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Why take the style of those heroic times? 
For nature brings not back the mastodon. 
Nor we those times; and why should any man 
Remodel models?

Alfred Lord Tennyson 
Morte d'Arthur
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CHAPTER 1 

INTRODUCTION
1.1 Background

Mankind for thousands of years has been an 
intelligent observer of his environment. Through the 
millenia he has felt the need to encode and record his 
observations for his own sake and for communicating these 
observations to others. From the cave drawings of the past 
to the very large computer-based databases of the present, 
the recording of facts about objects and events in the 
environment has been a characteristic human endeavor.

Encoded and recorded facts are referred to 
collectively as data. Data, in and of themselves, have no 
particular meaning unless they are interpreted. The 
interpretation process is essentially one of transforming 
data into information. Information then constitutes an 
increment of knowledge about the environment which is 
inferred from data. An organized collection of information 
about a particular subject, in turn, represents knowledge 
about that subject. This chain from the simple recording 
of data to its interpretation as information and



eventually to the acquisition of knowledge is carried out 
in virtually every area of human interest.

The digital computer, as a data processor, has 
enabled the mechanization of the recording and organizing 
of data. Through the application programs which the 
computer processes, some of the transformation of data 
into useful information is similarly automated. The 
human, however, is still an integral part of the process; 
a human decides which data are to be recorded; how they 
are to be organized based on perceived needs for 
information; and designs the application programs which 
affect the transform of data into information.

The work which is to follow is concerned with one 
aspect of the progression from data to information, that 
is, the organization and management of computer-based 
data. The goals will be to provide additional mechanisms 
for incorporating more of the meaning and interpretation 
of the data into its structure and to permit the resulting 
structure to adapt to changing patterns of usage over 

time.

1.2 The Problems and the Approach to Their Solution
Concern for the effective and efficient management of 

an enterprise's data has increased dramatically since the 
introduction of digital computers as data processors. 
Initially, attention was focused on the development of a 
comprehensive portfolio of application programs to support



routine, day-to-day operation of the enterprise. The 
acquisition, organization, and storage of data in 
machine-readable form was of secondary importance.

With the explosive growth in demand for information 
system support, attention has now shifted to the 
management of data [GIBS74, NOLA79]. It is recognized that 
an effective information system depends in large measure 
on a cohesive and well—managed base of data. These data 
are a valued strategic resource to the enterprise.

Coincidentally, this shift toward a data orientation 
came at a time when generalized database management 
systems became widely available. Prior to their 
introduction, an enterprise's computer-based data resource 
was typically stored and managed as a collection of 
separate files. Each file would contain instances of data 
records of a single type. One or more of these files would 
serve each application which in turn supported the 
interpretation of the data solely through the application 
procedure. This state of affairs naturally lead to 
considerable data redundancy, lack of data accuracy, and 
worst of all, lack of control over the vital data 
resource.

A generalized database management system provides a 
framework and a software tool for integrating data records 
of many different types into one, logically homogeneous 
file. The logical (and physical) structure of these record 
types within a database does provide some of the



interpretation of the data. One or more stored databases 
can then be used to satisfy many of the information 
requirements of the enterprise. Among the advantages of 
the database approach to the management of data are the 
minimization of redundancy, the ability to enforce 
accuracy standards, and the centralization of control over

data [MART75].
The problems to be examined in the chapters to follow

involve two substantively different, though essentially 
interrelated, issues. The first issue concerns the need to 
incorporate more of the interpretation of data into the 
design and implementation of a database for an enterprise. 
Presently, the design of a database, whether at the 
abstract level or physical design level, is conceptualized 
in two dimensions. The objects of interest to the 
enterprise are envisioned as lying in a plane with edges 
connecting them in semantically meaningful ways. These two 
design dimensions are adequate for capturing and 
representing some of the interpretation of the 
enterprise's data but certainly not all.

The principal thesis of this work is that there 
exists another important dimension to consider in modeling 
an enterprise’s information requirements - the occurrence 
dimension. In this third dimension, the notion of 
instances of data and the relationships among them may be 
conceptualized. In order to demonstrate the effectiveness



of extending the art of database design into this 
dimension, two new database abstractions are introduced.

The second issue concerns the need to develop a 
consistent database design methodology which proceeds from 
an abstract, relatively unconstrained modeling environment 
to the ultimate implementation of the model in some 
database management system. This problem has not been 
fully addressed in the literature. Rather, specific 
portions of the design problem have been extensively 
examined without an attempt to fully integrate the entire 
process (viz., [TSIC82] and [DATE83]).

The solution to be offered here involves the 
development of an integrated, three level database design 
methodology which proceeds from an abstract data model, to 
a particular generic data model (i.e., the relational data 
model), and lastly to a proposal for an implementation of 
that generic data model. Not only will this methodology 
provide a consistent database design environment, but will 
also incorporate the notion of the occurrence dimension 
throughout.

By recognizing the occurrence dimension of data 
modeling and integrating it in all of the phases of 
database design, it will be shown that;



1. considerably more of the meaning and interpretation of 
an enterprise's data can be explicitly represented in the 
design of a database;
2, additional semantic constraints on the integrity of a 
stored database can be enforced;
3, the stored database can be manipulated more efficiently 
and the operational performance of the database can be 
improved; and
4. the operational life of the stored database can be 
extended because the database will be capable of adapting 
to changing requirements.

The next chapter will introduce and motivate the
concept of the occurrence dimension in data modeling and
data management and will outline the three levels of the
proposed design methodology. Additionally, a case study
in database design and implementation will be described.
This case study will be utilized throughout the remainder
of the work to demonstrate how the occurrence dimension
can be effectively represented in each of the levels of
database design and its eventual implementation and use.
The succeeding three chapters will then focus on each
design level in depth.



CHAPTER 2 

ENTERPRISE INFORMATION MODELING

2.1 Introduction
Enterprise information modeling refers broadly to the 

art and practice of describing an enterprise in terms of 
its data and its information requirements. In general, the 
types of data collected and maintained by an enterprise 
are easily determined and will be relatively constant over 
time. The simple structuring of data types, however, does 
not necessarily represent all of an enterprise's 
information structure. The data need to be interpreted to 
convey information.

Traditionally, all of the interpretation of 
computer-based data has been embodied in the application 
programs which were designed to process the data. The 
organization and structure of the data were predicated on 
the efficiency of its storage and retrieval. With a 
generalized database management system, it is possible to 
organize an enterprise's data types so that their 
structure does convey some of the necessary 
interpretation. Consequently, the art of enterprise 
information modeling involves the consideration of the



semantics of data as well as the syntax of its 
representation. The goal of enterprise information 
modeling is the effective design of a database which will 
serve as an operational model, not just of an enterprise's 
data, but of its information requirements as well.

The practice of enterprise information modeling 
typically encompasses a number of discrete levels 
[TSIC82]. Each level involves a certain degree of 
abstraction. At one extreme - the level of abstract data 
modeling - a maximum degree of flexibility is obtained by 
suppressing the details (limitations) of the target 
generic data model. Generic data models, such as the 
hierarchical, network, and relational, impose restrictions 
on design alternatives due to the limited data structuring 
mechanisms which they support. In abstract data modeling, 
these data structuring limitations are temporarily 
ignored.

Similarly, at the level of generic data modeling, 
while the data structuring limitations are in effect, the 
low level, physical details of the internal data model are 
suppressed. Issues of data record volume, placement, and 
retrieval patterns are ignored. It is only at the last 
design level - the internal data model - that concern for 
the occurrences of the various data records becomes a 
design issue.

Abstraction is an important aspect of enterprise 
information modeling. Without the ability to suppress



detail, the task of designing a database for an enterprise 
would be prohibitively complex. However, there is the 
danger of oversimplifying and thus, missing important 
aspects of the design. Because one of the goals of 
designing a database for an enterprise is the 
representation of the meaning of data, suppressing the 
notion of occurrences of data objects until the last level 
of the design can have serious consequences.

This chapter will be concerned with motivating the 
concept of the occurrence dimension throughout the art and 
practice of enterprise information modeling. The next 

section will:
1. delineate the three discrete levels of the design 
process to be considered;
2. describe how the occurrence dimension fits within this 
framework; and
3. introduce a case study in database design which will 
serve as the vehicle for demonstrating the effectiveness 
of this dimension.
2.2 A Three Level Database Design Methodology

The process of designing a database for an enterprise 
consists of a sequence of activities leading from the 
perception of need to the eventual implementation and 
operational use of the database. However, several discrete 
points along this continuum have been the focus of 
attempts at developing rigorous modeling methodologies.
The nature of the modeling activity at any point can be 
characterized by the structures, operators, and 
constraints available to the database designer ITSIC82].
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Figure 2.1 shows the sequence of three discrete levels in 
the database design process which will be examined in 
detail.

The highest level is concerned with the development 
of an abstract data model of the enterprise. At this 
level, a database designer is free to utilize virtually 
any representation that is suitable for capturing both the 
syntax and semantics of the enterprise's information 
structure. The principal objective of abstract data 
modeling is to develop a complete and logically consistent 
model of the enterprise's information structure in terms 
of the objects of interest to it and the meaningful 
associations which exist among them.

The objects of interest to an enterprise are commonly 
called entities. An entity represents any object, real or 
abstract, about which the enterprise collects and 
maintains data. Entities may, in turn, be defined as a 
collection of atomic attributes which correspond to 
specific data types used to characterize the entity as a 
class. The concept of an entity is an abstraction because 
the designer is not concerned about individual occurrences 
of entities but merely their existence in general and 
their characterization in terms of data types. Therefore, 
the level of abstract data modeling has been labelled as 
the conceptual level in the figure.
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ENTERPRISE INFORMATION MODELING

Data and information requirements
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MODELING
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A three level design methodology 
Figure 2.1
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Each entity in an abstract data model serves only to 
indicate its existence as a conceptually meaningful object 
to the enterprise. Semantically, entities of different 
types# when associated with one another# capture added 
meaning over and above their individual representation in 
the abstract model. The abstract modeling mechanisms used 
to characterize the various relationships arising in an 
abstract data model are called database abstractions 
[SMIT77a].

Because an abstract data model is intended to be 
descriptive in nature# there is no particular need to 
provide operators to manipulate the model. Also# abstract 
data modeling is virtually devoid of constraints. The 
designer has considerable flexibility in choosing the 
design and representation most suitable for modeling an 
enterprise's information structure. Part of Chapter 3 will 
include an extensive survey of the state-of-the-art in 

abstract data modeling.
The next discrete level in the design process# shown 

in Figure 2.1# concerns generic data modeling. This 
particular level corresponds to mapping an abstract data 
model onto the structures allowed by a particular generic

data model.
The notion of a generic data model is a 

generalization# or idealization# of database management 
systems which share to some degree a common set of 
structures# operators# and constraints. The first such
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data model to be described was the relational model of 
data [CODD70]. This generic model consists of a simple 
structure# the flat tabular structure# a set of operations 
on these structures — the relational algebra# and certain 
constraints# for example# the Referential Integrity 
Constraint [DATE81]. Numerous implementations of this data 
model now exist. Ironically# the two other major generic 
models of data# the hierarchical and the network data 
models# had implementations in existence prior to the 
formulation of their conceptual bases [DATE83].

Although the generic data model does limit the 
database design alternatives in terms of structures, 
operators# and constraints# it is the structures available 
to the designer that are the most significant 
consideration at this level. The entities represented in 
the abstract data model map rather directly# though not 
necessarily on a one—to—one basis# onto record types and 
relation schemes of a generic data model.

The relationships portrayed among the entities must 
be representable within the more limited structuring 
discipline prescribed by the generic data model. The 
database designer must be able to make the necessary 
transformations from the relatively unconstrained abstract 
modeling environment to a structural representation 
supported by the generic data model. In doing so# the 
resulting generic data model structure must still preserve 
the semantic intent of the abstract design. To emphasize
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this concern# the generic data model level has been 
alternatively labelled the structural level in the figure.

The structural representation of a database design at 
the generic data model level is again portrayed as a 
two-dimensional arrangement of the required record types 
(hierarchical or network) or relation schemes. In the 
hierarchical and network models# it is implicitly assumed 
that the necessary operators are available to navigate 
through the structural representation of relationships to 
satisfy the enterprise's information requirements. In the 
relational data model# the relationships indicated in the 
abstract model have no corresponding representation in 
terms of structure. Rather# certain key attributes must be 
redundantly represented in relation schemes to enable the 
operators of the relational algebra to effectively 
materialize these relationships when needed.

Once the transformation of the abstract data model to 
the generic data model has been accomplished# the generic 
model is then formally defined in the data definition 
language facility of some database management system which 
effectively implements that data model. Chapter 4 will be 
concerned with examining this process of transforming an 
abstract data model into a generic data model.

The last level of the database design process shown 
in Figure 2.1 deals with the internal data model. Having 
brought the design of a database from the abstract to the 
generic level# the last step in the design process is to
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make appropriate decisions regarding the physical 
implementation of the database. It is at this level that 
consideration of the actual occurrences of data is 
traditionally first given. Abstract entities and their 
representation as record types or relation schemes at the 
generic level, are purely descriptive devices. Each 
expresses the intent of how data occurrences are to be 
stored. Likewise, relationships in either the abstract 
data model or a generic data model, indicate potential 
connection paths among semantically related entities.

The internal data model corresponds to representing 
the database design utilizing the facilities of a 
particular database management system. This involves 
choosing strategies for the physical layout of record 
types and relation schemes; the allocation and 
organization of secondary storage; and the choice of 
physical storage structures to implement relationships. 
While the abstract data model and the generic data model 
are concerned primarily with the static, permanent 
representation of an enterprise's information structure, 
the internal data model must be concerned with the 
on-going, continuous use of the database.

If the operational life of a database is expected to 
be long, on the order of years, the assumptions made in 
its original design and the anticipated pattern of usage 
will be likely to change. The design decisions made in the 
internal data model representation of a database must at
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least be cognizant of the dynamics of operational 
performance. At best, the internal data model should be 
equipped to monitor, analyze, and adapt as necessary to 
changing patterns of use. Chapter 5 will conclude the 
examination of the proposed three level database design 
methodology by looking at the issues relevant to designing 

an internal data model.

2.3 The Occurrence Dimension in Information Modeling
The representation of a database design, especially 

at the abstract and generic data model levels, typically 
takes the form of a two-dimensional diagram. Figure 2.2 
shows a representative two-dimensional diagram of part of 
a hypothetical abstract model. Three entities are 
portrayed as rectangles with two relationships indicated 
by diamonds and edges. This diagraming convention was 
proposed by Chen [CHEN76] in the Entity Relationship 

Model.
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ENTITY A

REL

REL. I

ENTITY C

ENTITY B

An abstract data model diagram 
Figure 2.2
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The entities, as characterized by an aggregation of 
attributes (not shown here), serve to classify objects and 
events of concern to the enterprise. An entity merely 
asserts the potential for instances or occurrences of 
objects of this type to exist in the database at some 
point in time. Relationships impart added meaning to the 
entities. Like an entity, a relationship only asserts the 
potential for an association among entity occurrences at 
some point in time, it does not imply that all entity 
occurrences will necessary participate in an occurrence of 
the relationship.

This two-dimensional portrayal of entities as class 
objects and relationships as potential associations limits 
the designer's ability to represent many of the 
semantically meaningful aspects of an enterprise's 
information structure because there is no way to 
conceptualize occurrences. Similarly, the concept of a 
database as a time-varying collection of data is generally 
ignored in the process of database design. Again, the 
chief reason for this is that the time-varying nature of a 
database is manifest in its instances.

In order to be able to represent the concept of 
occurrences of entities and relationships in either the 
abstract or generic models, another design dimension is 
needed. This third dimension will then permit the 
representation of occurrences as a conceptually meaningful 
aspect of both entities and relationships. Figure 2.3



19

shows how this third (occurrence) dimension can be used to 
model an aspect of an enterprise's information structure 
which would otherwise not be representable in two 
dimensions.

The entity on the left of the figure is portrayed as 
two disjoint subsets of occurrences of this entity. 
Although all occurrences of this entity will be logically 
identical, there is a semantically meaningful reason to 
introduce the partitioning. As the diagram indicates, the 
relationship between the two entities is constrained to 
occur only between a subset of the occurrences of one 
entity while all occurrences of the other entity may 
potentially participate in the relationship.



20

m
CM

(Uw3
O'

•rt



21

Situations such as that portrayed in the figure can 
arise naturally and frequently when interpreting an 
enterprise's information requirements. For example, when 
references to the occurrences of an entity (SELECTion 
queries) are accompanied by a common selection criterion 
(WHERE clause), this may indicate the existence of a 
semantically meaningful partitioning of the entity 
occurrences which should be explicitly recognized in the 
design. Additionally, as the figure indicates, this 
natural partitioning may be a consequence of the meaning 
associated with a particular relationship. The next 
section will suggest several such situations in the 
context of a database design problem.

2.4 A Database Design Problem
In order to demonstrate the importance of the 

occurrence dimension in enterprise information modeling 
and to describe its impact on the three level database 
design methodology, a case study of a database design for 
a small college will be used. This hypothetical design 
problem has been specifically devised as a vehicle for 
identifying the types of situations where recognition of 
the occurrence dimension can significantly enhance the 
database designer's ability to capture meaningful aspects 
of the enterprise's information structure. Also, by 
following the case through the three level design process.
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the operational performance improvements which will accrue 
as added benefits will be demonstrated by examples.

It is assumed that the college does not presently 
employ a database management system in its administrative 
data processing activities. A decision has been made to 
design a database to organize, structure and manage a part 
of its data resource. This database will serve a number of 
existing, structured applications of the college's 
administration and will also provide ad hoc access to the 
college’s data. As a result of the collection of 
requirements for this database, the information summarized 

in Table 2.1 has been obtained.
The objects of interest to the college (entities) for 

this particular database application are listed in the 
first column. Beneath each entity name is the approximate 
number of occurrences of each which will be stored in the 
database. The second column indicates the relevant 
attributes which are to be used to characterize the 
occurrences of each entity. The last column then shows the 
number of bytes needed to represent each attribute value.
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ENTITY ATTRIBUTES BYTE LENGTH

DEPARTMENT
(25)

MAJOR
(45)

STUDENT
(4000)

STUDENT-ACCOUNT
(4000)
ENROLLMENT
(14000)
COURSE 
(500) ,

SECTION
(200)

FACULTY
(250)

COMMITTEE
(30)

Department name 15
Office number 3
Phone number 4
Major name 25
Degree awarded 3
Required credits 2
Student number 5
Student name 20
Address 40
Class 9
Student number 5
Account balance 7
Grade 1

Course number 3
Course name 30
Description 100
Section number 1
Room 3
Time 12
Employee number 4
Employee name 20
Title 9
Committee name 50
Number of members 2

Entity and attribute requirements 
Table 2.1
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In addition to identifying the entities and 
attributes, the following semantic information has been 
determined:

1. Each MAJOR course of study is offered by a single 
DEPARTMENT.
2. STUDENTS, with the exception of freshmen, are required 
to elect a MAJOR.
3. Each COURSE is given by a single DEPARTMENT but not 
every COURSE is given in every term.
4. Offerings of a COURSE in a particular term are 
associated with SECTIONS.
5. Each SECTION of a COURSE is taught by one FACULTY 
member.
6. FACULTY members may serve on many college COMMITTEES.
In addition, FACULTY members who hold the rank of 
Professor serve as an advisory body to the president of 
the college.
7. The college has many different COMMITTEES.
8. Each STUDENT has a STUDENT-ACCOUNT for financial 
transactions although only a relatively small number of
STUDENTS actively use their STUDENT-ACCOUNTS.
9. STUDENTS enroll in several SECTIONS of COURSES each 
term and SECTIONS typically have many ENROLLMENTS. A grade 
is assigned and recorded for a particular STUDENT in a 
particular SECTION of a COURSE.

The objective of the college is to design and
implement a database which adequately represents its data
and information requirements. The data requirements are
completely listed in Table 2.1 while some of its
information requirements (that is, the interpretation of
these data types) are implicit in the semantic statements
above. For the most part, these semantic rules will result
in the creation of relationships between the entities in



25

the table. However, some of the semantics expressed in 
these rules cannot be directly represented in the database

design.
For example, rule 6 implies that among all 

occurrences of FACULTY members, those of professorial rank 
are to be viewed separately for certain purposes.
Similarly, rule 2 states that only those STUDENTS who are 
not freshmen may participate in a relationship with a 
MAJOR course of study. While these two rules are 
intuitively plausible, there are no mechanisms to 
explicitly represent them in the database design because 
each rule depends on an attribute value rather than any

structural difference.
Likewise, rule 8 calls for associating a 

STUDENT-ACCOUNT occurrence with each STUDENT occurrence 
but it also states that only a small number of the 
STUDENT-ACCOUNT occurrences will be frequently referenced. 
Rule 4 constrains the association of SECTION occurrences 
to those COURSES given in a particular term. Both of these 
rules imply the partitioning of the occurrences of the 
respective entities based on a temporal criterion. Again, 
neither rule can be fully represented in the database 
design with currently available design mechanisms.

Additional information requirements can be obtained 
explicitly by examining the requirements of structured 
application types which must be supported by the database. 
Typical applications include preparing class lists for
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each section; student grade reporting; faculty teaching 
assignment reporting; committee membership lists; and 
student account posting and billing. While these 
application types are not exhaustive, they are 
representative of the types of applications which would be 
required in a college and would provide important 
information to the design process.

This particular database design case is obviously a 
simplification of what would be involved in a real design 
of this kind. However, it sufficiently complete to 
demonstrate the necessity of the occurrence dimension in 
adequately capturing the information structure of the 
college. The scenario presented here will be used 
throughout the remainder of this work.



CHAPTER 3

THE OCCURRENCE DIMENSION IN ABSTRACT DATABASE DESIGN

3.1 Introduction
At the present, the art of abstract database design 

is primarily concerned with capturing and representing the 
static, time-invariant aspects of the enterprise's 
information structure. Design methodologies such as the 
Entity Relationship Model [CHEN76] provide a framework in 
which to assemble the relevant data items (attributes) 
into meaningful units (entities) and to represent 
associations among them (relationships). While it is 
recognized that the actual content of the database - the 
occurrences - will change over time, there is the implicit 
assumption that the overall design will remain constant
for a relatively long time.

The lack of recognition of occurrences of attributes, 
entities, and relationships in the abstract design limits 
the ability of the designer to adequately portray many of 
the semantic information requirements gathered prior to 
the design effort. Any such information requirements not 
captured in the abstract design will similarly be ignored

27
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or overlooked in subsequent stages of the design 
methodology. This chapter will then be concerned with:

1. identifying when semantic information requirements call 
for recognizing the occurrence dimension in abstract data 
modeling; and
2. the introduction of new modeling mechanisms which 
effectively enable the representation of these semantic 
information requirements in an abstract data model.

In order to accomplish these goals, the next major 
section will present an overview of abstract data modeling 
by developing an integrated framework based primarily on 
the work of Chen ICHEN76]. This framework will also 
include the contributions of Codd [CODD79] and Smith and 
Smith [SMIT77a, SMIT77b]. This particular framework 
represents to a large extent the state-of-the-art in 
abstract database design as it is currently practiced. 
Also, the framework will provide a suitable basis for the 
principal contribution of this work, that is, the 
introduction of the occurrence dimension. The two 
following major sections will then be concerned 
specifically with introducing two new database 
abstractions which permit the recognition and 
representation of semantic information requirements in the 
occurrence dimension.

3.2 A Framework for Abstract Data Modeling
Perhaps the best known and most widely used 

methodology for abstract data modeling is the Entity 
Relationship Model, or ERM, [CHEN76], This model presents
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a framework for organizing data in a way which carefully 
avoids any of the constraints imposed by generic data 
models or their implementation as database management 
systems. With a small set of modeling constructs, the 
designer can portray data and some of its semantics in a
model known as the enterprise view.

Recently, considerable attention has been given to 
ways in which more of the semantics of data can be 
represented in an abstract data model. The aggregation and 
generalization hierarchies of Smith and Smith [SMIT77a, 
SMIT77b] provide two such mechanisms. Codd [CODD79],
Hammer and McLeod [HAMM78], and Tsichritzis [TSIC76] also 
provide modeling constructs to represent additional 
semantic aspects of data. However, none of these 
mechanisms explicitly recognize occurrences of data.

Before introducing the two new semantic modeling 
tools which are defined in the occurrence dimension, a 
review of the art of abstract data modeling in two 
dimensions, based on these authors contributions, will be 
presented. This two-dimensional framework will then be 
used as a basis for extending the art of abstract data 
modeling into the occurrence dimension.

Virtually all abstract data modeling methodologies 
employ three basic building blocks: attributes, entities, 
and relationships. Named attributes are the smallest 
units in the abstract design process. Although attributes 
are defined on domains (value sets), this detail is
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usually suppressed in the abstract model. An attribute, by 
itself, is unstructured. The name of an attribute 
signifies the role that it plays in describing a 
higher-level object in the model. Additional semantics 
associated with an attribute are represented in the 
dependencies (functional or multivalued) in which it 
participates.

