
INFORMATION TO USERS

This reproduction was made from a copy of a document sent to us for microfilming.
While the most advanced technology has been used to photograph and reproduce
this document, the quality of the reproduction is heavily dependent upon the
quality of the material submitted.

The following explanation o f techniques is provided to help clarify markings or
notations which may appear on this reproduction.

1.The sign or “target” for pages apparently lacking from the document
photographed is “Missing Page(s)” . If it was possible to obtain the missing
page(s) or section, they are spliced into the film along with adjacent pages. This
may have necessitated cutting through an image and duplicating adjacent pages
to assure complete continuity.

2. When an image on the film is obliterated with a round black mark, it is an
indication of either blurred copy because of movement during exposure,
duplicate copy, or copyrighted materials that should not have been filmed. For
blurred pages, a good image of the page can be found in the adjacent frame. If
copyrighted materials were deleted, a target note will appear listing the pages in
the adjacent frame.

3. When a map, drawing or chart, etc., is part of the material being photographed,
a definite method of “sectioning” the material has been followed. It is
customary to begin filming at the upper left hand comer o f a large sheet and to
continue from left to right in equal sections with small overlaps. If necessary,
sectioning is continued again-beginning below the first row and continuing on
until complete.

4. For illustrations that cannot be satisfactorily reproduced by xerographic
means, photographic prints can be purchased at additional cost and inserted
into your xerographic copy. These prints are available upon request from the
Dissertations Customer Services Department.

5. Some pages in any document may have indistinct print. In all cases the best
available copy has been filmed.

U niversi^
MiCFonlms

International
300 N. Zeeb Road
Ann Arbor, Ml 48106

8402310

L earm on th , G erard Paul

ADAPTIVE DATA MANAGEMENT

The University of Michigan Ph.D. 1983

University
Microfilms

I ntern&tionsi soon, zeeb Road, Ann Arbor, Ml48106

ADAPTIVE DATA MANAGEMENT

by
Gerard Paul Learmonth

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Business Administration)

in The University of Michigan
1983

Doctoral Committee:
Professor Alan G. Merten, Co-chairman
Professor Thomas J. Schriber, Co-chairman
Assistant Professor Marilyn Mantei
Associate Professor F. Brian Talbot
Associate Professor Toby J. Teorey

RULES REGARDING THE USE OF

MICROFILMED DISSERTATIONS

Microfilmed or bound copies of doctoral dissertatim s submitted
to The University of Michigan and made available through University Micro
films International or The University of Michigan are open for inspection,
but they are to be used only with due regard for the r i ^ t s of the author.
Extensive copying of the dissertatimi or publication of material in excess
of standard copyright limits, whether or not the dissertation has been
copyrighted, must have been approved by the author as well as by the Dean
of the Graduate School. Proper credit must be given to the author if any
material from the dissertati<m is used in subsequent written or published
work.

Why take the style of those heroic times?
For nature brings not back the mastodon.
Nor we those times; and why should any man
Remodel models?

Alfred Lord Tennyson
Morte d'Arthur

For Maryellen, Rod, and Colin

11

ACKNOWLEDGMENTS

I would like to thank all of the members of my
dissertation committee for their time and effort in
helping me to bring this dissertation to completion.
Special thanks are due to Alan Merten who patiently guided
me as some rather vague ideas eventually came together to
form the basis of this research.

Most importantly, I want to thank my family for their
understanding, love, and support.

Ill

TABLE OF CONTENTS

DEDICATION . . .
ACKNOWLEDGMENTS
LIST OF FIGURES
LIST OF TABLES .
CHAPTER
1. INTRODUCTION

1.1 B a c k g r o u n d
1.2 The Problems and the Approach to Their

Solution
2, ENTERPRISE INFORMATION MODELING

2.1 Introduction.............. » » ' ' ;
2.2 A Three Level Database Design Methodology
2.3 The Occurrence Dimension in Information

Modeling
2.4 A Database Design Problem
THE OCCURRENCE DIMENSION IN ABSTRACT DATABASE
DESIGN ..
3.1 Introduction....................... ..
3.2 A Framework for Abstract Data Modeling .
3.3 A Static, Intra-Entity Abstraction: the

Selector
3.4 A Dynamic, Intra-Entity Abstraction: the

Adaptive Selector
3.5 Summary

11

iii
vi

viii

1
1
2
7
7
9

16
21

27
27
28
49
60
72

4. THE OCCURRENCE DIMENSION IN A GENERIC DATA MODEL 76

4.1 Introduction...................................
4.2 Choosing a Generic Data M o d e l
4.3 A Relational Data Definition Language Facility 80

4.3.1 Notational Conventions 86
4.3.2 Unstructured Data T y p e s 88
4.3.3 Structured Data T y p e s 85
4.3.4 Data Types for the Selector and

Adaptive Selector . . . ^^6

IV

5.

4.4 A Relational Data Manipulation Language
Facility
4.4.1 Extended Operators for the Relational

Algebra
4.4.2 Data Manipulation with the Extended

O p e r a t o r s
4.5 Summary
THE OCCURRENCE DIMENSION IN INTERNAL DATA
MODELING •
5.1 Introduction
5.2 Storage Structures

5.2.1 A Storage Structure for Simple
Selectors

5.2.2 Storage Structures for Relationship
Selectors

5.2.3 Storage Structures for Simple Adaptiv
Selectors *

5.2.4 Storage Structures for Relationship
Adaptive Selectors

5.3 Operational Considerations for Adaptability
5.3.1 Performance Monitoring
5.3.2 Bloom Filter Parameter Selection . .
5.3.3 Secondary Memory Organization . . .
5.3.4 An Adaptive Buffer Management Policy

5.4 Summary
6. CONCLUSION

6.1 Summary of the Research
6.2 Contributions
6.3 Further Research . . .

APPENDIX . .
BIBLIOGRAPHY

113
117
121
134

136
136
138
142
146
153
162
168
169
171
183
189
201
205
205
208
215
217
222

LIST OF FIGURES

Figure

2.1 A three level design methodology
2.2 An abstract data model diagram
2.3 An example of the occurrence dimension . . .
3.1 An implicit relationship
3.2 An explicit relationship with attribute . .
3.3 An Entity Relationship Model of the college
3.4 An abstract model with attributes
3.5 A generalization hierarchy
3.6 Unconditional and alternative generalization

hierarchies
3.7 An abstract model of the abstract modeling

process
3.8 A simple selector in the occurrence dimension
3.9 A diagram of a simple selector abstraction in

two dime n s i o n s............................
3.10 A relationship selector in the occurrence

dimension -
3.11 A relationship selector abstraction in two

dimensions
3.12 A diagram of a simple adaptive selector

abstraction ■
3.13 A relationship adaptive selector
3.14 An abstract model of the abstract data modeling

process with selector and adaptive selector
abstractions

11
17
20
32
33
36
40
43

46

48
54

55

58

59

66
70

74

VI

4.1 The complete abstract data model of the college
database .. ^

4.2 Relation schemes for a hypothetical college
d a t a b a s e •

4.3 Unstructured data type d e f i n t i o n s 92
4.4 An image domain definition 94
4.5 Aggregate relation type definitions (Part 1) . 98

(Part 2) ..
4.6 Relation scheme definitions 101
4.7 Structured data types for a generalization

h i e r a r c h y .. 1°^
4.8 Relation scheme definitions for the

generalization hierarchy 106
4.9 Selector type définirions 108

4.10 Selector artificial relation scheme
d e f i n i t i o n s

4.11 Adaptive selector type definitions 112
4.12 Adaptive selector artificial relation scheme

definitions
5.1 A hierarchic index for a simple selector . . . 143
5.2 A portion of two base relation extensions . . 150
5.3 Index storage structure for a relationship

s e l e c t o r ...1^^
5.4 A Bloom filter with three hashing functions . 161
5.5 A hierarchic index for a relationship adaptive

s e l e c t o r ..
5.6 Probability plot of an empirical reference

distribution
5.7 LFRU stack c o n f i g u r a t i o n s 196

VI 1

LIST OF TABLES

Table
2.1 Entity and attribute requirements 23
4.1 Applicability of the extended relational

operators to the artificial relation types . .
5.1 Typical filtering error rates
5.2 Experimental results . .

120
181
200

V I 1 1

CHAPTER 1

INTRODUCTION
1.1 Background

Mankind for thousands of years has been an
intelligent observer of his environment. Through the
millenia he has felt the need to encode and record his
observations for his own sake and for communicating these
observations to others. From the cave drawings of the past
to the very large computer-based databases of the present,
the recording of facts about objects and events in the
environment has been a characteristic human endeavor.

Encoded and recorded facts are referred to
collectively as data. Data, in and of themselves, have no
particular meaning unless they are interpreted. The
interpretation process is essentially one of transforming
data into information. Information then constitutes an
increment of knowledge about the environment which is
inferred from data. An organized collection of information
about a particular subject, in turn, represents knowledge
about that subject. This chain from the simple recording
of data to its interpretation as information and

eventually to the acquisition of knowledge is carried out
in virtually every area of human interest.

The digital computer, as a data processor, has
enabled the mechanization of the recording and organizing
of data. Through the application programs which the
computer processes, some of the transformation of data
into useful information is similarly automated. The
human, however, is still an integral part of the process;
a human decides which data are to be recorded; how they
are to be organized based on perceived needs for
information; and designs the application programs which
affect the transform of data into information.

The work which is to follow is concerned with one
aspect of the progression from data to information, that
is, the organization and management of computer-based
data. The goals will be to provide additional mechanisms
for incorporating more of the meaning and interpretation
of the data into its structure and to permit the resulting
structure to adapt to changing patterns of usage over

time.

1.2 The Problems and the Approach to Their Solution
Concern for the effective and efficient management of

an enterprise's data has increased dramatically since the
introduction of digital computers as data processors.
Initially, attention was focused on the development of a
comprehensive portfolio of application programs to support

routine, day-to-day operation of the enterprise. The
acquisition, organization, and storage of data in
machine-readable form was of secondary importance.

With the explosive growth in demand for information
system support, attention has now shifted to the
management of data [GIBS74, NOLA79]. It is recognized that
an effective information system depends in large measure
on a cohesive and well—managed base of data. These data
are a valued strategic resource to the enterprise.

Coincidentally, this shift toward a data orientation
came at a time when generalized database management
systems became widely available. Prior to their
introduction, an enterprise's computer-based data resource
was typically stored and managed as a collection of
separate files. Each file would contain instances of data
records of a single type. One or more of these files would
serve each application which in turn supported the
interpretation of the data solely through the application
procedure. This state of affairs naturally lead to
considerable data redundancy, lack of data accuracy, and
worst of all, lack of control over the vital data
resource.

A generalized database management system provides a
framework and a software tool for integrating data records
of many different types into one, logically homogeneous
file. The logical (and physical) structure of these record
types within a database does provide some of the

interpretation of the data. One or more stored databases
can then be used to satisfy many of the information
requirements of the enterprise. Among the advantages of
the database approach to the management of data are the
minimization of redundancy, the ability to enforce
accuracy standards, and the centralization of control over

data [MART75].
The problems to be examined in the chapters to follow

involve two substantively different, though essentially
interrelated, issues. The first issue concerns the need to
incorporate more of the interpretation of data into the
design and implementation of a database for an enterprise.
Presently, the design of a database, whether at the
abstract level or physical design level, is conceptualized
in two dimensions. The objects of interest to the
enterprise are envisioned as lying in a plane with edges
connecting them in semantically meaningful ways. These two
design dimensions are adequate for capturing and
representing some of the interpretation of the
enterprise's data but certainly not all.

The principal thesis of this work is that there
exists another important dimension to consider in modeling
an enterprise’s information requirements - the occurrence
dimension. In this third dimension, the notion of
instances of data and the relationships among them may be
conceptualized. In order to demonstrate the effectiveness

of extending the art of database design into this
dimension, two new database abstractions are introduced.

The second issue concerns the need to develop a
consistent database design methodology which proceeds from
an abstract, relatively unconstrained modeling environment
to the ultimate implementation of the model in some
database management system. This problem has not been
fully addressed in the literature. Rather, specific
portions of the design problem have been extensively
examined without an attempt to fully integrate the entire
process (viz., [TSIC82] and [DATE83]).

The solution to be offered here involves the
development of an integrated, three level database design
methodology which proceeds from an abstract data model, to
a particular generic data model (i.e., the relational data
model), and lastly to a proposal for an implementation of
that generic data model. Not only will this methodology
provide a consistent database design environment, but will
also incorporate the notion of the occurrence dimension
throughout.

By recognizing the occurrence dimension of data
modeling and integrating it in all of the phases of
database design, it will be shown that;

1. considerably more of the meaning and interpretation of
an enterprise's data can be explicitly represented in the
design of a database;
2, additional semantic constraints on the integrity of a
stored database can be enforced;
3, the stored database can be manipulated more efficiently
and the operational performance of the database can be
improved; and
4. the operational life of the stored database can be
extended because the database will be capable of adapting
to changing requirements.

The next chapter will introduce and motivate the
concept of the occurrence dimension in data modeling and
data management and will outline the three levels of the
proposed design methodology. Additionally, a case study
in database design and implementation will be described.
This case study will be utilized throughout the remainder
of the work to demonstrate how the occurrence dimension
can be effectively represented in each of the levels of
database design and its eventual implementation and use.
The succeeding three chapters will then focus on each
design level in depth.

CHAPTER 2

ENTERPRISE INFORMATION MODELING

2.1 Introduction
Enterprise information modeling refers broadly to the

art and practice of describing an enterprise in terms of
its data and its information requirements. In general, the
types of data collected and maintained by an enterprise
are easily determined and will be relatively constant over
time. The simple structuring of data types, however, does
not necessarily represent all of an enterprise's
information structure. The data need to be interpreted to
convey information.

Traditionally, all of the interpretation of
computer-based data has been embodied in the application
programs which were designed to process the data. The
organization and structure of the data were predicated on
the efficiency of its storage and retrieval. With a
generalized database management system, it is possible to
organize an enterprise's data types so that their
structure does convey some of the necessary
interpretation. Consequently, the art of enterprise
information modeling involves the consideration of the

semantics of data as well as the syntax of its
representation. The goal of enterprise information
modeling is the effective design of a database which will
serve as an operational model, not just of an enterprise's
data, but of its information requirements as well.

The practice of enterprise information modeling
typically encompasses a number of discrete levels
[TSIC82]. Each level involves a certain degree of
abstraction. At one extreme - the level of abstract data
modeling - a maximum degree of flexibility is obtained by
suppressing the details (limitations) of the target
generic data model. Generic data models, such as the
hierarchical, network, and relational, impose restrictions
on design alternatives due to the limited data structuring
mechanisms which they support. In abstract data modeling,
these data structuring limitations are temporarily
ignored.

Similarly, at the level of generic data modeling,
while the data structuring limitations are in effect, the
low level, physical details of the internal data model are
suppressed. Issues of data record volume, placement, and
retrieval patterns are ignored. It is only at the last
design level - the internal data model - that concern for
the occurrences of the various data records becomes a
design issue.

Abstraction is an important aspect of enterprise
information modeling. Without the ability to suppress

detail, the task of designing a database for an enterprise
would be prohibitively complex. However, there is the
danger of oversimplifying and thus, missing important
aspects of the design. Because one of the goals of
designing a database for an enterprise is the
representation of the meaning of data, suppressing the
notion of occurrences of data objects until the last level
of the design can have serious consequences.

This chapter will be concerned with motivating the
concept of the occurrence dimension throughout the art and
practice of enterprise information modeling. The next

section will:
1. delineate the three discrete levels of the design
process to be considered;
2. describe how the occurrence dimension fits within this
framework; and
3. introduce a case study in database design which will
serve as the vehicle for demonstrating the effectiveness
of this dimension.
2.2 A Three Level Database Design Methodology

The process of designing a database for an enterprise
consists of a sequence of activities leading from the
perception of need to the eventual implementation and
operational use of the database. However, several discrete
points along this continuum have been the focus of
attempts at developing rigorous modeling methodologies.
The nature of the modeling activity at any point can be
characterized by the structures, operators, and
constraints available to the database designer ITSIC82].

10

Figure 2.1 shows the sequence of three discrete levels in
the database design process which will be examined in
detail.

The highest level is concerned with the development
of an abstract data model of the enterprise. At this
level, a database designer is free to utilize virtually
any representation that is suitable for capturing both the
syntax and semantics of the enterprise's information
structure. The principal objective of abstract data
modeling is to develop a complete and logically consistent
model of the enterprise's information structure in terms
of the objects of interest to it and the meaningful
associations which exist among them.

The objects of interest to an enterprise are commonly
called entities. An entity represents any object, real or
abstract, about which the enterprise collects and
maintains data. Entities may, in turn, be defined as a
collection of atomic attributes which correspond to
specific data types used to characterize the entity as a
class. The concept of an entity is an abstraction because
the designer is not concerned about individual occurrences
of entities but merely their existence in general and
their characterization in terms of data types. Therefore,
the level of abstract data modeling has been labelled as
the conceptual level in the figure.

11

ENTERPRISE INFORMATION MODELING

Data and information requirements

GENERIC
DATA

MODELING

INTERNAL
DATA

MODELING

ABSTRACT
DATA

MODELING
Conceptual
level

Structural
level

Operational
level

A three level design methodology
Figure 2.1

12

Each entity in an abstract data model serves only to
indicate its existence as a conceptually meaningful object
to the enterprise. Semantically, entities of different
types# when associated with one another# capture added
meaning over and above their individual representation in
the abstract model. The abstract modeling mechanisms used
to characterize the various relationships arising in an
abstract data model are called database abstractions
[SMIT77a].

Because an abstract data model is intended to be
descriptive in nature# there is no particular need to
provide operators to manipulate the model. Also# abstract
data modeling is virtually devoid of constraints. The
designer has considerable flexibility in choosing the
design and representation most suitable for modeling an
enterprise's information structure. Part of Chapter 3 will
include an extensive survey of the state-of-the-art in

abstract data modeling.
The next discrete level in the design process# shown

in Figure 2.1# concerns generic data modeling. This
particular level corresponds to mapping an abstract data
model onto the structures allowed by a particular generic

data model.
The notion of a generic data model is a

generalization# or idealization# of database management
systems which share to some degree a common set of
structures# operators# and constraints. The first such

13

data model to be described was the relational model of
data [CODD70]. This generic model consists of a simple
structure# the flat tabular structure# a set of operations
on these structures — the relational algebra# and certain
constraints# for example# the Referential Integrity
Constraint [DATE81]. Numerous implementations of this data
model now exist. Ironically# the two other major generic
models of data# the hierarchical and the network data
models# had implementations in existence prior to the
formulation of their conceptual bases [DATE83].

Although the generic data model does limit the
database design alternatives in terms of structures,
operators# and constraints# it is the structures available
to the designer that are the most significant
consideration at this level. The entities represented in
the abstract data model map rather directly# though not
necessarily on a one—to—one basis# onto record types and
relation schemes of a generic data model.

The relationships portrayed among the entities must
be representable within the more limited structuring
discipline prescribed by the generic data model. The
database designer must be able to make the necessary
transformations from the relatively unconstrained abstract
modeling environment to a structural representation
supported by the generic data model. In doing so# the
resulting generic data model structure must still preserve
the semantic intent of the abstract design. To emphasize

14 '

this concern# the generic data model level has been
alternatively labelled the structural level in the figure.

The structural representation of a database design at
the generic data model level is again portrayed as a
two-dimensional arrangement of the required record types
(hierarchical or network) or relation schemes. In the
hierarchical and network models# it is implicitly assumed
that the necessary operators are available to navigate
through the structural representation of relationships to
satisfy the enterprise's information requirements. In the
relational data model# the relationships indicated in the
abstract model have no corresponding representation in
terms of structure. Rather# certain key attributes must be
redundantly represented in relation schemes to enable the
operators of the relational algebra to effectively
materialize these relationships when needed.

Once the transformation of the abstract data model to
the generic data model has been accomplished# the generic
model is then formally defined in the data definition
language facility of some database management system which
effectively implements that data model. Chapter 4 will be
concerned with examining this process of transforming an
abstract data model into a generic data model.

The last level of the database design process shown
in Figure 2.1 deals with the internal data model. Having
brought the design of a database from the abstract to the
generic level# the last step in the design process is to

15

make appropriate decisions regarding the physical
implementation of the database. It is at this level that
consideration of the actual occurrences of data is
traditionally first given. Abstract entities and their
representation as record types or relation schemes at the
generic level, are purely descriptive devices. Each
expresses the intent of how data occurrences are to be
stored. Likewise, relationships in either the abstract
data model or a generic data model, indicate potential
connection paths among semantically related entities.

The internal data model corresponds to representing
the database design utilizing the facilities of a
particular database management system. This involves
choosing strategies for the physical layout of record
types and relation schemes; the allocation and
organization of secondary storage; and the choice of
physical storage structures to implement relationships.
While the abstract data model and the generic data model
are concerned primarily with the static, permanent
representation of an enterprise's information structure,
the internal data model must be concerned with the
on-going, continuous use of the database.

If the operational life of a database is expected to
be long, on the order of years, the assumptions made in
its original design and the anticipated pattern of usage
will be likely to change. The design decisions made in the
internal data model representation of a database must at

16

least be cognizant of the dynamics of operational
performance. At best, the internal data model should be
equipped to monitor, analyze, and adapt as necessary to
changing patterns of use. Chapter 5 will conclude the
examination of the proposed three level database design
methodology by looking at the issues relevant to designing

an internal data model.

2.3 The Occurrence Dimension in Information Modeling
The representation of a database design, especially

at the abstract and generic data model levels, typically
takes the form of a two-dimensional diagram. Figure 2.2
shows a representative two-dimensional diagram of part of
a hypothetical abstract model. Three entities are
portrayed as rectangles with two relationships indicated
by diamonds and edges. This diagraming convention was
proposed by Chen [CHEN76] in the Entity Relationship

Model.

17

ENTITY A

REL

REL. I

ENTITY C

ENTITY B

An abstract data model diagram
Figure 2.2

18

The entities, as characterized by an aggregation of
attributes (not shown here), serve to classify objects and
events of concern to the enterprise. An entity merely
asserts the potential for instances or occurrences of
objects of this type to exist in the database at some
point in time. Relationships impart added meaning to the
entities. Like an entity, a relationship only asserts the
potential for an association among entity occurrences at
some point in time, it does not imply that all entity
occurrences will necessary participate in an occurrence of
the relationship.

This two-dimensional portrayal of entities as class
objects and relationships as potential associations limits
the designer's ability to represent many of the
semantically meaningful aspects of an enterprise's
information structure because there is no way to
conceptualize occurrences. Similarly, the concept of a
database as a time-varying collection of data is generally
ignored in the process of database design. Again, the
chief reason for this is that the time-varying nature of a
database is manifest in its instances.

In order to be able to represent the concept of
occurrences of entities and relationships in either the
abstract or generic models, another design dimension is
needed. This third dimension will then permit the
representation of occurrences as a conceptually meaningful
aspect of both entities and relationships. Figure 2.3

19

shows how this third (occurrence) dimension can be used to
model an aspect of an enterprise's information structure
which would otherwise not be representable in two
dimensions.

The entity on the left of the figure is portrayed as
two disjoint subsets of occurrences of this entity.
Although all occurrences of this entity will be logically
identical, there is a semantically meaningful reason to
introduce the partitioning. As the diagram indicates, the
relationship between the two entities is constrained to
occur only between a subset of the occurrences of one
entity while all occurrences of the other entity may
potentially participate in the relationship.

20

m
CM

(Uw3
O'

•rt

21

Situations such as that portrayed in the figure can
arise naturally and frequently when interpreting an
enterprise's information requirements. For example, when
references to the occurrences of an entity (SELECTion
queries) are accompanied by a common selection criterion
(WHERE clause), this may indicate the existence of a
semantically meaningful partitioning of the entity
occurrences which should be explicitly recognized in the
design. Additionally, as the figure indicates, this
natural partitioning may be a consequence of the meaning
associated with a particular relationship. The next
section will suggest several such situations in the
context of a database design problem.

