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Abstract

We consider a class of cyclic dynamic networks which is characterized by (possibly
random) arc travel times which depend on the time when travel on the arc is begun. We
provide a condition which is sufficient for a Dynamic Principle of Optimality to hold, so
that the natural extension of conventional shortest-path methods solve for the fastest
path with no more computational effort in the worst case than in an ordinary (i.e.,
static) cyclic network. We discuss how static shortest-path algorithms may be used to
improve previously proposed algorithms for cases in which the Principle of Optimality
does not hold. The paper is motivated by issues arising from routing drivers using real-
time information in an Intelligent Vehicle/Highway Systems (IVHS) environment. The
potential benefits of dynamic network modelling in this environment are demonstrated
through modifications to the INTEGRATION traffic simulation program.



1 Introduction

An element of the emerging field of Intelligent Vehicle/Highway Systems (IVHS) is the
enhancement of travel quality by improving drivers’ route choice. The traffic network can be
modeled as a directed graph, with some generalized travel cost associated with each arc of
the graph, corresponding to a link in the network. Ideally, [IVHS would monitor the network,
measuring these travel costs in real time and disseminating them to hardware installed in
individual vehicles. Then all that would remain is for the driver to program his destination
(and perhaps his current location, if Automatic Vehicle Location technology lags) and then
his personal guidance unit would employ a shortest-path algorithm to provide him with an
optimal, i.e., least-cost route.

This approach overlooks the rapid change which often characterizes road networks, par-
ticularly in rushhour conditions when benefits of IVHS may be greatest. Changing traffic
volumes and incidents such as lane blockages will alter the time required to travel links of
the network, and this travel time will generally be a primary, if not the only, component of
travel cost. One way to approach this dynamic character of traffic networks is to update the
system measurements very frequently, so that the inputs to the shortest-path algorithm are
as recent as possible. However, this does not address the basic inaccuracy of the model. Since
travel costs will dynamically change, the costs should be modelled as varying with time. (Of
course, this creates a related problem, not addressed in this paper, of forecasting these costs
for each link of the network over an appropriate horizon.) In this paper we address this need
for the case when cost consists solely of travel time. We will provide a rigorous foundation
for the modelling and solution of these networks, and we will demonstrate potential benefits
to drivers who have the opportunity to determine fastest paths given the dynamic network
model. Although discussion centers on the context of IVHS, the results presented are general
to networks with costs known to vary.

2 Literature Review and Synopsis

The fastest path problem with time-dependent travel times was first considered by Cooke and
Halsey [2]. They cited Bellman’s Principle of Optimality [1] to write a functional equation
which implicitly defined a network having states incorporating not only the current location
in the network (i.e., node), but also the current time. Travel times are assumed to be
known for each arc at times tg,t5 + A.fp + 24,... and are multiples of A, for some A > 0.
Their solution algorithm proceeds recursively on the maximum number of nodes visited in
a path, and if some upper bound Ty, A can be found for the optimal trip time, then the
computational effort is O(N?T2 ).

Dreyfus [4] observed that Cooke and Halsey’s implicit expansion of the state space and
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restriction to discrete time intervals can be avoided, and the problem solved by a general-
ization of Dijkstra’s method [5], as efliciently as for static shortest path problems (constant
link travel times). However, we will provide a counterexample, and then rigorously establish
conditions under which generalizations of conventional static shortest-path algorithms may
be applied. We will also discuss how Cooke and Halsey’s algorithm may be accelerated by the
application of a generalized static shortest-path algorithm when the latter is not guaranteed
to provide an optimal solution.

Hall [6] considers networks with random time-dependent travel times and demonstrates
that in general, static algorithms cannot be applied. He shows that adaptive routing is
necessary, since policies in which the path chosen from an intermediate node depends on
the time of arrival at that node may have expected travel times less than that of any fixed
routing policy. We will furnish conditions which allow these networks to be solved by static
algorithms at computational cost similar to that of static deterministic shortest path solu-
tions. Because these conditions are somewhat restrictive, we will discuss how static methods
can be used as heuristics to improve performance of the general-case algorithm proposed by
Hall.