Entities are the simplest structural objects in 
abstract data modeling. Although the exact definition of 
an entity is the subject of some debate [KENT78], it is 
generally agreed that an entity serves to represent some 
object of interest to the enterprise. This object can be 
thought of as a whole and has a number of properties that 
are described by attributes. An entity, then, is a named 
collection of attributes. Its structure is frequently, 
though not necessarily, considered to be an ordered set of 
attribute names. Some of the semantics associated with an 
entity are inherited from the dependency structure of its 
attributes. Other semantic aspects of the entity are 
conveyed through the named relationships in which it may 
participate.

By associating entities through a named relationship, 
the designer can express more meaning than is conveyed 
simply by isolated entities and their attributes. The 
structure of relationships in an abstract model may be 
either implicit or explicit. Implicit relationships are 
portrayed in the model as labelled edges connecting two or
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more entities in a data model diagram. While the desired 
association is represented, the relationship itself has no 
objective reality, i.e., it has no properties (attributes) 
of its own. For example, in Figure 3.1, the two entities 
DEPARTMENT and COURSE are joined by the implicit 
relationship GIVEN-BY which asserts that COURSES are 
associated with DEPARTMENTS which have responsibility for, 
and control over them. Note that the relationship is 
bidirectional and could have been labelled "HAS-COURSE" 
depending on the perspective of the designer.

Explicit relationships, on the other hand, do have 
objective reality and are represented as entities in their 
own right. Figure 3.2 portrays a relationship between a 
STUDENT entity and a SECTION entity as the entity 
ENROLLMENT. This relationship is made explicitly because 
the attribute GRADE characterizes the ENROLLMENT of a 
particular STUDENT in a particular SECTION. The attribute 
GRADE is not a characteristic of a STUDENT or a SECTION 
individually. Note that two implicit relationships serve 
to connect the STUDENT and SECTION entities to ENROLLMENT.
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GIVEN
-BY

DEPARTMENT

COURSE

An implicit relationship 
Figure 3.1
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GRADE

^  HAS- N 
STUDENTS^TAKES-

COURSES

SECTION

ENROLLMENT

STUDENT

An explicit relationship with attribute
Figure 3.2
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One other semantically meaningful aspect of a 
relationship is the cardinality of the relationship. A 
relationship, either implicit or explicit, can be 
classified as being functional (one-to-one or many-to-one) 
or complex (many-to-many). Although this classification of 
relationships has consequences on physical design 
decisions, in the abstract model the cardinality is simply 
noted on the model diagram as in Figure 3.2. Both implicit 
relationships are functional (many-to-one) from 
ENROLLMENT.

These three basic building blocks of abstract data 
models are well-known. In the quest to capture more 
meaning in the abstract modeling process, different 
authors have enhanced the notions of entities and 
relationships by defining different types with very 
special meanings.

In the ERM, Chen [CHEN76J differentiates between 
regular entities and weak entities. Regular entities exist 
regardless of their association with other entities in the 
model. In Figure 3.3, the entity DEPARTMENT is a regular 
entity in that it exists independently of COURSES. The 
entity SECTION, however, is a weak entity because it 
depends on the existence of a particular COURSE. It does 
not make sense to have a SECTION without a COURSE. The 
weak entity SECTION is portrayed diagrammatically as a 
double rectangular box with the letter ”E" in the 
relationship OFFERING indicating the existence dependency
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on COURSE. Likewise, STUDENT-ACCOUNT derives its

existence from a STUDENT.
Similarly, explicit relationships are either regular 

or weak depending on whether the entities they join are 
regular or weak. The explicit relationship MAJOR in Figure
3,3 is a regular relationship. It serves to connect the 
regular entities STUDENT and DEPARTMENT based on the 
election of a particular course of study. A MAJOR can 
exist without a particular STUDENT or DEPARTMENT and it 
has its own properties such as a name, a degree awarded, 
and the number of credits required for successful 
completion. The weak relationship ENROLLMENT joins the 
regular entity STUDENT with the weak entity SECTION. This 
particular relationship cannot exist without a SECTION.
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DEPARTMENT

N

GIVEN-BY

N
COURSE

1
MAJOR

STUDENT
ACCOUNT

B
HAS- 

ACCOUNT I— SECTIONSTUDENT

TEACHHAS- 
STUDENTS

TAKES-
COURSES

FACULTYENROLLMENT

SERVE-ONCOMMITTEE N

An Entity Relationship Model of the college
Figure 3.3
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In the Relational Model/Tasmania (RM/T), Codd 
[CODD791 presents a slightly different classification of 
entities and relationships. Entities are categorized as 
being either kernel, characteristic, or associative. A 
kernel entity is like a regular entity in that it has 
independent existence. A characteristic entity derives its 
existence from a superior entity (either characteristic, 
kernel, or associative) in the same way as a weak entity.
An associative entity is like a regular relationship in 
that it serves to join two or more other entities (kernel 
or associative) and it has independent existence. An 
associative entity may have characteristic entities 
subordinate to it as well. For completeness, Codd also 
mentions the possibility of weak relationships which he 
calls "nonentity associations." These objects, while 
possibly having their own attributes, do depend on other 
entities for their existence, whence the play on terms.

In Figure 3.3, DEPARTMENT, STUDENT, and COURSE are 
kernel entities. SECTION and STUDENT-ACCOUNT are 
characteristic entities. MAJOR is an associative entity 
while ENROLLMENT is a nonentity association. This 
categorization of entities and relationships in RM/T is 
quite useful in abstract data modeling, however, it should 
be reiterated that Codd's intention is to extend the 
relational model of data, not to propose an abstract data 

modeling methodology.
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These refinements on the traditional concepts of 
entity and relationship enhance a database designer's 
ability to incorporate more meaning into the abstract 
design of a database. Smith and Smith [SMIT77a, SMIT77b], 
however, have introduced two database abstractions which 
extend these concepts even further. The aggregation and 
generalization abstractions enable the database designer 
to express more complex semantic interpretation about the 
entities and relationships in a model. Both of these 
abstractions are related to concepts already used in 
knowledge-based systems (artificial intelligence) and 
abstract data types (programming languages). Aggregation 
is related to the PART-OF notion from AI and corresponds 
to the cartesian product abstract data type.
Generalization comes from the IS-A notion in AI and 
corresponds to the discriminated union data type.

The aggregation abstraction involves taking two or 
more objects in an abstract data model and forming a 
higher-level object from them, hence the term aggregation 
hierarchy. The lower-level objects do not cease to exist 
but gain added meaning through the aggregate object. In 
their original work. Smith and Smith [SMIT77a, SMIT77b] 
described aggregation in several different aspects. Codd 
[CODD79] prefers to call their aggregation abstraction a 
cartesian aggregation to differentiate it from other forms 
of aggregation such as the cover aggregation of Hammer and 
McLeod [HAMM78] and statistical aggregation.
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In this integrative summary of abstract data 
modeling, three forms of cartesian aggregation will be 
described. The first will be called simple cartesian 
aggregation. The aggregate object resulting from simple 
cartesian aggregation is the aforementioned entity. By 
collecting a set of related attributes together in a 
semantically meaningful way, either a kernel or 
characteristic entity is formed. Figure 3.4 portrays the 
same abstract model as in Figure 3.3 with the addition of 
attribute names. The kernel entity DEPARTMENT is a simple 
cartesian aggregation of the attributes DNAME, OFFICE#, 
and PHONE#. Similarly, the characteristic entity SECTION 
is a simple cartesian aggregation of the attributes SECT#,

ROOM, and TIME.
The second form of cartesian aggregation is 

associative cartesian aggregation. In this form of 
database abstraction, the aggregation involves forming a 
high-level object from two or more entities along with any 
attributes which serve to characterize it. The high-level 
object is also treated as an entity with independent 
existence, i.e., it represents a regular relationship 
[CHEN76] or an associative entity [CODD79]. The entity 
MAJOR is an example of an associative cartesian 
aggregation in that it plays a superordinate role in 
relating STUDENTS to DEPARTMENTS through their elected 
MAJOR. Its existence, however, is not dependent on either 

subordinate entity.
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Figure 3.4
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Simple cartesian aggregation and associative 
cartesian aggregation formalize the concepts of entity and 
explicit relationship. Cover aggregation is much more 
general. A cover aggregate object (another entity) serves 
to relate objects of either the same or different types.
For example, the entity COMMITTEE in Figure 3.4 is a cover 
aggregate which serves to relate (not necessarily 
disjoint) subsets of FACULTY members by virtue of their 
COMMITTEE assignments. If STUDENTS were allowed to be 
members of certain COMMITTEES, then the cover aggregate 
concept would span two entities. It is evident that the 
cover aggregate captures an important, albeit subtle, 
semantic aspect of an enterprise's information structure.

The generalization abstraction involves identifying a 
collection of entities, abstracting away their individual 
differences, and forming high-level generic objects 
(entities) which represent their common properties. The 
inverse of generalization is called specialization.

In forming a generalization hierarchy, two new 
entities are involved. The first (required) entity stands 
for the generic object as a whole. It has the properties 
(attributes) common to all members of the hierarchy. The 
second (optional) entity contains the properties which are 
relevant to each specialized entity in the hierarchy as 
they are viewed collectively. Figure 3.5 portrays a 
generalization abstraction using the diagraming technique 
proposed in Smith and Smith [SMIT77b].
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Three mutually exclusive subtypes of employees are 
represented in the diagram. These three subtypes 
constitute a categorization of employees. The entity 
EMPLOYEE is the generic object in this hierarchy and 
contains the attributes which are common to all employees 
regardless of their subtype. The characteristic entity 
EMP-TYPE is included in the generalization hierarchy 
because there is an attribute (SAL-SCHED) which is a 
property of each subtype viewed collectively. The lowest 
level in the hierarchy consists of the entities 
representing each subtype and it contains those attributes 
which are relevant to each subtype individually.

With this particular generalization hierarchy, all 
instances of employees stored in the database will be 
required to be represented as an EMPLOYEE. If it is clear 
that an instance of an employee is also a member of one of 
the subtypes then it must be entered into that subtype as 
well. Note that membership in a subtype of a category may 
be optional. While the subtypes in a category are mutually 
exclusive within the category, they are not necessarily 
collectively exhaustive.
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/CLERICAL:

/ ENO ENAME SKILL

FACULTY:
ENO ENAME TITLE

/ a d m i n i s t r a t i v e : /
ENO ENAME RANK

EMPLOYEE:
ENO ENAME TNAME

EMP-TYPE:

TNAME SAL-SCHED

A generalization hierarchy 
Figure 3.5
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The generalization hierarchy appears to have a great 
deal of redundancy because attributes are repeated down 
the hierarchy. In the abstract data model this merely 
conveys the idea that lower level entities in the 
hierarchy inherit the properties (attributes) of higher 
level entities. Smith and Smith have noted, however, that 
in a physical implementation this redundancy may be 
effectively controlled. The semantic notion captured in a 
generalization hierarchy is that different users have 
different views of data depending on their level of 
abstraction. A dean may be interested in FACULTY employees 
only while the director of personnel may be interested in 
all employees regardless of their subtype. The 
generalization abstraction permits these multiple views to 
be explicitly represented in the abstract data model.

A particularly important aspect of this abstraction 
is the ability to represent relationships, either explicit 
or implicit, among entities at lower levels (say, the 
subtype level) which may not be applicable at higher 
levels. For example, in Figure 3.5, an implicit 
relationship TEACHES between FACULTY and SECTION is not 
appropriate to either ADMINISTRATORS or CLERICALS. Smith 
[SMIT78] discusses this in more detail.

In RM/T, Codd refines the generalization abstraction 
by describing two different kinds. The first kind is 
called an unconditional generalization and is exactly as 
described above. Each subtype entity is constrained to
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belong to a single parent generic object in a 
generalization hierarchy. The second kind is known as an 
alternative generalization. In this case, a subtype entity 
may be generalized into any of several parent generic 
objects. Figure 3.6 portrays both of these forms of 
generalization. The entity FACULTY may alternatively be 
generalized into either ADJUNCT FACULTY or REGULAR 
FACULTY. Both of these are unconditionally generalized 

into EMPLOYEE as before.
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EMPLOYEE

FACULTY
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FACULTYADJUNCT

FACULTY

Unconditional and alternative generalization hierarchies
Figure 3.6



47

This section has integrated a number of concepts and 
ideas into a modeling framework which represents, to a 
large extent, the state—of—the—art in abstract data 
modeling. The framework, however, does not explicitly 
account for occurrences of the relevant objects - either 
entities or relationships. To summarize this framework. 
Figure 3.7 portrays most of the concepts covered utilizing 
the diagraming conventions of the ERM.

The key element of the figure is the notion of the 
entity, whether kernel(K), characteristic(C), or 
associative(A). The entity is represented as a simple 
cartesian aggregation of attributes which, in turn, are 
unconditional generalizations of domains. Implicit 
relationships among entities are represented directly by 
the implicit relationship RELATED-TO. Explicit 
relationships, either associative cartesian aggregations 
or nonentity associations, are shown using the PART-OF 
relationship. Lastly, unconditional generalizations or 
alternative generalizations among entities are shown with

the IS-A relationship.
This framework will now be used as the basis for 

extending the art of abstract data modeling into the 
occurrence dimension. The next two sections will present 
new database abstractions which are defined only in the 

occurrence dimension.
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3.3 A Static, Intra-Entity Abstraction: the Selector
The two-dimensional, abstract data modeling framework 

reviewed in the preceding section is adeguate to capture 
and represent the majority of the semantic information 
requirements that would arise in a database design effort. 
However, some of the semantic rules associated with an 
enterprise's data cannot be represented with the available 
abstract modeling tools. The reason is that these semantic 
rules are defined on the occurrences of entities or 
relationships and the nature of the abstraction process is 
to suppress the consideration of occurrences, at least 
until the very last stage of database design.

One type of situation where this problem might arise 
occurs when it is necessary to specialize an entity on the 
basis of one of its attribute values. Unlike the 
specialization that takes place in a generalization 
hierarchy, this form of specialization does not create any 
new entities or relationships but rather calls for 
subsetting the occurrences of an entity based on the 
particular attribute value.

Tsichritzis [TSIC76] has addressed this type of 
subsetting at the level of the internal data model in the 
LSL (Link and Selector Language) database management 
system. The device used in LSL to represent such a 
partition is called a selector. This same term will also 
be used here but with a more precise definition.
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Two different forms of selector will now be 
introduced which provide the database designer with the 
ability to capture this type of semantic information 
requirement at the level of the abstract data model by 
extending the modeling environment into the third, 
occurrence dimension. It will be shown in the succeeding 
chapters that these two new forms of database abstraction 
have important consequences at the lower levels of 
database design as well as in data manipulation operations 
on an actual stored database.

As an abstract data modeling tool, each form of 
selector abstraction is defined as the specialization of 
the occurrences of an entity based on a boolean 
qualification involving a single attribute and a constant 
selected from its value set. As stated previously, the 
characteristics of the underlying domain of an attribute 
are generally suppressed in the process of abstract data 
modeling. However, for a selector abstraction it is 
important to consider two important characteristics of the 
attribute.

One characteristic has to do with the cardinality of 
the attribute's value set, that is, the number of possible 
values contained in its domain, or more precisely, what is 
the cardinality of the range of values that the attribute 
will assume. For example, the attribute SNAME of the 
STUDENT entity has a domain and a range which are quite 
large assuming there are many STUDENT'S in the college.
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The attribute CLASS of STUDENT however has a domain and 
range consisting of only four values (FRESHMAN, SOPHOMORE, 
JUNIOR, SENIOR).

The second characteristic is concerned with the 
volatility of the attribute values. Certain attributes are 
such that once a value is assigned, it is very likely to 
be a “permanent” characteristic of the associated entity 
occurrence. The attribute SNAME is an example of a 
"permanent” characteristic of a STUDENT. Similarly, CLASS 
may be considered "permanent” even though it may change 
annually. Conversely, certain attributes will be the 
object of frequent value changes. Although not portrayed 
in Figure 3.4, if the DEPARTMENT entity also had the 
attributes BUDGET-ALLOCATED, BUDGET-SPENT, and 
BUDGET-COMMITTED, the last two attributes would likely be 
the subject of frequent changes through updates. Also, the 
underlying domains and ranges are very large.

When a selector is defined on an entity type in an 
abstract design, there may be some implications concerning 
the relationships in which that entity participates. In 
one case, the selector merely defines a partition over the 
entity occurrences based on a constant attribute value and 
any relationships involve the entity as a whole. This form 
of selector will be referred to as a s impie selector.

On the other hand, it may be the case that one or 
more relationships involve only the selected subset while 
other relationships may be directed to the entity as a



52

whole. When a relationship involves only the selected 
subset, its definition and subsequent manipulation will 
have to be treated differently. This form of selector will 
be referred to as a relationship selector. This term 
reinforces the notion that the purpose of the selector is 
to subset an entity in order to support a relationship 
which is meaningful only to the selected subset.

For the database design problem described in the 
preceding chapter, semantic rule 6 implied that among all 
occurrences of the entity FACULTY, those FACULTY members 
with professorial rank were to be viewed as logically 
separate from FACULTY members in general. This rule could 
not be represented in the two-dimensional framework as is 
evident in the representation of the entity FACULTY in 
Figure 3.4.

Figure 3.8 shows how this semantic information 
requirement would be portrayed in the occurrence 
dimension. Figure 3.9 then shows a possible diagrammatic 
representation for a simple selector abstraction defined 
on the entity FACULTY in two dimensions. The rectangular 
box directly above the entity contains a name for the 
simple selector, in this case SENIOR, as well as its 
formal definition in terras of an attribute of FACULTY.
The selected subset of FACULTY consists of those 
occurrences of FACULTY whose attribute TITLE equals 
PROFESSOR. This simple selector enables the designer to 
explicitly represent the fact that some users' information
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requirements involve only senior faculty members (i.e., 
full professors) and not all faculty members. The two 
relationships involving the entity FACULTY, however, are 
directed to all faculty members.

It should be noted that while a simple selector does 
explicitly capture a semantic notion in the abstract 
design, it is not a necessity. Without the concept of a 
simple selector, applications which reference the entity 
in question can always determine the desired subset 
dynamically by checking all of the entity occurrences and 
verifying the boolean qualification at that time. The 
implication of defining a simple selector in the abstract 
design is that presumably there will be some mechanism for 
representing the simple selector at lower levels of 
database design. The next chapter will discuss not only 
the mechanics of defining simple selectors in the 
conceptual schema, but will also introduce new data 
manipulation operators which will exploit their existence 

in responding to queries.
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A simple selector in the occurrence dimension
Figure 3.8
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SENIOR: 
TITLE=PROFESSOR

FACULTY

A diagram of a simple selector abstraction 
in two dimensions

Figure 3.9
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In the database design problem being followed here, 
semantic rule 2 states that it is only legitimate for 
STUDENTS who are not freshmen to participate in the 
relationship with a MAJOR course of study. Again, the two 
dimensional framework for abstract data modeling does not 
provide a mechanism for representing this semantic 
information requirement. Observing the situation portrayed 
in Figure 3.4, it is not apparent that only a subset of 
STUDENTS may be related to MAJORS. The implication is that 
any STUDENT may ELECT a MAJOR.

Figure 3.10 shows how this rule would be effectively 
represented in the occurrence dimension. Figure 3,11 then 
shows the diagrammatic representation for a relationship 
selector in two dimensions. In the rectangular box above 
the entity STUDENT is the name of the selector,
UPPERCLASS, followed by the attribute name on which the 
selector is defined and the constant attribute value to 
which its compared. In this case, the attribute is CLASS 
and the relevant value is FRESHMAN. Relationships 
involving STUDENTS may be directed to all STUDENTS or to 
only those STUDENTS meeting the qualification. For 
example, only STUDENTS who are not FRESHMAN may 
participate in the relationship ELECT while all STUDENTS 
may participate in the relationship TAKES-COURSES.

While a simple selector abstraction is not a 
necessary aspect of abstract design, a relationship 
selector does play a very important role in the design
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process. A requirement that a relationship is valid only 
for a particular subset cannot be incorporated into a 
design without such a mechanism. In the absence of a 
relationship selector, it is incumbent on the database 
administrator to ensure that the proper precautions are 
taken to preserve the integrity of the stored database.
If such precautions are not taken, it is possible that the 
stored database will violate the semantic rule concerning 

the relationship.
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Adding the concept of selectors to the abstract data 
modeling process provides yet another tool to incorporate 
more meaning into the earliest stage of database design. 
The selector mechanism does not affect the structure of 
the abstract data model nor does it create any new 
entities or relationships. The selector abstraction does, 
however, enable the explicit representation of certain 
semantic information requirements in the abstract design 
of a database. Inserting, deleting, or modifying instances 
of FACULTY or STUDENTS in the physical database 
implementation will be constrained to abide by their 
qualification with respect to the defined selectors.

3.4 A Dynamic, Intra-Entity Abstraction: the Adaptive 
Selector

The art of abstract data modeling, even with the 
selector abstractions just defined, is limited to 
representing the static, relatively time-invariant 
properties of an enterprise's information structure. 
Because an enterprise is a dynamic, on-going concern, its 
information requirements will likely contain dynamic, 
time-varying properties as well.

Among the reasons that time-varying properties of 
data are not presently representable in the abstract data 
modeling methodologies is that these properties involve 
the concept of occurrences and they typically arise 
through circumstances external to the modeling
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environment. In collecting the requirements for the 
database design, certain semantic rules concerning the 
data may be postulated in a narrative fashion which do not 
specifically refer to any concrete structural 
characteristic of the model, for example, an attribute 
value. Rather, it may be that the stated requirement is 
temporal in nature.

A new database abstraction is needed to permit the 
representation of these dynamic, time-varying semantic 
rules in abstract data modeling. The nature of this 
abstraction will be to explicitly recognize that at any 
given moment in time, a proper subset of an entity has 
some special meaning within the model. Unlike the selector 
abstraction introduced in the preceding section, the 
membership of this subset is in no way "permanent" and may 
possibly be empty at certain times.

This new database abstraction introduced here for the 
first time will be called an adaptive selector. The term 
"selector" is used because of the resemblance of this 
mechanism to the selector abstraction described above. The 
principal difference is that the adaptive selector is not 
defined on an attribute of the entity. The adjective 
"adaptive" conveys the notion that the abstraction is 
intended to represent a time-varying property of the 
entity. In this way, adaptability may be explicitly 
recognized in the abstract data model as a semantically
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meaningful characteristic of an enterprise's information 

structure.
The aggregation and generalization abstractions were 

based on the abstract data types of cartesian product and 
discriminated union, respectively. The adaptive selector 
can be directly related to the abstract data type of 
powerset [HOAR72]. In mathematics, a powerset is defined 
as the set of all subsets of a given set. As an abstract 
data type, the powerset is defined with respect to some 
other data type called the base type. A variable defined 
on a base type is single-valued; at any instant in time it 
may take on only one value from the base type. A variable 
defined on a powerset is set-valued; at any instant in 
time it may take on a set of values selected from the base 
type. In abstract data modeling, the role of the base type 
will be played by an entity and the adaptive selector will 
be defined as a powerset over occurrences of the entity.

As with the selector abstraction, an adaptive 
selector will be defined on a specific entity and this 
naturally leads to questions concerning the relationships 
in which the entity participates. Two forms of selector 
were defined depending on whether a relationship could be 
directed exclusively to the selected subset. Regardless of 
the form of selector used, its definition remained 
permanent with respect to the attribute name and the 
constant value to which the attribute is compared. In the 
adaptive selector abstraction, two forms will also be
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defined depending on whether or not a relationship is 
involved.

In the first form of adaptive selector, the intent is 
to identify and represent that subset of an entity which 
is currently of more interest to the enterprise. A 
well-known folk theorem in computer science, with 
corollaries in numerous other disciplines, states that 80 
percent of the references to the records in a file will be 
directed at only 20 percent of the record occurrences.
This first form of adaptive selector will explicitly 
recognize this phenomenon in the abstract design. While 
there is nothing magic about the 80/20 split, this 
"theorem" has been empirically verified in data processing 
environments by Heising [HEIS63].

A way to conceptualize this form of adaptive selector 
is to think of it as a modified "push-down stack." While a 
conventional push-down stack maintains a first-in, 
first-out discipline with the most recently referenced 
item at the top of the stack, the modified stack referred 
to here will have a joint criterion for a stack 
maintenance policy. On the one hand, those entity 
occurrences most recently referenced will be in the stack, 
but the stack maintenance policy will also tend to favor 
those entity occurrences which have been most frequently 
referenced over the recent past. In this way, not only 
will the content of the stack be changing dynamically, but 
the stack will be reasonably assured of always holding the
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subset of entity occurrences of most interest to the 
enterprise at any point in time. The details of how this 
form of adaptive selector will actually be implemented 
will be discussed in Chapter 5.

The highly dynamic nature of this first form of 
adaptive selector along with the fact that its membership 
is determined by criteria external to the model (that is, 
observed recency and frequency of access), precludes any 
relationships from being directed to it. To differentiate 
this form of adaptive selector from the second form, it 
will be called a simple adaptive selector.