2.4 A Database Design Problem
In order to demonstrate the importance of the

occurrence dimension in enterprise information modeling
and to describe its impact on the three level database
design methodology, a case study of a database design for
a small college will be used. This hypothetical design
problem has been specifically devised as a vehicle for
identifying the types of situations where recognition of
the occurrence dimension can significantly enhance the
database designer's ability to capture meaningful aspects
of the enterprise's information structure. Also, by
following the case through the three level design process.

22

the operational performance improvements which will accrue
as added benefits will be demonstrated by examples.

It is assumed that the college does not presently
employ a database management system in its administrative
data processing activities. A decision has been made to
design a database to organize, structure and manage a part
of its data resource. This database will serve a number of
existing, structured applications of the college's
administration and will also provide ad hoc access to the
college’s data. As a result of the collection of
requirements for this database, the information summarized

in Table 2.1 has been obtained.
The objects of interest to the college (entities) for

this particular database application are listed in the
first column. Beneath each entity name is the approximate
number of occurrences of each which will be stored in the
database. The second column indicates the relevant
attributes which are to be used to characterize the
occurrences of each entity. The last column then shows the
number of bytes needed to represent each attribute value.

23

ENTITY ATTRIBUTES BYTE LENGTH

DEPARTMENT
(25)

MAJOR
(45)

STUDENT
(4000)

STUDENT-ACCOUNT
(4000)
ENROLLMENT
(14000)
COURSE
(500) ,

SECTION
(200)

FACULTY
(250)

COMMITTEE
(30)

Department name 15
Office number 3
Phone number 4
Major name 25
Degree awarded 3
Required credits 2
Student number 5
Student name 20
Address 40
Class 9
Student number 5
Account balance 7
Grade 1

Course number 3
Course name 30
Description 100
Section number 1
Room 3
Time 12
Employee number 4
Employee name 20
Title 9
Committee name 50
Number of members 2

Entity and attribute requirements
Table 2.1

24

In addition to identifying the entities and
attributes, the following semantic information has been
determined:

1. Each MAJOR course of study is offered by a single
DEPARTMENT.
2. STUDENTS, with the exception of freshmen, are required
to elect a MAJOR.
3. Each COURSE is given by a single DEPARTMENT but not
every COURSE is given in every term.
4. Offerings of a COURSE in a particular term are
associated with SECTIONS.
5. Each SECTION of a COURSE is taught by one FACULTY
member.
6. FACULTY members may serve on many college COMMITTEES.
In addition, FACULTY members who hold the rank of
Professor serve as an advisory body to the president of
the college.
7. The college has many different COMMITTEES.
8. Each STUDENT has a STUDENT-ACCOUNT for financial
transactions although only a relatively small number of
STUDENTS actively use their STUDENT-ACCOUNTS.
9. STUDENTS enroll in several SECTIONS of COURSES each
term and SECTIONS typically have many ENROLLMENTS. A grade
is assigned and recorded for a particular STUDENT in a
particular SECTION of a COURSE.

The objective of the college is to design and
implement a database which adequately represents its data
and information requirements. The data requirements are
completely listed in Table 2.1 while some of its
information requirements (that is, the interpretation of
these data types) are implicit in the semantic statements
above. For the most part, these semantic rules will result
in the creation of relationships between the entities in

25

the table. However, some of the semantics expressed in
these rules cannot be directly represented in the database

design.
For example, rule 6 implies that among all

occurrences of FACULTY members, those of professorial rank
are to be viewed separately for certain purposes.
Similarly, rule 2 states that only those STUDENTS who are
not freshmen may participate in a relationship with a
MAJOR course of study. While these two rules are
intuitively plausible, there are no mechanisms to
explicitly represent them in the database design because
each rule depends on an attribute value rather than any

structural difference.
Likewise, rule 8 calls for associating a

STUDENT-ACCOUNT occurrence with each STUDENT occurrence
but it also states that only a small number of the
STUDENT-ACCOUNT occurrences will be frequently referenced.
Rule 4 constrains the association of SECTION occurrences
to those COURSES given in a particular term. Both of these
rules imply the partitioning of the occurrences of the
respective entities based on a temporal criterion. Again,
neither rule can be fully represented in the database
design with currently available design mechanisms.

Additional information requirements can be obtained
explicitly by examining the requirements of structured
application types which must be supported by the database.
Typical applications include preparing class lists for

26

each section; student grade reporting; faculty teaching
assignment reporting; committee membership lists; and
student account posting and billing. While these
application types are not exhaustive, they are
representative of the types of applications which would be
required in a college and would provide important
information to the design process.

This particular database design case is obviously a
simplification of what would be involved in a real design
of this kind. However, it sufficiently complete to
demonstrate the necessity of the occurrence dimension in
adequately capturing the information structure of the
college. The scenario presented here will be used
throughout the remainder of this work.

CHAPTER 3

THE OCCURRENCE DIMENSION IN ABSTRACT DATABASE DESIGN

3.1 Introduction
At the present, the art of abstract database design

is primarily concerned with capturing and representing the
static, time-invariant aspects of the enterprise's
information structure. Design methodologies such as the
Entity Relationship Model [CHEN76] provide a framework in
which to assemble the relevant data items (attributes)
into meaningful units (entities) and to represent
associations among them (relationships). While it is
recognized that the actual content of the database - the
occurrences - will change over time, there is the implicit
assumption that the overall design will remain constant
for a relatively long time.

The lack of recognition of occurrences of attributes,
entities, and relationships in the abstract design limits
the ability of the designer to adequately portray many of
the semantic information requirements gathered prior to
the design effort. Any such information requirements not
captured in the abstract design will similarly be ignored

27

28

or overlooked in subsequent stages of the design
methodology. This chapter will then be concerned with:

1. identifying when semantic information requirements call
for recognizing the occurrence dimension in abstract data
modeling; and
2. the introduction of new modeling mechanisms which
effectively enable the representation of these semantic
information requirements in an abstract data model.

In order to accomplish these goals, the next major
section will present an overview of abstract data modeling
by developing an integrated framework based primarily on
the work of Chen ICHEN76]. This framework will also
include the contributions of Codd [CODD79] and Smith and
Smith [SMIT77a, SMIT77b]. This particular framework
represents to a large extent the state-of-the-art in
abstract database design as it is currently practiced.
Also, the framework will provide a suitable basis for the
principal contribution of this work, that is, the
introduction of the occurrence dimension. The two
following major sections will then be concerned
specifically with introducing two new database
abstractions which permit the recognition and
representation of semantic information requirements in the
occurrence dimension.

3.2 A Framework for Abstract Data Modeling
Perhaps the best known and most widely used

methodology for abstract data modeling is the Entity
Relationship Model, or ERM, [CHEN76], This model presents

29

a framework for organizing data in a way which carefully
avoids any of the constraints imposed by generic data
models or their implementation as database management
systems. With a small set of modeling constructs, the
designer can portray data and some of its semantics in a
model known as the enterprise view.

Recently, considerable attention has been given to
ways in which more of the semantics of data can be
represented in an abstract data model. The aggregation and
generalization hierarchies of Smith and Smith [SMIT77a,
SMIT77b] provide two such mechanisms. Codd [CODD79],
Hammer and McLeod [HAMM78], and Tsichritzis [TSIC76] also
provide modeling constructs to represent additional
semantic aspects of data. However, none of these
mechanisms explicitly recognize occurrences of data.

Before introducing the two new semantic modeling
tools which are defined in the occurrence dimension, a
review of the art of abstract data modeling in two
dimensions, based on these authors contributions, will be
presented. This two-dimensional framework will then be
used as a basis for extending the art of abstract data
modeling into the occurrence dimension.

Virtually all abstract data modeling methodologies
employ three basic building blocks: attributes, entities,
and relationships. Named attributes are the smallest
units in the abstract design process. Although attributes
are defined on domains (value sets), this detail is

30

usually suppressed in the abstract model. An attribute, by
itself, is unstructured. The name of an attribute
signifies the role that it plays in describing a
higher-level object in the model. Additional semantics
associated with an attribute are represented in the
dependencies (functional or multivalued) in which it
participates.

Entities are the simplest structural objects in
abstract data modeling. Although the exact definition of
an entity is the subject of some debate [KENT78], it is
generally agreed that an entity serves to represent some
object of interest to the enterprise. This object can be
thought of as a whole and has a number of properties that
are described by attributes. An entity, then, is a named
collection of attributes. Its structure is frequently,
though not necessarily, considered to be an ordered set of
attribute names. Some of the semantics associated with an
entity are inherited from the dependency structure of its
attributes. Other semantic aspects of the entity are
conveyed through the named relationships in which it may
participate.

By associating entities through a named relationship,
the designer can express more meaning than is conveyed
simply by isolated entities and their attributes. The
structure of relationships in an abstract model may be
either implicit or explicit. Implicit relationships are
portrayed in the model as labelled edges connecting two or

31

more entities in a data model diagram. While the desired
association is represented, the relationship itself has no
objective reality, i.e., it has no properties (attributes)
of its own. For example, in Figure 3.1, the two entities
DEPARTMENT and COURSE are joined by the implicit
relationship GIVEN-BY which asserts that COURSES are
associated with DEPARTMENTS which have responsibility for,
and control over them. Note that the relationship is
bidirectional and could have been labelled "HAS-COURSE"
depending on the perspective of the designer.

Explicit relationships, on the other hand, do have
objective reality and are represented as entities in their
own right. Figure 3.2 portrays a relationship between a
STUDENT entity and a SECTION entity as the entity
ENROLLMENT. This relationship is made explicitly because
the attribute GRADE characterizes the ENROLLMENT of a
particular STUDENT in a particular SECTION. The attribute
GRADE is not a characteristic of a STUDENT or a SECTION
individually. Note that two implicit relationships serve
to connect the STUDENT and SECTION entities to ENROLLMENT.

32

GIVEN
-BY

DEPARTMENT

COURSE

An implicit relationship
Figure 3.1

33

GRADE

^ HAS- N
STUDENTS^TAKES-

COURSES

SECTION

ENROLLMENT

STUDENT

An explicit relationship with attribute
Figure 3.2

34

One other semantically meaningful aspect of a
relationship is the cardinality of the relationship. A
relationship, either implicit or explicit, can be
classified as being functional (one-to-one or many-to-one)
or complex (many-to-many). Although this classification of
relationships has consequences on physical design
decisions, in the abstract model the cardinality is simply
noted on the model diagram as in Figure 3.2. Both implicit
relationships are functional (many-to-one) from
ENROLLMENT.

These three basic building blocks of abstract data
models are well-known. In the quest to capture more
meaning in the abstract modeling process, different
authors have enhanced the notions of entities and
relationships by defining different types with very
special meanings.

In the ERM, Chen [CHEN76J differentiates between
regular entities and weak entities. Regular entities exist
regardless of their association with other entities in the
model. In Figure 3.3, the entity DEPARTMENT is a regular
entity in that it exists independently of COURSES. The
entity SECTION, however, is a weak entity because it
depends on the existence of a particular COURSE. It does
not make sense to have a SECTION without a COURSE. The
weak entity SECTION is portrayed diagrammatically as a
double rectangular box with the letter ”E" in the
relationship OFFERING indicating the existence dependency

35

on COURSE. Likewise, STUDENT-ACCOUNT derives its

existence from a STUDENT.
Similarly, explicit relationships are either regular

or weak depending on whether the entities they join are
regular or weak. The explicit relationship MAJOR in Figure
3,3 is a regular relationship. It serves to connect the
regular entities STUDENT and DEPARTMENT based on the
election of a particular course of study. A MAJOR can
exist without a particular STUDENT or DEPARTMENT and it
has its own properties such as a name, a degree awarded,
and the number of credits required for successful
completion. The weak relationship ENROLLMENT joins the
regular entity STUDENT with the weak entity SECTION. This
particular relationship cannot exist without a SECTION.

36

DEPARTMENT

N

GIVEN-BY

N
COURSE

1
MAJOR

STUDENT
ACCOUNT

B
HAS-

ACCOUNT I— SECTIONSTUDENT

TEACHHAS-
STUDENTS

TAKES-
COURSES

FACULTYENROLLMENT

SERVE-ONCOMMITTEE N

An Entity Relationship Model of the college
Figure 3.3

37

In the Relational Model/Tasmania (RM/T), Codd
[CODD791 presents a slightly different classification of
entities and relationships. Entities are categorized as
being either kernel, characteristic, or associative. A
kernel entity is like a regular entity in that it has
independent existence. A characteristic entity derives its
existence from a superior entity (either characteristic,
kernel, or associative) in the same way as a weak entity.
An associative entity is like a regular relationship in
that it serves to join two or more other entities (kernel
or associative) and it has independent existence. An
associative entity may have characteristic entities
subordinate to it as well. For completeness, Codd also
mentions the possibility of weak relationships which he
calls "nonentity associations." These objects, while
possibly having their own attributes, do depend on other
entities for their existence, whence the play on terms.

In Figure 3.3, DEPARTMENT, STUDENT, and COURSE are
kernel entities. SECTION and STUDENT-ACCOUNT are
characteristic entities. MAJOR is an associative entity
while ENROLLMENT is a nonentity association. This
categorization of entities and relationships in RM/T is
quite useful in abstract data modeling, however, it should
be reiterated that Codd's intention is to extend the
relational model of data, not to propose an abstract data

modeling methodology.

38

These refinements on the traditional concepts of
entity and relationship enhance a database designer's
ability to incorporate more meaning into the abstract
design of a database. Smith and Smith [SMIT77a, SMIT77b],
however, have introduced two database abstractions which
extend these concepts even further. The aggregation and
generalization abstractions enable the database designer
to express more complex semantic interpretation about the
entities and relationships in a model. Both of these
abstractions are related to concepts already used in
knowledge-based systems (artificial intelligence) and
abstract data types (programming languages). Aggregation
is related to the PART-OF notion from AI and corresponds
to the cartesian product abstract data type.
Generalization comes from the IS-A notion in AI and
corresponds to the discriminated union data type.

The aggregation abstraction involves taking two or
more objects in an abstract data model and forming a
higher-level object from them, hence the term aggregation
hierarchy. The lower-level objects do not cease to exist
but gain added meaning through the aggregate object. In
their original work. Smith and Smith [SMIT77a, SMIT77b]
described aggregation in several different aspects. Codd
[CODD79] prefers to call their aggregation abstraction a
cartesian aggregation to differentiate it from other forms
of aggregation such as the cover aggregation of Hammer and
McLeod [HAMM78] and statistical aggregation.

39

In this integrative summary of abstract data
modeling, three forms of cartesian aggregation will be
described. The first will be called simple cartesian
aggregation. The aggregate object resulting from simple
cartesian aggregation is the aforementioned entity. By
collecting a set of related attributes together in a
semantically meaningful way, either a kernel or
characteristic entity is formed. Figure 3.4 portrays the
same abstract model as in Figure 3.3 with the addition of
attribute names. The kernel entity DEPARTMENT is a simple
cartesian aggregation of the attributes DNAME, OFFICE#,
and PHONE#. Similarly, the characteristic entity SECTION
is a simple cartesian aggregation of the attributes SECT#,

ROOM, and TIME.
The second form of cartesian aggregation is

associative cartesian aggregation. In this form of
database abstraction, the aggregation involves forming a
high-level object from two or more entities along with any
attributes which serve to characterize it. The high-level
object is also treated as an entity with independent
existence, i.e., it represents a regular relationship
[CHEN76] or an associative entity [CODD79]. The entity
MAJOR is an example of an associative cartesian
aggregation in that it plays a superordinate role in
relating STUDENTS to DEPARTMENTS through their elected
MAJOR. Its existence, however, is not dependent on either

subordinate entity.

40

N

DEPARTMENT

NÂME^ (OFFICE#) (PHONE
GIVEN-BY

ÇRSE
NAME

MNAM

<&CREDI^ COURSEMAJOR

BALANCESTUD*
r STUDENT-"I
ACCOUNT OFFERING

HAS-
ACCOUNTSTUD# r— SECTION-iSTUDENT SECTSNAME

ROOMADDR

TEACHHAS-
STUDENTSTAKES-

COURSES

FACULTYENAMEENROLLMENT
CtitlIt

GRADE
COM-

COMMITTEE
(%MBMBERg)^
An abstract model with attributes

Figure 3.4

41

Simple cartesian aggregation and associative
cartesian aggregation formalize the concepts of entity and
explicit relationship. Cover aggregation is much more
general. A cover aggregate object (another entity) serves
to relate objects of either the same or different types.
For example, the entity COMMITTEE in Figure 3.4 is a cover
aggregate which serves to relate (not necessarily
disjoint) subsets of FACULTY members by virtue of their
COMMITTEE assignments. If STUDENTS were allowed to be
members of certain COMMITTEES, then the cover aggregate
concept would span two entities. It is evident that the
cover aggregate captures an important, albeit subtle,
semantic aspect of an enterprise's information structure.

The generalization abstraction involves identifying a
collection of entities, abstracting away their individual
differences, and forming high-level generic objects
(entities) which represent their common properties. The
inverse of generalization is called specialization.

In forming a generalization hierarchy, two new
entities are involved. The first (required) entity stands
for the generic object as a whole. It has the properties
(attributes) common to all members of the hierarchy. The
second (optional) entity contains the properties which are
relevant to each specialized entity in the hierarchy as
they are viewed collectively. Figure 3.5 portrays a
generalization abstraction using the diagraming technique
proposed in Smith and Smith [SMIT77b].

42

Three mutually exclusive subtypes of employees are
represented in the diagram. These three subtypes
constitute a categorization of employees. The entity
EMPLOYEE is the generic object in this hierarchy and
contains the attributes which are common to all employees
regardless of their subtype. The characteristic entity
EMP-TYPE is included in the generalization hierarchy
because there is an attribute (SAL-SCHED) which is a
property of each subtype viewed collectively. The lowest
level in the hierarchy consists of the entities
representing each subtype and it contains those attributes
which are relevant to each subtype individually.

With this particular generalization hierarchy, all
instances of employees stored in the database will be
required to be represented as an EMPLOYEE. If it is clear
that an instance of an employee is also a member of one of
the subtypes then it must be entered into that subtype as
well. Note that membership in a subtype of a category may
be optional. While the subtypes in a category are mutually
exclusive within the category, they are not necessarily
collectively exhaustive.

43

/CLERICAL:

/ ENO ENAME SKILL

FACULTY:
ENO ENAME TITLE

/ a d m i n i s t r a t i v e : /
ENO ENAME RANK

EMPLOYEE:
ENO ENAME TNAME

EMP-TYPE:

TNAME SAL-SCHED

A generalization hierarchy
Figure 3.5

44

The generalization hierarchy appears to have a great
deal of redundancy because attributes are repeated down
the hierarchy. In the abstract data model this merely
conveys the idea that lower level entities in the
hierarchy inherit the properties (attributes) of higher
level entities. Smith and Smith have noted, however, that
in a physical implementation this redundancy may be
effectively controlled. The semantic notion captured in a
generalization hierarchy is that different users have
different views of data depending on their level of
abstraction. A dean may be interested in FACULTY employees
only while the director of personnel may be interested in
all employees regardless of their subtype. The
generalization abstraction permits these multiple views to
be explicitly represented in the abstract data model.

A particularly important aspect of this abstraction
is the ability to represent relationships, either explicit
or implicit, among entities at lower levels (say, the
subtype level) which may not be applicable at higher
levels. For example, in Figure 3.5, an implicit
relationship TEACHES between FACULTY and SECTION is not
appropriate to either ADMINISTRATORS or CLERICALS. Smith
[SMIT78] discusses this in more detail.

In RM/T, Codd refines the generalization abstraction
by describing two different kinds. The first kind is
called an unconditional generalization and is exactly as
described above. Each subtype entity is constrained to

45

belong to a single parent generic object in a
generalization hierarchy. The second kind is known as an
alternative generalization. In this case, a subtype entity
may be generalized into any of several parent generic
objects. Figure 3.6 portrays both of these forms of
generalization. The entity FACULTY may alternatively be
generalized into either ADJUNCT FACULTY or REGULAR
FACULTY. Both of these are unconditionally generalized

into EMPLOYEE as before.

46

UNCONDITIONAL

ALTERNATIVE

EMPLOYEE

FACULTY

REGULAR
FACULTYADJUNCT

FACULTY

Unconditional and alternative generalization hierarchies
Figure 3.6

47

This section has integrated a number of concepts and
ideas into a modeling framework which represents, to a
large extent, the state—of—the—art in abstract data
modeling. The framework, however, does not explicitly
account for occurrences of the relevant objects - either
entities or relationships. To summarize this framework.
Figure 3.7 portrays most of the concepts covered utilizing
the diagraming conventions of the ERM.

The key element of the figure is the notion of the
entity, whether kernel(K), characteristic(C), or
associative(A). The entity is represented as a simple
cartesian aggregation of attributes which, in turn, are
unconditional generalizations of domains. Implicit
relationships among entities are represented directly by
the implicit relationship RELATED-TO. Explicit
relationships, either associative cartesian aggregations
or nonentity associations, are shown using the PART-OF
relationship. Lastly, unconditional generalizations or
alternative generalizations among entities are shown with

the IS-A relationship.
This framework will now be used as the basis for

extending the art of abstract data modeling into the
occurrence dimension. The next two sections will present
new database abstractions which are defined only in the

occurrence dimension.

48

RELATED
TO

/ — -— ---------- 1
IMPLICIT
RELATIONSHIP

EXPLICIT RELATIONSHIP:
NONENTITY ASSOCIATION/
ASSOCIATIVE CARTESIAN

AGGREGATION

M

M

PART-OF >

IS-AENTITY
(K,C,A)

PART-OF

ATTRIBUTE

IS-A

DOMAIN

ALTERNATIVE/
UNCONDITIONAL

GENERALIZATION
SIMPLE
CARTESIAN
AGGREGATION

I UNCONDITIONAL
I GENERALIZATION

An abstract model of the abstract data modeling process
Figure 3.7

49

3.3 A Static, Intra-Entity Abstraction: the Selector
The two-dimensional, abstract data modeling framework

reviewed in the preceding section is adeguate to capture
and represent the majority of the semantic information
requirements that would arise in a database design effort.
However, some of the semantic rules associated with an
enterprise's data cannot be represented with the available
abstract modeling tools. The reason is that these semantic
rules are defined on the occurrences of entities or
relationships and the nature of the abstraction process is
to suppress the consideration of occurrences, at least
until the very last stage of database design.

One type of situation where this problem might arise
occurs when it is necessary to specialize an entity on the
basis of one of its attribute values. Unlike the
specialization that takes place in a generalization
hierarchy, this form of specialization does not create any
new entities or relationships but rather calls for
subsetting the occurrences of an entity based on the
particular attribute value.

Tsichritzis [TSIC76] has addressed this type of
subsetting at the level of the internal data model in the
LSL (Link and Selector Language) database management
system. The device used in LSL to represent such a
partition is called a selector. This same term will also
be used here but with a more precise definition.

50

Two different forms of selector will now be
introduced which provide the database designer with the
ability to capture this type of semantic information
requirement at the level of the abstract data model by
extending the modeling environment into the third,
occurrence dimension. It will be shown in the succeeding
chapters that these two new forms of database abstraction
have important consequences at the lower levels of
database design as well as in data manipulation operations
on an actual stored database.

As an abstract data modeling tool, each form of
selector abstraction is defined as the specialization of
the occurrences of an entity based on a boolean
qualification involving a single attribute and a constant
selected from its value set. As stated previously, the
characteristics of the underlying domain of an attribute
are generally suppressed in the process of abstract data
modeling. However, for a selector abstraction it is
important to consider two important characteristics of the
attribute.

One characteristic has to do with the cardinality of
the attribute's value set, that is, the number of possible
values contained in its domain, or more precisely, what is
the cardinality of the range of values that the attribute
will assume. For example, the attribute SNAME of the
STUDENT entity has a domain and a range which are quite
large assuming there are many STUDENT'S in the college.

51

The attribute CLASS of STUDENT however has a domain and
range consisting of only four values (FRESHMAN, SOPHOMORE,
JUNIOR, SENIOR).