Finally, we will present computational results demonstrating the travel-time reduction
which can be realized by a vehicle selecting its route in a road network by anticipatory
fastest-path calculation. These results are the product of modifications to Dr. Michel Van
Aerde’s INTEGRATION traffic simulation program, which is ideally suited to investigation
of varying methods of route choice for individual drivers.

3 Modelling and Solution in Deterministic Dynamic
Networks

Consider a network (A, .4) with node set A" = {1,..., N} and arc set 4 C N x N. Let
¢;;(t) be the travel time on arc (7, j) departing node 7 at time ¢ for ¢ € T', where T and ¢;;(-)
satisfy:

1.0eT
2.t+cy(t)eT forallt €T.

We assume the absence of negative cycles, i.e., sequences of nodes iy,%2,...,%ar, tar41 With
im+1 = U1 such that Zﬁf__l Ciyirg: (tk) < 0 where #3411 = t + cipipy, (8) for £ = 1,... M and
ty € T. We may have T' = {t : t > 0} and ¢;;(-) > 0, or we may select some arbitrary
time unit and set T = {0,1,2,...} in these units if we require that ¢;;(t) is given in integer
numbers of these units. Such a network will be called dynamic. Our task is to determine a
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Figure 1: Violation of the Dynamic Principle of Optimality

fastest path from node 1 to node N, assuming that we begin the trip at the current time
t=0.

Define the optimal value function f;(¢) to be the minimum trip time over all paths from
node 7 to node N departing node i at time ¢. Then Cooke and Halsey’s functional equation
is:

£i(t) = minjz;{cij(t) + f;(t + ci;(¢))} fori=1,...,N-1;t€T (1)
0 fore=N;teT

and the problem is to find f1(0). Implicitly, this defines a network with node set A7 =
{(3,t) 2 € N,t € T} and arc set A = {((¢,1),(j,u)) : (3,7) € Ast,u € T¢5(t) = u —t}
Since this network has fixed travel times, we will refer to it as the expanded static network.
The expansion of the state space increases the computational effort required to solve the
problem; Cooke and Halsey’s solution algorithm requires T to be finite, with a known upper
bound Tn.r on f1(0), and requires O(N?T2 ) time. In comparison, a network with fixed
travel times can be solved in O(N?) time, or O(N log N) time for sparse networks [3].

Dreyfus [4] observed that the problem could be solved by generalizing the method of
Dijkstra [5]. He proposes that labels v; be maintained, and at each iteration the node i with
minimum v; be expanded; that is, v; is made permanent and the labels v; are updated if
appropriate, for each j such that (¢,j) € A. The claim is that at termination, v; represents
the optimal trip time from node 1 to node ¢ for all ¢ € /. However, Figure 1 demonstrates
that this procedure may fail in dynamic networks. The procedure suggested by Dreyfus
would identify (1,3,4) as the optimal path from node 1 to node 4, with trip time 30, but the
path (1,2,3,4) has a trip time of 25.

Dreyfus’ suggestion implicitly assumes the following functional equation:

fi = { minig; {f; + ¢;(f)} forj=2,...,M
-

0 forj=1 (2)

where f; is the minimum trip time over all paths from node 1 to node ¢ departing node 1
at time 0. This assumes Bellman's Principle of Optimality [1] in its forward-recursive form.
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For (2) to hold, it must be true that on an optimal path, each intermediate node is reached
as soon as possible. Clearly, this is not the case in Figure 1.
However, the following assumption [8] will suffice to imply (2).

Assumption 1 s+ ¢;(s) < t+¢y(t) for all s,t € T such that s <t.

