is Fuchsian and Γ is a surface group, then Γ has cohomological dimension 2 and ρ is
projective Anosov. If Γ is a cocompact lattice in SL(2,C) ⊂ SL(4,R), then Γ has cohomological
dimension 3 and the inclusion map is P2-Anosov. Similarly, cocompact lattices in SL(2,Q) ⊂
SL(8,R) and SL(2,O) ⊂ SL(16,R) have cohomological dimension 5 and 9 and are P4-Anosov
and P8-Anosov, respectively, where Q is the quaternions and O is the octonions. (Note that
PSL(2,Q) may be identified with SO0(5, 1), in such a way that ∂H

5 ∼= S4 is identified with
QP

1, hence if Γ is a cocompact lattice in SL(2,Q), then Γ is hyperbolic, ∂Γ ∼= S4, and there is
an equivariant homeomorphism from ∂Γ to QP

1 ⊂ Gr4(R8). Similarly, PSL(2,O) is identified
with SO0(9, 1) and one may make a similar analysis. See Baez [4] for more details.)

Question 1. For what values of d and k are the estimates in Theorem 1.3 sharp?

If Γ is a convex cocompact subgroup of PSL(2,C) ∼= SO0(3, 1), the inclusion map lifts to a
representation ρ : Γ → SL(2,C) ⊂ SL(4,R). In light of Theorem 1.2, it is natural to ask:

Question 2. If Γ is a torsion-free hyperbolic group and ρ : Γ → SL(4,R) is P2-Anosov,
must Γ be isomorphic to a convex cocompact subgroup of PO(3, 1)?

We know of no examples of Borel Anosov representations of surface groups in even dimensions
which are not Hitchin. Proposition 7.2 assures us that every Borel Anosov representation of
a surface group into SL(4,R) is irreducible. Together, they suggest the following ambitious
question.

Question 3. Is every Borel Anosov representation of a surface group into SL(4,R) Hitchin?

Note that Danciger and Zhang [22, Theorem 1.3] proved that Hitchin representations into
SO(n, n) are not Pn-Anosov, if you regard them as representations into SL(2n,R).

We characterize Borel Anosov subgroups in dimensions 3 and 4. We note that it is easy to
show that a cocompact lattice Γ in Sp(n, 1) does not admit a Borel Anosov representation
into SL(d,R) for any d. Suppose that ρ : Γ → SL(d,R) is Borel Anosov. By Corlette [18] and
Gromov–Schoen’s [24] superrigidity theorem, see also [23], there exists ρ1 : Sp(n, 1) → SL(d,R)
and ρ2 : Γ → SL(d,R) with compact closure so that ρ = (ρ1|Γ)ρ2 and ρ1|Γ and ρ2 commute.
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Since ρ does not have compact closure, the representation ρ1 has discrete kernel (in fact
central). Let γ ∈ Γ have infinite order. Then, the centralizer Z of γ in Sp(n, 1) is non-abelian,
which implies that the centralizer of ρ(γ) in SL(d,R) contains ρ1(Z) and is hence non-abelian.
However, ρ(γ) is diagonalizable with distinct eigenvalues, hence has abelian centralizer, so we
have arrived at a contradiction.

Question 4. What other classes of hyperbolic groups can be shown not to admit Borel
Anosov representations in any dimension?

It is expected that not all linear hyperbolic group admit linear Anosov representations, but
we know of no explicit examples. See also the discussion in Kassel [37, Section 8].

Question 5. Can one exhibit explicit examples of linear hyperbolic groups which do not
admit Anosov representations into SL(d,R) for any d?

One can exhibit a sequence {Γk} of hyperbolic groups so that each Γk has virtual
cohomological dimension 2, admits a faithful representation into SL(2k,R), but admits no
projective Anosov representation into SL(2k + 1,R). Let Γ1 = π1(S) ∗ Z where S is a closed
orientable surface of genus at least two. In general, we define Γk = (Γk−1 ⊕ Z3) ∗ Z and note
that Γk can be realized as a subgroup of Γ̂k = (Γk−1 ∗ Z) ⊕ (Z3 ∗ Z). It is not difficult to check
that there is a faithful representation ρ1 : Γ1 → SL(2,R). Theorem 1.1 implies that Γ1 does
not admit a projective Anosov representation into SL(3,R). Since Γk−1 contains a subgroup
isomorphic to Γk−1 ∗ Z, there exists a faithful representation ρ̂k : Γk−1 ∗ Z → SL(2k − 2,R). If
σ : Z3 ∗ Z → SL(2,R) is a faithful representation and πi is the projection of Γ̂k onto the ith

summand, then (ρk−1 ◦ π1) ⊕ (σ ◦ π2) is a faithful representation of Γ̂k into SL(2k,R), which
restricts to a faithful representation ρk : Γk → SL(2k,R). Suppose ρ : Γk → SL(2k + 1,R) is
projective Anosov. Let c be the generator of Z3 in the first factor of Γk. Since the element
c fixes ∂Γk−1 pointwise, V = 〈ξ1

ρ(∂Γk−1)〉 is contained in the kernel of ρ(c) − I, which has
dimension at most 2k − 2. (Note that ρ(c) �= I, since ρ has finite kernel, and c is not contained
in a finite normal subgroup of Γk.) However, the restriction ρ|V : Γk−1 → GL(V ) would then
be projective Anosov, which is impossible by our inductive assumption.

It is a consequence of the Geometrization Theorem that any hyperbolic group which admits
a discrete faithful representation into PO(3, 1) also admits a convex cocompact representation
into PO(3, 1). One might ask by extension:

Question 6. Are there hyperbolic groups which admit discrete faithful linear representa-
tions, but do not admit Anosov representations?
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25. F. Guéritaud, O. Guichard, F. Kassel and A. Wienhard, ‘Anosov representations and proper actions’,

Geom. Topol. 21 (2017) 485–584.
26. O. Guichard, ‘Composantes de Hitchin et représentations hyperconvexes de groupes de surface’, J.

Differential Geom. 80 (2008) 391–431.
27. O. Guichard and A. Wienhard, ‘Anosov representations: domains of discontinuity and applications’,

Invent. Math. 190 (2012) 357–438.
28. N. Hitchin, ‘Lie groups and Teichmüller space’, Topology 31 (1992) 449–473.
29. W. Hurewicz, ‘Sur la dimension des produits Cartesiens’, Ann. of Math. (2) 36 (1935) 194–197.
30. W. Hurewicz and H. Wallman, Dimension theory (Princeton University Press, Princeton, NJ, 1941).
31. D. Johnson and J. Millson, ‘Deformation spaces associated to compact hyperbolic manifolds’, Discrete

groups in geometry and analysis, Progress in Mathematics 67 (ed. R. Howe; Birkhäuser, Basel, 1987)
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