In the database design problem described in the 
preceding chapter, semantic rule 8 calls for a 
STUDENT-ACCOUNT entity occurrence to be associated with 
each STUDENT entity occurrence. The STUDENT-ACCOUNT entity 
contains data about a STUDENT'S billing activity. At a 
minimum, a STUDENT-ACCOUNT occurrence will be debited and 
credited once a term for tuition, room, and board charges. 
However, certain STUDENTS make regular, frequent use of 
their accounts for such things as bookstore purchases, 
theater and sports event tickets, and snack-bar items. The 
STUDENT-ACCOUNTs for these STUDENTS are most likely to be 
the object of the vast majority of references during 
certain periods of time.

Figure 3.12 portrays how, in two dimensions, a simple 
adaptive selector, named ACTIVE, could be defined on the 
entity STUDENT-ACCOUNT. With the simple adaptive selector



65

ACTIVE, the existence of such a temporally defined subset

is explicitly recognized.
In describing the simple selector abstraction in the 

preceding section, it was noted that while this 
abstraction provided a useful abstract design tool, it was 
not essential to the abstract design process. The boolean 
qualification used to determine the selected subset could 
always be applied when the actual stored database is 
manipulated. Similarly, the simple adaptive selector is 
not essential in abstract design. When one is incorporated 
into an abstract design, the database designer is simply 
recognizing the fact that a certain time-varying subset of 
the entity will be the object of more frequent reference. 
The effect of having declared the existence of a simple 
adaptive selector will be manifested in the storage 
structure and access path decisions at the level of the 
internal schema. These issues will be discussed in detail 

in Chapter 5.
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A diagram of a simple adaptive selector abstraction
Figure 3.12
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The definition of the second form of adaptive 
selector is somewhat more precise than that of the simple 
adaptive selector. Rather than using the highly dynamic 
joint criterion of recency and frequency of reference to 
identify a particular subset of an entity, this second 
form will rely on the entity occurrence's participation in
a relationship to qualify it for membership. In the
relationship selector, the converse was true, that is, an 
entity occurrence's membership in that form of selector 
was a necessary condition for its participation in a 

relationship.
This form of adaptive selector will be referred to as

a relationship adaptive selector. The intent of this
database abstraction is to permit the database designer to 
explicitly represent the semantic information requirement 
that participation in a relationship occurrence is a 
temporal characteristic of entity occurrences. The 
membership of the subset identified by a relationship 
adaptive selector share the temporal quality of 
"currency." That is, those entity occurrences which are 
selected at any given moment in time are of particular 
importance to the enterprise at that time.

While the simple adaptive selector assumed a 
relatively small proportion of an entity's occurrences 
would be selected (e.g., 20 percent), the relationship 
adaptive selector has no such limitation on its membership 
size. As a matter of practicality, however, it would be
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virtually useless to define one when it was expected that 
nearly all entity occurrences would qualify for 
membership. This would be have to be decided by the 
designer.

As with the simple adaptive selector, the 
implications of defining a relationship adaptive selector 
will be manifest at the level of the internal data model 
where storage structure selection and access path 
determination decisions are made. The presence of a 
relationship adaptive selector in the abstract data model, 
however, does convey the required additional semantic 
meaning from the outset of the design process.

The type of situation which would give rise to the 
need for a relationship adaptive selector is contained in 
semantic rule 4 of the database design problem of Chapter 
2. This rule states that, while the college has many 
COURSES GIVEN-BY DEPARTMENTS, only those COURSES offered 
in a given term may be related to SECTIONS through the 
relationship OFFERING. Creating and associating a SECTION 
occurrence with a COURSE occurrence makes the COURSE 
"current." Numerous information requirements may be 
dependent on this notion. For example, the preparation of 
class lists by COURSE and the transitive association of 
FACULTY with COURSES is only meaningful for those COURSES 
which are current, i.e., have SECTIONS.

Figure 3.13 shows the diagrammatic representation of 
a relationship adaptive selector in two dimensions. In
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this case, a relationship adaptive selector named CURRENT 
is defined on the entity COURSE and the relationship 
OFFERING is directed to it rather than to the COURSE

entity as a whole.
Smith and Smith [SMIT77b] require that aggregate 

objects and generic objects created by the aggregation and 
generalization abstractions be namable by simple English 
nouns. Although this requirement is somewhat imprecise 
[CODD79], it provides an intuitive way to express the 
meaning of these objects. For the adaptive selector 
abstraction, an adjective can be used to name it. The 
adjective should denote the temporal property which 
characterizes the subset of an entity which is being 
identified. This, too, is an imprecise requirement and 
should be accompanied by an external (to the model) 
statement of its exact definition.
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A relationship adaptive selector 
Figure 3.13
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The two forms of adaptive selector just described 
serve similar purposes in identifying a meaningful subset 
of an entity which would otherwise not be representable. 
They are, however, quite different in the way they are 
defined. In the case of the relationship adaptive selector 
CURRENT, a predicate may be formulated to test whether a 
particular entity occurrence "belongs" to the adaptive 
selector at a point in time. This predicate involves the 
observation of some real world fact. For example, a COURSE 
necessarily belongs to CURRENT if an existing SECTION is 
associated with it. When a SECTION is inserted for a 
non-CURRENT COURSE, it automatically becomes CURRENT, 
Similarly, when the last SECTION of a CURRENT COURSE is 
removed, the COURSE is no longer CURRENT.

A simple adaptive selector does not have such a 
predicate to determine its membership. At the abstract 
design level, the designer may want to recognize that 
among the occurrences of an entity, a certain subset of 
them will be more "meaningful" than the others at any 
given time. In the case of the simple adaptive selector 
ACTIVE, the designer wishes to express the notion that 
there will be a subset of STUDENT-ACCOUNTs about which 
information is more frequently needed. Membership in this 
simple adaptive selector must then be based on observed 
frequency of reference to particular entity occurrences 
over a period of time. The exact composition of this 
ACTIVE subset will presumably change over time as well.
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In the abstract design process it is sufficient to be 
able to indicate the existence of adaptive selectors in 
the model. The details of how these adaptive selectors 
will be implemented are left to later stages of the design 
process and will be addressed in the next two chapters.

3.5 Summary
This chapter has been focused on the art and practice 

of abstract database design. This constitutes the highest 
level of the design process in the three level methodology 
portrayed in Figure 2.1. To provide a basis for extending 
abstract data modeling into the occurrence dimension, a 
review of the present state of abstract modeling 
methodologies was presented first.

Beginning with the Entity Relationship Model 
[CHEN76], the contributions of Smith and Smith [SMIT77a, 
SMIT77b] and Codd [CODD79] were integrated to provide a 
comprehensive, two-dimensional abstract data modeling 
framework. This framework incorporates not only the basic 
syntatic elements of abstract data modeling but also 
includes the semantic notions of aggregation and 
generalization hierarchies, cover aggregation, and 
conditional and unconditional generalization. This 
particular framework is summarized in Figure 3.7.

The major contribution of this chapter toward the art 
and practice of abstract data modeling has been the 
introduction, definition, and demonstration of two new
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database abstractions which permit the representation of 
certain semantic information requirements in the 
occurrence dimension. Both the selector and adaptive 
selector database abstractions were presented in two 

different forms:
o The simple selector subsets the occurrences of an

entity based on a boolean qualification of one of its 
attribute values. Any relationships in which the entity 
participates involve all occurrences.

o The relationship selector also subsets the occurrences 
of an entity based upon a boolean qualification of an 
attribute value. Here, however, the participation of 
entity occurrences in a particular relationship is 
predicated on the selection criterion.

o The simple adaptive selector subsets the occurrences 
of an entity based on the temporal, and externally 
defined, criterion of recency and frequency of 
reference. All relationships in which the entity 
participates may be directed to all occurrences 
regardless of their selection by this abstraction.

o The relationship adaptive selector also subsets the 
occurrences of an entity based upon a temporal 
criterion; however, this criterion is related to 
participation of the entity occurrences in a 
particular relationship.

Using the database design problem defined in Chapter 
2, representative situations which call for the explicit 
recognition of the occurrence dimension were described. 
Appropriate selector and adaptive selector abstractions 
were then defined to enable the formal representation of 
these semantic information requirements in an abstract 

data model.
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Figure 3.7 renders a concise description of the 
two-dimensional framework for abstract data modeling. 
Figure 3.14 then adds the selector and adaptive selector 
database abstractions to this description. While the 
diagram is itself two-dimensional in nature, it is to be 
understood that these two abstractions are clearly defined 
in the third, occurrence dimension.



CHAPTER 4

THE OCCURRENCE DIMENSION IN A GENERIC DATA MODEL

4.1 Introduction
Abstract data modeling is an important tool for 

designing databases for several reasons. First, it enables 
the designer to temporarily suppress the inherent 
limitations of the target database management system and 
concentrate on the issue of defining the enterprise's 
information structure. Secondly, the abstract model, or 
enterprise view, serves as a vehicle of communication 
between the designer and the end-users. The diagrammatic 
representation of the enterprise view is easily understood 
by non-technical and technical personnel alike. Lastly, 
and perhaps most importantly, abstract data modeling 
allows the designer to incorporate more of the semantic 
meaning of the data into the database design.

Most database management systems are based on one of 
the three major models of data: the hierarchical, the 
network, or the relational data model. The data 
structuring capabilities of these models, although more 
restrictive than the abstract data model, can directly

76
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represent all of the attributes, entities, and functional 
relationships of the abstract model. Aggregation and 
generalization hierarchies can also be represented in a 
straightforward manner while complex relationships 
typically require special handling. The selector and 
adaptive selector abstractions, however, have no direct 
representational form in any of these models.

In the first stage of transforming an abstract data 
model to a generic data model, the designer is concerned 
with converting the relatively unrestricted abstract data 
model into either a collection of tree structures 
(hierarchical), a network of owner-coupled sets (network), 
or a collection of normalized relations. The second stage 
is to express this generic data model design in the data 
definition language (DDL) facility of the target database 
management system. The result of this process is a 
conceptual schema which consists of a complete description 
of the entire database as it is intended to be structured, 
stored, and maintained by the target DBMS.

This chapter will be concerned with two specific 
aspects of representing the occurrence dimension in a 
generic data model. The first has to do with extending a 
particular generic data model to support selectors and 
adaptive selectors. This will involve choosing a generic 
data model for this purpose and then making the necessary 
enhancements to its data definition language facility. The 
second aspect has to do with demonstrating the
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manipulative power of selectors and adaptive selectors. 
This will involve the addition of operators to the data 
manipulation language component of the chosen generic data 
model which will allow utilizing the selectors and 
adaptive selectors in responding to general queries.

The next major section will present arguments for 
choosing the relational model of data for both of these 
purposes. The following sections will present a formal 
syntax for a relational DDL which allows the definition of 
selectors and adaptive selectors. The last section will be 
devoted to the introduction of a set of new relational 
algebra operators which facilitate the manipulation of a 
stored database containing defined selectors and adaptive 
selectors. The potential performance gains in processing 
queries with these new operators will also be 
demonstrated.

4.2 Choosing a Generic Data Model
The three major data models have been examined 

extensively and there are arguments which are frequently 
made to support a preference for one over the others. The 
question arises as to which of these data models would be 
the most suitable to extend in order to implement the 
selector and adaptive selector abstractions.

The hierarchical and network models place heavy 
emphasis on the explicit structuring of data. Relatively 
straightforward operators are provided for insertion.
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deletion, and updating and for navigation through these 
structures for retrieval. Once an information structure is 
represented as a hierarchy or a network of owner-coupled 
sets, it is effectively frozen in that form.

In the relational model there is only one simple 
mechanism for structuring data - the normalized relation. 
Entities are represented by a collection of named base 
relation schemes and all relationships are represented by 
the replication of attributes. Emphasis is shifted in this 
data model to the operators which manipulate relations.
New (unnamed) relations can be formed dynamically by 
joining existing relations, projecting subsets of the 
attributes of a relation, or selecting subsets of the 
tuples (instances) of a relation. The relational operators 
are applied by users from outside of the environment (the 
database) and provide the ability to manipulate and alter 
the underlying structure of the data for any particular 
need. Any new view of data formed by the application of 
relational operators, however, is not permanent. Only the 
defined, base relations actually exist.

Selector abstractions represent, in effect, a 
permanent selection over an entity. Unlike the selection 
operations that a user may invoke as the need arises, a 
selector abstraction implies that a certain selected 
subset of the occurrences of an entity has permanent and 
universal meaning within the database. Because the 
relational data model supports dynamic selection through
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its operators, it would be quite suitable for the 
implementation of the selector abstractions.

The concept of adaptability is defined as a 
time-varying quality of an already existing object 
(entity), consequently, the adaptive selector database 
abstractions will require a special kind of representation 
in a generic data model. Facilities are needed to express 
this quality for particular objects; to give a 
semantically meaningful name to it; and to provide 
operators to manipulate it. Again, the relational data 
model would appear to be the best choice for incorporating 
the adaptive selector database abstractions as well. 
Additionally, Smith and Smith [SMIT77b] have already 
described the aggregation and generalization abstractions 
in terms of the relational model and Codd [CODD79J has 
verified that these two abstractions could also be 
represented directly in the extended relational model,

RM/T.

4.3 A Relational Data Definition Language Facility
Unlike the hierarchical or network data models, the 

relational model of data has no formal diagraming 
technique to portray the result of transforming an 
abstract data model into an equivalent collection of 
normalized relations. The resulting relations are simply 
listed showing the relation name, the attributes contained 
in each relation, and an indication of which attribute(s)
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form a key for the relation. Because selector and adaptive 
selector abstractions are non-structural in nature, they 
do not result in the formation of any relations in this 
transformation process. Therefore, the list of normalized 
relations used to represent a database design will have to 
be augmented with "artificial" relations which will serve 
as surrogates for any selectors or adaptive selectors 
appearing in the abstract design. By representing 
selectors and adaptive selectors in this way, data 
manipulation operations may be performed on them. This 
will be examined in more detail later in this chapter.

Figure 4.1 portrays the final abstract data model 
diagram of the college database as developed in the 
preceding chapter. The attribute names have been omitted 
for clarity. However, the simple selector, relationship 
selector, simple adaptive selector, and relationship 
adaptive selector of Figures 3.9, 3.11, 3.12, and 3.13, 
respectively, have been included. While the diagram is 
two-dimensional in nature, it is understood that these 
selector and adaptive selector abstractions imply the 
existence of the occurrence dimension in the model.
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Figure 4.2 shows the nine entities of the abstract 
model of Figure 4.1 portrayed as a collection of ten base 
relation schemes. The base relation scheme, SERVEON, is a 
nonentity association arising from the need to handle the 
complex relationship (actually a cover aggregation) 
between COMMITTEE and FACULTY. Also, several of the base 
relation schemes contain redundant attributes which are 
required to enable the functional relationships to be 
materialized by joining the various relations over the

common domains.
The artificial relation scheme *SENIOR represents the 

simple selector defined on the entity FACULTY. The only 
attribute of this artificial relation scheme is the key 
attribute (ENO) of FACULTY. The relation scheme 
♦UPPERCLASS is the artificial relation which represents 
the relationship selector abstraction portrayed in Figure 
3.11. The attributes of this artificial relation are the 
key attribute (STUDNO) of the STUDENT base relation scheme 
and the foreign key MNAME to enable the functional 
relationship ELECTS to be represented. The asterisks are 
used to indicate that these are artificial relations 
representing selector abstractions.
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DEPARTMENT(DNAME,OFF,PHONE)

MAJOR(MNAME,DEGREE,CREDITS,DNAME)

STUDENT(STUDNO,SNAME,ADDR,CLASS)

STUDENT-ACCOUNT(STUDNO,BALANCE)
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SECTION(SECTNO,CRSENO,ROOM,TIME,ENO)
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FACULTY(ENO,ENAME,TITLE)

COMMITTEE(COMNAME,NUMMEM)

SERVEON(COMNAME,ENO)

♦UPPERCLASS(STUDNO,MNAME)

♦SENIOR(ENO)

$ACTIVE(STUDNO)

$CURRENT(CRSENO)

Relation schemes for a hypothetical college database
Figure 4.2
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The relation scheme $CURRENT is the artificial 
relation representing the relationship adaptive selector 
shown in Figure 3.13. The dollar sign distinguishes this 
artificial relation as an adaptive selector and its only 
attribute is the key (CRSENO) of COURSE. Similarly, the 
artificial relation scheme $ACTIVE defined on the entity 
STUDENT-ACCOUNT and is shown with its only attribute 

STUDNO.
Given the collection of relation schemes for a 

particular design, these must then be coded in the data 
definition language provided with the target database 
management system. Ordinarily, the DDL facility is a 
separate, stand-alone, non—procedural language. Its sole 
purpose is to allow the formal definition of the database 
requirements in terms of the structure and characteristics 
of the base relations, that is, the intention of the 
stored database. The data manipulation language component 
of the target database management system, either in query 
language form or as host language interface, is usually 
completely separate from the DDL.

For expository purposes, both the DDL and DML 
components of the target database management system will 
be embedded in a single, high-level, procedural 
programming language. Smith and Smith [SMIT77b] chose to 
describe the DDL syntax of their aggregation and 
generalization abstractions in a variation of the 
programming language PASCAL. This choice has two important
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advantages. First, PASCAL is a well-defined and widely 
used programming language. Describing the structure of the 
two abstractions in a PASCAL-like syntax has an obvious 
pedagogical advantage. Second, and more importantly, 
standard PASCAL already supports the abstract data types 
upon which aggregation and generalization are based. 
PASCAL'S record type and record variant type are precisely 
the cartesian product and discriminated union abstract 

data types.
Smith and Smith [SMIT77bl describe only how aggregate 

and generic objects might be defined as variables in a 
PASCAL program. This section will develop an extended 
syntax for a relational data definition language facility 
for PASCAL. The syntax, and associated semantics, will 
provide a suitable set of constructs to define a 
relational database schema including facilities to 
represent the aggregation, generalization, selector, and 

adaptive selector abstractions.

4.3.1 Notational Conventions
The programming language PASCAL is considered to be a 

strongly typed language. That is, in addition to the basic 
data types found in nearly all general purpose programming 
languages, PASCAL provides facilities for the creation of 
user-defined data types. Simple variables and complex 
structures can be defined on any data type and PASCAL
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includes special operators to facilitate manipulating 
variables defined on these types.

Separating the concepts of data type and data 
definition in PASCAL is similar to the idea of separating 
the concept of a domain from an attribute defined on the 
domain in the relational data model. A data type or domain 
is simply a well-defined set of values which can be 
represented on a computer system. The set of values 
remains uninterpreted until a named attribute or variable 
is defined on it. In fact, several variables or attributes 
may be defined on the same domain, however, their names 
ascribe semantic meaning to their different uses in 
representing real world objects. In describing a 
relational data definition language facility for PASCAL, 
the distinction between data type and data definition will 
be made explicit not only for domains and attributes but

for relations as well.
In PASCAL, data typing can be accomplished in two 

ways. First, a named data type can be defined explicitly 
in a type statement. Variables or structures can then be 
defined on the named type. This is useful when several 
different variables or structures are to be defined on the 
same type. Alternatively, the data type can be expressed 
implicitly when a variable or structure is defined. 
Explicit data typing will be used here.

Rather than completely defining the syntax and 
semantics of PASCAL, only those portions of the language
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necessary for defining a relational database schema will 
be described..Although the syntax to follow bears a 
resemblance to PASCAL'S syntax, certain new key words and 
conventions are used to differentiate the relational 
database definition facilities from the ordinary PASCAL 
facilities. Also, the syntax used by Smith and Smith 
[SMIT77b] to define aggregation and generalization 
hierarchies has been modified.

For notational purposes, key words (terminal symbols) 
will be underlined and non-terminal symbols will be 
enclosed in angle brackets ( < and > ). Symbols, either 
terminal or non-terminal, whose presence in a definition 
is optional will be enclosed in curly brackets ( { and } ) 
and if there is a choice among symbols, they will be 
separated by vertical bars ( | ). Small letters will be 
used for naming data types while capital letters will be 
used for naming actual attributes and relations as they 
will be referenced by users,

4,3.2 Unstructured Data Types
In the relational data model, considerable importance 

is attached to the concept of a domain. A domain consists 
of a well-defined set of atomic data values. Although 
these data values are in turn defined as certain patterns 
of bits on the computer system, for the purposes of 
defining a relational database schema the domain values 
are considered to be non-decomposable. Because the set of
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values defined for a given domain are atomic they are 
unstructured.

Named attributes are associated with particular 
domains to give meaning to the data values as they are 
used to characterize some real world object. Larger, 
structured objects are then formed from a collection of 
named attributes. For the data definition language to be 
presented here, four unstructured data types are 
sufficient for defining domains. Three of these 
unstructured data types are standard PASCAL data types 
[JENS76] and the fourth was introduced by Smith and Smith 
[SMIT77b] for use with generalization hierarchies.

The first of the standard PASCAL data types is the 
base data type.' Its syntax is the following:

type <d-name> = {integer|real|char|boolean};

The non—terminal <d—name> stands for the name given 
to the domain being defined. When a domain is defined as 
being either of type integer or type real, its range will 
be the set of numbers representable within the limitations 
of the host computer system's word size. The type char is 
used to denote a domain which ranges over all of the 
symbols in the computer system's character set, e.g., the 
ASCII character set. Additionally, although not shown in 
the syntax, a domain typed as char may also have a length 
attached to it to permit the definition of strings of 
characters which are to be treated as a whole and not
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further decomposed. Lastly, the type boolean ranges over 
only two values, TRUE and FALSE.

The base data type definition of domains is most 
frequently used. The second unstructured data type 
definition is used when a particular domain is intended to 
range over only a limited set of values. The syntax of an 
enumeration data type is the following:

type <d-name> = (<Vj^>,<V2 >,... »<Vj,>) ;

Again, <d-name> is the name associated with the 
domain being defined. Following the equal sign is an 
ordered list of values contained within parentheses. The 
values are considered to be constants, either numbers or 
character strings or any combination of the two. When a 
variable (attribute) is defined on this type, PASCAL will 
automatically verify that actual values assigned to the 
variable (attribute) are taken from this finite list.
Also, the order in which the list of values is defined is 
important.

The enumeration data type is useful when the number 
of legal values is relatively small. The subrange data 
type can be used to define a domain which may take on a 
somewhat larger set of values which constitute an ordered, 
consecutive subset of a base data type. The syntax of a 
subrange data type is:

type <d-name> = <start>..<end>;
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Here, <start> and <end> are constants defined on 
either the integer, real, or single character char base 
data types. All values which logically fall within the 
inclusive subrange are legitimate.

These first three unstructured data types are 
available as an integral part of any implementation of the 
programming language PASCAL. The enumeration and subrange 
data types also offer particularly attractive advantages 
for incorporating a relational database management system 
interface into PASCAL.

Figure 4,3 represents a list of unstructured data 
type definitions for the attributes shown in the relation 
schemes of Figure 4.2, Base, enumeration, and subrange 
data types are used to define the necessary domains. One 
of the domains, "names," will be used later to provide the 
domain definition for two separate attributes: SNAME and 
ENAME. The actual definitions are arbitrary and have been 
chosen only to demonstrate the different possibilities 
available for data typing in PASCAL.
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{ base, data type domain definitions }

type deptnam=char(15); 
type majnam=char(25); 
type deg=char(3); 
type names=char(20); 
type add=char(40); 
type crsenam=char(30) ; 
type des=char(100) ; 
type hour=char(12); 
type committ=char(50) ;

{ subrange data type domain definitions }

type office=100..650; 
type phonenum=1000..9999; 
type cred=1..40; 
type s t u d n u m = 1 0 0 0 0 99999; 
type crsenum=100..999; 
type sectnura=l..9; 
type classroom=100..509; 
type score='A '..'E '; 
type enum=1000..2500; 
type memnum=l..15;

{ enumeration data type domain definitions }

type r a n k = (ASSTPROF,ASSOCPROF,PROFESSOR);
type yrgroup=(FRESHMAN,SOPHOMORE,JUNIOR,SENIOR);

Unstructured data type definitions 
Figure 4.3
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The fourth unstructured data type was introduced by 
Smith and Smith [SMIT77b]. When a generalization hierarchy 
is created in an abstract model, a characteristic entity 
may also be defined to represent all of the attributes 
which are common to each subtype. This characteristic 
entity has as one of its attributes the name of the entity 
which represents each subtype. The domain of the attribute 
will consist of the names of the base relations which

define the subtypes.
A special data type is required to define this 

domain. Smith and Smith refer to such a domain as an image 
domain. The proposed syntax for defining image domains is 

the following:

type <id-name> = rel (<s^>,<s2 >,...,<s^^);

The non—terminal symbol <id—name> will be replaced by 
the actual name to be used for the image domain. After the 
equal sign is the finite list of structured data type 
names. Each structured data type, to be discussed in the 
next section, will provide the necessary data typing for 
the entities (relations) which represent the subtypes of 
the generalization hierarchy. This list is proceeded by 
the terminal symbol "rel" to differentiate it from an 
enumeration data type.