The second characteristic is concerned with the
volatility of the attribute values. Certain attributes are
such that once a value is assigned, it is very likely to
be a “permanent” characteristic of the associated entity
occurrence. The attribute SNAME is an example of a
"permanent” characteristic of a STUDENT. Similarly, CLASS
may be considered "permanent” even though it may change
annually. Conversely, certain attributes will be the
object of frequent value changes. Although not portrayed
in Figure 3.4, if the DEPARTMENT entity also had the
attributes BUDGET-ALLOCATED, BUDGET-SPENT, and
BUDGET-COMMITTED, the last two attributes would likely be
the subject of frequent changes through updates. Also, the
underlying domains and ranges are very large.

When a selector is defined on an entity type in an
abstract design, there may be some implications concerning
the relationships in which that entity participates. In
one case, the selector merely defines a partition over the
entity occurrences based on a constant attribute value and
any relationships involve the entity as a whole. This form
of selector will be referred to as a s impie selector.

On the other hand, it may be the case that one or
more relationships involve only the selected subset while
other relationships may be directed to the entity as a

52

whole. When a relationship involves only the selected
subset, its definition and subsequent manipulation will
have to be treated differently. This form of selector will
be referred to as a relationship selector. This term
reinforces the notion that the purpose of the selector is
to subset an entity in order to support a relationship
which is meaningful only to the selected subset.

For the database design problem described in the
preceding chapter, semantic rule 6 implied that among all
occurrences of the entity FACULTY, those FACULTY members
with professorial rank were to be viewed as logically
separate from FACULTY members in general. This rule could
not be represented in the two-dimensional framework as is
evident in the representation of the entity FACULTY in
Figure 3.4.

Figure 3.8 shows how this semantic information
requirement would be portrayed in the occurrence
dimension. Figure 3.9 then shows a possible diagrammatic
representation for a simple selector abstraction defined
on the entity FACULTY in two dimensions. The rectangular
box directly above the entity contains a name for the
simple selector, in this case SENIOR, as well as its
formal definition in terras of an attribute of FACULTY.
The selected subset of FACULTY consists of those
occurrences of FACULTY whose attribute TITLE equals
PROFESSOR. This simple selector enables the designer to
explicitly represent the fact that some users' information

53

requirements involve only senior faculty members (i.e.,
full professors) and not all faculty members. The two
relationships involving the entity FACULTY, however, are
directed to all faculty members.

It should be noted that while a simple selector does
explicitly capture a semantic notion in the abstract
design, it is not a necessity. Without the concept of a
simple selector, applications which reference the entity
in question can always determine the desired subset
dynamically by checking all of the entity occurrences and
verifying the boolean qualification at that time. The
implication of defining a simple selector in the abstract
design is that presumably there will be some mechanism for
representing the simple selector at lower levels of
database design. The next chapter will discuss not only
the mechanics of defining simple selectors in the
conceptual schema, but will also introduce new data
manipulation operators which will exploit their existence

in responding to queries.

54

A simple selector in the occurrence dimension
Figure 3.8

55

SENIOR:
TITLE=PROFESSOR

FACULTY

A diagram of a simple selector abstraction
in two dimensions

Figure 3.9

56

In the database design problem being followed here,
semantic rule 2 states that it is only legitimate for
STUDENTS who are not freshmen to participate in the
relationship with a MAJOR course of study. Again, the two
dimensional framework for abstract data modeling does not
provide a mechanism for representing this semantic
information requirement. Observing the situation portrayed
in Figure 3.4, it is not apparent that only a subset of
STUDENTS may be related to MAJORS. The implication is that
any STUDENT may ELECT a MAJOR.

Figure 3.10 shows how this rule would be effectively
represented in the occurrence dimension. Figure 3,11 then
shows the diagrammatic representation for a relationship
selector in two dimensions. In the rectangular box above
the entity STUDENT is the name of the selector,
UPPERCLASS, followed by the attribute name on which the
selector is defined and the constant attribute value to
which its compared. In this case, the attribute is CLASS
and the relevant value is FRESHMAN. Relationships
involving STUDENTS may be directed to all STUDENTS or to
only those STUDENTS meeting the qualification. For
example, only STUDENTS who are not FRESHMAN may
participate in the relationship ELECT while all STUDENTS
may participate in the relationship TAKES-COURSES.

While a simple selector abstraction is not a
necessary aspect of abstract design, a relationship
selector does play a very important role in the design

67

process. A requirement that a relationship is valid only
for a particular subset cannot be incorporated into a
design without such a mechanism. In the absence of a
relationship selector, it is incumbent on the database
administrator to ensure that the proper precautions are
taken to preserve the integrity of the stored database.
If such precautions are not taken, it is possible that the
stored database will violate the semantic rule concerning

the relationship.

58

ELECTS

TAKES-
COURSES,

A relationship selector in the occurrence dimension
Figure 3.10

59

TAKES-^
COURSESELECTS

MAJOR

UPPERCLASS;
CLASS“=FRESHMAN

STUDENT

A relationship selector abstraction in
Figure 3.11

two dimensions

60

Adding the concept of selectors to the abstract data
modeling process provides yet another tool to incorporate
more meaning into the earliest stage of database design.
The selector mechanism does not affect the structure of
the abstract data model nor does it create any new
entities or relationships. The selector abstraction does,
however, enable the explicit representation of certain
semantic information requirements in the abstract design
of a database. Inserting, deleting, or modifying instances
of FACULTY or STUDENTS in the physical database
implementation will be constrained to abide by their
qualification with respect to the defined selectors.

3.4 A Dynamic, Intra-Entity Abstraction: the Adaptive
Selector

The art of abstract data modeling, even with the
selector abstractions just defined, is limited to
representing the static, relatively time-invariant
properties of an enterprise's information structure.
Because an enterprise is a dynamic, on-going concern, its
information requirements will likely contain dynamic,
time-varying properties as well.

Among the reasons that time-varying properties of
data are not presently representable in the abstract data
modeling methodologies is that these properties involve
the concept of occurrences and they typically arise
through circumstances external to the modeling

61

environment. In collecting the requirements for the
database design, certain semantic rules concerning the
data may be postulated in a narrative fashion which do not
specifically refer to any concrete structural
characteristic of the model, for example, an attribute
value. Rather, it may be that the stated requirement is
temporal in nature.

A new database abstraction is needed to permit the
representation of these dynamic, time-varying semantic
rules in abstract data modeling. The nature of this
abstraction will be to explicitly recognize that at any
given moment in time, a proper subset of an entity has
some special meaning within the model. Unlike the selector
abstraction introduced in the preceding section, the
membership of this subset is in no way "permanent" and may
possibly be empty at certain times.

This new database abstraction introduced here for the
first time will be called an adaptive selector. The term
"selector" is used because of the resemblance of this
mechanism to the selector abstraction described above. The
principal difference is that the adaptive selector is not
defined on an attribute of the entity. The adjective
"adaptive" conveys the notion that the abstraction is
intended to represent a time-varying property of the
entity. In this way, adaptability may be explicitly
recognized in the abstract data model as a semantically

62

meaningful characteristic of an enterprise's information

structure.
The aggregation and generalization abstractions were

based on the abstract data types of cartesian product and
discriminated union, respectively. The adaptive selector
can be directly related to the abstract data type of
powerset [HOAR72]. In mathematics, a powerset is defined
as the set of all subsets of a given set. As an abstract
data type, the powerset is defined with respect to some
other data type called the base type. A variable defined
on a base type is single-valued; at any instant in time it
may take on only one value from the base type. A variable
defined on a powerset is set-valued; at any instant in
time it may take on a set of values selected from the base
type. In abstract data modeling, the role of the base type
will be played by an entity and the adaptive selector will
be defined as a powerset over occurrences of the entity.

As with the selector abstraction, an adaptive
selector will be defined on a specific entity and this
naturally leads to questions concerning the relationships
in which the entity participates. Two forms of selector
were defined depending on whether a relationship could be
directed exclusively to the selected subset. Regardless of
the form of selector used, its definition remained
permanent with respect to the attribute name and the
constant value to which the attribute is compared. In the
adaptive selector abstraction, two forms will also be

63

defined depending on whether or not a relationship is
involved.

In the first form of adaptive selector, the intent is
to identify and represent that subset of an entity which
is currently of more interest to the enterprise. A
well-known folk theorem in computer science, with
corollaries in numerous other disciplines, states that 80
percent of the references to the records in a file will be
directed at only 20 percent of the record occurrences.
This first form of adaptive selector will explicitly
recognize this phenomenon in the abstract design. While
there is nothing magic about the 80/20 split, this
"theorem" has been empirically verified in data processing
environments by Heising [HEIS63].

A way to conceptualize this form of adaptive selector
is to think of it as a modified "push-down stack." While a
conventional push-down stack maintains a first-in,
first-out discipline with the most recently referenced
item at the top of the stack, the modified stack referred
to here will have a joint criterion for a stack
maintenance policy. On the one hand, those entity
occurrences most recently referenced will be in the stack,
but the stack maintenance policy will also tend to favor
those entity occurrences which have been most frequently
referenced over the recent past. In this way, not only
will the content of the stack be changing dynamically, but
the stack will be reasonably assured of always holding the

64

subset of entity occurrences of most interest to the
enterprise at any point in time. The details of how this
form of adaptive selector will actually be implemented
will be discussed in Chapter 5.

The highly dynamic nature of this first form of
adaptive selector along with the fact that its membership
is determined by criteria external to the model (that is,
observed recency and frequency of access), precludes any
relationships from being directed to it. To differentiate
this form of adaptive selector from the second form, it
will be called a simple adaptive selector.

In the database design problem described in the
preceding chapter, semantic rule 8 calls for a
STUDENT-ACCOUNT entity occurrence to be associated with
each STUDENT entity occurrence. The STUDENT-ACCOUNT entity
contains data about a STUDENT'S billing activity. At a
minimum, a STUDENT-ACCOUNT occurrence will be debited and
credited once a term for tuition, room, and board charges.
However, certain STUDENTS make regular, frequent use of
their accounts for such things as bookstore purchases,
theater and sports event tickets, and snack-bar items. The
STUDENT-ACCOUNTs for these STUDENTS are most likely to be
the object of the vast majority of references during
certain periods of time.

Figure 3.12 portrays how, in two dimensions, a simple
adaptive selector, named ACTIVE, could be defined on the
entity STUDENT-ACCOUNT. With the simple adaptive selector

65

ACTIVE, the existence of such a temporally defined subset

is explicitly recognized.
In describing the simple selector abstraction in the

preceding section, it was noted that while this
abstraction provided a useful abstract design tool, it was
not essential to the abstract design process. The boolean
qualification used to determine the selected subset could
always be applied when the actual stored database is
manipulated. Similarly, the simple adaptive selector is
not essential in abstract design. When one is incorporated
into an abstract design, the database designer is simply
recognizing the fact that a certain time-varying subset of
the entity will be the object of more frequent reference.
The effect of having declared the existence of a simple
adaptive selector will be manifested in the storage
structure and access path decisions at the level of the
internal schema. These issues will be discussed in detail

in Chapter 5.

66

STUDENT -
ACCOUNT

ACTIVE)

A diagram of a simple adaptive selector abstraction
Figure 3.12

67

The definition of the second form of adaptive
selector is somewhat more precise than that of the simple
adaptive selector. Rather than using the highly dynamic
joint criterion of recency and frequency of reference to
identify a particular subset of an entity, this second
form will rely on the entity occurrence's participation in
a relationship to qualify it for membership. In the
relationship selector, the converse was true, that is, an
entity occurrence's membership in that form of selector
was a necessary condition for its participation in a

relationship.
This form of adaptive selector will be referred to as

a relationship adaptive selector. The intent of this
database abstraction is to permit the database designer to
explicitly represent the semantic information requirement
that participation in a relationship occurrence is a
temporal characteristic of entity occurrences. The
membership of the subset identified by a relationship
adaptive selector share the temporal quality of
"currency." That is, those entity occurrences which are
selected at any given moment in time are of particular
importance to the enterprise at that time.

While the simple adaptive selector assumed a
relatively small proportion of an entity's occurrences
would be selected (e.g., 20 percent), the relationship
adaptive selector has no such limitation on its membership
size. As a matter of practicality, however, it would be

68

virtually useless to define one when it was expected that
nearly all entity occurrences would qualify for
membership. This would be have to be decided by the
designer.

As with the simple adaptive selector, the
implications of defining a relationship adaptive selector
will be manifest at the level of the internal data model
where storage structure selection and access path
determination decisions are made. The presence of a
relationship adaptive selector in the abstract data model,
however, does convey the required additional semantic
meaning from the outset of the design process.

The type of situation which would give rise to the
need for a relationship adaptive selector is contained in
semantic rule 4 of the database design problem of Chapter
2. This rule states that, while the college has many
COURSES GIVEN-BY DEPARTMENTS, only those COURSES offered
in a given term may be related to SECTIONS through the
relationship OFFERING. Creating and associating a SECTION
occurrence with a COURSE occurrence makes the COURSE
"current." Numerous information requirements may be
dependent on this notion. For example, the preparation of
class lists by COURSE and the transitive association of
FACULTY with COURSES is only meaningful for those COURSES
which are current, i.e., have SECTIONS.

Figure 3.13 shows the diagrammatic representation of
a relationship adaptive selector in two dimensions. In

69

this case, a relationship adaptive selector named CURRENT
is defined on the entity COURSE and the relationship
OFFERING is directed to it rather than to the COURSE

entity as a whole.
Smith and Smith [SMIT77b] require that aggregate

objects and generic objects created by the aggregation and
generalization abstractions be namable by simple English
nouns. Although this requirement is somewhat imprecise
[CODD79], it provides an intuitive way to express the
meaning of these objects. For the adaptive selector
abstraction, an adjective can be used to name it. The
adjective should denote the temporal property which
characterizes the subset of an entity which is being
identified. This, too, is an imprecise requirement and
should be accompanied by an external (to the model)
statement of its exact definition.

70

CURRENT

OFFERING

SECTION

COURSE

A relationship adaptive selector
Figure 3.13

71

The two forms of adaptive selector just described
serve similar purposes in identifying a meaningful subset
of an entity which would otherwise not be representable.
They are, however, quite different in the way they are
defined. In the case of the relationship adaptive selector
CURRENT, a predicate may be formulated to test whether a
particular entity occurrence "belongs" to the adaptive
selector at a point in time. This predicate involves the
observation of some real world fact. For example, a COURSE
necessarily belongs to CURRENT if an existing SECTION is
associated with it. When a SECTION is inserted for a
non-CURRENT COURSE, it automatically becomes CURRENT,
Similarly, when the last SECTION of a CURRENT COURSE is
removed, the COURSE is no longer CURRENT.

A simple adaptive selector does not have such a
predicate to determine its membership. At the abstract
design level, the designer may want to recognize that
among the occurrences of an entity, a certain subset of
them will be more "meaningful" than the others at any
given time. In the case of the simple adaptive selector
ACTIVE, the designer wishes to express the notion that
there will be a subset of STUDENT-ACCOUNTs about which
information is more frequently needed. Membership in this
simple adaptive selector must then be based on observed
frequency of reference to particular entity occurrences
over a period of time. The exact composition of this
ACTIVE subset will presumably change over time as well.

72

In the abstract design process it is sufficient to be
able to indicate the existence of adaptive selectors in
the model. The details of how these adaptive selectors
will be implemented are left to later stages of the design
process and will be addressed in the next two chapters.

3.5 Summary
This chapter has been focused on the art and practice

of abstract database design. This constitutes the highest
level of the design process in the three level methodology
portrayed in Figure 2.1. To provide a basis for extending
abstract data modeling into the occurrence dimension, a
review of the present state of abstract modeling
methodologies was presented first.

Beginning with the Entity Relationship Model
[CHEN76], the contributions of Smith and Smith [SMIT77a,
SMIT77b] and Codd [CODD79] were integrated to provide a
comprehensive, two-dimensional abstract data modeling
framework. This framework incorporates not only the basic
syntatic elements of abstract data modeling but also
includes the semantic notions of aggregation and
generalization hierarchies, cover aggregation, and
conditional and unconditional generalization. This
particular framework is summarized in Figure 3.7.

The major contribution of this chapter toward the art
and practice of abstract data modeling has been the
introduction, definition, and demonstration of two new

73

database abstractions which permit the representation of
certain semantic information requirements in the
occurrence dimension. Both the selector and adaptive
selector database abstractions were presented in two

different forms:
o The simple selector subsets the occurrences of an

entity based on a boolean qualification of one of its
attribute values. Any relationships in which the entity
participates involve all occurrences.

o The relationship selector also subsets the occurrences
of an entity based upon a boolean qualification of an
attribute value. Here, however, the participation of
entity occurrences in a particular relationship is
predicated on the selection criterion.

o The simple adaptive selector subsets the occurrences
of an entity based on the temporal, and externally
defined, criterion of recency and frequency of
reference. All relationships in which the entity
participates may be directed to all occurrences
regardless of their selection by this abstraction.

o The relationship adaptive selector also subsets the
occurrences of an entity based upon a temporal
criterion; however, this criterion is related to
participation of the entity occurrences in a
particular relationship.

Using the database design problem defined in Chapter
2, representative situations which call for the explicit
recognition of the occurrence dimension were described.
Appropriate selector and adaptive selector abstractions
were then defined to enable the formal representation of
these semantic information requirements in an abstract

data model.

74

EXPLICIT RELATIONSHIP/
NONENTITY ASSOCIATION/
ASSOCIATIVE CARTESIAN

AGGREGATION

SELECTORy
RELATED

TO

M

IMPLICIT
RELATIONSHIP

M

ADAPTIVE
SELECTOR<^ART-OF >

C DPOWERSET
R

IS-AENTITY
(K,C,A)

^ PART-OF >

ATTRIBUTE

IS-A

DOMAIN

ALTERNATIVE/
UNCONDITIONAL

GENERALIZATION

{SIMPLECARTESIAN

AGGREGATION

I UNCONDITIONAL
1 GENERALIZATION

An abstract model of the abstract data modeling process
with selector and adaptive selector database abstractions

Figure 3,14

75

Figure 3.7 renders a concise description of the
two-dimensional framework for abstract data modeling.
Figure 3.14 then adds the selector and adaptive selector
database abstractions to this description. While the
diagram is itself two-dimensional in nature, it is to be
understood that these two abstractions are clearly defined
in the third, occurrence dimension.

CHAPTER 4

THE OCCURRENCE DIMENSION IN A GENERIC DATA MODEL

4.1 Introduction
Abstract data modeling is an important tool for

designing databases for several reasons. First, it enables
the designer to temporarily suppress the inherent
limitations of the target database management system and
concentrate on the issue of defining the enterprise's
information structure. Secondly, the abstract model, or
enterprise view, serves as a vehicle of communication
between the designer and the end-users. The diagrammatic
representation of the enterprise view is easily understood
by non-technical and technical personnel alike. Lastly,
and perhaps most importantly, abstract data modeling
allows the designer to incorporate more of the semantic
meaning of the data into the database design.

Most database management systems are based on one of
the three major models of data: the hierarchical, the
network, or the relational data model. The data
structuring capabilities of these models, although more
restrictive than the abstract data model, can directly

76

77

represent all of the attributes, entities, and functional
relationships of the abstract model. Aggregation and
generalization hierarchies can also be represented in a
straightforward manner while complex relationships
typically require special handling. The selector and
adaptive selector abstractions, however, have no direct
representational form in any of these models.

In the first stage of transforming an abstract data
model to a generic data model, the designer is concerned
with converting the relatively unrestricted abstract data
model into either a collection of tree structures
(hierarchical), a network of owner-coupled sets (network),
or a collection of normalized relations. The second stage
is to express this generic data model design in the data
definition language (DDL) facility of the target database
management system. The result of this process is a
conceptual schema which consists of a complete description
of the entire database as it is intended to be structured,
stored, and maintained by the target DBMS.

This chapter will be concerned with two specific
aspects of representing the occurrence dimension in a
generic data model. The first has to do with extending a
particular generic data model to support selectors and
adaptive selectors. This will involve choosing a generic
data model for this purpose and then making the necessary
enhancements to its data definition language facility. The
second aspect has to do with demonstrating the

78

manipulative power of selectors and adaptive selectors.
This will involve the addition of operators to the data
manipulation language component of the chosen generic data
model which will allow utilizing the selectors and
adaptive selectors in responding to general queries.

The next major section will present arguments for
choosing the relational model of data for both of these
purposes. The following sections will present a formal
syntax for a relational DDL which allows the definition of
selectors and adaptive selectors. The last section will be
devoted to the introduction of a set of new relational
algebra operators which facilitate the manipulation of a
stored database containing defined selectors and adaptive
selectors. The potential performance gains in processing
queries with these new operators will also be
demonstrated.

4.2 Choosing a Generic Data Model
The three major data models have been examined

extensively and there are arguments which are frequently
made to support a preference for one over the others. The
question arises as to which of these data models would be
the most suitable to extend in order to implement the
selector and adaptive selector abstractions.

The hierarchical and network models place heavy
emphasis on the explicit structuring of data. Relatively
straightforward operators are provided for insertion.

79

deletion, and updating and for navigation through these
structures for retrieval. Once an information structure is
represented as a hierarchy or a network of owner-coupled
sets, it is effectively frozen in that form.

In the relational model there is only one simple
mechanism for structuring data - the normalized relation.
Entities are represented by a collection of named base
relation schemes and all relationships are represented by
the replication of attributes. Emphasis is shifted in this
data model to the operators which manipulate relations.
New (unnamed) relations can be formed dynamically by
joining existing relations, projecting subsets of the
attributes of a relation, or selecting subsets of the
tuples (instances) of a relation. The relational operators
are applied by users from outside of the environment (the
database) and provide the ability to manipulate and alter
the underlying structure of the data for any particular
need. Any new view of data formed by the application of
relational operators, however, is not permanent. Only the
defined, base relations actually exist.

Selector abstractions represent, in effect, a
permanent selection over an entity. Unlike the selection
operations that a user may invoke as the need arises, a
selector abstraction implies that a certain selected
subset of the occurrences of an entity has permanent and
universal meaning within the database. Because the
relational data model supports dynamic selection through

80

its operators, it would be quite suitable for the
implementation of the selector abstractions.

The concept of adaptability is defined as a
time-varying quality of an already existing object
(entity), consequently, the adaptive selector database
abstractions will require a special kind of representation
in a generic data model. Facilities are needed to express
this quality for particular objects; to give a
semantically meaningful name to it; and to provide
operators to manipulate it. Again, the relational data
model would appear to be the best choice for incorporating
the adaptive selector database abstractions as well.
Additionally, Smith and Smith [SMIT77b] have already
described the aggregation and generalization abstractions
in terms of the relational model and Codd [CODD79J has
verified that these two abstractions could also be
represented directly in the extended relational model,

RM/T.

4.3 A Relational Data Definition Language Facility
Unlike the hierarchical or network data models, the

relational model of data has no formal diagraming
technique to portray the result of transforming an
abstract data model into an equivalent collection of
normalized relations. The resulting relations are simply
listed showing the relation name, the attributes contained
in each relation, and an indication of which attribute(s)

81

form a key for the relation. Because selector and adaptive
selector abstractions are non-structural in nature, they
do not result in the formation of any relations in this
transformation process. Therefore, the list of normalized
relations used to represent a database design will have to
be augmented with "artificial" relations which will serve
as surrogates for any selectors or adaptive selectors
appearing in the abstract design. By representing
selectors and adaptive selectors in this way, data
manipulation operations may be performed on them. This
will be examined in more detail later in this chapter.

Figure 4.1 portrays the final abstract data model
diagram of the college database as developed in the
preceding chapter. The attribute names have been omitted
for clarity. However, the simple selector, relationship
selector, simple adaptive selector, and relationship
adaptive selector of Figures 3.9, 3.11, 3.12, and 3.13,
respectively, have been included. While the diagram is
two-dimensional in nature, it is understood that these
selector and adaptive selector abstractions imply the
existence of the occurrence dimension in the model.