In Figure 1, c34(-) violates Assumption 1. If we arrive at node 3 at time 10, we travel link
(3,4) in 20 minutes, arriving at time 30. By arriving 10 minutes later, we can travel the link
in only 5 minutes, arriving at time 25. In the context of vehicle routing, this requires us to
believe that if a driver leaves node 3 at time 10 and another driver leaves node 3 10 minutes
later, the second driver necessarily passes the first. However, both of these drivers represent
the single driver whose optimal path is being sought, and so violation of the assumption
seems to require the driver’s behavioral characteristics to be a function of time. In the
absence of such an unlikely effect, Assumption 1 does not appear to be overly restrictive.

There can be situations within the traffic environment in which the assumption is violated
due to non-behavioral causes. In a surface street area, stoplights may be coordinated so
that traffic moving in in a given direction without turning will hit a string of green lights,
avoiding stop-and-go conditions. Suppose one car is stopped at the first of such a string
of lights waiting for the light to change from red to green, and a second car reaches the
intersection just after the change occurs. The second car will not have to stop, and will pass
the first car easily, reaching the next light (i.e., the end of the next link) earlier even though
he reached the beginning of the link later [9]. This effect may be small because it will be
difficult to predict at what part of the stoplight cycle a driver will reach an intersection.

When Assumption 1 does hold. we may prove the desired principle of optimality by
working with the expanded static network (N, A’) defined by (1).

Theorem 3.1 (Principle of Optimality for Dynamic Networks) Under Assumption 1, for
all j € N there exists an optimal path (1,0),...,(3,s),(j,t*) in the ezpanded static network
Jrom node 1 at time 0 to node j at a minimal time t*, such that the truncation (1,0),..., (i, s)
is an optimal path in the static network from node 1 at time 0 to node i at a minimal time s*.

Proof: Consider any optimal path P’ = (1,0),...,(3,5),(j,%') in the static network. (Such
a path must exist in the absence of negative cycles.) Consider an optimal path P =
(1,0),...,(z,8*) from node 1 to node j. (Unlike the notation in the statement of the
theorem, P’ and P are not assumed to have the same intermediate nodes.) Let

" = 8"+ ¢i(s")

The claim is that the path P* = (1,0),...,(z,57),(j,¢t*) travelled by following P> and
then proceeding directly from node ¢ to node j is an optimal path from node 1 at time



0 to node j.
Because P/ is optimal, s* < s’. Then

= "4+ C,'J'(S*)
< st (s) by Assumption 1
= t

By assumption, t’ is a minimal time to reach node j. Therefore, t* is also minimal, and
hence P~ is optimal. &

Therefore, under Assumption [, it is optimal to reach each intermediate node of a path
as early as possible, and (2) is valid. Note how the optimal value function in (2) serves
the function of the state variable ¢ in (1), thus allowing for a more computationally efficient
solution. In fact, when ¢;;(-) > 0. as is typical for transportation networks, any algorithm
which suffices to solve a deterministic shortest path problem will solve (2).

To see this, consider such algorithms as being divided into two classes, label-setting and
label-correcting (also called best-first and list-search, respectively). Label setting algorithms
such as Dijkstra’s method [5] select a label v; to make permanent, and guarantee that when
this is done, the label is indeed at the optimal value for node j. Therefore, the only arc
travel time data required are ¢;;(f;) for all i, € N. Hence the network may be considered
to have time-invariant travel times, and problem is an ordinary deterministic shortest path
calculation.

In contrast, label-correcting algorithms may require ¢;;(t) for multiple values of ¢. Each
time the expansion of a node ¢ causes a decrease of a label v; (indicating the discovery of
a superior path to node j), node j is added to a list of nodes to be expanded, and the
algorithm terminates only when the list is empty. When a node 7 is expanded, the arc travel
time c¢;;(v;)is used. There are two cases. Firstly, v; may equal f;. This case reduces to
that of the label-setting algorithms. Secondly, we may have v; > f;, and hence the value
cij(v;) is not the arc travel time experienced on an optimal route which traverses arc (3, 7).
Suppose the algorithm terminates in this condition, and let k be the node preceding i on the
optimal path from node 1 to node ¢. If vy = fi, then node : must not have been expanded
since the last update of v, which contradicts the stopping rule. So vy > fi. We may
continue this argument inductively on the number of nodes visited on a path until we find
that v; > f1. But since both of these values must be 0, a contradiction ensues, and hence
the label-correcting algorithms succeed.