Figure 4.4 shows the one image domain that is 
required in the generalization hierarchy of Figure 3.5.
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{ image domain definition }

type typename=rel(fac,admin,clerk);

An image domain definition 
Figure 4,4

Structured data types with the names "fac","admin”, 
and "clerk" will then have to be defined. These structured 
data types will eventually be associated with relations 
named FACULTY, ADMINISTRATIVE, and CLERICAL respectively.

The four unstructured data types just described are 
sufficient to define all necessary domains in a relational 
database schema. These domains serve only to specify the 
set of legitimate values which an attribute may assume.
The smallest meaningful unit in the definition of a 
database, however, remains the named attribute. Each 
attribute in the abstract data model must then be given a 
name according to the conventions of the PASCAL language 
and be associated with a previously defined data type.

In conventional PASCAL programming, named variables 
are defined in var statements to make the association 
between a data type and an object which can be referenced 
and manipulated within a program. In this extension to the 
programming language PASCAL, the naming of attributes and 
their association with domains will take place when 
structured data types are defined to represent the various
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relation schemes which will comprise the database 
definition.

The next sections will describe the two structured 
data types which will provide the necessary facilities for 
defining relation schemes. In these structured data types, 
attribute definitions will be made explicit.
4.3.3 Structured Data Types

Given a set of relation schemes which adequately 
portray the intent of the abstract data model, their 
representation in the data definition language is 
straightforward. In the PASCAL—based DDL being described 
here, all of the attributes can be named according to the 
rules of the particular PASCAL compiler and they may be 
associated with their domains by defining an appropriate 
unstructured data type. Relations, being essentially 
structured objects, can be defined using one of two 
structured data types which will now be described.

The first of the two structured types will be 
concerned with defining aggregate relation types. This 
structured data type will be the most commonly used data 
type in constructing a relational data model definition.
In keeping with the concept of separating a data type from 
a data definition, each aggregate relation resulting from 
the transformation of an abstract data model into a set of 
relation schemes will have a separate aggregate relation 

type defined for it.
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The syntax of an aggregate relation type is as 
follows:

type <agg-name> -
aggregate [<keylist>]
<a-name^> : {key} <d-name>;
<a-name 2 > : {key} <d-name>;

• • •
• • •

<a-name^> : {key} <d-name>
end;
The non—terminal symbol <agg—name> stands for the 

name of the aggregate relation type being defined in the 
DDL, Unlike the unstructured data types which may possibly 
be associated with different named attributes, each 
aggregate relation type will be associated with exactly 
one defined relation scheme. Following the key word 
aggregate is a required list of attribute names 
(<a-name>s) which are intended to comprise a user-defined 
primary key for the relation. In the relational data 
model, each stored instance of a relation (row or tuple) 
must be unique and one or more attributes are selected to 
enforce this requirement.

The list of named attributes for the aggregate 
relation type being defined then follow. Each <a-name> 
conforms to the naming rules of the particular PASCAL 
compiler implementation. The capitalization of each 
<a-name> indicates that an actual attribute is being 
defined. This then is the name by which the attribute will 
be referenced in applications.
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After the required colon, the optional keyword ke% 
will appear if the defined attribute is in fact the key of 
another aggregate relation (i.e., it is a foreign key).
This requirement is necessary to insure that the 
Referential Integrity Rule [CODD79J can be enforced. If, 
in a stored instance of this aggregate relation, a tuple 
has a non—null value for this attribute, then in the 
relation for which this attribute is a primary key, a 
tuple must also appear with the same value. Date [DATE81] 
discusses this rule and its implications. Lastly, the 
<d—name> of the domain on which the attribute is defined

is provided.
The aggregate relation type described here is 

patterned very closely after that given in Smith and Smith 
[SMIT77b]. Among the important differences, however, is 
that the definition of an aggregate relation type is 
clearly separated from the definition of a relation scheme 
as it is to be used in the procedural portion of a PASCAL 
program. The benefit of this is that aggregate relation 
types can be constructed and maintained by a database 
administrator and kept in a central schema library. 
Different applications can then copy those aggregate 
relation types to which they have authorized access. The 
same aggregate relation type may be associated with 
possibly different relation scheme names in the individual 

applications.
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type dept=
aggregate [DNAME]
DNAME : deptnam;
OFF : office;
PHONE : phonenum 
end;

type maj=
aggregate [MNAME]
MNAME : majnam;
DEGREE : deg;
CREDITS : cred;
DNAME : key deptnam 
end;

type stud=
aggregate [STUDNO]
STUDNO : studnum;
SNAME : names;
ADDR : add;
CLASS : yrgroup 
end;

type stud-acct=
aggregate [STUDNO]
STUDNO : studno;
BALANCE : real 
end;

type crse=
aggregate [CRSENO]
CRSENO : crsenum;
CNAME : crsenam;
DESC : des;
DNAME : key deptnam 
end;

type sect=
aggregate [SECTNO,CRSENO] 
SECTNO : sectnum;
CRSENO : key crsenum;
ROOM : classroom;
TIME : hour;
ENO : key enum 
end;

Figure 4.5 (Part 1)
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type enroll=aggregate [STUDNO,CRSENO,SECTNO]
STUDNO : key studnum;
CRSENO ; key crsenum;
SECTNO : key sectnum;
GRADE : score 
end;

type fac=
aggregate [ENO]
ENO : enum;
ENAME : names;
TITLE : rank 
end;

type comm=
aggregate [COMNAME]
COMNAME : committ;
NUMMEM : memnum 
end;

type assign=
aggregate [COMNAME,ENO]
COMNAME : key committ;
ENO : key enum 
end;
Aggregate relation type definitions 

Figure 4.5 (Part 2)

Figure 4.5 contains the aggregate relation types for 
the ten base relation schemes of Figure 4.2. In each 
definition, the key attribute names are identified; all of 
the attributes are listed with their corresponding domains 
as typed in Figure 4.3; and where appropriate, the 
presence of foreign keys is noted.

The ten aggregate relation types specify the 
structure and intention of each aggregate relation scheme. 
It remains to associate each aggregate relation type with 
a named relation scheme by which it will be referenced in



100

an application. To accomplish this, a variation on the 
PASCAL var statement will be used. The general form of 
this definition will be the following:

var <rel-name> collection of <agg-name>;

The non-terminal symbol <rel-name> will be replaced 
by a desired name for the relation scheme. In general, 
this will be the name that was given to the relation 
scheme when the abstract data model was transformed into a 
set of relation schemes. However, different applications 
which reference this database may choose different names 
as the need arises. The fundamental definition of the 
relation scheme remains with the aggregate relation type 
regardless of what name is chosen. Again, by separating 
data typing from data definition, a degree of data 
independence is provided to the database administrator.

The named relation scheme then stands as a definition 
for a set of actual stored tuple occurrences all of which 
have the exact same attribute structure and underlying 
domains. The key words collection of imply that the named 
relation scheme is to be associated with the entire set of 
stored occurrences. The reason for using "collection 
rather than "set" is that PASCAL already has a data type 
for "sets" which is not at all related to database usage. 
Lastly, the aggregate relation type name is specified to 
complete the definition of the relation scheme. Figure 4.6
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presents the relation scheme definitions for the ten 
relation schemes of Figure 4.4.

var DEPARTMENT collection of dept;
var MAJOR collection of maj;
var STUDENT collection of stud;
var STUDENT-ACCOUNT collection of stud-acct;
var COURSE collection of crse;
var SECTION collection of sect;
var ENROLLMENT collection of enroll;
var FACULTY collection of fac;
var COMMITTEE collection of comm;
var SERVEON collection of assign;

Relation scheme definitions 
Figure 4.6

In transforming a generalization hierarchy from the 
abstract model to the relational model of data, several 
relation schemes result. For each subtype, a separate 
aggregate relation scheme must be defined assuming that 
each is not itself the generic object of another 
generalization hierarchy. An aggregate relation scheme may 
also be required for the object which represents the 
attributes of each subtype collectively. Lastly, a 
relation scheme must be defined for the generic object 

itself.
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Because a generic object is essentially redundant 
with respect to its attributes and it serves a special 
role in defining the underlying model, a separate 
structured type definition is required in the DDL. It is 
assumed that the DDL processor will effectively control 
the redundancy in terms of the actual storage and 
representation of data values, however, the database 
administrator must be able to express the intent of the 
generalization hierarchy when defining the database.

The syntax to be used here is a modification of the 
work of Smith and Smith [SMIT77b]. Generic relation 
schemes will be separately typed as with aggregate 
relation types and the specification of the range of 
aggregate relation types which comprise the generalization 
hierarchy will be handled by the use of image domain 
types. The syntax for representing generic relation types 

is the following:

type <gen-name>=
generic {[<agg-name>]}
<c-name^> ; <id-name>;
<c-name 2 > : <id-name>;

#  *

# •

<c-name^> : <id-name>
of aggregate [<keylist>l 
<a-name^> : {key} <d-name>;
<a-name 2 > : {key} <d-name>;

• •
* »

<a-name^> : {key) <d-name>
end;
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The non-terminal symbol <gen-name> will be replaced 
by the actual name of the generic relation type being 
defined. The keyword generic then appears to differentiate 
this type definition from the aggregate relation type 
definition. The square brackets contain the name of the 
(optional) aggregate relation type which defines the 
attributes common to each subtype collectively. Next is a 
list of "cluster names" (<c-name>s) which specify each 
category of the generalization hierarchy.

Typically, a generalization hierarchy will contain 
only one category, that is, only one "cluster" of relation 
schemes will be generalized into a single generic object. 
However, it is possible that a single generic object may 
be specialized into several disjoint "clusters. Following 
each <c-name>, then, is the name of the appropriate image 
domain. Once the cluster names of the generic relation 
type have been specified, the key word aggregate denotes 
the beginning of the attribute definitions for the generic 
relation type. In the syntax given here, each cluster name 
is also considered to be an attribute of the generic 
relation type defined on an image domain. The remaining 
attribute definitions are the same as in the aggregate 
relation type syntax.

Figure 4.7 contains the necessary type definitions 
for the generalization hierarchy of Figure 3.5. Three 
additional unstructured data types are provided for the 
domains required in "admin" and "clerk". The fourth
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required domain, for the attribute ENAME, has already been 
defined as "names" in Figure 4.3. Next, three aggregate 
relation types are defined. The first two are for two of 
the subclasses in the hierarchy. The aggregate relation 
type for the subclass FACULTY has already been defined as 
"fac" in Figure 4.5. The third aggregate relation type is 
for the characteristic entity EMP-TYPE. Lastly, the 
generic relation type for EMPLOYEE is defined.

Once the necessary aggregate and generic relation 
types have been defined, it remains to complete the 
definition by associating these data types with named 
relation schemes. Figure 4.8 portrays the resulting 
relation scheme definitions.
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{ additional domain types }
type skillnam = char(15); 
type ranknam = char(20); 
type sal = 1..9;
{ additional aggregate relation types }
type admin = 
aggregate [ENO]
ENO : enum;
ENAME : names ;
RANK : ranknam 
end;
type clerk = 
aggregate [ENO]
ENO : enum;
ENAME : names;
SKILL : skillnam 
end;
type etype = 
aggregate [TNAME]
TNAME : typename;
SAL-SCHED ; sal 
end;
{ the generic relation type }
type emp = 
generic [etype]
TNAME : typename 
of aggregate [ENO]
ENO : enum;
ENAME : names 
end;

Structured data types for a generalization hierarchy
Figure 4.7



106

var ADMINISTRATIVE collection of admin; 
var CLERICAL collection of clerk; 
var EMP-TYPE collection of etype; 
var EMPLOYEE collection of emp;

Relation scheme definitions for the 
generalization hierarchy 

Figure 4.8

4.3.4 Data Types for the Selector and Adaptive Selector 
The two new database abstractions introduced in the 

preceding chapter will require additional DDL facilities. 
This section will propose a syntax for the definition of 
these two abstractions at the level of the conceptual 
schema. While both abstractions are non-structural in the 
abstract data model, they will require a concrete 
representation in the conceptual schema. The physical 
details of how these will be implemented will be discussed

in the next chapter.
The following syntax represents the way in which a 

selector data types will be defined in the relational DDL;
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type <sel-name> =
selector [<a-name>l 
of <agg-name> | <gen-name>
<a-name^> : key <d-name>;
Ca-nameg) ; key <d-name>;

• • •
# • *

<a-name^> : key <d-name>
{with
<a-name.> ; key <d-name>;
<a-name^> : key <d-name>;

• • •
# • •

<a-name^> ; key <d-name> }
end;

The non—terminal symbol <sel—name> will be assigned 
an actual name for the selector type. The keyword selector 
differentiates this type definition from aggregate types, 
generic types, and the unstructured types. The named 
attribute which determines the selector is included in the 
brackets. Next, the aggregate type or generic type which 
contains the named attribute is identified. Note that the 
constant attribute value which serves to partition the 
aggregate type or generic type is not specified in the 
type definition nor is the boolean qualifier. This will be 
done when a relation extension is defined for the selector 

type.
Regardless of whether a simple selector or 

relationship selector is being defined, the key attributes 
of the aggregate type or generic type are replicated in 
the selector type definition. In the case of a simple
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selector, these will be the only attributes of the 
selector definition. If a relationship selector is being 
defined, then the key word with is included followed by a 
list of the key attributes of the other aggregate or 
generic type which participates in the relationship. 
Figure 4.9 portrays the simple selector and relationship 
selector type definitions for the selectors of Figure 3.9 

and Figure 3.11.

type profs = 
selector [TITLE] 
of fac
ENO : key enum 
end;
type standing = 
selector [CLASS] 
of stud
STUDNO ; key studnum 
with
MNAME : key majnam 
end;

Selector type definitions 
Figure 4.9

The selector data type definitions above alert the 
DDL processor that selectors will be defined on the 
attribute TITLE of the aggregate type "fac" and on the 
attribute CLASS of the aggregate type "stud". The actual 
values which will determine the partitioning will be 
provided when the selector extensions are defined. Also, 
the foreign key "MNAME" is included in the definition of 
the relationship selector "standing" because the 
relationship ELECTS between MAJOR and STUDENT is defined
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only on the those STUDENTS who are selected on the basis 
of their class standing. Without the relationship selector 
abstraction, the foreign key MNAME would have to be 
included in the aggregate type "stud" with null values 
eventually stored for all freshmen. The semantic rule that 
freshmen cannot ELECT a MAJOR would then have to be
enforced externally.

Once a selector data type has been declared, it 
remains to define the selector on an actual relation and 
to provide the attribute qualification which determines 
the selected subset. The following syntax may be employed:

var <sel-rel-name>
selects <sel-name> of <rel-name>
where <a-name> <op> <domain-value>;

The non-terminal symbol <sel-rel-name> will be 
replaced by the name of the selector as it was defined in 
the abstract data model. After the key word selects is the 
name of the selector type definition followed by the name 
of the relation scheme on which the selector is to be 
defined. Lastly, is the qualification clause which 
specifies the attribute name, a boolean operator, and a 
constant drawn from the underlying domain of the 
attribute. Figure 4.10 shows the definition of the 
selectors *SENIOR and *UPPERCLASS using this syntax.
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var *SENIOR
selects profs of FACULTY 
where TITLE = "PROFESSOR";
var *UPPERCLASS
selects standing of STUDENT
where CLASS ~= "FRESHMAN";
Selector artificial relation scheme definitions

Figure 4.10

The adaptive selector abstraction has been defined as 
a temporal partitioning of an entity based on certain 
externally declared criteria. In one case, the membership 
of the adaptive selector is defined on the basis of 
recency and frequency of use. As an example, the simple 
adaptive selector ACTIVE was defined on an entity 
STUDENT-ACCOUNT. This simple adaptive selector is meant to 
express the fact that at any point in time a certain 
subset of STUDENT-ACCOUNTs may be "more meaningful" to the 
enterprise than the entire set of STUDENT-ACCOUNTs. In 
cases such as this, neither attributes nor relationships 
are involved in defining the simple adaptive selector.

In the second case, relationship adaptive selectors 
are defined in terms of a time-varying participation in a 
relationship. For example, the relationship adaptive 
selector CURRENT of Figure 3.13 was defined as selecting 
those COURSES which are being OFFERED at any particular 
instant in time. This temporal criterion for selecting 
instances of COURSES is intuitively more understandable 
but still must be controlled externally.
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In either case, the typing of an adaptive selector in 
the relational DDL is both simple and straightforward. The 
criteria needed to precisely determine membership will be 
handled externally. The DDL processor need only be made 
aware of the existence of an adaptive selector. The syntax 
for typing either form of adaptive selector is the 
following:

type <ad-sel-name> =
adaptive selector over <agg-name> | <gen-name> 
<a-name^> ; key <d-name>;
<a-name 2 > : key <d-name>;

# • •

<a-name^> ; key <d-name>
end;
The definition of an adaptive selector requires that 

a name be given to it and that the aggregate or generic
type over which it is defined be indicated. As with the
selector type, the key attribute(s) of the named aggregate 
or generic type are included as the key attributes of the 
adaptive selector type. The following figure exhibits the 
type definition for the adaptive selectors ACTIVE and 
CURRENT of Figure 3.12 and Figure 3.13.
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type busy =
adaptive selector over stud-acct
STUDNO : key studnum
end;
type offered = 
adaptive selector over crse 
CRSENO ; key crsenum 
end;

Adaptive selector type definitions 
Figure 4.11

Figure 4.11 portrays a simple adaptive selector type 
definition ("busy") which will serve as the basis for 
ACTIVE. Because the STUDENT-ACCOÜNT entity is related to 
the STUDENT entity functionally (one-to-one), the key 
attribute of "stud-acct" is also STUDNO. Finally, the 
relationship adaptive selector type definition "offered 
is given with key attribute CRSENO for "crse."

After an adaptive selector type definition has been 
defined, it remains to provide a means to associate the 
type definition with a relation extension. The following 
syntax will enable the definition of an artificial 
relation extension to represent adaptive selectors in the 

DDL:

var <ad-sel-rel-name>
powerset <ad—sel—name> of <rel—name>;

The non-terminal symbol <ad-sel-rel-name> will be the 
name by which the adaptive selector will be referenced 
within the data manipulation language portion of an
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application. The key word powerset is used for two 
purposes. First, it denotes immediately the nature of the 
abstract data type on which adaptive selectors are based.
And secondly, it serves to emphasize that, by definition, 
a powerset of the occurrences of a relation may at any 
point in time contain all of the occurrences, a subset of 
the occurrences, or possibly be empty. Figure 4.12 
portrays the formal definition of the artificial relations 
$ACTIVE and $CURRENT using this syntax.

var $ACTIVE powerset busy of STUDENT-ACCOUNT; 
var $CURRENT powerset offered of COURSE;

Adaptive selector artificial relation scheme definitions
Figure 4.12

4.4 A Relational Data Manipulation Language Facility
The preceding section proposed and demonstrated the 

syntax and semantics of a relational data definition 
language embedded in the programming language PASCAL. The 
purpose was to provide the necessary extensions for 
representing the occurrence dimension in a particular 
generic data model. As a result, the formal definition of 
the requirements of the database design problem of Chapter 
2 was achieved. Figures 4.3, 4.4, 4.5, 4.9, and 4.11 
provide the necessary data type definitions while Figures 
4.6, 4.10, and 4.12 associate these data types with PASCAL

variable names.
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Recognizing the semantic information requirements 
which give rise to the occurrence dimension and formally 
defining selectors and adaptive selectors enhances the 
ability of the database designer to effectively represent 
the enterprise's information requirements. The ability to 
manipulate selectors and adaptive selectors in response to 
database queries, however, provides demonstrable 
justification for their use.

Originally, Codd ICODD70] proposed an algebraic data 
manipulation language facility for the relational model. 
This approach followed from the fact that extensions of 
relations are simply sets as they are understood in 
mathematics. Relation schemes define the members of these 
sets. It was quite natural then to propose a language made 
up of algebraic operators which manipulate relations 
viewed as sets. Subsequently, non-procedural, 
calculus-like data manipulation languages evolved.
However, the relational algebra remains the standard by 
which all relational data manipulation languages are 
judged. If a relational DML can be shown to possess a set 
of operators at least as powerful as the relational 
algebra, it is said to be relationally complete.

The relational algebra, in its minimal form, consists 
of only five primitive set operators. Of these, two 
operators are unary, that is, they manipulate only one 
entire relation at a time. These two are the selection 
operator and the projection operator. The remaining three
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operators are binary - operating on pairs of relation 
extensions. These are union, difference, and extended 
cartesian product. A comprehensive treatment of these five 
operators can be found in Codd [CODD79], Date [DATE81], or
Ullman [ULLM80].

In addition to these five primitive operators, the 
relational algebra has certain more powerful operators 
which are based on them. The most important of these 
operators is the join operator. In joining two relation 
extensions, there must be at least one attribute in each 
defined on a common domain. The attribute names may be 
different as long as the underlying domains are identical. 
The result of the join operation consists of the 
concatenation of the columns of each relation as in the 
product operator, however, a result tuple is formed only 
if the values of the common domains satisfy some boolean 
qualification. Codd [CODD79] contains a complete 
discussion of the various forms of join operator.

In this extension of the relational model, the notion 
of "artificial relations" has been introduced. These 
artificial relations stand for the selectors and adaptive 
selectors defined in the relational data definition 
language facility. The first type of artificial relation 
represents the simple selector where the only attribute(s) 
contained in it are the key attribute(s) of the base 
relation over which it is defined. This type of artificial 
relation does not participate directly in any
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relationships and will be denoted SS. The second type 
represents relationship selectors where, in addition to 
the key attribute(s) of the base relation, foreign keys 
are present as well. This type of artificial relation will

be denoted RS.
Artificial relations which represent either form of 

adaptive selector contain only the key attribute(s) of the 
base relation on which they have been defined. These types 
of artificial relations will be denoted SAS and RAS for 
simple adaptive selector and relationship adaptive 
selector, respectively. Lastly, conventional base 
relations will be denoted simply as R.

All five basic operators and the various forms of 
join are clearly applicable to base (R-type) relations.
The two unary algebraic operators, selection and 
projection, operate on SS-, RS- and RAS—type relations in 
the conventional manner with projection being appropriate 
only when there is more than one named attribute in the 
relation. Neither operator, however, is applicable to 
relations of the SAS-type. The membership of the SAS-type 
relation is determined by the external factors of recency 
and frequency of use. The size and membership of such a 
relation is also changing dynamically.

In considering the binary algebraic operators, each 
possible combination of the five different relation types 
must be examined. This would lead to 15 pairings. However, 
the dynamic nature of the SAS-type precludes its use in
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any of the binary operators, therefore, only ten possible 
combinations remain. In these ten combinations, the binary 
algebraic operators are all applicable subject to the 
ordinary restrictions placed on them, such as union 
compatibility and the presence of common domains where 
necessary.

With the exception of the simple adaptive selector 
then, the relation schemes representing the other database 
abstractions may be manipulated by the relational algebra 
in a straightforward manner. However, it will generally be 
the case that these artificial relation schemes are not 
manipulated directly, but that they will be manipulated by 
utilizing the new, extended operators and facilities to be 
described in the next section.

4.4.1 Extended Operators for the Relational Algebra
The five primitive relational algebra operators along 

with the various forms of the join operator, provide a 
rich collection of data manipulation language facilities. 
Even though these facilities may be used to manipulate the 
artificial relations employed to support the selector and 
adaptive selector abstractions, additional operators are 
needed to fully exploit their presence. Five such 
additional operators have been identified and will be 
described in this section.

Both selector and adaptive selector abstractions are 
intended to define subsets of the occurrences of an



118

entity. Their representation by artificial relations in 
the conceptual schema signals the intent that the 
appropriate subset will be required for manipulation apart 
from the base relation as a whole. An extension of one of 
these artificial relations does not physically contain the 
selected tuples but rather provides a mechanism to 
identify the subset when necessary.

The first of the five extended operators is intended 
to enable the selected subset to be the designated operand 
in any DML operation. Because the artificial relation 
extensions themselves do not contain the desired subset 
but only contain the key attributes of the selected 
tuples, these artificial relation extensions may be used 
as a filter or a "mask" when manipulating the base 
relation extension. When viewing a base relation extension 
through the filter only the appropriately selected tuples

may be "seen."
The second extended operator is the logical inverse 

of the first. While the selected subset has been singled 
out because of its special semantic meaning, it will often 
be the case that the complement of the selected subset 
will be the desired operand in a DML operation. In such 
cases, the tuples not qualified for membership in the 
artificial relation extension are to be manipulated.

In either form of selector, a particular tuple could 
be tested for membership in the artificial relation by 
simply applying the boolean qualification to the base
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relation itself. Likewise, in the relationship adaptive 
selector, participation in the defining relationship could 
be tested quite readily. However, in a simple adaptive 
selector, because of its temporal criterion and 
dynamically changing membership, an operator is needed to 
ascertain whether a particular tuple is presently 
selected. The third extended operator will then be a se^
membership test operator.

The fourth extended operator will be a set size 
operator. That is, this operator will yield as its result 
the cardinality of the artificial relation to which it is 
applied. Although there is usually a DML operation which 
counts the tuples in a relation extension, this operator 
will be particularly useful with the adaptive selectors.