82

DEPARTMENT

GIVEN-BYFFERED-B

CURR-N COURSE
ENT j _ _ _ _MAJOR

ACT
IVE

STUDENT-—
ACCOUNT

ELECTS

OFFERING

UPPERCLASS
CLASS~=
FRESHMAN ' HAS-

ACCOUNT — SBCTION-1STUDENT

TEACHH A S - X
STUDENTS^TAKES-

COURSES

SENIOR:
TITLE=PROF

FACULTYENROLLMENTN

SERVE-ONCOMMITTEE

The complete abstract data model of the college database
Figure 4.1

83

Figure 4.2 shows the nine entities of the abstract
model of Figure 4.1 portrayed as a collection of ten base
relation schemes. The base relation scheme, SERVEON, is a
nonentity association arising from the need to handle the
complex relationship (actually a cover aggregation)
between COMMITTEE and FACULTY. Also, several of the base
relation schemes contain redundant attributes which are
required to enable the functional relationships to be
materialized by joining the various relations over the

common domains.
The artificial relation scheme *SENIOR represents the

simple selector defined on the entity FACULTY. The only
attribute of this artificial relation scheme is the key
attribute (ENO) of FACULTY. The relation scheme
♦UPPERCLASS is the artificial relation which represents
the relationship selector abstraction portrayed in Figure
3.11. The attributes of this artificial relation are the
key attribute (STUDNO) of the STUDENT base relation scheme
and the foreign key MNAME to enable the functional
relationship ELECTS to be represented. The asterisks are
used to indicate that these are artificial relations
representing selector abstractions.

84

DEPARTMENT(DNAME,OFF,PHONE)

MAJOR(MNAME,DEGREE,CREDITS,DNAME)

STUDENT(STUDNO,SNAME,ADDR,CLASS)

STUDENT-ACCOUNT(STUDNO,BALANCE)

COURSE(CRSENO,CNAME,DESC,DNAME)

SECTION(SECTNO,CRSENO,ROOM,TIME,ENO)

ENROLLMENT(STUDNO,CRSENO,SECTNO,GRADE)

FACULTY(ENO,ENAME,TITLE)

COMMITTEE(COMNAME,NUMMEM)

SERVEON(COMNAME,ENO)

♦UPPERCLASS(STUDNO,MNAME)

♦SENIOR(ENO)

$ACTIVE(STUDNO)

$CURRENT(CRSENO)

Relation schemes for a hypothetical college database
Figure 4.2

85

The relation scheme $CURRENT is the artificial
relation representing the relationship adaptive selector
shown in Figure 3.13. The dollar sign distinguishes this
artificial relation as an adaptive selector and its only
attribute is the key (CRSENO) of COURSE. Similarly, the
artificial relation scheme $ACTIVE defined on the entity
STUDENT-ACCOUNT and is shown with its only attribute

STUDNO.
Given the collection of relation schemes for a

particular design, these must then be coded in the data
definition language provided with the target database
management system. Ordinarily, the DDL facility is a
separate, stand-alone, non—procedural language. Its sole
purpose is to allow the formal definition of the database
requirements in terms of the structure and characteristics
of the base relations, that is, the intention of the
stored database. The data manipulation language component
of the target database management system, either in query
language form or as host language interface, is usually
completely separate from the DDL.

For expository purposes, both the DDL and DML
components of the target database management system will
be embedded in a single, high-level, procedural
programming language. Smith and Smith [SMIT77b] chose to
describe the DDL syntax of their aggregation and
generalization abstractions in a variation of the
programming language PASCAL. This choice has two important

86

advantages. First, PASCAL is a well-defined and widely
used programming language. Describing the structure of the
two abstractions in a PASCAL-like syntax has an obvious
pedagogical advantage. Second, and more importantly,
standard PASCAL already supports the abstract data types
upon which aggregation and generalization are based.
PASCAL'S record type and record variant type are precisely
the cartesian product and discriminated union abstract

data types.
Smith and Smith [SMIT77bl describe only how aggregate

and generic objects might be defined as variables in a
PASCAL program. This section will develop an extended
syntax for a relational data definition language facility
for PASCAL. The syntax, and associated semantics, will
provide a suitable set of constructs to define a
relational database schema including facilities to
represent the aggregation, generalization, selector, and

adaptive selector abstractions.

4.3.1 Notational Conventions
The programming language PASCAL is considered to be a

strongly typed language. That is, in addition to the basic
data types found in nearly all general purpose programming
languages, PASCAL provides facilities for the creation of
user-defined data types. Simple variables and complex
structures can be defined on any data type and PASCAL

87

includes special operators to facilitate manipulating
variables defined on these types.

Separating the concepts of data type and data
definition in PASCAL is similar to the idea of separating
the concept of a domain from an attribute defined on the
domain in the relational data model. A data type or domain
is simply a well-defined set of values which can be
represented on a computer system. The set of values
remains uninterpreted until a named attribute or variable
is defined on it. In fact, several variables or attributes
may be defined on the same domain, however, their names
ascribe semantic meaning to their different uses in
representing real world objects. In describing a
relational data definition language facility for PASCAL,
the distinction between data type and data definition will
be made explicit not only for domains and attributes but

for relations as well.
In PASCAL, data typing can be accomplished in two

ways. First, a named data type can be defined explicitly
in a type statement. Variables or structures can then be
defined on the named type. This is useful when several
different variables or structures are to be defined on the
same type. Alternatively, the data type can be expressed
implicitly when a variable or structure is defined.
Explicit data typing will be used here.

Rather than completely defining the syntax and
semantics of PASCAL, only those portions of the language

88

necessary for defining a relational database schema will
be described..Although the syntax to follow bears a
resemblance to PASCAL'S syntax, certain new key words and
conventions are used to differentiate the relational
database definition facilities from the ordinary PASCAL
facilities. Also, the syntax used by Smith and Smith
[SMIT77b] to define aggregation and generalization
hierarchies has been modified.

For notational purposes, key words (terminal symbols)
will be underlined and non-terminal symbols will be
enclosed in angle brackets (< and >). Symbols, either
terminal or non-terminal, whose presence in a definition
is optional will be enclosed in curly brackets ({ and })
and if there is a choice among symbols, they will be
separated by vertical bars (|). Small letters will be
used for naming data types while capital letters will be
used for naming actual attributes and relations as they
will be referenced by users,

4,3.2 Unstructured Data Types
In the relational data model, considerable importance

is attached to the concept of a domain. A domain consists
of a well-defined set of atomic data values. Although
these data values are in turn defined as certain patterns
of bits on the computer system, for the purposes of
defining a relational database schema the domain values
are considered to be non-decomposable. Because the set of

89

values defined for a given domain are atomic they are
unstructured.

Named attributes are associated with particular
domains to give meaning to the data values as they are
used to characterize some real world object. Larger,
structured objects are then formed from a collection of
named attributes. For the data definition language to be
presented here, four unstructured data types are
sufficient for defining domains. Three of these
unstructured data types are standard PASCAL data types
[JENS76] and the fourth was introduced by Smith and Smith
[SMIT77b] for use with generalization hierarchies.

The first of the standard PASCAL data types is the
base data type.' Its syntax is the following:

type <d-name> = {integer|real|char|boolean};

The non—terminal <d—name> stands for the name given
to the domain being defined. When a domain is defined as
being either of type integer or type real, its range will
be the set of numbers representable within the limitations
of the host computer system's word size. The type char is
used to denote a domain which ranges over all of the
symbols in the computer system's character set, e.g., the
ASCII character set. Additionally, although not shown in
the syntax, a domain typed as char may also have a length
attached to it to permit the definition of strings of
characters which are to be treated as a whole and not

90

further decomposed. Lastly, the type boolean ranges over
only two values, TRUE and FALSE.

The base data type definition of domains is most
frequently used. The second unstructured data type
definition is used when a particular domain is intended to
range over only a limited set of values. The syntax of an
enumeration data type is the following:

type <d-name> = (<Vj^>,<V2 >,... »<Vj,>) ;

Again, <d-name> is the name associated with the
domain being defined. Following the equal sign is an
ordered list of values contained within parentheses. The
values are considered to be constants, either numbers or
character strings or any combination of the two. When a
variable (attribute) is defined on this type, PASCAL will
automatically verify that actual values assigned to the
variable (attribute) are taken from this finite list.
Also, the order in which the list of values is defined is
important.

The enumeration data type is useful when the number
of legal values is relatively small. The subrange data
type can be used to define a domain which may take on a
somewhat larger set of values which constitute an ordered,
consecutive subset of a base data type. The syntax of a
subrange data type is:

type <d-name> = <start>..<end>;

91

Here, <start> and <end> are constants defined on
either the integer, real, or single character char base
data types. All values which logically fall within the
inclusive subrange are legitimate.

These first three unstructured data types are
available as an integral part of any implementation of the
programming language PASCAL. The enumeration and subrange
data types also offer particularly attractive advantages
for incorporating a relational database management system
interface into PASCAL.

Figure 4,3 represents a list of unstructured data
type definitions for the attributes shown in the relation
schemes of Figure 4.2, Base, enumeration, and subrange
data types are used to define the necessary domains. One
of the domains, "names," will be used later to provide the
domain definition for two separate attributes: SNAME and
ENAME. The actual definitions are arbitrary and have been
chosen only to demonstrate the different possibilities
available for data typing in PASCAL.

92

{ base, data type domain definitions }

type deptnam=char(15);
type majnam=char(25);
type deg=char(3);
type names=char(20);
type add=char(40);
type crsenam=char(30) ;
type des=char(100) ;
type hour=char(12);
type committ=char(50) ;

{ subrange data type domain definitions }

type office=100..650;
type phonenum=1000..9999;
type cred=1..40;
type s t u d n u m = 1 0 0 0 0 99999;
type crsenum=100..999;
type sectnura=l..9;
type classroom=100..509;
type score='A '..'E ';
type enum=1000..2500;
type memnum=l..15;

{ enumeration data type domain definitions }

type r a n k = (ASSTPROF,ASSOCPROF,PROFESSOR);
type yrgroup=(FRESHMAN,SOPHOMORE,JUNIOR,SENIOR);

Unstructured data type definitions
Figure 4.3

93

The fourth unstructured data type was introduced by
Smith and Smith [SMIT77b]. When a generalization hierarchy
is created in an abstract model, a characteristic entity
may also be defined to represent all of the attributes
which are common to each subtype. This characteristic
entity has as one of its attributes the name of the entity
which represents each subtype. The domain of the attribute
will consist of the names of the base relations which

define the subtypes.
A special data type is required to define this

domain. Smith and Smith refer to such a domain as an image
domain. The proposed syntax for defining image domains is

the following:

type <id-name> = rel (<s^>,<s2 >,...,<s^^);

The non—terminal symbol <id—name> will be replaced by
the actual name to be used for the image domain. After the
equal sign is the finite list of structured data type
names. Each structured data type, to be discussed in the
next section, will provide the necessary data typing for
the entities (relations) which represent the subtypes of
the generalization hierarchy. This list is proceeded by
the terminal symbol "rel" to differentiate it from an
enumeration data type.

Figure 4.4 shows the one image domain that is
required in the generalization hierarchy of Figure 3.5.

94

{ image domain definition }

type typename=rel(fac,admin,clerk);

An image domain definition
Figure 4,4

Structured data types with the names "fac","admin”,
and "clerk" will then have to be defined. These structured
data types will eventually be associated with relations
named FACULTY, ADMINISTRATIVE, and CLERICAL respectively.

The four unstructured data types just described are
sufficient to define all necessary domains in a relational
database schema. These domains serve only to specify the
set of legitimate values which an attribute may assume.
The smallest meaningful unit in the definition of a
database, however, remains the named attribute. Each
attribute in the abstract data model must then be given a
name according to the conventions of the PASCAL language
and be associated with a previously defined data type.

In conventional PASCAL programming, named variables
are defined in var statements to make the association
between a data type and an object which can be referenced
and manipulated within a program. In this extension to the
programming language PASCAL, the naming of attributes and
their association with domains will take place when
structured data types are defined to represent the various

95

relation schemes which will comprise the database
definition.

The next sections will describe the two structured
data types which will provide the necessary facilities for
defining relation schemes. In these structured data types,
attribute definitions will be made explicit.
4.3.3 Structured Data Types

Given a set of relation schemes which adequately
portray the intent of the abstract data model, their
representation in the data definition language is
straightforward. In the PASCAL—based DDL being described
here, all of the attributes can be named according to the
rules of the particular PASCAL compiler and they may be
associated with their domains by defining an appropriate
unstructured data type. Relations, being essentially
structured objects, can be defined using one of two
structured data types which will now be described.

The first of the two structured types will be
concerned with defining aggregate relation types. This
structured data type will be the most commonly used data
type in constructing a relational data model definition.
In keeping with the concept of separating a data type from
a data definition, each aggregate relation resulting from
the transformation of an abstract data model into a set of
relation schemes will have a separate aggregate relation

type defined for it.

96

The syntax of an aggregate relation type is as
follows:

type <agg-name> -
aggregate [<keylist>]
<a-name^> : {key} <d-name>;
<a-name 2 > : {key} <d-name>;

• • •
• • •

<a-name^> : {key} <d-name>
end;
The non—terminal symbol <agg—name> stands for the

name of the aggregate relation type being defined in the
DDL, Unlike the unstructured data types which may possibly
be associated with different named attributes, each
aggregate relation type will be associated with exactly
one defined relation scheme. Following the key word
aggregate is a required list of attribute names
(<a-name>s) which are intended to comprise a user-defined
primary key for the relation. In the relational data
model, each stored instance of a relation (row or tuple)
must be unique and one or more attributes are selected to
enforce this requirement.

The list of named attributes for the aggregate
relation type being defined then follow. Each <a-name>
conforms to the naming rules of the particular PASCAL
compiler implementation. The capitalization of each
<a-name> indicates that an actual attribute is being
defined. This then is the name by which the attribute will
be referenced in applications.

97

After the required colon, the optional keyword ke%
will appear if the defined attribute is in fact the key of
another aggregate relation (i.e., it is a foreign key).
This requirement is necessary to insure that the
Referential Integrity Rule [CODD79J can be enforced. If,
in a stored instance of this aggregate relation, a tuple
has a non—null value for this attribute, then in the
relation for which this attribute is a primary key, a
tuple must also appear with the same value. Date [DATE81]
discusses this rule and its implications. Lastly, the
<d—name> of the domain on which the attribute is defined

is provided.
The aggregate relation type described here is

patterned very closely after that given in Smith and Smith
[SMIT77b]. Among the important differences, however, is
that the definition of an aggregate relation type is
clearly separated from the definition of a relation scheme
as it is to be used in the procedural portion of a PASCAL
program. The benefit of this is that aggregate relation
types can be constructed and maintained by a database
administrator and kept in a central schema library.
Different applications can then copy those aggregate
relation types to which they have authorized access. The
same aggregate relation type may be associated with
possibly different relation scheme names in the individual

applications.

98

type dept=
aggregate [DNAME]
DNAME : deptnam;
OFF : office;
PHONE : phonenum
end;

type maj=
aggregate [MNAME]
MNAME : majnam;
DEGREE : deg;
CREDITS : cred;
DNAME : key deptnam
end;

type stud=
aggregate [STUDNO]
STUDNO : studnum;
SNAME : names;
ADDR : add;
CLASS : yrgroup
end;

type stud-acct=
aggregate [STUDNO]
STUDNO : studno;
BALANCE : real
end;

type crse=
aggregate [CRSENO]
CRSENO : crsenum;
CNAME : crsenam;
DESC : des;
DNAME : key deptnam
end;

type sect=
aggregate [SECTNO,CRSENO]
SECTNO : sectnum;
CRSENO : key crsenum;
ROOM : classroom;
TIME : hour;
ENO : key enum
end;

Figure 4.5 (Part 1)

99

type enroll=aggregate [STUDNO,CRSENO,SECTNO]
STUDNO : key studnum;
CRSENO ; key crsenum;
SECTNO : key sectnum;
GRADE : score
end;

type fac=
aggregate [ENO]
ENO : enum;
ENAME : names;
TITLE : rank
end;

type comm=
aggregate [COMNAME]
COMNAME : committ;
NUMMEM : memnum
end;

type assign=
aggregate [COMNAME,ENO]
COMNAME : key committ;
ENO : key enum
end;
Aggregate relation type definitions

Figure 4.5 (Part 2)

Figure 4.5 contains the aggregate relation types for
the ten base relation schemes of Figure 4.2. In each
definition, the key attribute names are identified; all of
the attributes are listed with their corresponding domains
as typed in Figure 4.3; and where appropriate, the
presence of foreign keys is noted.

The ten aggregate relation types specify the
structure and intention of each aggregate relation scheme.
It remains to associate each aggregate relation type with
a named relation scheme by which it will be referenced in

100

an application. To accomplish this, a variation on the
PASCAL var statement will be used. The general form of
this definition will be the following:

var <rel-name> collection of <agg-name>;

The non-terminal symbol <rel-name> will be replaced
by a desired name for the relation scheme. In general,
this will be the name that was given to the relation
scheme when the abstract data model was transformed into a
set of relation schemes. However, different applications
which reference this database may choose different names
as the need arises. The fundamental definition of the
relation scheme remains with the aggregate relation type
regardless of what name is chosen. Again, by separating
data typing from data definition, a degree of data
independence is provided to the database administrator.

The named relation scheme then stands as a definition
for a set of actual stored tuple occurrences all of which
have the exact same attribute structure and underlying
domains. The key words collection of imply that the named
relation scheme is to be associated with the entire set of
stored occurrences. The reason for using "collection
rather than "set" is that PASCAL already has a data type
for "sets" which is not at all related to database usage.
Lastly, the aggregate relation type name is specified to
complete the definition of the relation scheme. Figure 4.6

101

presents the relation scheme definitions for the ten
relation schemes of Figure 4.4.

var DEPARTMENT collection of dept;
var MAJOR collection of maj;
var STUDENT collection of stud;
var STUDENT-ACCOUNT collection of stud-acct;
var COURSE collection of crse;
var SECTION collection of sect;
var ENROLLMENT collection of enroll;
var FACULTY collection of fac;
var COMMITTEE collection of comm;
var SERVEON collection of assign;

Relation scheme definitions
Figure 4.6

In transforming a generalization hierarchy from the
abstract model to the relational model of data, several
relation schemes result. For each subtype, a separate
aggregate relation scheme must be defined assuming that
each is not itself the generic object of another
generalization hierarchy. An aggregate relation scheme may
also be required for the object which represents the
attributes of each subtype collectively. Lastly, a
relation scheme must be defined for the generic object

itself.

102

Because a generic object is essentially redundant
with respect to its attributes and it serves a special
role in defining the underlying model, a separate
structured type definition is required in the DDL. It is
assumed that the DDL processor will effectively control
the redundancy in terms of the actual storage and
representation of data values, however, the database
administrator must be able to express the intent of the
generalization hierarchy when defining the database.

The syntax to be used here is a modification of the
work of Smith and Smith [SMIT77b]. Generic relation
schemes will be separately typed as with aggregate
relation types and the specification of the range of
aggregate relation types which comprise the generalization
hierarchy will be handled by the use of image domain
types. The syntax for representing generic relation types

is the following:

type <gen-name>=
generic {[<agg-name>]}
<c-name^> ; <id-name>;
<c-name 2 > : <id-name>;

*

•

<c-name^> : <id-name>
of aggregate [<keylist>l
<a-name^> : {key} <d-name>;
<a-name 2 > : {key} <d-name>;

• •
* »

<a-name^> : {key) <d-name>
end;

103

The non-terminal symbol <gen-name> will be replaced
by the actual name of the generic relation type being
defined. The keyword generic then appears to differentiate
this type definition from the aggregate relation type
definition. The square brackets contain the name of the
(optional) aggregate relation type which defines the
attributes common to each subtype collectively. Next is a
list of "cluster names" (<c-name>s) which specify each
category of the generalization hierarchy.

Typically, a generalization hierarchy will contain
only one category, that is, only one "cluster" of relation
schemes will be generalized into a single generic object.
However, it is possible that a single generic object may
be specialized into several disjoint "clusters. Following
each <c-name>, then, is the name of the appropriate image
domain. Once the cluster names of the generic relation
type have been specified, the key word aggregate denotes
the beginning of the attribute definitions for the generic
relation type. In the syntax given here, each cluster name
is also considered to be an attribute of the generic
relation type defined on an image domain. The remaining
attribute definitions are the same as in the aggregate
relation type syntax.

Figure 4.7 contains the necessary type definitions
for the generalization hierarchy of Figure 3.5. Three
additional unstructured data types are provided for the
domains required in "admin" and "clerk". The fourth

104

required domain, for the attribute ENAME, has already been
defined as "names" in Figure 4.3. Next, three aggregate
relation types are defined. The first two are for two of
the subclasses in the hierarchy. The aggregate relation
type for the subclass FACULTY has already been defined as
"fac" in Figure 4.5. The third aggregate relation type is
for the characteristic entity EMP-TYPE. Lastly, the
generic relation type for EMPLOYEE is defined.

Once the necessary aggregate and generic relation
types have been defined, it remains to complete the
definition by associating these data types with named
relation schemes. Figure 4.8 portrays the resulting
relation scheme definitions.

105

{ additional domain types }
type skillnam = char(15);
type ranknam = char(20);
type sal = 1..9;
{ additional aggregate relation types }
type admin =
aggregate [ENO]
ENO : enum;
ENAME : names ;
RANK : ranknam
end;
type clerk =
aggregate [ENO]
ENO : enum;
ENAME : names;
SKILL : skillnam
end;
type etype =
aggregate [TNAME]
TNAME : typename;
SAL-SCHED ; sal
end;
{ the generic relation type }
type emp =
generic [etype]
TNAME : typename
of aggregate [ENO]
ENO : enum;
ENAME : names
end;

Structured data types for a generalization hierarchy
Figure 4.7

106

var ADMINISTRATIVE collection of admin;
var CLERICAL collection of clerk;
var EMP-TYPE collection of etype;
var EMPLOYEE collection of emp;

Relation scheme definitions for the
generalization hierarchy

Figure 4.8

4.3.4 Data Types for the Selector and Adaptive Selector
The two new database abstractions introduced in the

preceding chapter will require additional DDL facilities.
This section will propose a syntax for the definition of
these two abstractions at the level of the conceptual
schema. While both abstractions are non-structural in the
abstract data model, they will require a concrete
representation in the conceptual schema. The physical
details of how these will be implemented will be discussed

in the next chapter.
The following syntax represents the way in which a

selector data types will be defined in the relational DDL;

107

type <sel-name> =
selector [<a-name>l
of <agg-name> | <gen-name>
<a-name^> : key <d-name>;
Ca-nameg) ; key <d-name>;

• • •
• *

<a-name^> : key <d-name>
{with
<a-name.> ; key <d-name>;
<a-name^> : key <d-name>;

• • •
• •

<a-name^> ; key <d-name> }
end;

The non—terminal symbol <sel—name> will be assigned
an actual name for the selector type. The keyword selector
differentiates this type definition from aggregate types,
generic types, and the unstructured types. The named
attribute which determines the selector is included in the
brackets. Next, the aggregate type or generic type which
contains the named attribute is identified. Note that the
constant attribute value which serves to partition the
aggregate type or generic type is not specified in the
type definition nor is the boolean qualifier. This will be
done when a relation extension is defined for the selector

type.
Regardless of whether a simple selector or

relationship selector is being defined, the key attributes
of the aggregate type or generic type are replicated in
the selector type definition. In the case of a simple

108

selector, these will be the only attributes of the
selector definition. If a relationship selector is being
defined, then the key word with is included followed by a
list of the key attributes of the other aggregate or
generic type which participates in the relationship.
Figure 4.9 portrays the simple selector and relationship
selector type definitions for the selectors of Figure 3.9

and Figure 3.11.

type profs =
selector [TITLE]
of fac
ENO : key enum
end;
type standing =
selector [CLASS]
of stud
STUDNO ; key studnum
with
MNAME : key majnam
end;

Selector type definitions
Figure 4.9

The selector data type definitions above alert the
DDL processor that selectors will be defined on the
attribute TITLE of the aggregate type "fac" and on the
attribute CLASS of the aggregate type "stud". The actual
values which will determine the partitioning will be
provided when the selector extensions are defined. Also,
the foreign key "MNAME" is included in the definition of
the relationship selector "standing" because the
relationship ELECTS between MAJOR and STUDENT is defined

109

only on the those STUDENTS who are selected on the basis
of their class standing. Without the relationship selector
abstraction, the foreign key MNAME would have to be
included in the aggregate type "stud" with null values
eventually stored for all freshmen. The semantic rule that
freshmen cannot ELECT a MAJOR would then have to be
enforced externally.