When Assumption 1 does not hold, the application of standard shortest path algorithms
is still useful. Cooke and Halsey’s algorithm requires an upper bound T},,, on the optimal
trip time, and the tighter the bound, the fewer operations required in the algorithm. They
propose that the value c;x(0) be used, and when this value is infinite (i.e., (1, N) ¢ A), their



scheme for devising Tpno, is enumerative. In contrast, applying a standard shortest path
algorithm may provide a tight upper bound.

4 Stochastic Dynamic Networks

Travel time on a link of the road network is is subject to uncertainty for many reasons. These
include the chance of an incident occurring to reduce link flow capacity, uncertainty in the
volume of traffic which will be on the link, random interaction of the drivers on the link,
and delays caused by drivers making turns. onto links which may themselves be congested,
causing spillback. Modelling travel times as stochastic quantities may significantly improve
routing quality.

In keeping with the deterministic development, let the random variables Cj;(t) be the
travel time for link (¢, ;) departing node ¢ at time t, for t € T, where T and Cj;(-) satisfy

1.0eT
2. With probability 1, ¢ + Cjj(t) € T for all t € T..

Constructing the corresponding static stochastic network, we define the optimal value func-
tion f;(t) to be the minimum expected trip time over all paths from node i to node N
departing node 7 at time ¢. Then we have the functional equation

f(t) _ min#i{E[CU(t) -+ f7(t + C’ij(t))} if Z = 1, ce ,JV - 1; teT (3)
o 0 fe=N;teT

where E denotes expectation with respect to Cy;(t). Then the problem is again to find f;(0).
As before, we can make an assumption which will allow us to compress the state space of
the static network.

Assumption 2 E[S + C;;(S)] < E[V + Ci;(V)] for all random variables S and V whose
values are restricted to T with probability one such that E[S] < E[V], where in the first
ezpression [ represents expectation with respect both to V' (or S) and to Cy;(+).

Theorem 4.1 (Principle of Optimality for Stochastic Dynamic Networks). Under Assump-
tion 2, for all § € N there exists an optimal path (1,0),...,(i,5%),(j,T*) in the static
network from node 1 at time 0 to node j at a random time T* with minimal expectation,
such that the truncation (1,0),...,(4,S™) is an optimal path in the static network from node
1 at time 0 to node ¢ at a random time S* with minimal expectation.
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Proof: Follows the proof of Theorem 3.1 =

As before, we can replace the backward recursion of (3) by a forward recursion with a
reduced state space. Define f; to be the minimum expected trip time over all paths from
node 1 to node 7 departing node ¢ at time 0. The functional equation is

f= ming; {fi + E[{Ci;(fi)]} forj=2,...,N (4)
7710 forj=1

We may consider E[C;;(f;)] to be a deterministic function of f;, and hence this functional
equation has an identical structure to the deterministic functional equation (2), so we may
use identical solution procedures.

Assumption 2 is more restrictive than its deterministic counterpart, and when the condi-
tion holds, it will be difficult to verify. Hall’s counterexample [6] shows that a simple network
operating in a reasonable fashion can violate Assumption 2 and hence prevent optimal so-
lution by static shortest-path algorithms. To solve the problem, he constructs a revised
network with identical topology but with a fixed travel time ¢; for each link (7, ;) equal to
the minimum possible travel time on that link over all times at which travel on the link may
be begun; that is, ¢;; = infier {infimum of the support of C;;(¢)}. The mth iteration of the
solution algorithm identifies the mth shortest path in the revised network and calculates the
expected trip time 7, for this path. 7}, serves as an upper bound on the optimal expected
trip time, and the trip time for this path in the revised network serves as a lower bound
for all paths not analyzed in iterations 1,...,m. The algorithm terminates when the lower
bound is greater than or equal to the upper bound.