The fifth, and last, extended operator is actually 
not an operator in the sense that it may be applied at 
will by a user of the DML. Rather it is intended to be 
employed directly by the DML processor as a natural part 
of its determination of the optimum manner in which to 
satisfy a DML query. In deciding how to respond to a query 
involving a join of two base relations in the presence of 
a relationship selector or a relationship adaptive 
selector, an implied join will be incorporated into the 
query syntax to utilize the artificial relation where 

appropriate.
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ARTIFICIAL
RELATION TYPES SS RS SAS RAS

0 FILTER YES YES NO YES
p
E COMPLEMENT YES YES NO YES
R
A SET MEMBERSHIP NO NO YES YES
T
0 SET SIZE YES YES YES YES
R
S IMPLIED JOIN NO YES NO YES

Applicability of the extended relational 
operators to the artificial relation types

Table 4.1
Table 4.1 indicates the applicability of these five 

extended operators to the four artificial relation types. 
Where the operator is applicable a "YES" is entered 
otherwise a "NO" is entered.

Again, because of the highly dynamic, time-varying 
nature of the simple adaptive selector relation, the 
filter, complement, and implied join extended operators 
would be inappropriate for use on it. Set membership and 
set size, however, are useful operators with this type of 
artificial relation. Set membership is not appropriate for 
use with either form of selector because the test of 
membership could be applied directly to the base relation 
by examining the designated attribute value.
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4.4.2 Data Manipulation with the Extended Operators 
These five extended operators will now be 

demonstrated using sample DML queries posed in the context 
of the college database example. The particular syntax to 
be employed here to demonstrate the manipulative power of 
selectors and adaptive selectors will follow closely the 
SEQUEL data manipulation language described in Date 
[DATE81], Although SEQUEL is classified loosely as a 
transitional DML falling somewhere between the algebra and 
calculus, it is much closer to the algebra in its syntax. 
Also, SEQUEL is used in several widely used relational 
database management systems including SYSTEM/R, SQL/DS, 
ORACLE, and RIM. It will be assumed that the SEQUEL syntax 
is embedded within the PASCAL programming language in 
order to be consistent with the DDL presented above.

Table 2.1 indicates the expected number of entity 
occurrences to be stored in this database. In order to 
evaluate the effectiveness of using selectors and adaptive 
selectors, certain additional assumptions will be 
necessary. First, among the 250 FACULTY member 
occurrences, 100 will be of professorial rank. Of the 4000 
STUDENT occurrences, it is assumed that they are 
approximately evenly distributed across classes, that is, 
there are 1000 STUDENTS in each class. Although there are 
500 COURSES listed by the college, only 100 will be 
offered in any given term. Each such COURSE offering will
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have an average of two SECTIONS. Finally, of the 4000 
STUDENT-ACCOUNTs, only 800, or 20 percent will be actively 

used.
Although consideration of the internal data model 

will not be taken up until the next chapter, assumptions 
regarding storage structure support will also be needed 
here to compare the effectiveness of the query 
formulations. It is assumed that each stored relation 
extension has associated with it a dense hierarchical 
index for primary access to its tuples based upon the 
primary key. Similarly, simple selectors, relationship 
selectors, and relationship adaptive selectors are 
implemented with dense hierarchical indexes as well. These 
assumptions permit some of the query evaluations to be 
carried out by operating on the storage structures instead 

of the actual tuples.
The results to be offered in the following 

comparisons are only indicative of the magnitude of the 
potential efficiencies obtainable by using the extended 
operators with selectors and adaptive selectors. The 
assessment of the true magnitude of the relative gains 
would necessarily involve considerably more information 
about the query processor, any optimization strategies 
used, and the characteristics of the physical environment.

To utilize both the filter and complement operators, 
a new clause - "USING" - will be introduced into the
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SEQUEL syntax. The syntax of a USING clause is the 

following.

USING {COMPLEMENT OF}
<sel-rel—name> | <ad-sel-rel-naine> :

SELECT « • •

without the optional key words "COMPLEMENT OF", the 
USING clause indicates that either form of selector or a 
relationship adaptive selector is to be used as a filter 
to qualify the subsequent SELECT statement. For example, 
consider a retrieval request for the course numbers 
(CRSENO) and course names (CNAME) of all COURSES which are 
presently being offered. There exists a relationship 
adaptive selector which identifies these course instances. 
This query could be posed with the following modified 
SEQUEL statements.

USING ^CURRENT:
SELECT CRSENO CNAME 
FROM COURSE

The use of the relationship adaptive selector 
ÇCURRENT in this particular query guarantees that only 
presently offered COURSES will be retrieved. In fact, the 
dense hierarchical index created to implement $CURRENT 
would be used to access the tuples of the COURSE relation 
extension instead of the primary index. A total of 100 
COURSE tuples would then be retrieved to extract the 
requested information.
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Without the relationship adaptive selector and the 
filter operator, this query would be considerably more 
difficult to formulate. In this case, using standard 
SEQUEL syntax, the query would be formulated as follows.

SELECT CRSENO CNAME 
FROM COURSE 
WHERE EXISTS

(SELECT *
FROM SECTIONWHERE SECTION.CRSENO=COURSE.CRSENO)

The first observation is that this formulation is 
considerably more complex. Not only is it lengthier in its 
written form, and consequently more difficult to 
understand, but it requires more effort to execute. The 
simplest strategy for executing this particular query 
formulation would be to perform a join of the two primary 
indexes as indicated in the last WHERE clause. The result 
of the join would be the 100 (matched) keys of the offered 
COURSES. The actual retrieval would be for these selected 
occurrences only. However, the join operation on the 
primary indexes represents the additional effort in this 
formulation without the filter operator.

Another possible query would be to retrieve, and 
presumably list, the names (SNAME) and addresses (ADDR) of 
all freshmen. It is known that there is a relationship 
selector which identifies all non-freshmen. The complement 
of this relationship selector would yield the desired 
result when applied to STUDENT. This query could be posed 

as follows.
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USING COMPLEMENT OF *UPPERCLASS : 
SELECT SNAME ADDR 
FROM STUDENT

The execution of this query could be carried out by 
initially operating on the two hierarchical indexes 
associated with the STUDENT relation extension, that is, 
the primary index for all STUDENT tuples and the index for 
*UPPERCLASS. The set difference of these two indexes would 
yield the keys and pointers to freshman STUDENT 
occurrences. The actual retrieval of tuples would limited 
to a total of 1000 freshman STUDENT occurrences.

The alternative formulation would require that the 
qualification on the attribute CLASS be made explicit.

SELECT SNAME ADDR
FROM STUDENT
WHERE CLASS = "FRESHMAN"
In terms of the length and clarity of the two 

formulations, either one is acceptable. In fact, the 
latter, with its explicit qualification on the CLASS 
attribute, could be argued to be a clearer expression of 
the intent of the query. However, in this form, all 4000 
STUDENT tuple occurrences would have to be retrieved in 
order verify freshman status. Consequently, the 
availability of the relationship selector *UPPERCLASS and 
the complement operator result in substantially less work 
in responding to this query.

The basic relational algebra operators and the 
extended operators of filter, complement, and implied join
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all return as a result an unnamed relation containing 
those tuples which met the stated qualification. That is, 
these operators are set valued. The two extended operators 
for set membership and set size are not set valued.

The set membership operator will be implemented as a 
simple boolean test. After initializing the key 
attribute (s) of a base relation, a test may be made to 
determine if the specific tuple is currently a member of 
an adaptive selector defined on that base relation. The 
result of this operator will be either true or false. The 
filter and complement operators are, in effect, tests of 
set membership, however, they range over an entire base 
relation. Set membership deals only with specific tuples.

The set membership operator will be used in an "IF 
... THEN ... " construct preceding a SELECT. The key word 
"IN" in the boolean qualification signals that a set 
membership test is being applied to an adaptive selector. 
The syntax is as follows,

IF <keylist> IN. <ad-sel-rel>
THEN SELECT . . .

The non-terminal symbol <keylist> will contain the 
names of the key attributes of the base relation on which 
the adaptive selector is defined. Prior to the IF 
statement, these attribute names must be initialized to 
the appropriate values for the tuple in question. For 
example, a query which retrieves the BALANCE of a
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particular STUDENT-ACCOUNT only if that account is among 
the active accounts would be formulated as follows.

IF STUDNO IN $ACTIVE
THEN SELECT BALANCE

FROM STUDENT-ACCOUNT
Because of the nature of the simple adaptive selector 

$ACTIVE, there is no equivalent formulation of this query 
without the set membership operator. The membership of 
$ACTIVE is determined by the observation of recency and 
frequency of reference to STUDENT-ACCOUNTs and does not 
depend on attribute values or relationship participation.
A failure of this query to return a BALANCE would be 
indicative that the account in question is not among the 
active set.

Another example of the set membership operator would 
be a query which lists the section numbers, rooms, and 
times of a COURSE which is currently being offered.

IF CRSENO IN ^CURRENT
THEN SELECT SECTNO ROOM TIME 

FROM SECTION
This query requires that the key attribute CRSENO be 

initialized to a valid course number. If the COURSE in 
question is a member of the relationship adaptive selector 
$CURRENT, then the appropriate information is retrieved; 
otherwise, the SELECT will not be performed. Because the 
key of the SECTION relation scheme consists of the 
concatenation of CRSENO and SECTNO, the primary index for 
the SECTION relation extension cannot be used without
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knowledge of the SECTNO (s). Therefore, the actual 
retrieval operation would involve a scan of the 200
SECTION occurrences.

The equivalent formulation of this query without the 
set membership operator and relationship adaptive selector 

is, in fact, simpler.

SELECT SECTNO ROOM TIME
FROM SECTION
WHERE SECTION.CRSENO = X
In this form, it is assumed that the relevant CRSENO 

is represented by "x". The difference in the two 
formulations is that in the former, if the COURSE 
occurrence is not being offered, only the relationship 
adaptive selector index is searched and no additional work 
is performed when the search fails. In the latter, all of 
the SECTION occurrences would be retrieved, at substantial 
cost, only to determine that there are no matches with the

specified CRSENO.
Frequently, it is useful to know the size of a 

relation in terms of the number of tuples it currently 
contains. The syntax of SEQUEL’S SELECT statement has a 
built-in operator, COUNT, which may be used for this 
purpose. The COUNT function, however, requires that the 
entire relation extension be retrieved to obtain the 
number of tuple occurrences. For the artificial relations 
described here, an explicit count of the number of tuples 
will be maintained. The value of this field may be
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obtained for any artificial relation using the following 

form of SELECT.

SELECT SIZE ( <sel-rel> | <ad-sel-rel> )

This brief form of SELECT simply returns an integer 
count of the number of tuples presently selected for 
membership in either the indicated selector relation or 
adaptive selector relation. If it were necessary to 
determine the total number of currently offered COURSES, 

the next query would suffice.

SELECT SIZE ($CURRENT)

The last of the extended operators is the implied 
join. Unlike the preceding four operators, the implied 
join is not directly invoked when formulating a query. The 
syntax of the SELECT statement in SEQUEL embodies the 
relational algebra operations of selection, projection, 
union, and various forms of join. In the examples shown so 
far, only selection, projection, and join have been 

demonstrated.
When the FROM clause in a SELECT statement contains 

the name of more than one relation, these relations are 
joined. If the relations do not contain any common 
attribute names, an extended cartesian product is 
performed. If there are common attribute names, then 
either a theta join or natural join is performed depending 

on the WHERE clause.
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In the presence of relationship selectors and 
relationship adaptive selectors, the joining of two base 
relations only makes sense for the tuples which are 
members of the appropriate artificial relations. In 
formulating queries involving base relations with either a 
relationship selector or relationship adaptive selector, 
the query parser should perform the implied join of one of 
the two base relations before affecting the final join 
with the second base relation.

Because joins (and implied joins) are not shown 
explicitly in the SEQUEL syntax, there is no change or 
addition to the syntax.

To demonstrate when and how an implied join would be 
employed, the following query examples will be used. The 
first query involves retrieving the student names and 
major names of all students in the engineering department. 
The attribute SNAME is contained in the relation STUDENT 
while the attributes MNAME and DNAME are contained in 
MAJOR. There is no need to retrieve the relation 
DEPARTMENT.

Occurrences of STUDENT may only be related to 
occurrences of MAJOR if they have qualified for membership 
in the relationship selector *UPPERCLASS. The proper 
sequence of relational algebra operations to handle this 
query would involve first performing an equijoin over 
STUDNO of the base relation STUDENT with the artificial 
relation *UPPERCLASS. This would result in an
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intermediate, unnamed relation containing the tuples of 
all STUDENTS who may legitimately elect a MAJOR. Assuming 
none of the attributes are eliminated by a projection, 
this unnamed relation consists of all of the STUDENT 
attributes concatenated with the MNAME attribute from 
*UPPERCLASS. Next, this unnamed relation is to be joined 
(equijoined) with the base relation MAJOR on the basis of 
equal MNAME values. Lastly, a selection is made on the 
DNAME attribute and the desired tuples are projected over 
the SNAME and MNAME attributes. The SEQUEL SELECT 
statement which performs all of these operations is 
written thusly.

SELECT SNAME MNAME
FROM STUDENT MAJOR
WHERE DNAME = "ENGINEERING"
In conventional SEQUEL syntax, the only apparent join 

here would be on the base relations STUDENT and MAJOR. 
However, referring to Figure 4.2, there is no common 
attribute on which to accomplish the join. The result 
would then be a virtually meaningless extended cartesian 
product followed by a selection on DNAME and a projection 
over SNAME and MNAME. With the extended operator of 
implied join, however, the proper sequence of operations 
described above would be carried out to correctly respond

to the query.
Without the relationship selector *UPPERCLASS, the

relational schema of Figure 4.2 would have to propagate
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the foreign key MNAME into the relation scheme STUDENT.
The domain on which MNAME is defined would have to contain 
a special null value for all freshman. The question of how 
to treat null values in join or selection operations is 
currently a research problem (see ICODD79] and [DATE83]).

The definition of a relationship selector calls for 
including the key attribute(s) of one of the base 
relations as a foreign key in the artificial relation 
scheme. Relationship adaptive selectors contain only the 
key attribute(s) of the one base relation on which they 
are defined. This, however, does not preclude the 
applicability of the implied join to facilitate the 
response to a query. When a join operation is required 
between two base relations that have a relationship 
expressed through a relationship adaptive selector, the 
implied join using the relationship adaptive selector can 
avoid unnecessary work in responding to the query.

As an example, consider a query calling for the 
retrieval of the course number, section number, course 
name, and faculty member’s name from the database. The 
response to this query would involve joining the COURSE 
relation with the SECTION relation to form an unnamed 
relation with the attributes of both. This would involve 
retrieving 500 COURSE occurrences and 200 SECTION 
occurrences to form a 200 occurrence unnamed relation 

extension.
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Next, a join of this unnamed relation with FACULTY 
over attribute ENO would yield the ENAME attribute. This 
join operation would involve retrieving the 250 FACULTY 
occurrences at least once. Finally, a projection over the 
attributes CRSENO, SECTNO, CNAME, and ENAME would produce 
the desired result.

Although this sequence of operations could be carried 
out with the existing relation schemes, the presence of 
the relationship adaptive selector $CURRENT would simplify 
the entire process. In this case the implied join of 
COURSE with ëCURRENT would initially restrict the first 
join to only those COURSE occurrences presently being 
offered. This reduces the number of COURSE occurrences 
retrieved to only 100 instead of 500. The query 
formulation would be as follows.

SELECT CRSENO SECTNO CNAME ENAME
FROM COURSE SECTION FACULTY
These demonstrations are not all inclusive of the 

manipulative power afforded by the presence of selectors 
and adaptive selectors, however, they do provide an 
insight as to how a relational data manipulation language 
such as SEQUEL might exploit them in response to certain 
types of queries. The incorporation of selectors and 
adaptive selectors in an abstract data model enhances the 
ability of a database designer to represent more of the 
semantics of data. Likewise, the use of the five extended
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operators presented here enables a database user to 
express those same semantics when formulating a query.

4.5 Summary
The goal of this chapter has been to integrate the 

first two levels of the three level database design 
methodology. This requires mapping the concepts and 
principles of abstract data modeling onto the structures, 
operators, and constraints of a generic data model. In 
particular, the selector and adaptive selector 
abstractions which introduced the occurrence dimension 
into abstract data modeling, require special structures 
and operators not available in existing generic data 

models.
To accomplish this goal, the relational model of data 

was chosen as the target generic data model. The 
programming language PASCAL was chosen as the vehicle for 
developing the necessary data definition language 
facilities to permit the definition of selectors and 
adaptive selectors. The data manipulation language SEQUEL 
was employed to demonstrate the manipulative features of 
selectors and adaptive selectors.

The first contribution was the introduction of the 
concept of artificial relations to represent selectors and 
adaptive selectors when transforming an abstract model 
into a collection of normalized relation schemes, i.e., 
the conceptual schema. The next stage in conceptual schema
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development involved the provision of data definition 
language facilities to allow the formal definition of the 
conceptual schema in a DBMS-processible form. An extended 
syntax was developed to completely define a conceptual 
schema including the necessary facilities to both type and 
define selectors and adaptive selectors. These two data 
definition stages then enable the formal representation of 
the occurrence dimension at the level of a generic data 

model.
The provision of DDL structures to represent the 

occurrence dimension in a generic data model constitutes 
only part of the mapping of an abstract data model onto a 
generic data model. Operators must also be provided to 
manipulate these new structures. To demonstrate the 
manipulative power afforded by the presence of artificial 
relations representing selectors and adaptive selectors, 
the relational algebra was extended to include five new 

operators.
A series of representative queries, drawn from the 

database design example, was used to show how these five 
new operators would be employed. Where appropriate, the 
alternative query formulation without the new operator or 
artificial relation was also presented. In most cases, it 
was shown that the formulation involving the new operators 
was more clear than the alternative formulation and in all 
cases the amount of work required to respond to the query 
was significantly less.



CHAPTER 5

THE OCCURRENCE DIMENSION IN INTERNAL DATA MODELING

5.1 Introduction
To complete the integration of the three level 

database design methodology shown in Figure 2.1, the 
generic data model representation of a database must 
finally be mapped onto the physical structures available 
with the particular DBMS and host computer system. The 
process of choosing a suitable implementation strategy is 

referred to as internal data modeling.
At the level of abstract data modeling, the existence 

of occurrences of entities and relationships has been 
conceptualized to enable the representation of certain 
semantic information requirements which would otherwise 
not be representable. The selector and adaptive selector 
abstractions have been introduced as mechanisms for the 
characterization of occurrences of data objects in an 
abstract data model. At the level of a generic data model, 
definitional forms (artificial relations) have been 
introduced to formally specify the intention of 
implementing and maintaining these special 
characterizations of occurrences. Additionally, a set of

136
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data manipulation operators have been defined to 
facilitate the formulation of database queries in the 
presence of selectors and adaptive selectors. Finally, at 
the level of the internal data model, consideration must 
be given as to how any defined selectors and adaptive 
selectors will be physically implemented, maintained, and 

manipulated.
This chapter will be concerned with several issues 

related to the internal data modeling requirements of the 
occurrence dimension. The practice of internal data 
modeling is not a subject about which many generalizations 
may be made. Rather, it is quite intimately tied to the 
environmental factors surrounding a particular DBMS and 
its host computer system. Therefore, in addressing these 
issues, the approach and analysis will be more suggestive 
of solutions to the problems instead of prescriptive.

The next major section will explore the physical 
storage structure alternatives which would be suitable for 
the implementation, maintenance, and manipulation of 
selectors and adaptive selectors. For the most part, the 
suggested storage structures are available in many 
commercial database management systems and the host 
computer operating systems which support them. Specific 
reasons for each suggested storage structure will be 
offered in order to clarify the intent of physically 
representing a particular selector or adaptive selector.
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The following section will then address some of the 
operational considerations which arise as a result of 
having selectors and adaptive selectors in a database 
design. The topics to be discussed are not themselves 
design issues and therefore are not technically part of 
the process of internal data modeling. However, they are 
important if the full potential of selectors and adaptive 
selectors is to be realized.

Among the claims for incorporating the occurrence 
dimension into a database design methodology were that it 
would result in potential operational performance 
improvements and that it would prolong the operational 
lifetime of the database. Several suggestions for the 
improvement of operational performance will be discussed 
and an entirely new database buffer management policy will 

be described and analyzed.

5.2 Storage Structures
In theory, the storage structure selection problem is 

quite complex. Prior to the development of generalized 
database management systems, files of records stored on 
secondary storage media were organized as flat files. 
Sequential, direct, or indexed access were the dominant 
storage and retrieval mechanisms. With the advent of 
database management systems, storage structures previously 
restricted to processor memory became viable structures 
for secondary memory organization as well. Linked lists.
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inverted files, hash tables, and numerous pointer schemes 
greatly increased the storage structure alternatives
available to a database designer.

In practice, a database designer is constrained to 
utilize only those storage structures supported by the 
particular database management system. In the case of 
hierarchical and network oriented database management 
systems, the choice is still formidable. However, there do 
exist a number of semi—automated design aids which, given 
the conceptual schema and estimates of usage patterns, can 
assist the designer in selecting a reasonable physical 
design for these types of systems (see Teorey and Fry 
[TEOR80] for an extensive bibliography of work in this 

area).
The relational data model assumes a very simple 

storage structure - the table. Each relation scheme 
contained in the schema is to be stored physically as a 
two-dimensional table with the columns representing the 
named attributes and the rows representing the individual 
occurrences of the relation extension. Any relationships 
are represented by (redundantly) stored data values. The 
power of the data manipulation language is then used to 
materialize these relationships when necessary (e.g., the 
join operation). Additionally, the relational data model 
imposes no ordering on the rows of the table.

The tabular storage structure just described is a 
conceptual ideal within the relational data model. In all
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practicality, additional storage structure support is 
employed to facilitate efficient retrieval operations. It 
is clearly desirable to maintain some form of logical 
ordering on the tuples (rows) of a table if there are uses 
which need to access the tuples sequentially. Similarly, 
it is not unlikely that some retrieval operations require 
rapid, random access to individual tuples. In this case, 
some type of direct storage structure may be used.

To balance these two extremes, a form of hierarchic 
index storage structure is frequently used. Under the 
generic name of indexed sequential access methods (ISAM), 
this type of storage structure may be used for primary, 
secondary, and relationship access to tables [HAER78]. 
Primary access refers to locating specific tuples based on 
their key attribute values. Secondary access may 
optionally be provided to enable the location of tuples 
(or a set of tuples) based on non-key attribute values. 
Lastly, relationship access refers to explicitly 
maintaining a storage structure to represent relationship 
occurrences. In the relational database management system 
- SYSTEM R [ASTR761 - this type of storage structure is 
known as a "link" and effectively represents a permanent 
join on two relations (tables). All of these storage 
structures are, at least in theory, hidden from the user.

Without loss of generality, the following assumptions 
about physical design environment will be made. The 
relational database management system being used is
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assumed to support the data definition language facility 
and data manipulation language extensions given in the 
preceding chapter. Each base relation extension will be 
stored as a simple tabular structure. Physically, the 
tabular structure will be organized as a set of fixed size 
blocks of secondary storage and each block will contain a 
number of tuple occurrences. The order of the tuples 
within blocks is immaterial, that is, it cannot be assumed 
that the tuples have been stored and maintained in any
particular logical order.

Primary access to the stored base relations will be 
accomplished by means of a separate, dense hierarchic 
block index storage structure. This particular storage 
structure is commonly known as a B* tree [KNÜT731. No 
secondary storage structures will be considered. This 
assumption has no consequence on the design because 
secondary storage structures are always redundant and are 
incorporated strictly for performance reasons.
Relationship access between or among base relations is 
accomplished by the data manipulation language operators 
(e.g., join or cartesian product).

These assumptions are quite simplistic on the surface 
but are really not that far from reality for commercially 
available database management systems (SQL/DS and INGRES, 
in particular). As an example, the ten base relations of 
the schema portrayed in Figure 4.2 will be assumed.
Primary access to each base relation is provided by a
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dense, hierarchic block index organized as a B* tree. Each 
base relation will then be physically stored as two 
separate "files." One file will hold the actual tuple 
occurrences which may or may not be in their key sequence 
order. The second file will contain the entire dense index 
to the base relation. Primary access to the stored base 
relation will be accomplished through these two files.

The remainder of this section will explore the 
possibilities for storage structure support for the 
selector artificial relations and the adaptive selector 

artificial relations.

5.2.1 A Storage Structure for Simple Selectors
A natural storage structure for the physical 

representation of a simple selector would be to build and 
maintain another hierarchic block index to the base 
relation. This index would contain the keys and pointers 
to the tuple occurrences which have been selected by the 
boolean qualification. When accessing the stored base 
relation via a filter operator (i.e., a USING clause is 
contained in the query), the simple selector index would 
be used in place of the primary index. Figure 5.1 shows a 
portion of such a storage structure.
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PRIMARY 
INDEX OF 
FACULTY

FACULTY RELATION EXTENSION

ENO ENAME TITLE
SIMPLE

SELECTOR
INDEX

«SENIOR

3 ----- > 3 Smith, J. PROFESSOR <----- 3

4 ----- > 4 Jones, A. ASSOCPROF — 7
/

6 ----- > 6 Baker, B. ASSTPROF /- 10
• /--> 7 Reed, R. PROFESSOR

//
<-//

• / .
• .