Once a selector data type has been declared, it
remains to define the selector on an actual relation and
to provide the attribute qualification which determines
the selected subset. The following syntax may be employed:

var <sel-rel-name>
selects <sel-name> of <rel-name>
where <a-name> <op> <domain-value>;

The non-terminal symbol <sel-rel-name> will be
replaced by the name of the selector as it was defined in
the abstract data model. After the key word selects is the
name of the selector type definition followed by the name
of the relation scheme on which the selector is to be
defined. Lastly, is the qualification clause which
specifies the attribute name, a boolean operator, and a
constant drawn from the underlying domain of the
attribute. Figure 4.10 shows the definition of the
selectors *SENIOR and *UPPERCLASS using this syntax.

110

var *SENIOR
selects profs of FACULTY
where TITLE = "PROFESSOR";
var *UPPERCLASS
selects standing of STUDENT
where CLASS ~= "FRESHMAN";
Selector artificial relation scheme definitions

Figure 4.10

The adaptive selector abstraction has been defined as
a temporal partitioning of an entity based on certain
externally declared criteria. In one case, the membership
of the adaptive selector is defined on the basis of
recency and frequency of use. As an example, the simple
adaptive selector ACTIVE was defined on an entity
STUDENT-ACCOUNT. This simple adaptive selector is meant to
express the fact that at any point in time a certain
subset of STUDENT-ACCOUNTs may be "more meaningful" to the
enterprise than the entire set of STUDENT-ACCOUNTs. In
cases such as this, neither attributes nor relationships
are involved in defining the simple adaptive selector.

In the second case, relationship adaptive selectors
are defined in terms of a time-varying participation in a
relationship. For example, the relationship adaptive
selector CURRENT of Figure 3.13 was defined as selecting
those COURSES which are being OFFERED at any particular
instant in time. This temporal criterion for selecting
instances of COURSES is intuitively more understandable
but still must be controlled externally.

Ill

In either case, the typing of an adaptive selector in
the relational DDL is both simple and straightforward. The
criteria needed to precisely determine membership will be
handled externally. The DDL processor need only be made
aware of the existence of an adaptive selector. The syntax
for typing either form of adaptive selector is the
following:

type <ad-sel-name> =
adaptive selector over <agg-name> | <gen-name>
<a-name^> ; key <d-name>;
<a-name 2 > : key <d-name>;

• •

<a-name^> ; key <d-name>
end;
The definition of an adaptive selector requires that

a name be given to it and that the aggregate or generic
type over which it is defined be indicated. As with the
selector type, the key attribute(s) of the named aggregate
or generic type are included as the key attributes of the
adaptive selector type. The following figure exhibits the
type definition for the adaptive selectors ACTIVE and
CURRENT of Figure 3.12 and Figure 3.13.

112

type busy =
adaptive selector over stud-acct
STUDNO : key studnum
end;
type offered =
adaptive selector over crse
CRSENO ; key crsenum
end;

Adaptive selector type definitions
Figure 4.11

Figure 4.11 portrays a simple adaptive selector type
definition ("busy") which will serve as the basis for
ACTIVE. Because the STUDENT-ACCOÜNT entity is related to
the STUDENT entity functionally (one-to-one), the key
attribute of "stud-acct" is also STUDNO. Finally, the
relationship adaptive selector type definition "offered
is given with key attribute CRSENO for "crse."

After an adaptive selector type definition has been
defined, it remains to provide a means to associate the
type definition with a relation extension. The following
syntax will enable the definition of an artificial
relation extension to represent adaptive selectors in the

DDL:

var <ad-sel-rel-name>
powerset <ad—sel—name> of <rel—name>;

The non-terminal symbol <ad-sel-rel-name> will be the
name by which the adaptive selector will be referenced
within the data manipulation language portion of an

113

application. The key word powerset is used for two
purposes. First, it denotes immediately the nature of the
abstract data type on which adaptive selectors are based.
And secondly, it serves to emphasize that, by definition,
a powerset of the occurrences of a relation may at any
point in time contain all of the occurrences, a subset of
the occurrences, or possibly be empty. Figure 4.12
portrays the formal definition of the artificial relations
$ACTIVE and $CURRENT using this syntax.

var $ACTIVE powerset busy of STUDENT-ACCOUNT;
var $CURRENT powerset offered of COURSE;

Adaptive selector artificial relation scheme definitions
Figure 4.12

4.4 A Relational Data Manipulation Language Facility
The preceding section proposed and demonstrated the

syntax and semantics of a relational data definition
language embedded in the programming language PASCAL. The
purpose was to provide the necessary extensions for
representing the occurrence dimension in a particular
generic data model. As a result, the formal definition of
the requirements of the database design problem of Chapter
2 was achieved. Figures 4.3, 4.4, 4.5, 4.9, and 4.11
provide the necessary data type definitions while Figures
4.6, 4.10, and 4.12 associate these data types with PASCAL

variable names.

114

Recognizing the semantic information requirements
which give rise to the occurrence dimension and formally
defining selectors and adaptive selectors enhances the
ability of the database designer to effectively represent
the enterprise's information requirements. The ability to
manipulate selectors and adaptive selectors in response to
database queries, however, provides demonstrable
justification for their use.

Originally, Codd ICODD70] proposed an algebraic data
manipulation language facility for the relational model.
This approach followed from the fact that extensions of
relations are simply sets as they are understood in
mathematics. Relation schemes define the members of these
sets. It was quite natural then to propose a language made
up of algebraic operators which manipulate relations
viewed as sets. Subsequently, non-procedural,
calculus-like data manipulation languages evolved.
However, the relational algebra remains the standard by
which all relational data manipulation languages are
judged. If a relational DML can be shown to possess a set
of operators at least as powerful as the relational
algebra, it is said to be relationally complete.

The relational algebra, in its minimal form, consists
of only five primitive set operators. Of these, two
operators are unary, that is, they manipulate only one
entire relation at a time. These two are the selection
operator and the projection operator. The remaining three

115

operators are binary - operating on pairs of relation
extensions. These are union, difference, and extended
cartesian product. A comprehensive treatment of these five
operators can be found in Codd [CODD79], Date [DATE81], or
Ullman [ULLM80].

In addition to these five primitive operators, the
relational algebra has certain more powerful operators
which are based on them. The most important of these
operators is the join operator. In joining two relation
extensions, there must be at least one attribute in each
defined on a common domain. The attribute names may be
different as long as the underlying domains are identical.
The result of the join operation consists of the
concatenation of the columns of each relation as in the
product operator, however, a result tuple is formed only
if the values of the common domains satisfy some boolean
qualification. Codd [CODD79] contains a complete
discussion of the various forms of join operator.

In this extension of the relational model, the notion
of "artificial relations" has been introduced. These
artificial relations stand for the selectors and adaptive
selectors defined in the relational data definition
language facility. The first type of artificial relation
represents the simple selector where the only attribute(s)
contained in it are the key attribute(s) of the base
relation over which it is defined. This type of artificial
relation does not participate directly in any

116

relationships and will be denoted SS. The second type
represents relationship selectors where, in addition to
the key attribute(s) of the base relation, foreign keys
are present as well. This type of artificial relation will

be denoted RS.
Artificial relations which represent either form of

adaptive selector contain only the key attribute(s) of the
base relation on which they have been defined. These types
of artificial relations will be denoted SAS and RAS for
simple adaptive selector and relationship adaptive
selector, respectively. Lastly, conventional base
relations will be denoted simply as R.

All five basic operators and the various forms of
join are clearly applicable to base (R-type) relations.
The two unary algebraic operators, selection and
projection, operate on SS-, RS- and RAS—type relations in
the conventional manner with projection being appropriate
only when there is more than one named attribute in the
relation. Neither operator, however, is applicable to
relations of the SAS-type. The membership of the SAS-type
relation is determined by the external factors of recency
and frequency of use. The size and membership of such a
relation is also changing dynamically.

In considering the binary algebraic operators, each
possible combination of the five different relation types
must be examined. This would lead to 15 pairings. However,
the dynamic nature of the SAS-type precludes its use in

117

any of the binary operators, therefore, only ten possible
combinations remain. In these ten combinations, the binary
algebraic operators are all applicable subject to the
ordinary restrictions placed on them, such as union
compatibility and the presence of common domains where
necessary.

With the exception of the simple adaptive selector
then, the relation schemes representing the other database
abstractions may be manipulated by the relational algebra
in a straightforward manner. However, it will generally be
the case that these artificial relation schemes are not
manipulated directly, but that they will be manipulated by
utilizing the new, extended operators and facilities to be
described in the next section.

4.4.1 Extended Operators for the Relational Algebra
The five primitive relational algebra operators along

with the various forms of the join operator, provide a
rich collection of data manipulation language facilities.
Even though these facilities may be used to manipulate the
artificial relations employed to support the selector and
adaptive selector abstractions, additional operators are
needed to fully exploit their presence. Five such
additional operators have been identified and will be
described in this section.

Both selector and adaptive selector abstractions are
intended to define subsets of the occurrences of an

118

entity. Their representation by artificial relations in
the conceptual schema signals the intent that the
appropriate subset will be required for manipulation apart
from the base relation as a whole. An extension of one of
these artificial relations does not physically contain the
selected tuples but rather provides a mechanism to
identify the subset when necessary.

The first of the five extended operators is intended
to enable the selected subset to be the designated operand
in any DML operation. Because the artificial relation
extensions themselves do not contain the desired subset
but only contain the key attributes of the selected
tuples, these artificial relation extensions may be used
as a filter or a "mask" when manipulating the base
relation extension. When viewing a base relation extension
through the filter only the appropriately selected tuples

may be "seen."
The second extended operator is the logical inverse

of the first. While the selected subset has been singled
out because of its special semantic meaning, it will often
be the case that the complement of the selected subset
will be the desired operand in a DML operation. In such
cases, the tuples not qualified for membership in the
artificial relation extension are to be manipulated.

In either form of selector, a particular tuple could
be tested for membership in the artificial relation by
simply applying the boolean qualification to the base

119

relation itself. Likewise, in the relationship adaptive
selector, participation in the defining relationship could
be tested quite readily. However, in a simple adaptive
selector, because of its temporal criterion and
dynamically changing membership, an operator is needed to
ascertain whether a particular tuple is presently
selected. The third extended operator will then be a se^
membership test operator.

The fourth extended operator will be a set size
operator. That is, this operator will yield as its result
the cardinality of the artificial relation to which it is
applied. Although there is usually a DML operation which
counts the tuples in a relation extension, this operator
will be particularly useful with the adaptive selectors.

The fifth, and last, extended operator is actually
not an operator in the sense that it may be applied at
will by a user of the DML. Rather it is intended to be
employed directly by the DML processor as a natural part
of its determination of the optimum manner in which to
satisfy a DML query. In deciding how to respond to a query
involving a join of two base relations in the presence of
a relationship selector or a relationship adaptive
selector, an implied join will be incorporated into the
query syntax to utilize the artificial relation where

appropriate.

120

ARTIFICIAL
RELATION TYPES SS RS SAS RAS

0 FILTER YES YES NO YES
p
E COMPLEMENT YES YES NO YES
R
A SET MEMBERSHIP NO NO YES YES
T
0 SET SIZE YES YES YES YES
R
S IMPLIED JOIN NO YES NO YES

Applicability of the extended relational
operators to the artificial relation types

Table 4.1
Table 4.1 indicates the applicability of these five

extended operators to the four artificial relation types.
Where the operator is applicable a "YES" is entered
otherwise a "NO" is entered.

Again, because of the highly dynamic, time-varying
nature of the simple adaptive selector relation, the
filter, complement, and implied join extended operators
would be inappropriate for use on it. Set membership and
set size, however, are useful operators with this type of
artificial relation. Set membership is not appropriate for
use with either form of selector because the test of
membership could be applied directly to the base relation
by examining the designated attribute value.

121

4.4.2 Data Manipulation with the Extended Operators
These five extended operators will now be

demonstrated using sample DML queries posed in the context
of the college database example. The particular syntax to
be employed here to demonstrate the manipulative power of
selectors and adaptive selectors will follow closely the
SEQUEL data manipulation language described in Date
[DATE81], Although SEQUEL is classified loosely as a
transitional DML falling somewhere between the algebra and
calculus, it is much closer to the algebra in its syntax.
Also, SEQUEL is used in several widely used relational
database management systems including SYSTEM/R, SQL/DS,
ORACLE, and RIM. It will be assumed that the SEQUEL syntax
is embedded within the PASCAL programming language in
order to be consistent with the DDL presented above.

Table 2.1 indicates the expected number of entity
occurrences to be stored in this database. In order to
evaluate the effectiveness of using selectors and adaptive
selectors, certain additional assumptions will be
necessary. First, among the 250 FACULTY member
occurrences, 100 will be of professorial rank. Of the 4000
STUDENT occurrences, it is assumed that they are
approximately evenly distributed across classes, that is,
there are 1000 STUDENTS in each class. Although there are
500 COURSES listed by the college, only 100 will be
offered in any given term. Each such COURSE offering will

122

have an average of two SECTIONS. Finally, of the 4000
STUDENT-ACCOUNTs, only 800, or 20 percent will be actively

used.
Although consideration of the internal data model

will not be taken up until the next chapter, assumptions
regarding storage structure support will also be needed
here to compare the effectiveness of the query
formulations. It is assumed that each stored relation
extension has associated with it a dense hierarchical
index for primary access to its tuples based upon the
primary key. Similarly, simple selectors, relationship
selectors, and relationship adaptive selectors are
implemented with dense hierarchical indexes as well. These
assumptions permit some of the query evaluations to be
carried out by operating on the storage structures instead

of the actual tuples.
The results to be offered in the following

comparisons are only indicative of the magnitude of the
potential efficiencies obtainable by using the extended
operators with selectors and adaptive selectors. The
assessment of the true magnitude of the relative gains
would necessarily involve considerably more information
about the query processor, any optimization strategies
used, and the characteristics of the physical environment.

To utilize both the filter and complement operators,
a new clause - "USING" - will be introduced into the

123

SEQUEL syntax. The syntax of a USING clause is the

following.

USING {COMPLEMENT OF}
<sel-rel—name> | <ad-sel-rel-naine> :

SELECT « • •

without the optional key words "COMPLEMENT OF", the
USING clause indicates that either form of selector or a
relationship adaptive selector is to be used as a filter
to qualify the subsequent SELECT statement. For example,
consider a retrieval request for the course numbers
(CRSENO) and course names (CNAME) of all COURSES which are
presently being offered. There exists a relationship
adaptive selector which identifies these course instances.
This query could be posed with the following modified
SEQUEL statements.

USING ^CURRENT:
SELECT CRSENO CNAME
FROM COURSE

The use of the relationship adaptive selector
ÇCURRENT in this particular query guarantees that only
presently offered COURSES will be retrieved. In fact, the
dense hierarchical index created to implement $CURRENT
would be used to access the tuples of the COURSE relation
extension instead of the primary index. A total of 100
COURSE tuples would then be retrieved to extract the
requested information.

124

Without the relationship adaptive selector and the
filter operator, this query would be considerably more
difficult to formulate. In this case, using standard
SEQUEL syntax, the query would be formulated as follows.

SELECT CRSENO CNAME
FROM COURSE
WHERE EXISTS

(SELECT *
FROM SECTIONWHERE SECTION.CRSENO=COURSE.CRSENO)

The first observation is that this formulation is
considerably more complex. Not only is it lengthier in its
written form, and consequently more difficult to
understand, but it requires more effort to execute. The
simplest strategy for executing this particular query
formulation would be to perform a join of the two primary
indexes as indicated in the last WHERE clause. The result
of the join would be the 100 (matched) keys of the offered
COURSES. The actual retrieval would be for these selected
occurrences only. However, the join operation on the
primary indexes represents the additional effort in this
formulation without the filter operator.

Another possible query would be to retrieve, and
presumably list, the names (SNAME) and addresses (ADDR) of
all freshmen. It is known that there is a relationship
selector which identifies all non-freshmen. The complement
of this relationship selector would yield the desired
result when applied to STUDENT. This query could be posed

as follows.

125

USING COMPLEMENT OF *UPPERCLASS :
SELECT SNAME ADDR
FROM STUDENT

The execution of this query could be carried out by
initially operating on the two hierarchical indexes
associated with the STUDENT relation extension, that is,
the primary index for all STUDENT tuples and the index for
*UPPERCLASS. The set difference of these two indexes would
yield the keys and pointers to freshman STUDENT
occurrences. The actual retrieval of tuples would limited
to a total of 1000 freshman STUDENT occurrences.

The alternative formulation would require that the
qualification on the attribute CLASS be made explicit.

SELECT SNAME ADDR
FROM STUDENT
WHERE CLASS = "FRESHMAN"
In terms of the length and clarity of the two

formulations, either one is acceptable. In fact, the
latter, with its explicit qualification on the CLASS
attribute, could be argued to be a clearer expression of
the intent of the query. However, in this form, all 4000
STUDENT tuple occurrences would have to be retrieved in
order verify freshman status. Consequently, the
availability of the relationship selector *UPPERCLASS and
the complement operator result in substantially less work
in responding to this query.

The basic relational algebra operators and the
extended operators of filter, complement, and implied join

126

all return as a result an unnamed relation containing
those tuples which met the stated qualification. That is,
these operators are set valued. The two extended operators
for set membership and set size are not set valued.

The set membership operator will be implemented as a
simple boolean test. After initializing the key
attribute (s) of a base relation, a test may be made to
determine if the specific tuple is currently a member of
an adaptive selector defined on that base relation. The
result of this operator will be either true or false. The
filter and complement operators are, in effect, tests of
set membership, however, they range over an entire base
relation. Set membership deals only with specific tuples.

The set membership operator will be used in an "IF
... THEN ... " construct preceding a SELECT. The key word
"IN" in the boolean qualification signals that a set
membership test is being applied to an adaptive selector.
The syntax is as follows,

IF <keylist> IN. <ad-sel-rel>
THEN SELECT . . .

The non-terminal symbol <keylist> will contain the
names of the key attributes of the base relation on which
the adaptive selector is defined. Prior to the IF
statement, these attribute names must be initialized to
the appropriate values for the tuple in question. For
example, a query which retrieves the BALANCE of a

127

particular STUDENT-ACCOUNT only if that account is among
the active accounts would be formulated as follows.

IF STUDNO IN $ACTIVE
THEN SELECT BALANCE

FROM STUDENT-ACCOUNT
Because of the nature of the simple adaptive selector

$ACTIVE, there is no equivalent formulation of this query
without the set membership operator. The membership of
$ACTIVE is determined by the observation of recency and
frequency of reference to STUDENT-ACCOUNTs and does not
depend on attribute values or relationship participation.
A failure of this query to return a BALANCE would be
indicative that the account in question is not among the
active set.

Another example of the set membership operator would
be a query which lists the section numbers, rooms, and
times of a COURSE which is currently being offered.

IF CRSENO IN ^CURRENT
THEN SELECT SECTNO ROOM TIME

FROM SECTION
This query requires that the key attribute CRSENO be

initialized to a valid course number. If the COURSE in
question is a member of the relationship adaptive selector
$CURRENT, then the appropriate information is retrieved;
otherwise, the SELECT will not be performed. Because the
key of the SECTION relation scheme consists of the
concatenation of CRSENO and SECTNO, the primary index for
the SECTION relation extension cannot be used without

128

knowledge of the SECTNO (s). Therefore, the actual
retrieval operation would involve a scan of the 200
SECTION occurrences.

The equivalent formulation of this query without the
set membership operator and relationship adaptive selector

is, in fact, simpler.

SELECT SECTNO ROOM TIME
FROM SECTION
WHERE SECTION.CRSENO = X
In this form, it is assumed that the relevant CRSENO

is represented by "x". The difference in the two
formulations is that in the former, if the COURSE
occurrence is not being offered, only the relationship
adaptive selector index is searched and no additional work
is performed when the search fails. In the latter, all of
the SECTION occurrences would be retrieved, at substantial
cost, only to determine that there are no matches with the

specified CRSENO.
Frequently, it is useful to know the size of a

relation in terms of the number of tuples it currently
contains. The syntax of SEQUEL’S SELECT statement has a
built-in operator, COUNT, which may be used for this
purpose. The COUNT function, however, requires that the
entire relation extension be retrieved to obtain the
number of tuple occurrences. For the artificial relations
described here, an explicit count of the number of tuples
will be maintained. The value of this field may be

129

obtained for any artificial relation using the following

form of SELECT.

SELECT SIZE (<sel-rel> | <ad-sel-rel>)

This brief form of SELECT simply returns an integer
count of the number of tuples presently selected for
membership in either the indicated selector relation or
adaptive selector relation. If it were necessary to
determine the total number of currently offered COURSES,

the next query would suffice.

SELECT SIZE ($CURRENT)

The last of the extended operators is the implied
join. Unlike the preceding four operators, the implied
join is not directly invoked when formulating a query. The
syntax of the SELECT statement in SEQUEL embodies the
relational algebra operations of selection, projection,
union, and various forms of join. In the examples shown so
far, only selection, projection, and join have been

demonstrated.
When the FROM clause in a SELECT statement contains

the name of more than one relation, these relations are
joined. If the relations do not contain any common
attribute names, an extended cartesian product is
performed. If there are common attribute names, then
either a theta join or natural join is performed depending

on the WHERE clause.

130

In the presence of relationship selectors and
relationship adaptive selectors, the joining of two base
relations only makes sense for the tuples which are
members of the appropriate artificial relations. In
formulating queries involving base relations with either a
relationship selector or relationship adaptive selector,
the query parser should perform the implied join of one of
the two base relations before affecting the final join
with the second base relation.

Because joins (and implied joins) are not shown
explicitly in the SEQUEL syntax, there is no change or
addition to the syntax.

To demonstrate when and how an implied join would be
employed, the following query examples will be used. The
first query involves retrieving the student names and
major names of all students in the engineering department.
The attribute SNAME is contained in the relation STUDENT
while the attributes MNAME and DNAME are contained in
MAJOR. There is no need to retrieve the relation
DEPARTMENT.

Occurrences of STUDENT may only be related to
occurrences of MAJOR if they have qualified for membership
in the relationship selector *UPPERCLASS. The proper
sequence of relational algebra operations to handle this
query would involve first performing an equijoin over
STUDNO of the base relation STUDENT with the artificial
relation *UPPERCLASS. This would result in an

131

intermediate, unnamed relation containing the tuples of
all STUDENTS who may legitimately elect a MAJOR. Assuming
none of the attributes are eliminated by a projection,
this unnamed relation consists of all of the STUDENT
attributes concatenated with the MNAME attribute from
*UPPERCLASS. Next, this unnamed relation is to be joined
(equijoined) with the base relation MAJOR on the basis of
equal MNAME values. Lastly, a selection is made on the
DNAME attribute and the desired tuples are projected over
the SNAME and MNAME attributes. The SEQUEL SELECT
statement which performs all of these operations is
written thusly.

SELECT SNAME MNAME
FROM STUDENT MAJOR
WHERE DNAME = "ENGINEERING"
In conventional SEQUEL syntax, the only apparent join

here would be on the base relations STUDENT and MAJOR.
However, referring to Figure 4.2, there is no common
attribute on which to accomplish the join. The result
would then be a virtually meaningless extended cartesian
product followed by a selection on DNAME and a projection
over SNAME and MNAME. With the extended operator of
implied join, however, the proper sequence of operations
described above would be carried out to correctly respond

to the query.
Without the relationship selector *UPPERCLASS, the

relational schema of Figure 4.2 would have to propagate

132

the foreign key MNAME into the relation scheme STUDENT.
The domain on which MNAME is defined would have to contain
a special null value for all freshman. The question of how
to treat null values in join or selection operations is
currently a research problem (see ICODD79] and [DATE83]).