Even when Assumption 2 does not hold, applying static methods based on functional
equations (2) and (4) will improve the algorithm by tightening both the upper and lower
bounds, and hence terminating as early or earlier. Before the algorithm begins, a static
shortest-path algorithm should be applied, serving as a heuristic to identify a greedy path,
providing an upper bound which otherwise might not be identified until Hall’s algorithm has
iterated a number of times. The effort for this preprocessing is that of an ordinary shortest
path calculation. Within the algorithm itself, the calculation of mth shortest paths should
be time-dependent. That is, since &; is an infimum over all times, the corresponding time-
dependent paths based on &;(¢) = {infimum of the support of C;;(t)} must be no shorter,
providing lower bounds which are as tight or tighter. Since these time-dependent paths in the
revised network are deterministic, Assumption 1 is not restrictive, and hence the Principle
of Optimality holds, allowing the use of static k-th shortest path methods, at no additional
computational effort. In particular, the assumption is satisfied in the bus network on which
Hall demonstrates the algorithm.
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5 Computational Results: Anticipatory Route Choice
in INTEGRATION

The benefits available to individual drivers using a dynamic network model have been inves-
tigated through the INTEGRATION traffic simulation [10], developed by Professor Michel
Van Aerde at Queens University, Kingston, Ontario, Canada. INTEGRATION models traf-
fic microscopically, maintaining location and destination information for each vehicle in the
simulated network. The main issues addressed by INTEGRATION are first, interaction
of freeway corridors and signalized networks, and second, opportunities for optimal route
choice by individual drivers given real-time information. The latter makes INTEGRATION
well-suited to examine the potential benefits of a dynamic network model.

INTEGRATION maintains one category of vehicles which may be considered background
traffic; these drivers follow a fixed route from their origin to their destination regardless of
network conditions. Vehicles in a second category are provided with an “optimal” routing
each time they reach nodes, hence having decision opportunities. This optimal routing is
calculated by the application of a static shortest-path algorithm to a network model with
fixed travel times determined from the latest real-time measured travel times within the
simulation. These travel times are determined by the difference between link entry and
departure times for vehicles which have traveled the link, and hence include not only the
time required to travel the link distance at some projected speed but also the delay incurred
due to stoplights, incidents and lane blockages, and queueing caused by congestion. However,
this “dynamic” routing optimization depends on a static network model with fixed link travel
times.

We have modified INTEGRATION to add a third category, which performs personal
routing optimization on a dynamic network model. The second class of drivers may be
routed to links which are currently uncongested, only to discover that the links have become
congested by the time the drivers reach that link. In contrast, drivers in the third category
look ahead in time to avoid links which will become congested. We describe this dynamic-
network route choice as anticipatory. The benefits of anticipatory routing are demonstrated
in the network shown in Figure (). Due to the loading over time in this network, second-
category drivers actually experience a longer average trip time, because their route-choice
model assumes that the latest measured travel times will hold permanently.

However, if we execute the simulation a second time, allowing newly introduced antici-
patory drivers to perform fastest-path calculations based on the actual measured link travel
times from the entire first simulation (i.e., ¢;;(¢) data for the entire time horizon), we see that
the anticipatory drivers avoid divert from the primary route only when it would be slower
than the secondary route during the trip, not at the time the decision is made.

This testing procedure requires that the proportion of anticipatory drivers be kept very
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small in the second simulation, so that the link travel times observed in the first simluation
may be considered accurate forecasts of future link travel times during the second simulation.
If there are many anticipatory drivers, their improved route choice will cause the network
to be differently loaded over time, resulting in different observed link travel times, and
invalidating the route choice of the anticipatory drivers. Operating an IVHS system which
disseminates short-term travel time forecasts to large numbers of anticipatory drivers in
a physical road network will require substantial research on the subject of determining the
future of a traffic network based on real-time traffic conditions, incident modelling, stochastic
driver behavior and route choice, time-varying travel demands, and so on [7].
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