•
* •

•
\

50 ----- > 50 Brown, K. ASSOCPROF \— 42
\

51 ----- > 51 Kelly, F. ASSTPROF \--- 46

53 ----- > 53 Dodd, W. PROFESSOR <----- 53

A hierarchic index for a simple selector
Figure 5.1
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In the center of the figure is a tabular structure of 
a part of the FACULTY relation extension. The fact that 
the tuples are ordered on increasing ENO is immaterial and 
has been done only for clarity. On the left side, the 
lowest level blocks of the primary index are shown 
pointing to their associated tuple occurrences. Higher 
level blocks of the primary index are not shown. The right 
side of the figure indicates the lowest level blocks of 
the index used for the simple selector «SENIOR defined on 
FACULTY. Higher level blocks of this index are also not 
shown. Because «SENIOR selects that subset of FACULTY who 
are full professors, only those tuples with the value 
"PROFESSOR" in the TITLE attribute are contained in this

second index storage structure.
Although the concept of an artificial relation was 

introduced to represent the simple selector in a 
relational schema definition, at the physical level of 
implementation, there is no need to create a separate 
tabular structure. Given the availability of a hierarchic 
index storage structure, the simple selector may be 
represented efficiently and concisely by a second index 
structure associated with the base table.

From the point of view of data manipulation, the 
filter operator may be applied directly to this second 
index. For example, a SELECT operation with the USING 
clause would retrieve only the assumed 100 PROFESSORS from 
the total of 250 FACULTY occurrences. The complement
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operator would require that both the primary and simple 
selector indexes be scanned at the same time. That is, 
when manipulating the subset of the tuples of the base 
relation which are not selected, the primary index 
structure would provide the necessary access path after 
verifying that each tuple considered is not found in the

simple selector index.
The amount of work involved in this double indexing

is not as much as might be assumed. The secondary storage 
blocks which are used for holding the index typically 
contain many more key/pointer pairs than a comparable 
block which contains actual tuple occurrences. Determining 
the complement of a relation extension with respect to a 
simple selector can be carried out more efficiently when 
operating on the indexes than could be accomplished by 
transferring all of the data (tuple) blocks and choosing 
the desired tuple occurrences. While dense hierarchic 
block indexes require more storage space than their 
non-dense counterparts, it is just this aspect of 
efficient manipulation prior to the actual retrieval of 
data blocks which make them so attractive as a database

storage structure [ULLM80].
Storage structure support for a simple selector is 

then quite straightforward and efficient. The artificial 
relation defined to represent a simple selector does not 
itself become a stored relation (table), but merely 
becomes an alternative storage structure to the underlying
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base relation table. The insertion and deletion of tuples 
in the base relation table would require that the index 
structure for the simple selector be modified accordingly. 
Also, the database management system would be required to 
monitor the updating of the selected attribute values 
should such an update cause a particular tuple to either 

join or leave the selected subset.

5.2.2 Storage Structures for Relationship Selectors
In abstract data modeling, relationships between 

entities were classified as being either implicit or 
explicit. Implicit relationships are represented in 
abstract data modeling as directed edges connecting 
entities. In the relational data model, implicit 
relationships are represented by the careful replication 
of key attributes as foreign keys in the appropriate base 
relation schemes. Fundamental to either the explicit or 
implicit relationships is the fact that once they are 
defined, any entity occurrence may participate in the 
relationship. There is no qualification associated with 
the relationship which systematically includes or excludes 
certain entity occurrences from legitimately participating 

in the relationship.
The relationship selector database abstraction was 

introduced to allow such a qualification to be expressed 
for an implicit relationship. The applicability or 
legitimacy of an implicit relationship between two
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entities may depend on the value of a particular attribute 
contained in one of the entities. The relationship 
selector captures this qualification in the abstract data 
model and is represented in the by an artificial relation 
scheme as defined in the preceding chapter. Just as with 
the simple selector, the artificial relation scheme will 
be treated as an alternative storage structure for an 
existing base relation tabular structure rather than a 
stored base relation in its own right.

The artificial relation definition for a relationship 
selector contains two sets of attributes. The first set is 
the attribute(s) which comprise the primary key of the 
base relation scheme on which the relationship selector is 
defined. The second set is the primary key attribute(s) of 
the other relation scheme. These two sets combined may be 
considered a concatenated key for the artificial relation. 
There are no other attributes contained in the artificial 
relation for a relationship selector such as might be 
found in an associative entity or nonentity association.

A relationship selector artificial relation can be 
implemented as an alternative dense hierarchic index 
storage structure in a manner similar to the simple 
selector. The key attribute values of the base relation on 
which the relationship selector is defined constitute the 
"primary" portion of the concatenated key. The key 
attributes of the other base relation are of "secondary" 
importance. The reason for this dichotomy between the sets
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of attributes stems from the way in which the relationship 
selector is to be operated upon.

The principal operations involving a relationship 
selector are the filter, complement, and implied join. The 
filter and complement operators deal specifically with the 
subset selected by the boolean qualification used in 
defining the relationship selector. Therefore, it is the 
"primary" portion of the concatenated key which is of 
principal importance in these operators. For the implied 
join, both portions of the concatenated key are required 
to effect the joining of the two base relations.

A storage structure suitable to meet these 
requirements would involve a modification to a dense 
hierarchic block index. The lowest level blocks of the 
index would maintain an ordered list of the concatenated 
keys. The "primary" portion of the concatenated key, by 
appearing first, would determine the lexicographic order 
of the index. These block entries would then be comprised 
of the "primary" portion of the concatenated key, the 
"secondary" portion of the concatenated key, and a pointer 
to the tuple corresponding to the "primary" key value. The 
higher level blocks would be based solely on the "primary" 

portion of the concatenated key.
Figure 5.2 shows a sample tabular representation of 

portions of the STUDENT and MAJOR base relations. Each 
base relation has a dense hierarchic block index 
associated with it for primary access to its tuples.
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Again, the ordering of the tuples is merely for clarity. 
Figure 5.3 then shows a first (lowest) level block of the 
dense hierarchic block index used to represent the 
relationship selector «UPPERCLASS and a portion of the 
block immediately above it in the hierarchy.

In a conventional implicit relationship between 
entities such as these, the key attribute of the MAJOR 
relation would necessarily be propagated to the STUDENT 
relation as a foreign key. This would require the 
existence of a null value for the domain of the attribute 
MNAME. In this case, the null value would have to play a 
specially defined role in each of the relational algebra 
operators. The use of a relationship selector obviates the 
need for nulls and handles this aspect of the college's 
information structure in a more effective way.
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A portion of two base relation extensions
Figure 5.2
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Index storage structure for a relationship selector
Figure 5.3
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In a relationship selector storage structure, the 
database management system would have to recognize the 
different format of the sequence set blocks. This 
formality would not be difficult to implement in a 
generalized hierarchic block index access method. In fact, 
similar hierarchic indexes have been designed for 
incorporation into the experimental relational database 
management system, SYSTEM R [HAER78]. The proposed 
implementation of "images" and "links" in SYSTEM R could 
be readily adapted to the requirements for supporting 
simple selectors and relationship selectors, respectively.

The suggestion of alternative hierarchic index 
structures to support simple selectors and relationship 
selectors appears to be the natural way to implement them. 
Even though a relational environment has been assumed 
throughout, this approach would be equally viable in a 
network or hierarchical environment. Virtually all 
commercially available database management systems support 
some form of dense hierarchic block index storage 
structure for either primary or secondary access paths. 
These could be easily adapted for this task.

Other storage structures could be used to implement 
both forms of selectors as well. For example, linked lists 
might be used for simple selectors. The selected tuples 
would be chained to one another in either a forward 
direction or possibly in both directions. Relationship 
selectors might be implemented by multilist chain
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structures. Regardless of the implementation technique 
chosen, the cost of building and maintaining the storage 
structure must be considered. The dense hierarchic indexes 
suggested here may not be the best choice in particular 
circumstances, but they do offer a single, unified 
approach to satisfying all required storage structures.

5.2.3 Storage Structures for Simple Adaptive Selectors
In an abstract data model, the database designer may 

assert the existence of a simple adaptive selector for a 
particular entity. This serves to explicitly recognize a 
temporal characteristic of the entity which is not 
otherwise representable by attributes or relationships. In 
the generic data model of the preceding chapter, an 
artificial relation was employed to formally represent the 
simple adaptive selector. The attributes of this 
artificial relation are the key attributes of the 
underlying base relation. For data manipulation, the set 
membership and set size operators were described.

The subset of tuple occurrences of a base relation 
identified by a simple adaptive selector are the ones 
which have been the object of the majority of references 
relative to a specific point in time. For efficient 
retrieval from secondary memory, it would be useful if the 
selected tuples were physically managed so that rapid 
access could be provided with a minimum of costly 
secondary storage transfers.
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In this sense, the simple adaptive selector is 
analogous to the Working Set Principle postulated by 
Denning [DENN67]. In a virtual memory environment, a 
program is allocated a conceptually large virtual address 
space organized into fixed size page frames. This address 
space usually exceeds the amount of available real memory 
page frames. During execution of the program, references 
to the virtual address space tend to cluster in a subset 
of its page frames for periods of time. The "working set" 
is defined as that subset of a program's pages which have 
been referenced most recently.

The working set of a particular program is determined 
by examining the pattern of distinct page references which 
have taken place over a fixed, backward looking window on 
time. A program is not considered eligible for execution 
unless its working set of pages is present in real memory. 
The supposition is that the program will likely reference 
this same set of pages in the near future. The content of 
this working set, however, changes dynamically as the 
program proceeds through the course of its execution.

The simple adaptive selector is intended to represent 
a similar phenomenon. Among the tuple occurrences of a 
particular base relation, it is expected that references 
will tend to cluster among a relatively small subset over 
periods of time. Whereas in the working set, the identity 
of the specific pages is immaterial except to the 
operating system, in the simple adaptive selector the
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identity of the selected tuples is important. The set 
membership data manipulation operator, in particular, 
tests whether specific tuple occurrences are currently 
members of the simple adaptive selector at an instant in 

time.
There are two requirements then for the 

implementation of simple adaptive selectors. First, there 
is a need for a storage structure to continuously record 
the membership of the selector and to provide the 
information necessary for the set membership and set size 
operators. Secondly, there needs to be a policy regarding 
the physical organization of secondary memory which 
facilitates the management of the selected tuples so that 
efficient, rapid access to them may be rendered. The next 
major section will deal with this question.

As with the simple selectors and relationship 
selectors, the storage structure chosen for a simple 
adaptive selector should be separated from the base table 
on which it is defined. This is especially true for simple 
adaptive selectors because the physical organization of 
the underlying base table cannot be constrained by the 
requirements of any storage structure. Unlike either form 
of selector, however, the storage structure chosen for a 
simple adaptive selector will not provide an alternate 
access path to the base table. Rather, it will merely 
support the requirements of the set membership and set 

size operators.
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It has been assumed that primary access to base 
relations has been supported by a dense, hierarchic block 
index structure. The lowest level of the index contains 
all of the keys of the base relation along with pointers 
to the tuple occurrences. In keeping with the philosophy 
of the B* tree, the entire index structure is kept 
balanced as insertions and deletions are made. Maintaining 
the balance of a hierarchic index is generally quite easy 
once the initial index is constructed. By carefullyI
choosing certain implementation parameters, most 
insertions and deletions typically affect only one index 
block. Occasionally, an insertion or deletion requires 
that several blocks be altered to maintain the balance.
When this occurs, the cost of re-balancing can be 

expensive.
The storage structure proposed for the simple 

selector and relationship selector is also a hierarchic 
block index. This second, alternative storage structure 
contains a subset of the keys and pointers of the base 
relation. Because both forms of selector are assumed to be 
relatively stable with respect to their membership, the 
cost of maintaining the alternative storage structure is 

minimal.
By choosing dense hierarchic block indexes for all 

required storage structures so far, a degree of uniformity 
and simplicity has been achieved. Usually the database 
designer is faced with a bewildering assortment of storage
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structures to choose from. Relying on just one reasonably 
efficient storage structure simplifies the physical 
database design process considerably [HAER78].

Storage structure support for the simple adaptive 
selector presents an entirely different physical design 
problem. First, the dynamically selected subset is 
determined by on—going monitoring of references to the 
tuples of the base table. This monitoring process will 
identify the temporally active subset of the base table at 
any point in time. Secondly, the size of the selected 
subset is theoretically variable; however, in practice 
some upper bound must be established. The underlying 
assumption in the use of a simple adaptive selector is 
that a relatively small proportion of the tuples of a base 
relation are the most active at any point in time. And 
lastly, because the membership of the selected subset is 
expected to change over time, the storage structure used 
to represent it must be easily and inexpensively

changeable, i.e., adaptable.
For these reasons, virtually all of the commonly used 

storage structures are not appropriate for representing 
simple adaptive selectors. Hierarchic indexes and 
pointer-based storage structures, such as linked lists, 
would suffer from excessive overhead in their maintenance 
requirements. Conventional direct storage structures, such 
as pointer arrays, would need to be sorted to provide 
rapid look-up for tests of set membership.
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Severance and Lohman [SEVE76] and Aghili and 
Severance [AGHI82] have encountered a similar requirement 
to provide rapid retrieval for a selected subset of the 
record occurrences of a database. They propose that 
insertions and updates to existing database records be 
held in an alternative file called a differential file. At 
periodic intervals, these accumulated changes are made to 
the main, permanent database file. Between the 
reorganizations, requests for retrieval of database 
records may be made from the differential file (if the 
desired record is located there) or from the main database 
file. Because there is no primary access path to the 
differential file and an exhaustive search would be 
extremely expensive, a storage structure is needed to 
quickly determine whether a particular record is presently 
in the differential file. As with a simple adaptive 
selector, their storage structure need only determine 
whether the desired key is present, that is, satisfy a 
test of set membership. It need not provide an access path 
to the associated record occurrence (e.g., a pointer).

The storage structure they chose to employ for this 
purpose is known as a Bloom filter [BL0070]. This 
structure consists of a bit vector of some suitable length 
and a number of independent hashing functions. The length 
of the bit vector and the number of hashing functions, in 
the case of a differential file, can be determined by the 
methods described in Aghili and Severance IAGHI82].
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Initially, the bit vector is all zero. As records are 
inserted or updated and placed in the differential file, 
the record key is transformed by each hashing function 
which, in turn, selects a bit in the bit vector to set to 
one. On subsequent retrieval, the desired key is again 
transformed by each hashing function. If- any of the 
selected bits is zero, the record is definitely not in the 
differential file and the main database is searched using 
its primary access path. If all of the bits are one, then 
the record is likely, though not necessarily, in the 
differential file. Periodically, the differential file is 
merged into the main database file and the process begins
anew with the bit vector reset to zero.

One problem with a Bloom filter, as with most hashing 
schemes, is that it does not support deletions. In hashing 
different keys to the bit vector, it is common that the 
same bit might be selected to be set. By deleting a key 
from the Bloom filter, all of its selected bits would have 
to be reset to zero. This, in turn, may affect other keys 
which coincidentally select one or more of the same bits. 
However, with the proper choice of parameters, the Bloom 
filter can be designed so that the probability of two 
distinct keys selecting the same set of bits is

arbitrarily small.
Because of the similarity of requirements between the 

differential file search mechanism and a simple adaptive 
selector, the Bloom filter will be the recommended storage
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structure for simple adaptive selectors. For each base 
relation on which a simple adaptive selector has been 
defined, an appropriately parameterized Bloom filter will 
be constructed. At intervals to be determined by the 
performance monitor of the host database management 
system, each storage structure will be reinitialized to 
represent the subset of the most recently and frequently 
retrieved tuple occurrences. Between such intervals, the 
Bloom filter will serve to support any set membership 
operations for the underlying base table.

Figure 5.4 portrays the general nature of a Bloom 
filter storage structure. In this case, a portion of the 
bit vector is displayed with some of its individual bits 
set to one. There are three separate hashing functions 
shown, all of which are applied to some key value, K. Each 
of these hashing functions map onto values of one in the 
bit vector. The logical "and” of these bits then yields a 
value of TRUE for a test of set membership operation. In 
theory, this test might give an erroneous indication that 
the given key is present in the simple adaptive selector 
when, in fact, the selected bits have been set as a result 
of hashing other key values to the same bits. The 
likelihood of such an occurrence can be controlled by the 
careful choice of the size of the bit vector and the 
number of hashing functions employed.
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Figure 5.4
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The next major section of this chapter will discuss 
the issues involved in determining the size of each Bloom 
filter bit vector and the number of hashing functions 
needed. This physical design problem will have a different 
objective function than that of a differential file. 
Specifically, the occurrence of "filtering errors" where 
the Bloom filter erroneously indicates that a particular 
key has been selected, must be extremely small.

5.2.4 Storage Structures for Relationship Adaptive 
Selectors

The simple adaptive selector relies solely on an 
external criterion for its definition. On-going 
performance monitoring of the database management system 
will periodically determine the subset of the tuples of a 
given base table which will be selected for incorporation 
in the storage structure used to represent it.
Relationship adaptive selectors are also intended to 
capture a temporal characteristic of an entity. However, 
the definition of a relationship selector is determined by 
the entity's participation in a designated relationship at

a given point in time.
In developing an abstract data model of an 

enterprise, various types of relationships are portrayed 
among entities. These relationships indicate only the 
potential for a relationship between instances of the 
associated entities. In an actual stored database, it is
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possible that certain instances of the associated entities 
will not participate in the relationship. The reasons for 
the non-participation can be varied but one important 
reason may be that the relationship is meaningful only at

certain times.
The example given here is of a relationship OFFERED 

between the entities COURSE and SECTION. A characteristic^ 
of a COURSE is whether or not the COURSE is being offered 
at a particular time. There is no attribute of a COURSE 
which conveys this fact but it may be inferred from the 
association of the COURSE with an instance of a SECTION. 
For abstract modeling purposes, the concept of a 
relationship adaptive selector was introduced to 
explicitly represent this aspect of COURSES.

In the generic data model of the preceding chapter, 
relationship adaptive selectors such as CURRENT were 
represented by artificial relations with the key 
attributes of the corresponding base relation as their 
only attributes. This differs from the artificial 
relations used for relationship selectors where the keys 
of both base relations were included. The reason for this 
is that in the relationship selector, both entities are 
kernel entities with their own independent existence. 
Neither entity contains the key of the other as a foreign 
key because the relationship depends on a particular 
attribute value and is meaningless for those entity 
occurrences not meeting a boolean qualification on that
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value. The inclusion of both keys in the artificial 
relation supports a join of the two base relations.

In the relationship adaptive selector, one of the 
entities is a temporal characteristic of the other and 
consequently derives its existence from it. Therefore the 
key attribute(s) of the "superior" kernel entity are 
required in the characteristic entity as part of its 
composite (concatenated) key. In the example here, CRSENO 
is the key of the kernel entity COURSE and it is an 
element of the concatenated key of the temporal 
characteristic entity SECTION (CRSENO + SECTNO).

This situation presents two somewhat conflicting 
requirements for a storage structure for the relationship 
adaptive selector. First there is a need for a storage 
structure to keep track of the kernel entity occurrences 
which are presently participating in the designated 
relationship. This storage structure will support both the 
set size and set membership operations and must be readily 
adaptable as the subset of participating occurrences 
changes over time. Secondly, the storage structure must 
explicitly represent the keys of the selected subset so 
that the filter, complement, and implied join operators 
may be applied to it.

The first requirement could be satisfied efficiently 
by a Bloom filter storage structure as proposed for the 
simple adaptive selectors. However, this storage 
structure would not satisfy the second requirement of
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explicitly representing the necessary keys. A hierarchic 
index storage structure would satisfy all of the 
requirements but could potentially be expensive to 
implement and maintain. Because there is no presently 
available storage structure which simulataneously 
satisfies both requirements and the keys must be 
explicitly represented, the hierarchic index is the best " 
choice for the physical representation of relationship 
adaptive selectors.

Unlike the simple adaptive selector where the 
membership is determined by on—going performance 
monitoring of frequency of retrieval, the membership of a 
relationship adaptive selector is determined by a data 
manipulation operation which stores or deletes a temporal 
characteristic tuple occurrence. The overhead in 
performing this operation is sufficiently large that the 
maintenance required to insert or delete a key from the 
hierarchic index is insignificant.

Figure 5.5 shows a portion of a hierarchic block 
index used to represent the relationship adaptive selector 
$CURRENT. The lowest levels of both the primary index and 
relationship adaptive selector index are portrayed on 
either side of the base table for the COURSE relation 
extension. Higher levels of the index set of each are not 
shown. Below the COURSE relation extension is a portion of 
the SECTION relation extension to give a flavor of how the 
two are related through ÇCURRENT. If there is at least one
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occurrence of a SECTION associated with a particular 
COURSE, then the relationship adaptive selector index
contains the appropriate key.

The format of this storage structure is exactly the 
same as for the simple selector hierarchic block index. 
The index set blocks each contain the key values and 
pointers to the associated tuple occurrences in the base 
table. All of the extended relational algebra operators 
can then utilize this structure.
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5.3 Operational Considerations for Adaptability
Three of the storage structures recommended above 

were predicated on the availability of a hierarchic block 
index access method within the target database management 
system. This, in turn, assumed that the host computer's 
operating system provided some form of indexed sequential 
access method such as ISAM or VSAM. This assumption is not 
unreasonable for currently available database management 
systems (e.g., SQL/DS and INGRES). Consequently, the 
physical implications of incorporating either form of 
selector abstraction or a relationship adaptive selector 
in an existing database management system are not too 
great. For example, the generalized access path facility 
described by Haerder [HAER78] could be adapted to these

needs quite readily.
Implementation of a simple adaptive selector, 

however, does require certain enhancements to the 
underlying database management system. A Bloom filter 
storage structure, for example, is novel and would not 
generally be found in an existing database management 
system. This section will examine some of the requirements 
needed for implementing simple adaptive selectors and also 
describe certain other facilities which may be added to a 
DBMS to improve its overall performance.
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5.3.1 Performance Monitoring
Of primary importance to the implementation of a 

simple adaptive selector is the need for a mechanism to
identify the the temporally active subset of a base
relation. The fundamental assumption behind the use of a 
simple adaptive selector is that a relatively small
percentage of the tuples in a base relation will be the
object of a disproportionate amount of the retrievals 
directed to that base relation. Although there are no hard 
and fast rules to support such an assumption, it is a 
well-known folk theorem in commercial data processing as 
well as other fields that as few as twenty percent of the 
records in a file will be referenced as often as eighty 
percent of the time. This so-called 80/20 Rule as been 
empirically verified [HEIS63].

Knowing that such a phenomenon is likely to affect a 
given base table in a relational database is of no 
particular use to the physical design process unless the 
pertinent subset can be identified. Also, it is very 
likely that the membership of the active subset will 
change over the operational life of the stored database. 
The physical design aids presently available analyze known 
applications and attempt to formulate estimates of 
retrieval patterns in term.» of volume and frequency. No 
attempt is made at identifying the individual occurrences.
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After a database has been designed, implemented, 
populated, and in operation for a period of time, it is 
possible to both verify the initial assumptions concerning 
patterns of reference and to identify the specific tuples 
(records) which are being retrieved most frequently at 
that point in time. Database management systems are 
typically equipped to record this information during 
operation. References to tuples, especially for insertion 
and update are generally recorded in separate areas for 
back-up and recovery purposes as well as to provide an 
audit trail. This information can be easily augmented to 
capture reference patterns for simple retrievals also.

To effectively implement a simple adaptive selector, 
this kind of monitoring will be required. An analysis of 
the reference patterns directed at a given base table will 
reveal the high activity subset, if such exists. This 
information will then enable the construction or updating 
of the storage structure used to represent the simple 
adaptive selector. The question of how the reference 
pattern will be analyzed depends on the nature of the 
performance monitor available with a particular DBMS. It 
may be that the performance monitor maintains a reference 
count field for each occurrence. This field might be 
updated continuously (at great expense) or periodically to 
form an empirical estimate of the distribution based upon 
a sample of references. Alternatively, a transaction 
reference log may be examined for this purpose.
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The frequency of the analysis and updating of the 
simple adaptive selector must be a decision made by a 
database administrator given the particular circumstances 
of the environment. This kind of decision represents the 
external criterion which completes the semantic definition 
of a simple adaptive selector. The database administrator, 
with knowledge of the nature of the data, the applications 
which process it, and the needs of the enterprise can 
establish the frequency of updating. Regardless of the 
frequency of updating, the full benefit of a simple 
adaptive selector will be realized if the identified 
subset can be physically clustered to improve I/O 
performance.