The definition of a relationship selector calls for
including the key attribute(s) of one of the base
relations as a foreign key in the artificial relation
scheme. Relationship adaptive selectors contain only the
key attribute(s) of the one base relation on which they
are defined. This, however, does not preclude the
applicability of the implied join to facilitate the
response to a query. When a join operation is required
between two base relations that have a relationship
expressed through a relationship adaptive selector, the
implied join using the relationship adaptive selector can
avoid unnecessary work in responding to the query.

As an example, consider a query calling for the
retrieval of the course number, section number, course
name, and faculty member’s name from the database. The
response to this query would involve joining the COURSE
relation with the SECTION relation to form an unnamed
relation with the attributes of both. This would involve
retrieving 500 COURSE occurrences and 200 SECTION
occurrences to form a 200 occurrence unnamed relation

extension.

133

Next, a join of this unnamed relation with FACULTY
over attribute ENO would yield the ENAME attribute. This
join operation would involve retrieving the 250 FACULTY
occurrences at least once. Finally, a projection over the
attributes CRSENO, SECTNO, CNAME, and ENAME would produce
the desired result.

Although this sequence of operations could be carried
out with the existing relation schemes, the presence of
the relationship adaptive selector $CURRENT would simplify
the entire process. In this case the implied join of
COURSE with ëCURRENT would initially restrict the first
join to only those COURSE occurrences presently being
offered. This reduces the number of COURSE occurrences
retrieved to only 100 instead of 500. The query
formulation would be as follows.

SELECT CRSENO SECTNO CNAME ENAME
FROM COURSE SECTION FACULTY
These demonstrations are not all inclusive of the

manipulative power afforded by the presence of selectors
and adaptive selectors, however, they do provide an
insight as to how a relational data manipulation language
such as SEQUEL might exploit them in response to certain
types of queries. The incorporation of selectors and
adaptive selectors in an abstract data model enhances the
ability of a database designer to represent more of the
semantics of data. Likewise, the use of the five extended

134

operators presented here enables a database user to
express those same semantics when formulating a query.

4.5 Summary
The goal of this chapter has been to integrate the

first two levels of the three level database design
methodology. This requires mapping the concepts and
principles of abstract data modeling onto the structures,
operators, and constraints of a generic data model. In
particular, the selector and adaptive selector
abstractions which introduced the occurrence dimension
into abstract data modeling, require special structures
and operators not available in existing generic data

models.
To accomplish this goal, the relational model of data

was chosen as the target generic data model. The
programming language PASCAL was chosen as the vehicle for
developing the necessary data definition language
facilities to permit the definition of selectors and
adaptive selectors. The data manipulation language SEQUEL
was employed to demonstrate the manipulative features of
selectors and adaptive selectors.

The first contribution was the introduction of the
concept of artificial relations to represent selectors and
adaptive selectors when transforming an abstract model
into a collection of normalized relation schemes, i.e.,
the conceptual schema. The next stage in conceptual schema

135

development involved the provision of data definition
language facilities to allow the formal definition of the
conceptual schema in a DBMS-processible form. An extended
syntax was developed to completely define a conceptual
schema including the necessary facilities to both type and
define selectors and adaptive selectors. These two data
definition stages then enable the formal representation of
the occurrence dimension at the level of a generic data

model.
The provision of DDL structures to represent the

occurrence dimension in a generic data model constitutes
only part of the mapping of an abstract data model onto a
generic data model. Operators must also be provided to
manipulate these new structures. To demonstrate the
manipulative power afforded by the presence of artificial
relations representing selectors and adaptive selectors,
the relational algebra was extended to include five new

operators.
A series of representative queries, drawn from the

database design example, was used to show how these five
new operators would be employed. Where appropriate, the
alternative query formulation without the new operator or
artificial relation was also presented. In most cases, it
was shown that the formulation involving the new operators
was more clear than the alternative formulation and in all
cases the amount of work required to respond to the query
was significantly less.

CHAPTER 5

THE OCCURRENCE DIMENSION IN INTERNAL DATA MODELING

5.1 Introduction
To complete the integration of the three level

database design methodology shown in Figure 2.1, the
generic data model representation of a database must
finally be mapped onto the physical structures available
with the particular DBMS and host computer system. The
process of choosing a suitable implementation strategy is

referred to as internal data modeling.
At the level of abstract data modeling, the existence

of occurrences of entities and relationships has been
conceptualized to enable the representation of certain
semantic information requirements which would otherwise
not be representable. The selector and adaptive selector
abstractions have been introduced as mechanisms for the
characterization of occurrences of data objects in an
abstract data model. At the level of a generic data model,
definitional forms (artificial relations) have been
introduced to formally specify the intention of
implementing and maintaining these special
characterizations of occurrences. Additionally, a set of

136

137

data manipulation operators have been defined to
facilitate the formulation of database queries in the
presence of selectors and adaptive selectors. Finally, at
the level of the internal data model, consideration must
be given as to how any defined selectors and adaptive
selectors will be physically implemented, maintained, and

manipulated.
This chapter will be concerned with several issues

related to the internal data modeling requirements of the
occurrence dimension. The practice of internal data
modeling is not a subject about which many generalizations
may be made. Rather, it is quite intimately tied to the
environmental factors surrounding a particular DBMS and
its host computer system. Therefore, in addressing these
issues, the approach and analysis will be more suggestive
of solutions to the problems instead of prescriptive.

The next major section will explore the physical
storage structure alternatives which would be suitable for
the implementation, maintenance, and manipulation of
selectors and adaptive selectors. For the most part, the
suggested storage structures are available in many
commercial database management systems and the host
computer operating systems which support them. Specific
reasons for each suggested storage structure will be
offered in order to clarify the intent of physically
representing a particular selector or adaptive selector.

138

The following section will then address some of the
operational considerations which arise as a result of
having selectors and adaptive selectors in a database
design. The topics to be discussed are not themselves
design issues and therefore are not technically part of
the process of internal data modeling. However, they are
important if the full potential of selectors and adaptive
selectors is to be realized.

Among the claims for incorporating the occurrence
dimension into a database design methodology were that it
would result in potential operational performance
improvements and that it would prolong the operational
lifetime of the database. Several suggestions for the
improvement of operational performance will be discussed
and an entirely new database buffer management policy will

be described and analyzed.

5.2 Storage Structures
In theory, the storage structure selection problem is

quite complex. Prior to the development of generalized
database management systems, files of records stored on
secondary storage media were organized as flat files.
Sequential, direct, or indexed access were the dominant
storage and retrieval mechanisms. With the advent of
database management systems, storage structures previously
restricted to processor memory became viable structures
for secondary memory organization as well. Linked lists.

139

inverted files, hash tables, and numerous pointer schemes
greatly increased the storage structure alternatives
available to a database designer.

In practice, a database designer is constrained to
utilize only those storage structures supported by the
particular database management system. In the case of
hierarchical and network oriented database management
systems, the choice is still formidable. However, there do
exist a number of semi—automated design aids which, given
the conceptual schema and estimates of usage patterns, can
assist the designer in selecting a reasonable physical
design for these types of systems (see Teorey and Fry
[TEOR80] for an extensive bibliography of work in this

area).
The relational data model assumes a very simple

storage structure - the table. Each relation scheme
contained in the schema is to be stored physically as a
two-dimensional table with the columns representing the
named attributes and the rows representing the individual
occurrences of the relation extension. Any relationships
are represented by (redundantly) stored data values. The
power of the data manipulation language is then used to
materialize these relationships when necessary (e.g., the
join operation). Additionally, the relational data model
imposes no ordering on the rows of the table.

The tabular storage structure just described is a
conceptual ideal within the relational data model. In all

140

practicality, additional storage structure support is
employed to facilitate efficient retrieval operations. It
is clearly desirable to maintain some form of logical
ordering on the tuples (rows) of a table if there are uses
which need to access the tuples sequentially. Similarly,
it is not unlikely that some retrieval operations require
rapid, random access to individual tuples. In this case,
some type of direct storage structure may be used.

To balance these two extremes, a form of hierarchic
index storage structure is frequently used. Under the
generic name of indexed sequential access methods (ISAM),
this type of storage structure may be used for primary,
secondary, and relationship access to tables [HAER78].
Primary access refers to locating specific tuples based on
their key attribute values. Secondary access may
optionally be provided to enable the location of tuples
(or a set of tuples) based on non-key attribute values.
Lastly, relationship access refers to explicitly
maintaining a storage structure to represent relationship
occurrences. In the relational database management system
- SYSTEM R [ASTR761 - this type of storage structure is
known as a "link" and effectively represents a permanent
join on two relations (tables). All of these storage
structures are, at least in theory, hidden from the user.

Without loss of generality, the following assumptions
about physical design environment will be made. The
relational database management system being used is

141

assumed to support the data definition language facility
and data manipulation language extensions given in the
preceding chapter. Each base relation extension will be
stored as a simple tabular structure. Physically, the
tabular structure will be organized as a set of fixed size
blocks of secondary storage and each block will contain a
number of tuple occurrences. The order of the tuples
within blocks is immaterial, that is, it cannot be assumed
that the tuples have been stored and maintained in any
particular logical order.

Primary access to the stored base relations will be
accomplished by means of a separate, dense hierarchic
block index storage structure. This particular storage
structure is commonly known as a B* tree [KNÜT731. No
secondary storage structures will be considered. This
assumption has no consequence on the design because
secondary storage structures are always redundant and are
incorporated strictly for performance reasons.
Relationship access between or among base relations is
accomplished by the data manipulation language operators
(e.g., join or cartesian product).

These assumptions are quite simplistic on the surface
but are really not that far from reality for commercially
available database management systems (SQL/DS and INGRES,
in particular). As an example, the ten base relations of
the schema portrayed in Figure 4.2 will be assumed.
Primary access to each base relation is provided by a

142

dense, hierarchic block index organized as a B* tree. Each
base relation will then be physically stored as two
separate "files." One file will hold the actual tuple
occurrences which may or may not be in their key sequence
order. The second file will contain the entire dense index
to the base relation. Primary access to the stored base
relation will be accomplished through these two files.

The remainder of this section will explore the
possibilities for storage structure support for the
selector artificial relations and the adaptive selector

artificial relations.

5.2.1 A Storage Structure for Simple Selectors
A natural storage structure for the physical

representation of a simple selector would be to build and
maintain another hierarchic block index to the base
relation. This index would contain the keys and pointers
to the tuple occurrences which have been selected by the
boolean qualification. When accessing the stored base
relation via a filter operator (i.e., a USING clause is
contained in the query), the simple selector index would
be used in place of the primary index. Figure 5.1 shows a
portion of such a storage structure.

143

PRIMARY
INDEX OF
FACULTY

FACULTY RELATION EXTENSION

ENO ENAME TITLE
SIMPLE

SELECTOR
INDEX

«SENIOR

3 ----- > 3 Smith, J. PROFESSOR <----- 3

4 ----- > 4 Jones, A. ASSOCPROF — 7
/

6 ----- > 6 Baker, B. ASSTPROF /- 10
• /--> 7 Reed, R. PROFESSOR

//
<-//

• / .
• .

•
* •

•
\

50 ----- > 50 Brown, K. ASSOCPROF \— 42
\

51 ----- > 51 Kelly, F. ASSTPROF \--- 46

53 ----- > 53 Dodd, W. PROFESSOR <----- 53

A hierarchic index for a simple selector
Figure 5.1

144

In the center of the figure is a tabular structure of
a part of the FACULTY relation extension. The fact that
the tuples are ordered on increasing ENO is immaterial and
has been done only for clarity. On the left side, the
lowest level blocks of the primary index are shown
pointing to their associated tuple occurrences. Higher
level blocks of the primary index are not shown. The right
side of the figure indicates the lowest level blocks of
the index used for the simple selector «SENIOR defined on
FACULTY. Higher level blocks of this index are also not
shown. Because «SENIOR selects that subset of FACULTY who
are full professors, only those tuples with the value
"PROFESSOR" in the TITLE attribute are contained in this

second index storage structure.
Although the concept of an artificial relation was

introduced to represent the simple selector in a
relational schema definition, at the physical level of
implementation, there is no need to create a separate
tabular structure. Given the availability of a hierarchic
index storage structure, the simple selector may be
represented efficiently and concisely by a second index
structure associated with the base table.

From the point of view of data manipulation, the
filter operator may be applied directly to this second
index. For example, a SELECT operation with the USING
clause would retrieve only the assumed 100 PROFESSORS from
the total of 250 FACULTY occurrences. The complement

145

operator would require that both the primary and simple
selector indexes be scanned at the same time. That is,
when manipulating the subset of the tuples of the base
relation which are not selected, the primary index
structure would provide the necessary access path after
verifying that each tuple considered is not found in the

simple selector index.
The amount of work involved in this double indexing

is not as much as might be assumed. The secondary storage
blocks which are used for holding the index typically
contain many more key/pointer pairs than a comparable
block which contains actual tuple occurrences. Determining
the complement of a relation extension with respect to a
simple selector can be carried out more efficiently when
operating on the indexes than could be accomplished by
transferring all of the data (tuple) blocks and choosing
the desired tuple occurrences. While dense hierarchic
block indexes require more storage space than their
non-dense counterparts, it is just this aspect of
efficient manipulation prior to the actual retrieval of
data blocks which make them so attractive as a database

storage structure [ULLM80].
Storage structure support for a simple selector is

then quite straightforward and efficient. The artificial
relation defined to represent a simple selector does not
itself become a stored relation (table), but merely
becomes an alternative storage structure to the underlying

146

base relation table. The insertion and deletion of tuples
in the base relation table would require that the index
structure for the simple selector be modified accordingly.
Also, the database management system would be required to
monitor the updating of the selected attribute values
should such an update cause a particular tuple to either

join or leave the selected subset.

5.2.2 Storage Structures for Relationship Selectors
In abstract data modeling, relationships between

entities were classified as being either implicit or
explicit. Implicit relationships are represented in
abstract data modeling as directed edges connecting
entities. In the relational data model, implicit
relationships are represented by the careful replication
of key attributes as foreign keys in the appropriate base
relation schemes. Fundamental to either the explicit or
implicit relationships is the fact that once they are
defined, any entity occurrence may participate in the
relationship. There is no qualification associated with
the relationship which systematically includes or excludes
certain entity occurrences from legitimately participating

in the relationship.
The relationship selector database abstraction was

introduced to allow such a qualification to be expressed
for an implicit relationship. The applicability or
legitimacy of an implicit relationship between two

147

entities may depend on the value of a particular attribute
contained in one of the entities. The relationship
selector captures this qualification in the abstract data
model and is represented in the by an artificial relation
scheme as defined in the preceding chapter. Just as with
the simple selector, the artificial relation scheme will
be treated as an alternative storage structure for an
existing base relation tabular structure rather than a
stored base relation in its own right.

The artificial relation definition for a relationship
selector contains two sets of attributes. The first set is
the attribute(s) which comprise the primary key of the
base relation scheme on which the relationship selector is
defined. The second set is the primary key attribute(s) of
the other relation scheme. These two sets combined may be
considered a concatenated key for the artificial relation.
There are no other attributes contained in the artificial
relation for a relationship selector such as might be
found in an associative entity or nonentity association.

A relationship selector artificial relation can be
implemented as an alternative dense hierarchic index
storage structure in a manner similar to the simple
selector. The key attribute values of the base relation on
which the relationship selector is defined constitute the
"primary" portion of the concatenated key. The key
attributes of the other base relation are of "secondary"
importance. The reason for this dichotomy between the sets

148

of attributes stems from the way in which the relationship
selector is to be operated upon.

The principal operations involving a relationship
selector are the filter, complement, and implied join. The
filter and complement operators deal specifically with the
subset selected by the boolean qualification used in
defining the relationship selector. Therefore, it is the
"primary" portion of the concatenated key which is of
principal importance in these operators. For the implied
join, both portions of the concatenated key are required
to effect the joining of the two base relations.

A storage structure suitable to meet these
requirements would involve a modification to a dense
hierarchic block index. The lowest level blocks of the
index would maintain an ordered list of the concatenated
keys. The "primary" portion of the concatenated key, by
appearing first, would determine the lexicographic order
of the index. These block entries would then be comprised
of the "primary" portion of the concatenated key, the
"secondary" portion of the concatenated key, and a pointer
to the tuple corresponding to the "primary" key value. The
higher level blocks would be based solely on the "primary"

portion of the concatenated key.
Figure 5.2 shows a sample tabular representation of

portions of the STUDENT and MAJOR base relations. Each
base relation has a dense hierarchic block index
associated with it for primary access to its tuples.

149

Again, the ordering of the tuples is merely for clarity.
Figure 5.3 then shows a first (lowest) level block of the
dense hierarchic block index used to represent the
relationship selector «UPPERCLASS and a portion of the
block immediately above it in the hierarchy.

In a conventional implicit relationship between
entities such as these, the key attribute of the MAJOR
relation would necessarily be propagated to the STUDENT
relation as a foreign key. This would require the
existence of a null value for the domain of the attribute
MNAME. In this case, the null value would have to play a
specially defined role in each of the relational algebra
operators. The use of a relationship selector obviates the
need for nulls and handles this aspect of the college's
information structure in a more effective way.

150

STUDENT RELATION EXTENSION

P
R I
I N
M D
A E
R X
Y

101 _ FRESHMAN

102 _ _ JUNIOR
103 SENIOR
104 FRESHMAN
105 _ _ _ JUNIOR

999 mm ^m FRESHMAN

MAJOR RELATION EXTENSION

P
R I
I N
M D
A E
R X
Y

BUSINESS
ENGINEERING
FINE ARTS

- _

HISTORY
PHILOSOPHY 1----:— :— :-----

A portion of two base relation extensions
Figure 5.2

151

/

105

\

102 I FINE ARTS 103 | BUSINESS 105 | HISTORY

V

Index storage structure for a relationship selector
Figure 5.3

152

In a relationship selector storage structure, the
database management system would have to recognize the
different format of the sequence set blocks. This
formality would not be difficult to implement in a
generalized hierarchic block index access method. In fact,
similar hierarchic indexes have been designed for
incorporation into the experimental relational database
management system, SYSTEM R [HAER78]. The proposed
implementation of "images" and "links" in SYSTEM R could
be readily adapted to the requirements for supporting
simple selectors and relationship selectors, respectively.

The suggestion of alternative hierarchic index
structures to support simple selectors and relationship
selectors appears to be the natural way to implement them.
Even though a relational environment has been assumed
throughout, this approach would be equally viable in a
network or hierarchical environment. Virtually all
commercially available database management systems support
some form of dense hierarchic block index storage
structure for either primary or secondary access paths.
These could be easily adapted for this task.

Other storage structures could be used to implement
both forms of selectors as well. For example, linked lists
might be used for simple selectors. The selected tuples
would be chained to one another in either a forward
direction or possibly in both directions. Relationship
selectors might be implemented by multilist chain

153

structures. Regardless of the implementation technique
chosen, the cost of building and maintaining the storage
structure must be considered. The dense hierarchic indexes
suggested here may not be the best choice in particular
circumstances, but they do offer a single, unified
approach to satisfying all required storage structures.

5.2.3 Storage Structures for Simple Adaptive Selectors
In an abstract data model, the database designer may

assert the existence of a simple adaptive selector for a
particular entity. This serves to explicitly recognize a
temporal characteristic of the entity which is not
otherwise representable by attributes or relationships. In
the generic data model of the preceding chapter, an
artificial relation was employed to formally represent the
simple adaptive selector. The attributes of this
artificial relation are the key attributes of the
underlying base relation. For data manipulation, the set
membership and set size operators were described.

The subset of tuple occurrences of a base relation
identified by a simple adaptive selector are the ones
which have been the object of the majority of references
relative to a specific point in time. For efficient
retrieval from secondary memory, it would be useful if the
selected tuples were physically managed so that rapid
access could be provided with a minimum of costly
secondary storage transfers.

154

In this sense, the simple adaptive selector is
analogous to the Working Set Principle postulated by
Denning [DENN67]. In a virtual memory environment, a
program is allocated a conceptually large virtual address
space organized into fixed size page frames. This address
space usually exceeds the amount of available real memory
page frames. During execution of the program, references
to the virtual address space tend to cluster in a subset
of its page frames for periods of time. The "working set"
is defined as that subset of a program's pages which have
been referenced most recently.

The working set of a particular program is determined
by examining the pattern of distinct page references which
have taken place over a fixed, backward looking window on
time. A program is not considered eligible for execution
unless its working set of pages is present in real memory.
The supposition is that the program will likely reference
this same set of pages in the near future. The content of
this working set, however, changes dynamically as the
program proceeds through the course of its execution.

The simple adaptive selector is intended to represent
a similar phenomenon. Among the tuple occurrences of a
particular base relation, it is expected that references
will tend to cluster among a relatively small subset over
periods of time. Whereas in the working set, the identity
of the specific pages is immaterial except to the
operating system, in the simple adaptive selector the

155

identity of the selected tuples is important. The set
membership data manipulation operator, in particular,
tests whether specific tuple occurrences are currently
members of the simple adaptive selector at an instant in

time.
There are two requirements then for the

implementation of simple adaptive selectors. First, there
is a need for a storage structure to continuously record
the membership of the selector and to provide the
information necessary for the set membership and set size
operators. Secondly, there needs to be a policy regarding
the physical organization of secondary memory which
facilitates the management of the selected tuples so that
efficient, rapid access to them may be rendered. The next
major section will deal with this question.

As with the simple selectors and relationship
selectors, the storage structure chosen for a simple
adaptive selector should be separated from the base table
on which it is defined. This is especially true for simple
adaptive selectors because the physical organization of
the underlying base table cannot be constrained by the
requirements of any storage structure. Unlike either form
of selector, however, the storage structure chosen for a
simple adaptive selector will not provide an alternate
access path to the base table. Rather, it will merely
support the requirements of the set membership and set

size operators.

156

It has been assumed that primary access to base
relations has been supported by a dense, hierarchic block
index structure. The lowest level of the index contains
all of the keys of the base relation along with pointers
to the tuple occurrences. In keeping with the philosophy
of the B* tree, the entire index structure is kept
balanced as insertions and deletions are made. Maintaining
the balance of a hierarchic index is generally quite easy
once the initial index is constructed. By carefullyI
choosing certain implementation parameters, most
insertions and deletions typically affect only one index
block. Occasionally, an insertion or deletion requires
that several blocks be altered to maintain the balance.
When this occurs, the cost of re-balancing can be

expensive.
The storage structure proposed for the simple

selector and relationship selector is also a hierarchic
block index. This second, alternative storage structure
contains a subset of the keys and pointers of the base
relation. Because both forms of selector are assumed to be
relatively stable with respect to their membership, the
cost of maintaining the alternative storage structure is

minimal.
By choosing dense hierarchic block indexes for all

required storage structures so far, a degree of uniformity
and simplicity has been achieved. Usually the database
designer is faced with a bewildering assortment of storage

157

structures to choose from. Relying on just one reasonably
efficient storage structure simplifies the physical
database design process considerably [HAER78].

Storage structure support for the simple adaptive
selector presents an entirely different physical design
problem. First, the dynamically selected subset is
determined by on—going monitoring of references to the
tuples of the base table. This monitoring process will
identify the temporally active subset of the base table at
any point in time. Secondly, the size of the selected
subset is theoretically variable; however, in practice
some upper bound must be established. The underlying
assumption in the use of a simple adaptive selector is
that a relatively small proportion of the tuples of a base
relation are the most active at any point in time. And
lastly, because the membership of the selected subset is
expected to change over time, the storage structure used
to represent it must be easily and inexpensively

changeable, i.e., adaptable.
For these reasons, virtually all of the commonly used

storage structures are not appropriate for representing
simple adaptive selectors. Hierarchic indexes and
pointer-based storage structures, such as linked lists,
would suffer from excessive overhead in their maintenance
requirements. Conventional direct storage structures, such
as pointer arrays, would need to be sorted to provide
rapid look-up for tests of set membership.