5.3.2 Bloom Filter Parameter Selection
The recommended storage structure for implementing 

simple adaptive selectors is a Bloom filter. This 
structure has the desirable qualities of being easy to 
build and maintain, providing very rapid response for the 
set membership operator, and not requiring too much 
storage. In order to implement a Bloom filter, three 
design decisions must be made. First, the size of the 
simple adaptive selector in terms of the number of keys to 
be stored must be established. Next, the size of the bit 
vector and number of independent hashing functions must be 
determined. These last two decisions depend on the first 
and are not independent of each other.
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The implicit assumption underlying the use of a 
simple adaptive selector is that, at any point in time, a 
relatively small proportion of the tuple occurrences will 
be more likely to be referenced and that this subset will 
continuously change over the operational life of the 
database. From a probabilistic perspective, this would 
suggest that the reference process is non-stationary. For 
practical purposes, it will be assumed that the 
distribution of references is nearly stationary between 
evaluation intervals for the simple adaptive selector. The 
information obtained from the performance monitor can be 
used to develop an empirical estimate of the reference 
distribution. The size and membership of the simple 
adaptive selector can then be determined.

Figure 5.6 portrays the type of situation that might 
be encountered when analyzing performance monitor data 
collected during a simple adaptive selector evaluation 
interval. A probability plot of the empirical reference 
distribution is shown for convenience as a continuous 
function. The ordinate shows the relative frequency of 
reference for each stored tuple since the last sample 
(evaluation) interval. The abscissa represents the tuple 
occurrences in terms of their order statistics. A clear 
dichotomy between the frequently referenced tuples and the 
less frequently referenced tuples is evident.
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Probability plot of an empirical reference distribution
Figure 5.6
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If the empirical distribution appears to be flat, or 
nearly rectangular, indicating uniform frequency of 
access, then a simple adaptive selector is not warranted. 
This occurrence may be only temporary or it might indicate 
that a simple adaptive selector for the relation in 
question was inappropriate. However, it is expected that 
an empirical reference distribution of the type shown in 
Figure 5.6 will be obtained at each evaluation interval.

The point labelled "t[n]" on the abscissa demarks the 
selected subset from the remainder of the tuple 
occurrences. This point should obviously represent less 
than half of the total tuple occurrences for a simple 
adaptive selector to be useful. The cumulative mass under 
the curve up to and including this point will be denoted 
as p. The remainder of the distribution accounts for a 
cumulative mass of q=(l-p). The quantities p and q can be 
interpreted as the probability of a random reference being 
for a member of the selected subset or for a non-selected 
tuple, respectively. If the 80/20 Rule were applicable to 
this situation, then n=0.20*N, p=0.80, and q=0.20.

Having determined the number of keys, n, to be 
represented in the Bloom filter, it remains to establish 
the size of the bit vector, say M, and the corresponding 
number of independent hashing functions, X. If a given key 
has been selected as a member of the temporally active 
subset, the Bloom filter will always correctly indicate 
this fact regardless of the size of the bit vector and
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number of hashing functions. The only potential problem 
with the storage structure is that it might incorrectly 
indicate membership for keys which have not been selected.

The analysis to follow is based on the original work 
of Bloom [BL0070] and the subsequent research contained in 
Severance and Lehman [SEVE76]. An interesting example of 
the design of a Bloom filter for a differential file is 
given in Gremillion [GREM82].

The problem of determining a bit vector size and 
number of independent hashing functions may be formulated 
in the following way. Let n be the number of keys to be 
represented in the bit vector. Let p be the probability 
that a reference to the Bloom filter, i.e., a test of set 
membership, is for one of the n selected keys; then 
q=(l_p) is the probability that a reference is for one of 
the non-selected keys. In this latter instance, the Bloom 
filter may erroneously indicate that the key has been 
selected. The criterion for choosing M and X will be to 
minimize this potential occurrence.

The n selected key values represent a sample drawn 
from the underlying domain of the key attribute(s). As is 
often the case, these key values may not be uniformly 
distributed over this domain. Regardless, the X hashing 
functions will be assumed to be chosen such that they will 
map these keys uniformly into the bit vector.

For a Bloom filter bit vector of length M, after 
hashing n key values to bit addresses via X independent
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hashing functions, the probability of any randomly 
selected bit being set to one is given by:

Pr[a random bit set] = 1 - ((M - 1 )/M)n%

For M sufficiently large, the above expression may be 
approximated by:

Pr[a random bit set] = 1 - exp{-nX/M)

Performing a test of set membership on one of the 
non-selected keys, the conditional probability of finding 
all of the X bits set to one, i.e., the probability of a 
filtering error is:

Prtall X bits are set | key not selected ] =
[1 - exp(-nX/M)]%

The probability of referencing the Bloom filter storage 
structure with one of the non-selected keys is q, 
therefore the unconditional probability of a filtering 

error is:

P(n,X,M) = q [1 - exp(-nX/M)]X

With n a fixed constant, the probability of a 
filtering error is then a function of both M and X, As a 
practical matter, the size of the bit vector must be 
limited. An extremely large bit vector would enable the 
filtering error rate to approach zero but then other 
storage structure options would be more plausible, e.g., a
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dense hierarchic index. Also, it is desirable for the 
simple adaptive selector storage structure to provide 
rapid response to tests of set membership, even at the 
expense of a modest filtering error rate. Consequently, 
the value of M can be fixed by the database designer after 
considering both the number of keys to be represented and 
the amount of processor memory available to store the bit 

vector.
With n and M both fixed, classical unconstrained 

optimization techniques can then be used to determine the 
appropriate number of independent hashing functions needed 
to minimize the probability of filtering errors. Severance 
and Lohman [SEVE76I have shown that differentiating 
P(n,X,M) with respect to X, setting the derivative to 
zero, and solving for X yields:

X' = M ln(2)/n

where In is the natural logarithm.
For X' chosen as above, the expected number of bits 

set in B, after storing n key values, is M/2. Therefore, 
the probability of any randomly selected bit being set to 
one is simply 1/2. The minimum probability of a filtering 
error, given n, M, q, and X', is then:

P'(n,X',M) = q (1 - exp(-nX'/M))%
= q (1 / 2 )M ln(2)/n

~= q (0.6185)”/"
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In practice, X' will frequently evaluate to a 
non-integer value. The last step in the process of 
parameterizing a Bloom filter would then be to examine 
P(n,X,M) at the two integers which surround the value of 
X'. The integer resulting in the smallest probability
should be chosen.

This particular formulation of the design of a Bloom
filter storage structure for simple adaptive selectors is 
applicable to a wide number of situations. The only 
quantities needed are n, q, and M. The first two can be 
determined riadily from the analysis of the performance 
monitor data and the last can be determined on the basis 
of available processor memory. It is interesting to note 
that the size of the underlying base relation is 
immaterial. All that is necessary is that n be less than 

N/2.
As a practical example of this storage structure 

design process, consider the simple adaptive selector 
ACTIVE presented in Figure 3.12. In the abstract data 
model, explicit recognition is given to the fact that at 
any time a subset of all of the STUDENT—ACCOUNT 
occurrences will be the object of the majority of 
references. The exact membership of this subset is not 
known in advance and is likely to change over time, 
however, it is a semantically meaningful aspect of the 
college's information structure that such a pattern of 
reference will occur. This temporal partitioning in the
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occurrence dimension of STÜDENT-ACCOUNT will then have 
implications for the design of the conceptual schema, the 
data manipulation operations performed on the relation, 
and the physical storage of the relation extension.

The DDL definition of the simple adaptive selector 
$ACTIVE is shown in Figure 4.12 where an artificial 
relation is defined as a powerset over STUDENT-ACCOUNT.
The data manipulation operators of set size and set 
membership can then be applied to this artificial 
relation. It remains to design a storage structure to 
physically represent this artificial relation.

It has been assumed that the college has 4,000 
students and that each of them has a STUDENT-ACCOUNT 
occurrence. After an initial period of operation, the 
performance monitor detects that twenty percent, or 800, 
such STUDENT-ACCOUNTs are receiving a disproportionately 
high percentage of retrieval activity, say eighty percent 
of all references. A Bloom filter storage structure may 
then be designed to provide rapid response to tests of set

membership for these tuples.
The database administrator may decide to allocate 500 

bytes for the bit vector. In this case, the bit map can be 
locked in processor memory so that it is always available 
for data manipulation. The bit map will then contain 4,000

bits.
Using the approach described above, the relevant 

constants are:
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N = 4000 
n = 800 
M = 4000 
p = 0.80 
q = 0.20

It remains to solve for X, the number of independent 
hashing functions, and the corresponding filtering error 
rate. The solution for X is obtained as:

X' = M ln(2)/n = 4000 ln(2)/800 "= 3.466

The minimum filtering error rate for this choice of X is

given by:

P'(n,X',M) = q (0.5)” ln(2)/n
= 0.20 * (0.5)3*466 -- 0.01810

Because X' is not an integer, the two integer values 
nearest to this optimum must be examined. For three 
independent hashing functions, the filtering error rate is 
found to be 0.0250 and with four hashing functions the 
error rate is 0.0125. Therefore, given a bit vector of 
size 4,000 bits, four hashing functions can be used with 
the Bloom filter to yield a near optimum error rate of
less than two percent.

To gain some insight into how the various design 
parameters interact. Table 5,1 shows the values of
P(n,X,M) for various combinations of n, M, and q. The
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left-most column indicates the ratio of M to n, that is, 
the size of the Bloom filter bit vector relative to the 
number of keys to be represented. In parentheses after 
this ratio is the integral number of independent hashing 
functions needed for this ratio of M to n . The columns 
indicate the probability of reference to a non-selected 
key and the body of the table contains the associated 
probability of a filtering error.

\ q = P r [ reference to non-selected key J
41 \ A/ >

0.10 0.20 0.30 0.40 0.50

1.0(1) 0.06321 0.12642 0.18963 0.25284 0.31605

1.5(1) 0.04866 0.09732 0.14598 0.19464 0.24330

2.0(1) 0.03935 0.07870 0.11805 0.15740 0.19675

2.5(2) 0.03032 0.06064 0.09096 0.12128 0.15160

3.0 (2) 0.02368 0.04736 0.07104 0.09472 0.11840

3.5(2) 0.01895 0.03790 0.05685 0.07580 0.09475

4.0(3) 0.01469 0.02938 0.04407 0.05876 0.07345

4.5(3) 0.01152 0.02304 0.03456 0.04608 0.05760

5.0(3) 0.00919 0.01838 0.02757 0.03676 0.04595

Typical filtering error rates 
Table 5.1
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The first observation is that the filter error rate 
decreases as the size of the bit vector, relative to the 
number of keys, increases. This is not altogether obvious 
because, given the formulation above, the expected number 
of bits set in the bit vector is M/2 regardless of the 
number of keys, n. This phenomenon is explained by the 
relative size of the bit vector in combination with the 
number of independent hashing functions employed.

The filter error rates shown in the table are 
calculated using the integral number of hashing functions 
closest to the minimum error rate achieved at a 
non-integer X. Even for relatively large bit vectors, the 
number of hashing functions remains quite modest. The last 
observation is that there is a marked increase in the 
filter error rate as the probability of referencing a 
non-selected key increases. This result is interesting in 
that the derivation of the values contained in the table 
do not involve either n or N, the total number of tuple 
occurrences, directly.

Although the Bloom filter storage structure offers 
several distinct advantages for implementing simple 
adaptive selectors, the results shown in the table suggest 
some guidelines for its use. First, a Bloom filter will be 
effective if the size of the bit vector can be kept 
relatively small. If a very large bit vector is required 
to achieve an acceptable error rate, alternative storage
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structures may prove to be superior, e.g., a dense

hierarchic index.
Secondly, regardless of the number of selected keys 

to be represented, if the probability of referencing 
non-selected keys is high, it may not be possible to 
achieve an acceptable error rate. The determination of n, 
p, and q in the design process comes from an analysis of 
the empirical reference distribution. A large value of q 
might be indicative of a nearly uniform reference 
distribution, in which case the simple adaptive selector 
may not be warranted. Or, the number of selected keys may 
be so small relative to the total number of tuple 
occurrences that other storage structures may be more 

appropriate.
Lastly, at each evaluation interval, the database 

designer may opt to change any of the parameters of the 
Bloom filter as the performance monitor evidence 
indicates. This includes not supporting a simple adaptive 
selector at periods of time when observed reference 
activity is effectively uniform over the tuple 

occurrences.

5.3.3 Secondary Memory Organization
At present, the process of physical database design

only treats operational issues as they relate to
pre-implementation decisions. Once made, these decisions
are extremely difficult to change. Typically,
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operationally oriented information such as data volume and 
transaction frequency are estimated in order to decide on 
efficient record segmentation, secondary memory block 
sizes, and file (device) allocation. The effectiveness of 
these design decisions will likely diminish as the 
database is installed and in operational use for a period 

of time.
The very nature of the selector and adaptive selector 

abstractions is that they are to provide a measure of 
adaptability to the database not only in its logical 
design but also throughout its operational lifetime. To 
accomplish this, a database management system should not 
only recognize and represent adaptability but should also 
provide a flexible environment for managing adaptability 
at the level of physical occurrences. This subsection and 
the next will explore two proposals which will enable a 
database management system to effectively respond to the 
dynamics of the occurrence dimension with an aim at 
improving the overall operational performance of the

stored database.
The principal operational task of a database 

management system is to provide efficient access to the 
stored data occurrences. This involves the management and 
coordination of a hierarchy of storage devices. Two levels 
of the storage hierarchy will be focused upon here; 
primary (processor) memory and secondary memory. There are 
other levels in a typical storage hierarchy, such as a
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high-speed cache memory and archival memory, but they are 
not of direct concern for what follows.

Secondary memory provides the permanent repository 
for a stored database. Data occurrences are organized into 
logical groupings such as tuples (records) and these are 
further aggregated into larger units, or blocks, for 
efficient transfer to primary memory. Because secondary 
memory devices are relatively slow, transfers of blocks of 
data to and from processor memory are quite expensive. The 
operational performance of a DBMS is then critically 
linked to the efficiency of secondary memory organization.

Traditionally, data occurrences are organized in 
secondary memory according to criteria not related to 
performance considerations. Tuples or records may be 
allocated to blocks in some logical order such as 
increasing primary key sequence. In some instances, tuples 
of different types participating in certain relationships 
may be clustered closely together. These criteria often 
require that the data occurrences be "pinned” [ÜLLM80] to 
their secondary memory locations. The storage structures 
used to support primary, relationship, and secondary 
access to the data occurrences depend on these fixed, 
permanent addresses. While these criteria are logically 
sensible, they are not necessarily the most efficient 
organizations from the perspective of efficient retrieval.

The secondary memory organization proposed here is to 
allow all data occurrences, at the aggregate level of
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tuples, to be "unpinned." That is, tuple occurrences are 
free to be moved or relocated as long as all of the 
storage structures used to provide access to the tuples 
are maintained consistently. This particular organization 
is more costly from the storage structure perspective but 
can be highly efficient in overall performance. All 
required access paths to unpinned tuple occurrences can be 
provided by existing storage structures such as dense

hierarchic indexes [HAER781.
The consequence of allowing tuple occurrences to be

unpinned, and potentially relocatable, is that the
placement of the tuple occurrences can be based on a
criterion of efficient retrieval. Recognizing that the
pattern of access to stored tuple occurrences is very
unlikely to be uniform, the tuple occurrences can be

/
distributed among blocks of secondary memory in a way 
which can reduce significantly the number of costly block 
transfers between secondary and primary memory.

To affect such an organization requires that 
performance monitoring data be kept on the relative 
frequency of access to individual tuple occurrences. These 
data would then provide the information to identify and 
collect the more frequently retrieved tuple occurrences 
into a set of high frequency of reference blocks which 
would serve to minimize the number of secondary memory 
references by maximizing the likelihood of finding a 
desired occurrence in processor memory. The periodic
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relocation of tuple occurrence* could be carried out as 
often as deemed necessary over the operational life of the

database.
The price to be paid for maintaining this 

organization includes the cost of the reorganization as 
well as the additional overhead for the various storage 
structures. This price, however, is not necessarily 
excessive because database files and their associated 
storage structures require periodic reorganizations to 
recover space freed by deletions and to merge overflow 
areas into the main database files [HELD78].

A DBMS policy which periodically reorganizes its 
secondary memory on the basis of observed frequency of 
reference to individual tuples can be designed and 
implemented regardless of whether selector or adaptive 
selectors are used. The only requirements for adopting 
such a policy are that the secondary memory organization 
does not pin tuple occurrences to fixed locations and that 
some performance monitoring capability is provided to 
trace reference patterns. Selectors and adaptive 
selectors, however, provide a unique opportunity for 
exploiting this secondary memory organization.

In the case of a simple selector, the occurrences of 
tuples of a particular type are partitioned on the basis 
of a boolean qualification of an attribute value. With a 
flexible secondary memory organization, the selected tuple 
occurrences can be clustered into a set of logically



188

contiguous blocks. When the filter operator is applied to 
these occurrences, only those blocks containing the 
selected tuples need be transferred to processor memory. 
Similarly, the complement operator would reference only 
blocks containing non—selected tuple occurrences.

This would significantly improve retrieval 
performance when either of these two operators is used in 
conjunction with a query. Also, within either subset of 
blocks, individual tuple occurrences can still be ordered 
on observed frequency of reference. This same effect can 
be achieved when a relationship selector is defined.

The most obvious case for periodically reorganizing 
secondary memory on observed frequency of reference is the 
simple adaptive selector. The criterion for membership in 
a simple adaptive selector is based on the recency and 
frequency of reference to specific tuple occurrences. 
Maintaining a storage structure to support a test of set 
membership operator is of only marginal value if the 
selected tuples cannot be retrieved efficiently.

When establishing or evaluating (i.e., updating) the 
storage structure for a simple adaptive selector, tuple 
occurrences are selected for membership by examining 
performance monitor data. As individual tuple occurrences 
are selected, they can simultaneously be clustered into a 
set of blocks. These blocks, in turn, would have a much 
higher probability of reference and consequently would be
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more likely to be found in the processor memory buffer
area when requested.

Lastly, a relationship adaptive selector would be 
treated in much the same way as the simple selector or 
relationship selector. Those tuple occurrences selected 
because they are currently participating in a specified 
relationship would be physically clustered in secondary 

memory.
These assertions about measurable improvements in the 

retrieval performance of an operational database, although 
based on strong intuitive grounds, have not been proven 
analytically. There are simply too many factors to 
consider when trying to characterize the magnitude of any 
such improvement. For example, the stochastic nature of 
the reference process, the effect of multiple, concurrent 
database users, the operational characteristics of the 
DBMS and host operating system, and the frequency of the 
periodic reorganizations would all have an effect on any 
measure of performance.

5.3.4 An Adaptive Buffer Management Policy
The periodic relocation of data occurrences based on 

observed frequency of access has as its ultimate goal the 
improvement of database management system performance 
through the efficient and effective organization of 
secondary memory. There are numerous other opportunities 
to make improvements in DBMS performance ranging from
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query optimization in the data manipulation language to 
the careful choice of additional, secondary storage 
structures. It is generally accepted, however, that the 
most significant improvements in performance will be 
achieved when the rate of data block transfers between 
processor memory and secondary memory is minimized.

Because of the great disparity in the speed of access 
between these two levels of memory, the cost of 
transferring blocks of data to and from processor memory 
is the dominant factor in DBMS performance. This issue was 
raised in the proposal for periodic tuple relocation. The 
purpose of the relocation of tuple occurrences in 
secondary memory was to cluster the high frequency of 
reference tuples into blocks which would have a 
correspondingly high probability of being found in 
processor memory thereby reducing the number of transfers 
needed to satisfy retrieval requests.

It was argued that this alone would lead to 
measurable performance gains. In order to fully realize 
these gains, consideration must be given to the management 
and organization of processor memory as well. The 
processor memory region allocated to hold the transferred 
blocks of data occurrences is the DBMS buffer area. This 
area is much smaller than the secondary memory area 
required to hold the entire stored database. Eventually, 
blocks of secondary memory to be brought into processor 
memory must displace previously transferred blocks because
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the buffer will be found to be full* To the extent that 
the buffer area can be managed to increase the likelihood 
of finding a desired block in the buffer, the number of 
these costly transfers can be reduced.

The problem of organizing and managing a DBMS buffer 
area is quite similar to the problem encountered in 
virtual memory operating systems [DENN70J. In both cases, 
a relatively small (real) processor memory area is 
available to accommodate the contents of a rather large 
(virtual) secondary memory area. The key to efficiently 
managing a DBMS buffer area lies in the choice of the 
policy used to decide which buffer block to displace when 
a newly transferred block of data finds the buffer full.

Numerous buffer management policies have been 
proposed and analyzed (viz., Coffman and Denning ICOFF73] 
and King [KING71]). They differ chiefly in the nature of 
the information they use to make the replacement decision. 
The comparative measure of efficiency of a buffer 
management policy is the observed rate of buffer faults, 
or block replacements, it experiences in servicing a 
suitably long sequence of independent data block 
references. The Appendix will describe in detail the 
assumptions usually made in calculating buffer fault rates

for specific policies.
The most widely used buffer management policy is the 

well-known Least Recently Used (LRU) policy. In the LRU 
policy, the identity of the blocks currently in the buffer
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is kept (theoretically) in a stack. Each time a buffer 
block is referenced its identifier is advanced to the top 
of the stack with the other block identifiers being pushed 
down in the stack. When a block is to be transferred to a 
full buffer, the block currently occupying the last 
(bottom) stack position is the candidate for displacement.

The information used in the LRU replacement policy 
reflects the most recent reference history of the buffer. 
Presumably, the block chosen for replacement has not been 
referenced recently and is therefore unlikely to be 
referenced in the near future. This policy does not take 
into account the relative frequency of reference to 
individual data blocks but relies solely on the recency of 

reference.
An interesting, albeit impractical, policy is the AO 

buffer management policy of Denning, Chen, and Schedler 
[DENN68]. This policy assumes full and complete knowledge 
of the stationary block reference probabilities. The 
replacement decision rule is always to replace the buffer 
block which has the least, known probability of reference. 
For a database consisting of N data blocks in secondary 
memory, a processor memory buffer area of size n (n < N) 
will eventually contain the (n-1) highest probability of 
reference blocks. The remaining buffer block will then be 
used to service all references to the N-n+1 lower 
probability data blocks.
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Because of the impossibly of knowing the exact, 
stationary block reference distribution, this particular 
buffer management policy is not implementable. Under this 
assumption, however, it is known to be the optimum buffer 
management policy. Therefore, the AO policy provides a 
lower bound on the buffer fault rate and is used as a 
standard for comparison of other policies. Where the LRU 
policy was concerned with recency of reference to data 
blocks, the AO policy is concerned strictly with the 
frequency (probability) of reference.

A buffer management policy which combines both of 
these criteria in its replacement decision, and is 
feasible to implement, should be able to offer substantial 
gains in the reduction of buffer faults. The following 
proposal for a Least Frequently and Recently Used (LFRU) 
buffer management policy will be shown to be no worse that 
the LRU policy and to approach the optimum AO policy as 
the distribution of data block references becomes 
increasingly non-uniform.

To meet the criterion of recency of reference, the 
LFRU buffer management policy will maintain a modified LRU 
stack discipline. The identity of each data block will be 
entered into the top of the stack when referenced and will 
be pushed down in the stack as subsequent blocks are 
entered. Associated with each data block is an empirical 
estimate of its reference probability obtained from the 
performance monitor data. This estimate will be used to
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incorporate frequency of reference into the replacement 
decision.

For every data block currently represented in the LRU 
stack, a quantity called the residual life expectancy will 
be calculated. Given the data block's position in the LRU 
stack, the residual life expectancy is an estimate of the 
probability that the block will be rereferenced before it 
would be removed from the LRU stack. The replacement 
decision rule is then to remove that block from the buffer 
which has the smallest residual life expectancy. This will 
frequently, but not always, be the block in the lowest 
(bottom) stack position.

The residual life expectancy is calculated in the 
following manner. Assume that there are a total of N data 
blocks in the database and there are n buffer slots 
available (n < N). For a data block j currently in the 
i-th stack position (the top stack position is 1) with 
estimated reference probability Pj, the residual life 
expectancy is given by;

1 - ( 1 - Pj )n-i+l

When pj is small, this can be approximated by:

1 - exp( -(n-i+l)Pj)

The interpretation of this expression is that the
block in question is (n—i) positions from the bottom of
the LRU stack. The probability that block j is not
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referenced in the next (n-i+1) independent references to 
data blocks, and consequently would leave the LRU stack, 
is (1 - One minus this quantity is the expected
probability that block j will be rereferenced. Using the 
estimated block reference probability in conjunction with 
the relative stack position then combines both the 
criteria of frequency of reference with recency of 

reference.
Figure 5.7 demonstrates the use of residual life 

expectancies in the LFRU buffer management policy. A 
simple five position LRU stack is used in each part of the 
figure. The relative stack position, block identifier, 
estimated probability, and computed residual life 
expectancy constitute the columns. The top portion of the 
figure illustrates a typical situation with a full buffer. 
A reference to a data block not present in the buffer 
would cause block 57 to be displaced to accommodate the 
entering block. This is exactly the decision that would be 

made in a strict LRU buffer.
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STACK BLOCK PROBABILITY RESIDUAL
POSITION NUMBER ESTIMATE LIFE

1 43 0.0012 0.0060
2 87 0.0025 0.0100
3 16 0.0009 0.0027
4 93 0.0012 0.0024
5 57 0.0020 0.0020

STACK
POSITION

1
2
3
4
5

(a) Initial configuration

BLOCK
NUMBER

93
43
87
16
57

PROBABILITY
ESTIMATE
0.0012 
0.0012
0.0025
0.0009
0.0020

RESIDUAL
LIFE

0.0060
0.0048
0.0075
0.0018
0.0020

(b) Internal stack reference

STACK
POSITION

1
2
3
4
5

BLOCK
NUMBER

35
93
43
87
57

PROBABILITY
ESTIMATE
0.0008
0.0012 
0.0012
0.0025
0.0020

RESIDUAL
LIFE
0.0040
0.0048
0.0036
0.0050
0.0020

(c) External block reference 
LFRU stack configurations 

Figure 5.7
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The middle portion of the figure shows the resulting 
stack arrangement after a reference to block 93 which is 
already in the buffer. The purpose here is to illustrate 
the subsequent stack configuration and the changes in the 
residual life expectancies. In this state, block number 16 
in the next to last stack position is the candidate for 
displacement under the LFRU replacement policy. The bottom 
portion of the figure then shows the stack arrangement 
when block 35 (not presently in the stack) is referenced.

If the reference distribution to the data blocks is 
near uniform, the LFRU policy will behave exactly as the 
LRU policy. When the reference distribution shows marked 
non-uniformity, the LFRU policy will tend to behave as the 
AO policy using estimated block reference probabilities 
rather than known probabilities. In addition to the 
potential for achieving near optimum performance, the LFRU 
policy will be able to adapt to changing patterns of 
reference as detected by the performance monitor.

To assess the effectiveness of the LFRU buffer 
management policy, a set of simulation experiments has 
been performed to measure the relative buffer fault rates 
under the LRU, AO, and LFRU policies. The Appendix 
describes the simulation model and its assumptions in 
detail. Briefly, however, the simulation experiments were 
based on the Independent Reference Model [COFF73]. This 
model consists of generating a sequence independent and 
identically distributed random variables which represent
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database block references. A processor memory buffer of a 
given size is managed according to the chosen policy and 
the number of buffer faults observed in processing a 
sufficiently long reference stream is recorded.

In the experiments performed here the database size 
was chosen to be 20,000 tuple occurrences. These tuples 
were then distributed randomly over 2,000 database blocks. 
The processor memory buffer was limited to holding 20 
blocks, or one percent of the database. Although these 
sizes are relatively small with respect to typical 
databases, the important factor is not the absolute size 
but rather the relative size of the buffer to the entire 
database. Increasing or decreasing either the database 
size or the buffer size would make no appreciable 
difference as long as the ratio of the buffer to the 
database remainder the same.

The mass function which assigns probabilities of 
reference to the individual tuples was taken from Knuth 
[KNUT69]. The mass attributable to the i-th (ordered) 

tuple is given by;

[ ik _ (i-l)k) / N%

where N is the total number of tuples and k (0 < k <= 1) 
is the skewness parameter. Clearly, when k is equal to 
one, the mass function is uniform. As k approaches zero, 
the distribution becomes increasing skewed. With k = 
0.1386, the distribution becomes exactly the 80/20 Rule,
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that is, 80 percent of the mass is assigned to the first 
20 percent of the tuple occurrences.

The experiments consisted of using each of three 
buffer management policies and observing the buffer fault 
rate over 100,000 independent and identically distributed 
random references to tuples. The references were generated 
using the probability mass function above with k set at 
0.8 (very nearly uniform), 0.5 (modestly skewed), and
0.1386. For the AO policy, the exact probabilities of 
reference to tuples, and consequently the cumulative block 
probabilities, were known and used in the replacement 
decision. In LRU, the tuple probabilities are not needed 
and under LFRU, the probabilities of reference were 
estimated over the course of the simulation runs.

Table 5.2 summarizes the results of these 
experiments. When the reference distribution is nearly 
uniform ( k = 0.8 ), the observed fault rates are quite 
high which is consistent with the fact that the buffer can 
only accommodate one percent of the data blocks. The AO 
policy establishes the lower bound for this particular 
reference stream. LRU and LFRU lie above the bound and are 

virtually identical.
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SKEWNESS
PARAMETER

k

BUFFER
REPLACEMENT

POLICY

OBSERVED
FAULT
RATE

0.8 LRU 0.99078
LFRU 0.99082
AO 0.98893

0.5 LRU 0.98896
LFRU 0.97999
AO 0.96324

0.1386 LRU
LFRU
AO

0.79269
0.69282
0.66098

Experimental results 
Table 5.2

As the distribution becomes more skewed with k = 0.5, 
all three policies begin to show slightly improved 
performance. AO is again the lower bound on the fault rate 
for the reference stream in question. The decrease in its 
fault rate from the nearly uniform case is due to the fact 
that the replacement policy can take advantage of the 
known, non-uniform reference probabilities. With a 
moderate degree of non—uniformity the LFRU policy can be 
seen to be superior to LRU, albeit only slightly.

A marked difference in the three policies is evident 
in the highly skewed 80/20 case. Not only does the lower 
bound established by AO drop significantly, but the 
performance of LFRU is approaching this optimum rate. In
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fact, if the simulated reference stream was extended 
indefinitely the estimated probabilities would converge to 
the true, underlying probabilities and LFRU would 
eventually converge to the optimum fault rate.

These results do not constitute a formal verification 
of the superiority of LFRU over the standard LRU buffer 
management policy. This is due in large part to the fact 
that the results were obtained under ideal, and perhaps 
unrealistic, conditions. They do, however, provide some 
insight as to the LFRU policy could offer significant 
performance improvement when the distribution of data 
block references is non-uniform.

5.4 Summary
The third, and last, level of the database design 

methodology portrayed in Figure 2.1 concerns the design 
decisions which must be made at the time of physical 
implementation. The majority of these decisions are made 
in the context of the particular computer system 
environment. Among these decisions, however, the storage 
structure selection problem can be examined somewhat 
independently of the target DBMS and host operating 

system.
The first major section of this chapter addressed the 

storage structure selection problem within the framework 
of the generic data model developed in the preceding 
chapter. The primary goal was to suggest possible storage
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structures which would be suitable for implementing 
selectors and adaptive selectors. It was assumed that a 
hierarchical dense block index storage structure (or 
access method) was available. This assumption is not 
unrealistic as many commercially available DBMSs provide 
such a structure. Primary access to all stored base 
relation extensions was then assumed to be implemented in 
this way. Secondary and relationship access paths were 
assumed, without loss of generality, to be non-existent.

The suggested storage structure to support simple 
selectors, relationship selectors, and relationship 
adaptive selectors was then to build and maintain separate 
hierarchical dense indexes. In each of these three cases, 
it was argued that the hierarchical dense index structure 
was not only an efficient, economical choice of storage 
structure but that it could be employed effectively by the 
filter, complement, and implied join extended relational
algebra operators.

Storage structure support for simple adaptive 
selectors, however, presents a different set of 
requirements. First, the membership of a simple adaptive 
selector is determined by an externally defined criterion, 
that is, observed recency and frequency of reference. This 
then suggests that the membership of the simple adaptive 
selector will likely change over time. Secondly, with a 
simple adaptive selector, it is not necessary for its 
storage structure to provide an alternative access path.
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Instead, it must efficiently support the set membership 

operator.
For these reasons, the recommended storage structure 

for the simple adaptive selector was the Bloom filter. 
Because of the similarity of the requirements of a simple 
adaptive selector and a differential file, it was argued 
that this storage structure would provide the necessary 
efficiency, simplicity, and flexibility to support a 
dynamically changing set membership.

Both the hierarchic dense index and Bloom filter 
storage structures represent only suggested storage 
structures. However, they do satisfy one of the goals of 
this chapter, that is, the recommendations demonstrate the 
feasibility and practicality of including the occurrence 
dimension in the internal data model representation of a

database design.
The next major section of this chapter then addressed

certain operational considerations which would necessarily 
affect an operational database management system which 
implements selectors and adaptive selectors. First, the 
requirement for on—going performance monitoring of 
reference to stored tuple occurrences was discussed. While 
this type of operational data is often routinely 
collected, in the case of simple adaptive selectors it is 
absolutely essential for constructing and parameterizing 
the Bloom filter storage structure.
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Next, a proposal was advanced for the periodic 
relocation of tuple occurrences. This proposal called for 
periodically reorganizing the tuple occurrences of base 
relation extensions in order to cluster the high frequency 
of reference tuples into a relatively small number of 
storage blocks. The justification for this proposal was 
that by performing such relocations, the overall 
operational performance of the database would be improved 
by reducing the input/output load on the system.

The last operational consideration concerned the 
proposal of a new database buffer management policy. The 
Least Recently and Frequently Used (LFRU) policy was 
presented and contrasted with the most commonly employed 
buffer management policy, the Least Recently Used (LRU) 
policy, as well as the known (non— look—ahead) optimum 
policy. The results of a simulation study were offered as 
an indication of the prospective operational improvements 
which could be gained by utilizing this policy.



CHAPTER 6 

CONCLUSION

6.1 Summary of the Research
The main theme of this work has centered on the 

concept of the occurrence dimension in the design of a 
database. The recognition of this dimension in the process 
of database design offers two principal advantages:
1. it enhances the ability of a database designer to 
capture and represent certain semantic information 
requirements which are not otherwise representable in 
the traditional two-dimensional design process; and
2, it offers the potential to significantly increase the 
operational performance characteristics of the database 
as well as to extend its operational lifetime.

In order to introduce the occurrence dimension and 
examine its implications in the process of database 
design, an integrated three level database design 
methodology was employed. This particular methodology 
builds upon existing research and practice in database 
design and then extends the process by incorporating the
occurrence dimension.

The first level of the proposed design methodology is 
concerned with the art of abstract data modeling. This 
preliminary design phase consists of identifying the

205
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relevant objects about which an enterprise collects and 
stores data and how these objects are to be organized so 
as to convey some of their meaning or interpretation 
within the enterprise. The Entity Relationship Model 
[CHEM76] along with the semantic modeling constructs of 
Smith and Smith [SMIT77a, SMIT77b] and Codd [C0DD79], was 
j^eviewed as the basis for formalizing the abstract design 

process.
This review presented a summary of the 

state-of-the-art in abstract database design. Emphasis was 
placed on representing the meaning and interpretation of 
data at the expense of implementation details. It was then 
argued that there exist significant opportunities to 
capture and represent additional meaning within an 
abstract data model if the notion of occurrences of data 
objects is conceptualized at this level.

At first, the idea of considering occurrences in an 
abstract data model appears at variance with the nature of 
the abstraction process. That is, abstraction implies the 
suppression of detail while the consideration of data 
occurrences would ordinarily imply the inclusion of 
considerable detail. However, several specific instances 
were identified where it was essential to explicitly 
recognize the existence of occurrences of data objects in 
order to adequately capture their full meaning.

While the traditional diagrammatic portrayal of an 
abstract database design is rendered in two dimensions.
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the art of abstract data modeling was then extended into a 
third modeling dimension - the occurrence dimension. Two 
new database abstractions, selectors and adaptive 
selectors, were introduced to provide mechanisms to 
formally represent semantic information requirements in

this dimension.
The ability to model the semantics of an enterprise s 

information requirements in the occurrence dimension would 
be of little or no value unless there exist corresponding 
facilities at the lower levels of the database design 
methodology. The next phase of the three level design 
methodology involves the mapping of an abstract data model 
onto the structures supported by a generic data model. The 
generic data model chosen was the relational model of 
data. In order to accommodate any selectors or adaptive 
selectors employed in the abstract data modeling phase, 
the notion of "artificial" relations was introduced. These 
artificial relations serve as surrogates for the selectors 
and adaptive selectors in this transformation process.

Once artificial relations have been defined, there 
must then be a facility for their formal specification in 
a data definition language for some implementation of the 
relational data model. A syntax for a relational data 
definition language facility was proposed using the PASCAL 
programming language as a host. Each type of selector and 
adaptive selector was given a data type specification as
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well as facility for defining artificial relation 
extensions based on that type.

Using this data definition language facility, a 
relational schema may then be developed for a database 
design which incorporates selectors and adaptive 
selectors. To complete the generic data model level of the 
methodology, a set of extended relational algebra 
operators was presented. These operators enable the 
manipulation of the artificial relation extensions by an 
application program or ad hoc query language such as 

SEQUEL.
The last level of the methodology concerns the 

internal, physical details of implementing the relational 
schema with selectors and adaptive selectors in some 
particular operating environment. Specifically, 
recommendations were made for providing storage structure 
support for selectors and adaptive selectors.
Additionally, several proposals were advanced which 
concern the on-going management of an operational 

database.

6.2 Contributions
The single, most important contribution of this work 

lies in the recognition of the occurrence dimension in the 
art and practice of database design. First, by being able 
to conceptualize occurrences of data objects in the art of 
abstract data modeling, significantly more of the semantic
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meaning of those data objects can be explicitly 
represented in the preliminary abstract design.

In order to demonstrate the nature and importance of 
the occurrence dimension, an example of a hypothetical 
college database design problem was presented. This design 
problem, while obviously over simplified, was constructed 
so as to motivate the kinds of situations which would give 
rise to the need for the occurrence dimension.

Four quite natural semantic rules were included in the 
information requirements for the college database which 
could not be explicitly represented in a two-dimensional 
abstract data model. The reason is that these semantic 
rules concern properties of the occurrences of the 
college's data objects and traditional abstract data 
modeling suppresses the notion of occurrences. To address 
this problem, the selector and adaptive selector database 
abstractions were introduced. These database abstractions 
are defined exclusively in the occurrence dimension.

The selector abstraction was presented in two forms - 
the simple selector and the relationship selector. Each 
form was defined as a partitioning of the occurrences of a 
given entity based on a boolean qualification of one of 
its attribute values. The definition of a simple selector 
on an entity does not affect its participation in any 
relationships. Rather, any relationships involving the 
entity are assumed to be potentially valid for all entity 
occurrences regardless of their selection. With a
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relationship selector, however, membership in the selected 
subset is a necessary precondition for an entity 
occurrence to participate in certain relationships.

It was then shown how these two forms of selector 
abstraction could be used to adequately capture and 
represent two of the given semantic rules which were 
otherwise not representable. Although the examples were 
taken from the context of the sample design problem, they 
are representative of a large class of similar situations 
which occur frequently in database design.

Similarly, two forms of adaptive selector were 
presented - the simple adaptive selector and the 
relationship adaptive selector. In each form of adaptive 
selector, the membership of the selected subset was based 
on a temporal criterion. The simple adaptive selector is 
intended to identify a temporally active subset of the 
occurrences of an entity. The membership criterion is 
predicated on the observed recency and frequency of 
reference to the entity occurrences. In the relationship 
adaptive selector, membership is based on the entity 
occurrence's participation in a stated relationship at any 

given time.
These two forms of adaptive selector abstraction were 

also demonstrated in the context of the sample design 
problem. They were shown to be capable of adequately 
representing the remaining two semantic rules. Again, 
although the examples were contrived, it is evident that
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the use of adaptive selectors enhances the ability of a 
database designer to capture semantically meaningful 
aspects of enterprise’s information requirements in an

abstract data model.
#ith the art of abstract data modeling extended into

the occurrence dimension, it was then necessary to map
this modeling environment into the structures, operators,
and constraints of a generic data model, in this case, the
relational model of data. Because the selector and
adaptive selector database abstractions do not create any
new entities or relationships within a particular database
design, they would have no direct representational form as
base relations. To address this problem, the concept of
artificial relations was introduced. The artificial
relations are intended to serve as surrogates for any
selectors or adaptive selectors present in the abstract

data model.
A complete relational schema definition corresponding 

to an abstract data model was then defined as a collection 
of base relations along with any necessary artificial 
relations. These artificial relations effectively 
represent the occurrence dimension in the relational model 
of data. In order to demonstrate the practicality of 
incorporating artificial relations, and consequently 
selectors and adaptive selectors, into the relational 
model of data, a relational data definition language 

facility was defined.



212

The programming language PASCAL was chosen as the 
vehicle for describing the proposed data definition 
language facility* This choice was motivated by similar 
approach taken by Smith and Smith [SMIT77a, SMIT77b]. The 
syntax of the data definition language was completely 
defined including data typing facilities for both 
selectors and adaptive selectors. The extensional 
counterparts of these data types were given in terms of 
PASCAL variable definitions. In particular, the variable 
definition of adaptive selectors was based on the abstract 
data type of the powerset [HOAR72J,

In addition to providing data definition language 
capabilities for representing the occurrence dimension 
within the relational model of data, it was also necessary 
to provide data manipulation language facilities to 
operate on the selectors and adaptive selectors. For this 
purpose, five new operators were proposed for the 
relational algebra. Each of these operators was carefully 
defined and related to the original five primitive 
operators which constitute the basis for the relational 
algebra.

To demonstrate their usefulness, a series of sample 
database queries was proposed. Using the stated 
assumptions regarding the number of data occurrences in 
the sample database design problem, the queries were first 
formulated in an extended version of the query language 
SEQUEL which implements the five new operators. Each query



213

was then formulated without the appropriate artificial 
relation and extended operators. It was shown that 
significant performance gains could be realized when the 
artificial relations and extended operators were employed. 
These gains were measured in terms of the number of tuple 
occurrences which would have to be retrieved from 
secondary storage in order to satisfy the query request. 
Also, it was shown in several of the queries that the 
formulation with the extended operators was more concise 
and more easily understandable.

The definition and subsequent manipulation of the 
artificial relations which represent the occurrence 
dimension in the relational model of data presupposed that 
they will have some form of physical representation. It 
was assumed, in the context of the sample database design 
problem, that each base relation extension would be stored 
as a separate flat file. A hierarchic dense block index 
storage structure was then associated with each base 
relation in order to provide a primary access path to the

tuple occurrences.
It was suggested that artificial relations be 

implemented as separate storage structures for the 
associated base relations. For each type of artificial 
relation (selector or adaptive selector), a recommended 
storage structure was given. In the case of simple 
selectors, relationship selectors, and relationship 
adaptive selectors, the hierarchic dense index was the
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recommended choice. Arguments in support of this choice 
were given based upon the relative efficiency, simplicity, 
and flexibility of this storage structure. Additionally, 
it was shown that this recommended storage structure would 
be quite suitable for supporting the extended relational

operators in responding to queries.
For the simple adaptive selector, the Bloom filter 

storage structure [BL0070] was recommended. This choice 
was predicated on the unique requirements of the simple 
adaptive selector, specifically the ability to rapidly 
adapt to changing patterns of usage and to efficiently 
support the set membership operator. A discussion of the 
Bloom filter paramenter selection problem as it relates to 
simple adaptive selectors was also given.

Lastly, several requirements for the operational 
support and maintenance of these storage structures were 
reviewed. Among these, a specific contribution was made in 
the proposal for a new DBMS buffer management policy. This 
policy (LFRU) offers the potential to greatly reduce the 
number of buffer faults which would be experienced during 
the operation of a database. In support of this claim, the 
results of a series of simulation experiments were 
presented which demonstrate the potential gains. Although 
this policy would be most effective in the presence of 
adaptive selectors, its usefulness extends to any 
operational DBMS environment where on-going performance 
monitoring would provide the necessary information.



215

6.3 Further Research
The recognition of the occurrence dimension in data 

modeling has created new opportunities for the 
representation of semantics in the art of database design. 
The introduction and definition of the selector and 
adaptive selector database abstractions represent but two 
possibilities for capturing and implementing semantically 
meaningful aspects of the real world as they might arise 
in a database design. There are undoubtedly other such 
abstractions which are still to be discovered.

One such possibility could be in the area of
distributed databases. While the occurrences of an entity 
may be viewed globally as a set of homogeneous data 
objects, each occurrence has a location characteristic 
indicating the site at which it is physically stored. A
form of database abstraction could be used to represent
this aspect of the entity throughout the design process. 
Further examination of the nature of the occurrence 
dimension should lead to a much greater understanding of 
the process of data modeling.

While the selector and adaptive selector abstractions 
have been rather narrowly defined, there also exists the 
possibility of expanding upon their definitions. More 
general criteria could be used in the formulation of the 
predicates used to define selectors thereby extending 
their applicability. Similarly, recent work in the area of
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representing the semantics of time in databases [CLIFF83] 
is quite interesting. The concept of historical databases 
intersects somewhat with the role of adaptive selectors 
and may prove to be a fruitful extension of both ideas.

Lastly, the possibility of implementing these ideas 
in an actual database management system should be 
undertaken. The true potential of the research presented 
here will be better understood when a database management 
system incorporating selectors and adaptive selectors is 
available for experimentation and observation.
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APPENDIX

SIMULATION MODEL ASSUMPTIONS 
The simulation model used to derive the results 

contained in Table 5.2 was based on the Independent 
Reference Model [COFF73]. The simulated database is 
assumed to consist of a finite number of tuple occurrences 
organized into blocks which constitute the unit of 
transfer between levels of memory. Associated with each 
tuple occurrence is a known, stationary probability of 
reference. The simulation then involves generating a 
sequence of independent and identically distributed 
references to the stored tuples. The figure of merit is 
the observed rate of buffer faults obtained for a given

buffer management policy.
The Independent Reference Model has been criticized 

for the assumption of independent requests to tuples. 
However, Easton [EAST75] and Fagin and Easton (FAGI76] 
have validated the Independent Reference Model against 
trace data taken from an operational (IMS/VS) database. A 
possible rationalization for the success of their 
validation experiments may lie in the observation that a 
DBMS services many users simultaneously and when their 
request streams are merged, the result is an apparently

independent sequence.
Assume that the simulated database contains a total 

of N tuple occurrences numbered sequentially
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(i=l,2,...,N). These tuples are then randomly assigned to 
one of B = N/n blocks where there are n tuples per block. 
The assignment of tuples to blocks was accomplished by 
using a simple hashing algorithm. The simulated reference 
stream consists of sequence of i.i.d. random variables 

denoted:

, ...» Xj# ...»
The probability of a reference to the i-th stored tuple at 
reference Xj is given in the following mass function:

Pr[ Xj = i ] = [ i% - (i-l)k 1 /

The parameter k determines the skewness of the mass 
function. The values of k=0.8 (nearly uniform), k=0.5 
(modestly skewed), and k=0.1386 (the 80/20 Rule) were used 

here.
To generate a simulated sequence of references to the 

database, the probability integral transform method was 
used. By first generating a uniform random deviate, U, the 
ordinal number of the corresponding reference is obtained 

from:

i = N U1/k

Each random tuple reference, Xj, is then transformed to 
the appropriate block reference by again using the hashing

function.
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The observed buffer fault rate for a sequence of M 
such random references is determined as the ratio of the 
number of faults occurring relative to the number of block 
switchings. A block switching occurs at reference j+1 when 
the block referenced by is not the same as the block
referenced by X^,

The reason for using block switchings as the unit of
discrete "time" is to avoid the unnecessary consideration
of rereferencing blocks consecutively. Easton [EAST75] 
found that fault rates simulated over "real time" tended 
to be quite high when validating them against actual data. 
By ignoring consecutive references to the same block, he

was able to validate his model.
For each stored tuple, two quantities were

maintained. One was the block number to which it was 
assigned and the other was a reference count field. In the 
Least Recently Used (LRU) buffer management policy, the 
reference count field was not used because this 
information is not used in the policy. In the AO policy, 
the reference count field contained the actual (constant) 
probability of reference because this assumed to be known 
in this policy. Lastly, in the Least Frequently and 
Recently Used (LFRU) policy, the field was incremented 
during the simulation to build up an empirical reference 
distribution which is used in calculating the residual 

life expectancy.
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The actual simulation experiments consisted of 
storing a total of N = 20,000 tuple occurrences in B = 
2,000 blocks. The database buffer region in processor 
memory was capable of holding at most 20 blocks (or 1%) of 
the database. A simulated reference stream of M = 100,000 
references was then generated.

The transient period until the buffer was first 
filled was very short and was not considered to 
significantly contaminate the observed results. In the 
case of the LFRU policy, however, the transient period did 
have an effect because the time to develop a reasonably 
accurate empirical reference distribution was fairly long. 
If a warm-up period were allowed to enable the empirical 
reference distribution to begin to stabilize before 
recording buffer faults, then the empirical distribution 
would rapidly approach the true distribution and the LFRU 
policy would approximate the AO (optimum) policy. It was 
decided not to allow a warm-period so as not to bias the 
results in favor of the proposed LFRU policy. The results 
for the LFRU policy shown in Table 5.2 then underestimate

its true performance.
E a c h  e x p e r i m e n t  c o r r e s p o n d e d  t o  a  c h o i c e  o f  t h e  

s k e w n e s s  p a r a m e t e r  k a n d  o n e  o f  t h e  t h r e e  b u f f e r  

m a n a g e m e n t  p o l i c i e s  r e s u l t i n g  i n  a t o t a l  o f  n i n e  

e x p e r i m e n t s .  T h e  m o d e l  i t s e l f  w a s  c o d e d  a s  a  PASCAL 

p r o g r a m .
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