158

Severance and Lohman [SEVE76] and Aghili and
Severance [AGHI82] have encountered a similar requirement
to provide rapid retrieval for a selected subset of the
record occurrences of a database. They propose that
insertions and updates to existing database records be
held in an alternative file called a differential file. At
periodic intervals, these accumulated changes are made to
the main, permanent database file. Between the
reorganizations, requests for retrieval of database
records may be made from the differential file (if the
desired record is located there) or from the main database
file. Because there is no primary access path to the
differential file and an exhaustive search would be
extremely expensive, a storage structure is needed to
quickly determine whether a particular record is presently
in the differential file. As with a simple adaptive
selector, their storage structure need only determine
whether the desired key is present, that is, satisfy a
test of set membership. It need not provide an access path
to the associated record occurrence (e.g., a pointer).

The storage structure they chose to employ for this
purpose is known as a Bloom filter [BL0070]. This
structure consists of a bit vector of some suitable length
and a number of independent hashing functions. The length
of the bit vector and the number of hashing functions, in
the case of a differential file, can be determined by the
methods described in Aghili and Severance IAGHI82].

159

Initially, the bit vector is all zero. As records are
inserted or updated and placed in the differential file,
the record key is transformed by each hashing function
which, in turn, selects a bit in the bit vector to set to
one. On subsequent retrieval, the desired key is again
transformed by each hashing function. If- any of the
selected bits is zero, the record is definitely not in the
differential file and the main database is searched using
its primary access path. If all of the bits are one, then
the record is likely, though not necessarily, in the
differential file. Periodically, the differential file is
merged into the main database file and the process begins
anew with the bit vector reset to zero.

One problem with a Bloom filter, as with most hashing
schemes, is that it does not support deletions. In hashing
different keys to the bit vector, it is common that the
same bit might be selected to be set. By deleting a key
from the Bloom filter, all of its selected bits would have
to be reset to zero. This, in turn, may affect other keys
which coincidentally select one or more of the same bits.
However, with the proper choice of parameters, the Bloom
filter can be designed so that the probability of two
distinct keys selecting the same set of bits is

arbitrarily small.
Because of the similarity of requirements between the

differential file search mechanism and a simple adaptive
selector, the Bloom filter will be the recommended storage

160

structure for simple adaptive selectors. For each base
relation on which a simple adaptive selector has been
defined, an appropriately parameterized Bloom filter will
be constructed. At intervals to be determined by the
performance monitor of the host database management
system, each storage structure will be reinitialized to
represent the subset of the most recently and frequently
retrieved tuple occurrences. Between such intervals, the
Bloom filter will serve to support any set membership
operations for the underlying base table.

Figure 5.4 portrays the general nature of a Bloom
filter storage structure. In this case, a portion of the
bit vector is displayed with some of its individual bits
set to one. There are three separate hashing functions
shown, all of which are applied to some key value, K. Each
of these hashing functions map onto values of one in the
bit vector. The logical "and” of these bits then yields a
value of TRUE for a test of set membership operation. In
theory, this test might give an erroneous indication that
the given key is present in the simple adaptive selector
when, in fact, the selected bits have been set as a result
of hashing other key values to the same bits. The
likelihood of such an occurrence can be controlled by the
careful choice of the size of the bit vector and the
number of hashing functions employed.

161

HASHING
FUNCTIONS

BIT
VECTOR

h. (K)

hj(K)

h^(K)

■>”TRUE"

>1

A Bloom filter with three hashing functions
Figure 5.4

162

The next major section of this chapter will discuss
the issues involved in determining the size of each Bloom
filter bit vector and the number of hashing functions
needed. This physical design problem will have a different
objective function than that of a differential file.
Specifically, the occurrence of "filtering errors" where
the Bloom filter erroneously indicates that a particular
key has been selected, must be extremely small.

5.2.4 Storage Structures for Relationship Adaptive
Selectors

The simple adaptive selector relies solely on an
external criterion for its definition. On-going
performance monitoring of the database management system
will periodically determine the subset of the tuples of a
given base table which will be selected for incorporation
in the storage structure used to represent it.
Relationship adaptive selectors are also intended to
capture a temporal characteristic of an entity. However,
the definition of a relationship selector is determined by
the entity's participation in a designated relationship at

a given point in time.
In developing an abstract data model of an

enterprise, various types of relationships are portrayed
among entities. These relationships indicate only the
potential for a relationship between instances of the
associated entities. In an actual stored database, it is

163

possible that certain instances of the associated entities
will not participate in the relationship. The reasons for
the non-participation can be varied but one important
reason may be that the relationship is meaningful only at

certain times.
The example given here is of a relationship OFFERED

between the entities COURSE and SECTION. A characteristic^
of a COURSE is whether or not the COURSE is being offered
at a particular time. There is no attribute of a COURSE
which conveys this fact but it may be inferred from the
association of the COURSE with an instance of a SECTION.
For abstract modeling purposes, the concept of a
relationship adaptive selector was introduced to
explicitly represent this aspect of COURSES.

In the generic data model of the preceding chapter,
relationship adaptive selectors such as CURRENT were
represented by artificial relations with the key
attributes of the corresponding base relation as their
only attributes. This differs from the artificial
relations used for relationship selectors where the keys
of both base relations were included. The reason for this
is that in the relationship selector, both entities are
kernel entities with their own independent existence.
Neither entity contains the key of the other as a foreign
key because the relationship depends on a particular
attribute value and is meaningless for those entity
occurrences not meeting a boolean qualification on that

164

value. The inclusion of both keys in the artificial
relation supports a join of the two base relations.

In the relationship adaptive selector, one of the
entities is a temporal characteristic of the other and
consequently derives its existence from it. Therefore the
key attribute(s) of the "superior" kernel entity are
required in the characteristic entity as part of its
composite (concatenated) key. In the example here, CRSENO
is the key of the kernel entity COURSE and it is an
element of the concatenated key of the temporal
characteristic entity SECTION (CRSENO + SECTNO).

This situation presents two somewhat conflicting
requirements for a storage structure for the relationship
adaptive selector. First there is a need for a storage
structure to keep track of the kernel entity occurrences
which are presently participating in the designated
relationship. This storage structure will support both the
set size and set membership operations and must be readily
adaptable as the subset of participating occurrences
changes over time. Secondly, the storage structure must
explicitly represent the keys of the selected subset so
that the filter, complement, and implied join operators
may be applied to it.

The first requirement could be satisfied efficiently
by a Bloom filter storage structure as proposed for the
simple adaptive selectors. However, this storage
structure would not satisfy the second requirement of

165

explicitly representing the necessary keys. A hierarchic
index storage structure would satisfy all of the
requirements but could potentially be expensive to
implement and maintain. Because there is no presently
available storage structure which simulataneously
satisfies both requirements and the keys must be
explicitly represented, the hierarchic index is the best "
choice for the physical representation of relationship
adaptive selectors.

Unlike the simple adaptive selector where the
membership is determined by on—going performance
monitoring of frequency of retrieval, the membership of a
relationship adaptive selector is determined by a data
manipulation operation which stores or deletes a temporal
characteristic tuple occurrence. The overhead in
performing this operation is sufficiently large that the
maintenance required to insert or delete a key from the
hierarchic index is insignificant.

Figure 5.5 shows a portion of a hierarchic block
index used to represent the relationship adaptive selector
$CURRENT. The lowest levels of both the primary index and
relationship adaptive selector index are portrayed on
either side of the base table for the COURSE relation
extension. Higher levels of the index set of each are not
shown. Below the COURSE relation extension is a portion of
the SECTION relation extension to give a flavor of how the
two are related through ÇCURRENT. If there is at least one

166

occurrence of a SECTION associated with a particular
COURSE, then the relationship adaptive selector index
contains the appropriate key.

The format of this storage structure is exactly the
same as for the simple selector hierarchic block index.
The index set blocks each contain the key values and
pointers to the associated tuple occurrences in the base
table. All of the extended relational algebra operators
can then utilize this structure.

167

PRIMARY
INDEX FOR
COURSE

COURSE RELATION EXTENSION

CRSENO

RELATIONSHIP
ADAPTIVE
SELECTOR
$CURRENT

ARTlOl ___ > ARTlOl <___ ARTlOl

ART105 ___ > ART105 1 /- ARTllO

ARTllO ___) ARTllO
/

<- / BlOlOO
/

PSY201 _____ > PSY201
\
\- ENG150

PSY300 ______> PSY300 < _ _ _ _ PSY300

SOClOO SOClOO — — — — <---- SOClOO

SECTION RELATION EXTENSION
CRSENO SECTNO

ARTlOl 001
ARTlOl 002
ARTllO 001

.
A hierarchic index for a

relationship adaptive selector
Figure 5.5

168

5.3 Operational Considerations for Adaptability
Three of the storage structures recommended above

were predicated on the availability of a hierarchic block
index access method within the target database management
system. This, in turn, assumed that the host computer's
operating system provided some form of indexed sequential
access method such as ISAM or VSAM. This assumption is not
unreasonable for currently available database management
systems (e.g., SQL/DS and INGRES). Consequently, the
physical implications of incorporating either form of
selector abstraction or a relationship adaptive selector
in an existing database management system are not too
great. For example, the generalized access path facility
described by Haerder [HAER78] could be adapted to these

needs quite readily.
Implementation of a simple adaptive selector,

however, does require certain enhancements to the
underlying database management system. A Bloom filter
storage structure, for example, is novel and would not
generally be found in an existing database management
system. This section will examine some of the requirements
needed for implementing simple adaptive selectors and also
describe certain other facilities which may be added to a
DBMS to improve its overall performance.

169

5.3.1 Performance Monitoring
Of primary importance to the implementation of a

simple adaptive selector is the need for a mechanism to
identify the the temporally active subset of a base
relation. The fundamental assumption behind the use of a
simple adaptive selector is that a relatively small
percentage of the tuples in a base relation will be the
object of a disproportionate amount of the retrievals
directed to that base relation. Although there are no hard
and fast rules to support such an assumption, it is a
well-known folk theorem in commercial data processing as
well as other fields that as few as twenty percent of the
records in a file will be referenced as often as eighty
percent of the time. This so-called 80/20 Rule as been
empirically verified [HEIS63].

Knowing that such a phenomenon is likely to affect a
given base table in a relational database is of no
particular use to the physical design process unless the
pertinent subset can be identified. Also, it is very
likely that the membership of the active subset will
change over the operational life of the stored database.
The physical design aids presently available analyze known
applications and attempt to formulate estimates of
retrieval patterns in term.» of volume and frequency. No
attempt is made at identifying the individual occurrences.

170

After a database has been designed, implemented,
populated, and in operation for a period of time, it is
possible to both verify the initial assumptions concerning
patterns of reference and to identify the specific tuples
(records) which are being retrieved most frequently at
that point in time. Database management systems are
typically equipped to record this information during
operation. References to tuples, especially for insertion
and update are generally recorded in separate areas for
back-up and recovery purposes as well as to provide an
audit trail. This information can be easily augmented to
capture reference patterns for simple retrievals also.

To effectively implement a simple adaptive selector,
this kind of monitoring will be required. An analysis of
the reference patterns directed at a given base table will
reveal the high activity subset, if such exists. This
information will then enable the construction or updating
of the storage structure used to represent the simple
adaptive selector. The question of how the reference
pattern will be analyzed depends on the nature of the
performance monitor available with a particular DBMS. It
may be that the performance monitor maintains a reference
count field for each occurrence. This field might be
updated continuously (at great expense) or periodically to
form an empirical estimate of the distribution based upon
a sample of references. Alternatively, a transaction
reference log may be examined for this purpose.

171

The frequency of the analysis and updating of the
simple adaptive selector must be a decision made by a
database administrator given the particular circumstances
of the environment. This kind of decision represents the
external criterion which completes the semantic definition
of a simple adaptive selector. The database administrator,
with knowledge of the nature of the data, the applications
which process it, and the needs of the enterprise can
establish the frequency of updating. Regardless of the
frequency of updating, the full benefit of a simple
adaptive selector will be realized if the identified
subset can be physically clustered to improve I/O
performance.

5.3.2 Bloom Filter Parameter Selection
The recommended storage structure for implementing

simple adaptive selectors is a Bloom filter. This
structure has the desirable qualities of being easy to
build and maintain, providing very rapid response for the
set membership operator, and not requiring too much
storage. In order to implement a Bloom filter, three
design decisions must be made. First, the size of the
simple adaptive selector in terms of the number of keys to
be stored must be established. Next, the size of the bit
vector and number of independent hashing functions must be
determined. These last two decisions depend on the first
and are not independent of each other.

172

The implicit assumption underlying the use of a
simple adaptive selector is that, at any point in time, a
relatively small proportion of the tuple occurrences will
be more likely to be referenced and that this subset will
continuously change over the operational life of the
database. From a probabilistic perspective, this would
suggest that the reference process is non-stationary. For
practical purposes, it will be assumed that the
distribution of references is nearly stationary between
evaluation intervals for the simple adaptive selector. The
information obtained from the performance monitor can be
used to develop an empirical estimate of the reference
distribution. The size and membership of the simple
adaptive selector can then be determined.

Figure 5.6 portrays the type of situation that might
be encountered when analyzing performance monitor data
collected during a simple adaptive selector evaluation
interval. A probability plot of the empirical reference
distribution is shown for convenience as a continuous
function. The ordinate shows the relative frequency of
reference for each stored tuple since the last sample
(evaluation) interval. The abscissa represents the tuple
occurrences in terms of their order statistics. A clear
dichotomy between the frequently referenced tuples and the
less frequently referenced tuples is evident.

173

't[i
estimated probability of
reference to tuple t[i]

tin]
Tuple occurrences ordered by decreasing

observed frequency of access

til]
rencesoccur

Probability plot of an empirical reference distribution
Figure 5.6

174

If the empirical distribution appears to be flat, or
nearly rectangular, indicating uniform frequency of
access, then a simple adaptive selector is not warranted.
This occurrence may be only temporary or it might indicate
that a simple adaptive selector for the relation in
question was inappropriate. However, it is expected that
an empirical reference distribution of the type shown in
Figure 5.6 will be obtained at each evaluation interval.

The point labelled "t[n]" on the abscissa demarks the
selected subset from the remainder of the tuple
occurrences. This point should obviously represent less
than half of the total tuple occurrences for a simple
adaptive selector to be useful. The cumulative mass under
the curve up to and including this point will be denoted
as p. The remainder of the distribution accounts for a
cumulative mass of q=(l-p). The quantities p and q can be
interpreted as the probability of a random reference being
for a member of the selected subset or for a non-selected
tuple, respectively. If the 80/20 Rule were applicable to
this situation, then n=0.20*N, p=0.80, and q=0.20.

Having determined the number of keys, n, to be
represented in the Bloom filter, it remains to establish
the size of the bit vector, say M, and the corresponding
number of independent hashing functions, X. If a given key
has been selected as a member of the temporally active
subset, the Bloom filter will always correctly indicate
this fact regardless of the size of the bit vector and

175

number of hashing functions. The only potential problem
with the storage structure is that it might incorrectly
indicate membership for keys which have not been selected.

The analysis to follow is based on the original work
of Bloom [BL0070] and the subsequent research contained in
Severance and Lehman [SEVE76]. An interesting example of
the design of a Bloom filter for a differential file is
given in Gremillion [GREM82].

The problem of determining a bit vector size and
number of independent hashing functions may be formulated
in the following way. Let n be the number of keys to be
represented in the bit vector. Let p be the probability
that a reference to the Bloom filter, i.e., a test of set
membership, is for one of the n selected keys; then
q=(l_p) is the probability that a reference is for one of
the non-selected keys. In this latter instance, the Bloom
filter may erroneously indicate that the key has been
selected. The criterion for choosing M and X will be to
minimize this potential occurrence.

The n selected key values represent a sample drawn
from the underlying domain of the key attribute(s). As is
often the case, these key values may not be uniformly
distributed over this domain. Regardless, the X hashing
functions will be assumed to be chosen such that they will
map these keys uniformly into the bit vector.

For a Bloom filter bit vector of length M, after
hashing n key values to bit addresses via X independent

176

hashing functions, the probability of any randomly
selected bit being set to one is given by:

Pr[a random bit set] = 1 - ((M - 1)/M)n%

For M sufficiently large, the above expression may be
approximated by:

Pr[a random bit set] = 1 - exp{-nX/M)

Performing a test of set membership on one of the
non-selected keys, the conditional probability of finding
all of the X bits set to one, i.e., the probability of a
filtering error is:

Prtall X bits are set | key not selected] =
[1 - exp(-nX/M)]%

The probability of referencing the Bloom filter storage
structure with one of the non-selected keys is q,
therefore the unconditional probability of a filtering

error is:

P(n,X,M) = q [1 - exp(-nX/M)]X

With n a fixed constant, the probability of a
filtering error is then a function of both M and X, As a
practical matter, the size of the bit vector must be
limited. An extremely large bit vector would enable the
filtering error rate to approach zero but then other
storage structure options would be more plausible, e.g., a

177

dense hierarchic index. Also, it is desirable for the
simple adaptive selector storage structure to provide
rapid response to tests of set membership, even at the
expense of a modest filtering error rate. Consequently,
the value of M can be fixed by the database designer after
considering both the number of keys to be represented and
the amount of processor memory available to store the bit

vector.
With n and M both fixed, classical unconstrained

optimization techniques can then be used to determine the
appropriate number of independent hashing functions needed
to minimize the probability of filtering errors. Severance
and Lohman [SEVE76I have shown that differentiating
P(n,X,M) with respect to X, setting the derivative to
zero, and solving for X yields:

X' = M ln(2)/n

where In is the natural logarithm.
For X' chosen as above, the expected number of bits

set in B, after storing n key values, is M/2. Therefore,
the probability of any randomly selected bit being set to
one is simply 1/2. The minimum probability of a filtering
error, given n, M, q, and X', is then:

P'(n,X',M) = q (1 - exp(-nX'/M))%
= q (1 / 2)M ln(2)/n

~= q (0.6185)”/"

178

In practice, X' will frequently evaluate to a
non-integer value. The last step in the process of
parameterizing a Bloom filter would then be to examine
P(n,X,M) at the two integers which surround the value of
X'. The integer resulting in the smallest probability
should be chosen.

This particular formulation of the design of a Bloom
filter storage structure for simple adaptive selectors is
applicable to a wide number of situations. The only
quantities needed are n, q, and M. The first two can be
determined riadily from the analysis of the performance
monitor data and the last can be determined on the basis
of available processor memory. It is interesting to note
that the size of the underlying base relation is
immaterial. All that is necessary is that n be less than

N/2.
As a practical example of this storage structure

design process, consider the simple adaptive selector
ACTIVE presented in Figure 3.12. In the abstract data
model, explicit recognition is given to the fact that at
any time a subset of all of the STUDENT—ACCOUNT
occurrences will be the object of the majority of
references. The exact membership of this subset is not
known in advance and is likely to change over time,
however, it is a semantically meaningful aspect of the
college's information structure that such a pattern of
reference will occur. This temporal partitioning in the

179

occurrence dimension of STÜDENT-ACCOUNT will then have
implications for the design of the conceptual schema, the
data manipulation operations performed on the relation,
and the physical storage of the relation extension.

The DDL definition of the simple adaptive selector
$ACTIVE is shown in Figure 4.12 where an artificial
relation is defined as a powerset over STUDENT-ACCOUNT.
The data manipulation operators of set size and set
membership can then be applied to this artificial
relation. It remains to design a storage structure to
physically represent this artificial relation.

It has been assumed that the college has 4,000
students and that each of them has a STUDENT-ACCOUNT
occurrence. After an initial period of operation, the
performance monitor detects that twenty percent, or 800,
such STUDENT-ACCOUNTs are receiving a disproportionately
high percentage of retrieval activity, say eighty percent
of all references. A Bloom filter storage structure may
then be designed to provide rapid response to tests of set

membership for these tuples.
The database administrator may decide to allocate 500

bytes for the bit vector. In this case, the bit map can be
locked in processor memory so that it is always available
for data manipulation. The bit map will then contain 4,000

bits.
Using the approach described above, the relevant

constants are:

180

N = 4000
n = 800
M = 4000
p = 0.80
q = 0.20

It remains to solve for X, the number of independent
hashing functions, and the corresponding filtering error
rate. The solution for X is obtained as:

X' = M ln(2)/n = 4000 ln(2)/800 "= 3.466

The minimum filtering error rate for this choice of X is

given by:

P'(n,X',M) = q (0.5)” ln(2)/n
= 0.20 * (0.5)3*466 -- 0.01810

Because X' is not an integer, the two integer values
nearest to this optimum must be examined. For three
independent hashing functions, the filtering error rate is
found to be 0.0250 and with four hashing functions the
error rate is 0.0125. Therefore, given a bit vector of
size 4,000 bits, four hashing functions can be used with
the Bloom filter to yield a near optimum error rate of
less than two percent.

To gain some insight into how the various design
parameters interact. Table 5,1 shows the values of
P(n,X,M) for various combinations of n, M, and q. The

181

left-most column indicates the ratio of M to n, that is,
the size of the Bloom filter bit vector relative to the
number of keys to be represented. In parentheses after
this ratio is the integral number of independent hashing
functions needed for this ratio of M to n . The columns
indicate the probability of reference to a non-selected
key and the body of the table contains the associated
probability of a filtering error.

\ q = P r [reference to non-selected key J
41 \ A/ >

0.10 0.20 0.30 0.40 0.50

1.0(1) 0.06321 0.12642 0.18963 0.25284 0.31605

1.5(1) 0.04866 0.09732 0.14598 0.19464 0.24330

2.0(1) 0.03935 0.07870 0.11805 0.15740 0.19675

2.5(2) 0.03032 0.06064 0.09096 0.12128 0.15160

3.0 (2) 0.02368 0.04736 0.07104 0.09472 0.11840

3.5(2) 0.01895 0.03790 0.05685 0.07580 0.09475

4.0(3) 0.01469 0.02938 0.04407 0.05876 0.07345

4.5(3) 0.01152 0.02304 0.03456 0.04608 0.05760

5.0(3) 0.00919 0.01838 0.02757 0.03676 0.04595

Typical filtering error rates
Table 5.1

182

The first observation is that the filter error rate
decreases as the size of the bit vector, relative to the
number of keys, increases. This is not altogether obvious
because, given the formulation above, the expected number
of bits set in the bit vector is M/2 regardless of the
number of keys, n. This phenomenon is explained by the
relative size of the bit vector in combination with the
number of independent hashing functions employed.

The filter error rates shown in the table are
calculated using the integral number of hashing functions
closest to the minimum error rate achieved at a
non-integer X. Even for relatively large bit vectors, the
number of hashing functions remains quite modest. The last
observation is that there is a marked increase in the
filter error rate as the probability of referencing a
non-selected key increases. This result is interesting in
that the derivation of the values contained in the table
do not involve either n or N, the total number of tuple
occurrences, directly.

Although the Bloom filter storage structure offers
several distinct advantages for implementing simple
adaptive selectors, the results shown in the table suggest
some guidelines for its use. First, a Bloom filter will be
effective if the size of the bit vector can be kept
relatively small. If a very large bit vector is required
to achieve an acceptable error rate, alternative storage

183

structures may prove to be superior, e.g., a dense

hierarchic index.
Secondly, regardless of the number of selected keys

to be represented, if the probability of referencing
non-selected keys is high, it may not be possible to
achieve an acceptable error rate. The determination of n,
p, and q in the design process comes from an analysis of
the empirical reference distribution. A large value of q
might be indicative of a nearly uniform reference
distribution, in which case the simple adaptive selector
may not be warranted. Or, the number of selected keys may
be so small relative to the total number of tuple
occurrences that other storage structures may be more

appropriate.
Lastly, at each evaluation interval, the database

designer may opt to change any of the parameters of the
Bloom filter as the performance monitor evidence
indicates. This includes not supporting a simple adaptive
selector at periods of time when observed reference
activity is effectively uniform over the tuple

occurrences.

5.3.3 Secondary Memory Organization
At present, the process of physical database design

only treats operational issues as they relate to
pre-implementation decisions. Once made, these decisions
are extremely difficult to change. Typically,

184

operationally oriented information such as data volume and
transaction frequency are estimated in order to decide on
efficient record segmentation, secondary memory block
sizes, and file (device) allocation. The effectiveness of
these design decisions will likely diminish as the
database is installed and in operational use for a period

of time.
The very nature of the selector and adaptive selector

abstractions is that they are to provide a measure of
adaptability to the database not only in its logical
design but also throughout its operational lifetime. To
accomplish this, a database management system should not
only recognize and represent adaptability but should also
provide a flexible environment for managing adaptability
at the level of physical occurrences. This subsection and
the next will explore two proposals which will enable a
database management system to effectively respond to the
dynamics of the occurrence dimension with an aim at
improving the overall operational performance of the

stored database.
The principal operational task of a database

management system is to provide efficient access to the
stored data occurrences. This involves the management and
coordination of a hierarchy of storage devices. Two levels
of the storage hierarchy will be focused upon here;
primary (processor) memory and secondary memory. There are
other levels in a typical storage hierarchy, such as a

185

high-speed cache memory and archival memory, but they are
not of direct concern for what follows.

Secondary memory provides the permanent repository
for a stored database. Data occurrences are organized into
logical groupings such as tuples (records) and these are
further aggregated into larger units, or blocks, for
efficient transfer to primary memory. Because secondary
memory devices are relatively slow, transfers of blocks of
data to and from processor memory are quite expensive. The
operational performance of a DBMS is then critically
linked to the efficiency of secondary memory organization.

Traditionally, data occurrences are organized in
secondary memory according to criteria not related to
performance considerations. Tuples or records may be
allocated to blocks in some logical order such as
increasing primary key sequence. In some instances, tuples
of different types participating in certain relationships
may be clustered closely together. These criteria often
require that the data occurrences be "pinned” [ÜLLM80] to
their secondary memory locations. The storage structures
used to support primary, relationship, and secondary
access to the data occurrences depend on these fixed,
permanent addresses. While these criteria are logically
sensible, they are not necessarily the most efficient
organizations from the perspective of efficient retrieval.

The secondary memory organization proposed here is to
allow all data occurrences, at the aggregate level of

186

tuples, to be "unpinned." That is, tuple occurrences are
free to be moved or relocated as long as all of the
storage structures used to provide access to the tuples
are maintained consistently. This particular organization
is more costly from the storage structure perspective but
can be highly efficient in overall performance. All
required access paths to unpinned tuple occurrences can be
provided by existing storage structures such as dense

hierarchic indexes [HAER781.
The consequence of allowing tuple occurrences to be

unpinned, and potentially relocatable, is that the
placement of the tuple occurrences can be based on a
criterion of efficient retrieval. Recognizing that the
pattern of access to stored tuple occurrences is very
unlikely to be uniform, the tuple occurrences can be

/
distributed among blocks of secondary memory in a way
which can reduce significantly the number of costly block
transfers between secondary and primary memory.

To affect such an organization requires that
performance monitoring data be kept on the relative
frequency of access to individual tuple occurrences. These
data would then provide the information to identify and
collect the more frequently retrieved tuple occurrences
into a set of high frequency of reference blocks which
would serve to minimize the number of secondary memory
references by maximizing the likelihood of finding a
desired occurrence in processor memory. The periodic

187

relocation of tuple occurrence* could be carried out as
often as deemed necessary over the operational life of the

database.
The price to be paid for maintaining this

organization includes the cost of the reorganization as
well as the additional overhead for the various storage
structures. This price, however, is not necessarily
excessive because database files and their associated
storage structures require periodic reorganizations to
recover space freed by deletions and to merge overflow
areas into the main database files [HELD78].

A DBMS policy which periodically reorganizes its
secondary memory on the basis of observed frequency of
reference to individual tuples can be designed and
implemented regardless of whether selector or adaptive
selectors are used. The only requirements for adopting
such a policy are that the secondary memory organization
does not pin tuple occurrences to fixed locations and that
some performance monitoring capability is provided to
trace reference patterns. Selectors and adaptive
selectors, however, provide a unique opportunity for
exploiting this secondary memory organization.

In the case of a simple selector, the occurrences of
tuples of a particular type are partitioned on the basis
of a boolean qualification of an attribute value. With a
flexible secondary memory organization, the selected tuple
occurrences can be clustered into a set of logically

188

contiguous blocks. When the filter operator is applied to
these occurrences, only those blocks containing the
selected tuples need be transferred to processor memory.
Similarly, the complement operator would reference only
blocks containing non—selected tuple occurrences.

This would significantly improve retrieval
performance when either of these two operators is used in
conjunction with a query. Also, within either subset of
blocks, individual tuple occurrences can still be ordered
on observed frequency of reference. This same effect can
be achieved when a relationship selector is defined.

The most obvious case for periodically reorganizing
secondary memory on observed frequency of reference is the
simple adaptive selector. The criterion for membership in
a simple adaptive selector is based on the recency and
frequency of reference to specific tuple occurrences.
Maintaining a storage structure to support a test of set
membership operator is of only marginal value if the
selected tuples cannot be retrieved efficiently.

When establishing or evaluating (i.e., updating) the
storage structure for a simple adaptive selector, tuple
occurrences are selected for membership by examining
performance monitor data. As individual tuple occurrences
are selected, they can simultaneously be clustered into a
set of blocks. These blocks, in turn, would have a much
higher probability of reference and consequently would be

189

more likely to be found in the processor memory buffer
area when requested.

Lastly, a relationship adaptive selector would be
treated in much the same way as the simple selector or
relationship selector. Those tuple occurrences selected
because they are currently participating in a specified
relationship would be physically clustered in secondary

memory.
These assertions about measurable improvements in the

retrieval performance of an operational database, although
based on strong intuitive grounds, have not been proven
analytically. There are simply too many factors to
consider when trying to characterize the magnitude of any
such improvement. For example, the stochastic nature of
the reference process, the effect of multiple, concurrent
database users, the operational characteristics of the
DBMS and host operating system, and the frequency of the
periodic reorganizations would all have an effect on any
measure of performance.

5.3.4 An Adaptive Buffer Management Policy
The periodic relocation of data occurrences based on

observed frequency of access has as its ultimate goal the
improvement of database management system performance
through the efficient and effective organization of
secondary memory. There are numerous other opportunities
to make improvements in DBMS performance ranging from

190

query optimization in the data manipulation language to
the careful choice of additional, secondary storage
structures. It is generally accepted, however, that the
most significant improvements in performance will be
achieved when the rate of data block transfers between
processor memory and secondary memory is minimized.

Because of the great disparity in the speed of access
between these two levels of memory, the cost of
transferring blocks of data to and from processor memory
is the dominant factor in DBMS performance. This issue was
raised in the proposal for periodic tuple relocation. The
purpose of the relocation of tuple occurrences in
secondary memory was to cluster the high frequency of
reference tuples into blocks which would have a
correspondingly high probability of being found in
processor memory thereby reducing the number of transfers
needed to satisfy retrieval requests.

It was argued that this alone would lead to
measurable performance gains. In order to fully realize
these gains, consideration must be given to the management
and organization of processor memory as well. The
processor memory region allocated to hold the transferred
blocks of data occurrences is the DBMS buffer area. This
area is much smaller than the secondary memory area
required to hold the entire stored database. Eventually,
blocks of secondary memory to be brought into processor
memory must displace previously transferred blocks because

191

the buffer will be found to be full* To the extent that
the buffer area can be managed to increase the likelihood
of finding a desired block in the buffer, the number of
these costly transfers can be reduced.

The problem of organizing and managing a DBMS buffer
area is quite similar to the problem encountered in
virtual memory operating systems [DENN70J. In both cases,
a relatively small (real) processor memory area is
available to accommodate the contents of a rather large
(virtual) secondary memory area. The key to efficiently
managing a DBMS buffer area lies in the choice of the
policy used to decide which buffer block to displace when
a newly transferred block of data finds the buffer full.

Numerous buffer management policies have been
proposed and analyzed (viz., Coffman and Denning ICOFF73]
and King [KING71]). They differ chiefly in the nature of
the information they use to make the replacement decision.
The comparative measure of efficiency of a buffer
management policy is the observed rate of buffer faults,
or block replacements, it experiences in servicing a
suitably long sequence of independent data block
references. The Appendix will describe in detail the
assumptions usually made in calculating buffer fault rates

for specific policies.
The most widely used buffer management policy is the

well-known Least Recently Used (LRU) policy. In the LRU
policy, the identity of the blocks currently in the buffer

192

is kept (theoretically) in a stack. Each time a buffer
block is referenced its identifier is advanced to the top
of the stack with the other block identifiers being pushed
down in the stack. When a block is to be transferred to a
full buffer, the block currently occupying the last
(bottom) stack position is the candidate for displacement.

The information used in the LRU replacement policy
reflects the most recent reference history of the buffer.
Presumably, the block chosen for replacement has not been
referenced recently and is therefore unlikely to be
referenced in the near future. This policy does not take
into account the relative frequency of reference to
individual data blocks but relies solely on the recency of

reference.
An interesting, albeit impractical, policy is the AO

buffer management policy of Denning, Chen, and Schedler
[DENN68]. This policy assumes full and complete knowledge
of the stationary block reference probabilities. The
replacement decision rule is always to replace the buffer
block which has the least, known probability of reference.
For a database consisting of N data blocks in secondary
memory, a processor memory buffer area of size n (n < N)
will eventually contain the (n-1) highest probability of
reference blocks. The remaining buffer block will then be
used to service all references to the N-n+1 lower
probability data blocks.

193

Because of the impossibly of knowing the exact,
stationary block reference distribution, this particular
buffer management policy is not implementable. Under this
assumption, however, it is known to be the optimum buffer
management policy. Therefore, the AO policy provides a
lower bound on the buffer fault rate and is used as a
standard for comparison of other policies. Where the LRU
policy was concerned with recency of reference to data
blocks, the AO policy is concerned strictly with the
frequency (probability) of reference.

A buffer management policy which combines both of
these criteria in its replacement decision, and is
feasible to implement, should be able to offer substantial
gains in the reduction of buffer faults. The following
proposal for a Least Frequently and Recently Used (LFRU)
buffer management policy will be shown to be no worse that
the LRU policy and to approach the optimum AO policy as
the distribution of data block references becomes
increasingly non-uniform.

To meet the criterion of recency of reference, the
LFRU buffer management policy will maintain a modified LRU
stack discipline. The identity of each data block will be
entered into the top of the stack when referenced and will
be pushed down in the stack as subsequent blocks are
entered. Associated with each data block is an empirical
estimate of its reference probability obtained from the
performance monitor data. This estimate will be used to

194

incorporate frequency of reference into the replacement
decision.

For every data block currently represented in the LRU
stack, a quantity called the residual life expectancy will
be calculated. Given the data block's position in the LRU
stack, the residual life expectancy is an estimate of the
probability that the block will be rereferenced before it
would be removed from the LRU stack. The replacement
decision rule is then to remove that block from the buffer
which has the smallest residual life expectancy. This will
frequently, but not always, be the block in the lowest
(bottom) stack position.

The residual life expectancy is calculated in the
following manner. Assume that there are a total of N data
blocks in the database and there are n buffer slots
available (n < N). For a data block j currently in the
i-th stack position (the top stack position is 1) with
estimated reference probability Pj, the residual life
expectancy is given by;

1 - (1 - Pj)n-i+l

When pj is small, this can be approximated by:

1 - exp(-(n-i+l)Pj)

The interpretation of this expression is that the
block in question is (n—i) positions from the bottom of
the LRU stack. The probability that block j is not

195

referenced in the next (n-i+1) independent references to
data blocks, and consequently would leave the LRU stack,
is (1 - One minus this quantity is the expected
probability that block j will be rereferenced. Using the
estimated block reference probability in conjunction with
the relative stack position then combines both the
criteria of frequency of reference with recency of

reference.
Figure 5.7 demonstrates the use of residual life

expectancies in the LFRU buffer management policy. A
simple five position LRU stack is used in each part of the
figure. The relative stack position, block identifier,
estimated probability, and computed residual life
expectancy constitute the columns. The top portion of the
figure illustrates a typical situation with a full buffer.
A reference to a data block not present in the buffer
would cause block 57 to be displaced to accommodate the
entering block. This is exactly the decision that would be

made in a strict LRU buffer.

196

STACK BLOCK PROBABILITY RESIDUAL
POSITION NUMBER ESTIMATE LIFE

1 43 0.0012 0.0060
2 87 0.0025 0.0100
3 16 0.0009 0.0027
4 93 0.0012 0.0024
5 57 0.0020 0.0020

STACK
POSITION

1
2
3
4
5

(a) Initial configuration

BLOCK
NUMBER

93
43
87
16
57

PROBABILITY
ESTIMATE
0.0012
0.0012
0.0025
0.0009
0.0020

RESIDUAL
LIFE

0.0060
0.0048
0.0075
0.0018
0.0020

(b) Internal stack reference

STACK
POSITION

1
2
3
4
5

BLOCK
NUMBER

35
93
43
87
57

PROBABILITY
ESTIMATE
0.0008
0.0012
0.0012
0.0025
0.0020

RESIDUAL
LIFE
0.0040
0.0048
0.0036
0.0050
0.0020

(c) External block reference
LFRU stack configurations

Figure 5.7

197

The middle portion of the figure shows the resulting
stack arrangement after a reference to block 93 which is
already in the buffer. The purpose here is to illustrate
the subsequent stack configuration and the changes in the
residual life expectancies. In this state, block number 16
in the next to last stack position is the candidate for
displacement under the LFRU replacement policy. The bottom
portion of the figure then shows the stack arrangement
when block 35 (not presently in the stack) is referenced.

If the reference distribution to the data blocks is
near uniform, the LFRU policy will behave exactly as the
LRU policy. When the reference distribution shows marked
non-uniformity, the LFRU policy will tend to behave as the
AO policy using estimated block reference probabilities
rather than known probabilities. In addition to the
potential for achieving near optimum performance, the LFRU
policy will be able to adapt to changing patterns of
reference as detected by the performance monitor.

To assess the effectiveness of the LFRU buffer
management policy, a set of simulation experiments has
been performed to measure the relative buffer fault rates
under the LRU, AO, and LFRU policies. The Appendix
describes the simulation model and its assumptions in
detail. Briefly, however, the simulation experiments were
based on the Independent Reference Model [COFF73]. This
model consists of generating a sequence independent and
identically distributed random variables which represent

198

database block references. A processor memory buffer of a
given size is managed according to the chosen policy and
the number of buffer faults observed in processing a
sufficiently long reference stream is recorded.

In the experiments performed here the database size
was chosen to be 20,000 tuple occurrences. These tuples
were then distributed randomly over 2,000 database blocks.
The processor memory buffer was limited to holding 20
blocks, or one percent of the database. Although these
sizes are relatively small with respect to typical
databases, the important factor is not the absolute size
but rather the relative size of the buffer to the entire
database. Increasing or decreasing either the database
size or the buffer size would make no appreciable
difference as long as the ratio of the buffer to the
database remainder the same.

The mass function which assigns probabilities of
reference to the individual tuples was taken from Knuth
[KNUT69]. The mass attributable to the i-th (ordered)

tuple is given by;

[ik _ (i-l)k) / N%

where N is the total number of tuples and k (0 < k <= 1)
is the skewness parameter. Clearly, when k is equal to
one, the mass function is uniform. As k approaches zero,
the distribution becomes increasing skewed. With k =
0.1386, the distribution becomes exactly the 80/20 Rule,

199

that is, 80 percent of the mass is assigned to the first
20 percent of the tuple occurrences.

The experiments consisted of using each of three
buffer management policies and observing the buffer fault
rate over 100,000 independent and identically distributed
random references to tuples. The references were generated
using the probability mass function above with k set at
0.8 (very nearly uniform), 0.5 (modestly skewed), and
0.1386. For the AO policy, the exact probabilities of
reference to tuples, and consequently the cumulative block
probabilities, were known and used in the replacement
decision. In LRU, the tuple probabilities are not needed
and under LFRU, the probabilities of reference were
estimated over the course of the simulation runs.

Table 5.2 summarizes the results of these
experiments. When the reference distribution is nearly
uniform (k = 0.8), the observed fault rates are quite
high which is consistent with the fact that the buffer can
only accommodate one percent of the data blocks. The AO
policy establishes the lower bound for this particular
reference stream. LRU and LFRU lie above the bound and are

virtually identical.

200

SKEWNESS
PARAMETER

k

BUFFER
REPLACEMENT

POLICY

OBSERVED
FAULT
RATE

0.8 LRU 0.99078
LFRU 0.99082
AO 0.98893

0.5 LRU 0.98896
LFRU 0.97999
AO 0.96324

0.1386 LRU
LFRU
AO

0.79269
0.69282
0.66098

Experimental results
Table 5.2

As the distribution becomes more skewed with k = 0.5,
all three policies begin to show slightly improved
performance. AO is again the lower bound on the fault rate
for the reference stream in question. The decrease in its
fault rate from the nearly uniform case is due to the fact
that the replacement policy can take advantage of the
known, non-uniform reference probabilities. With a
moderate degree of non—uniformity the LFRU policy can be
seen to be superior to LRU, albeit only slightly.

A marked difference in the three policies is evident
in the highly skewed 80/20 case. Not only does the lower
bound established by AO drop significantly, but the
performance of LFRU is approaching this optimum rate. In

201

fact, if the simulated reference stream was extended
indefinitely the estimated probabilities would converge to
the true, underlying probabilities and LFRU would
eventually converge to the optimum fault rate.

These results do not constitute a formal verification
of the superiority of LFRU over the standard LRU buffer
management policy. This is due in large part to the fact
that the results were obtained under ideal, and perhaps
unrealistic, conditions. They do, however, provide some
insight as to the LFRU policy could offer significant
performance improvement when the distribution of data
block references is non-uniform.

5.4 Summary
The third, and last, level of the database design

methodology portrayed in Figure 2.1 concerns the design
decisions which must be made at the time of physical
implementation. The majority of these decisions are made
in the context of the particular computer system
environment. Among these decisions, however, the storage
structure selection problem can be examined somewhat
independently of the target DBMS and host operating

system.
The first major section of this chapter addressed the

storage structure selection problem within the framework
of the generic data model developed in the preceding
chapter. The primary goal was to suggest possible storage

202

structures which would be suitable for implementing
selectors and adaptive selectors. It was assumed that a
hierarchical dense block index storage structure (or
access method) was available. This assumption is not
unrealistic as many commercially available DBMSs provide
such a structure. Primary access to all stored base
relation extensions was then assumed to be implemented in
this way. Secondary and relationship access paths were
assumed, without loss of generality, to be non-existent.

The suggested storage structure to support simple
selectors, relationship selectors, and relationship
adaptive selectors was then to build and maintain separate
hierarchical dense indexes. In each of these three cases,
it was argued that the hierarchical dense index structure
was not only an efficient, economical choice of storage
structure but that it could be employed effectively by the
filter, complement, and implied join extended relational
algebra operators.

Storage structure support for simple adaptive
selectors, however, presents a different set of
requirements. First, the membership of a simple adaptive
selector is determined by an externally defined criterion,
that is, observed recency and frequency of reference. This
then suggests that the membership of the simple adaptive
selector will likely change over time. Secondly, with a
simple adaptive selector, it is not necessary for its
storage structure to provide an alternative access path.

203

Instead, it must efficiently support the set membership

operator.
For these reasons, the recommended storage structure

for the simple adaptive selector was the Bloom filter.
Because of the similarity of the requirements of a simple
adaptive selector and a differential file, it was argued
that this storage structure would provide the necessary
efficiency, simplicity, and flexibility to support a
dynamically changing set membership.

Both the hierarchic dense index and Bloom filter
storage structures represent only suggested storage
structures. However, they do satisfy one of the goals of
this chapter, that is, the recommendations demonstrate the
feasibility and practicality of including the occurrence
dimension in the internal data model representation of a

database design.
The next major section of this chapter then addressed

certain operational considerations which would necessarily
affect an operational database management system which
implements selectors and adaptive selectors. First, the
requirement for on—going performance monitoring of
reference to stored tuple occurrences was discussed. While
this type of operational data is often routinely
collected, in the case of simple adaptive selectors it is
absolutely essential for constructing and parameterizing
the Bloom filter storage structure.

204

Next, a proposal was advanced for the periodic
relocation of tuple occurrences. This proposal called for
periodically reorganizing the tuple occurrences of base
relation extensions in order to cluster the high frequency
of reference tuples into a relatively small number of
storage blocks. The justification for this proposal was
that by performing such relocations, the overall
operational performance of the database would be improved
by reducing the input/output load on the system.

The last operational consideration concerned the
proposal of a new database buffer management policy. The
Least Recently and Frequently Used (LFRU) policy was
presented and contrasted with the most commonly employed
buffer management policy, the Least Recently Used (LRU)
policy, as well as the known (non— look—ahead) optimum
policy. The results of a simulation study were offered as
an indication of the prospective operational improvements
which could be gained by utilizing this policy.

CHAPTER 6

CONCLUSION

6.1 Summary of the Research
The main theme of this work has centered on the

concept of the occurrence dimension in the design of a
database. The recognition of this dimension in the process
of database design offers two principal advantages:
1. it enhances the ability of a database designer to
capture and represent certain semantic information
requirements which are not otherwise representable in
the traditional two-dimensional design process; and
2, it offers the potential to significantly increase the
operational performance characteristics of the database
as well as to extend its operational lifetime.

In order to introduce the occurrence dimension and
examine its implications in the process of database
design, an integrated three level database design
methodology was employed. This particular methodology
builds upon existing research and practice in database
design and then extends the process by incorporating the
occurrence dimension.

The first level of the proposed design methodology is
concerned with the art of abstract data modeling. This
preliminary design phase consists of identifying the

205

206

relevant objects about which an enterprise collects and
stores data and how these objects are to be organized so
as to convey some of their meaning or interpretation
within the enterprise. The Entity Relationship Model
[CHEM76] along with the semantic modeling constructs of
Smith and Smith [SMIT77a, SMIT77b] and Codd [C0DD79], was
j^eviewed as the basis for formalizing the abstract design

process.
This review presented a summary of the

state-of-the-art in abstract database design. Emphasis was
placed on representing the meaning and interpretation of
data at the expense of implementation details. It was then
argued that there exist significant opportunities to
capture and represent additional meaning within an
abstract data model if the notion of occurrences of data
objects is conceptualized at this level.

At first, the idea of considering occurrences in an
abstract data model appears at variance with the nature of
the abstraction process. That is, abstraction implies the
suppression of detail while the consideration of data
occurrences would ordinarily imply the inclusion of
considerable detail. However, several specific instances
were identified where it was essential to explicitly
recognize the existence of occurrences of data objects in
order to adequately capture their full meaning.

While the traditional diagrammatic portrayal of an
abstract database design is rendered in two dimensions.

207

the art of abstract data modeling was then extended into a
third modeling dimension - the occurrence dimension. Two
new database abstractions, selectors and adaptive
selectors, were introduced to provide mechanisms to
formally represent semantic information requirements in

this dimension.
The ability to model the semantics of an enterprise s

information requirements in the occurrence dimension would
be of little or no value unless there exist corresponding
facilities at the lower levels of the database design
methodology. The next phase of the three level design
methodology involves the mapping of an abstract data model
onto the structures supported by a generic data model. The
generic data model chosen was the relational model of
data. In order to accommodate any selectors or adaptive
selectors employed in the abstract data modeling phase,
the notion of "artificial" relations was introduced. These
artificial relations serve as surrogates for the selectors
and adaptive selectors in this transformation process.

Once artificial relations have been defined, there
must then be a facility for their formal specification in
a data definition language for some implementation of the
relational data model. A syntax for a relational data
definition language facility was proposed using the PASCAL
programming language as a host. Each type of selector and
adaptive selector was given a data type specification as

208

well as facility for defining artificial relation
extensions based on that type.

Using this data definition language facility, a
relational schema may then be developed for a database
design which incorporates selectors and adaptive
selectors. To complete the generic data model level of the
methodology, a set of extended relational algebra
operators was presented. These operators enable the
manipulation of the artificial relation extensions by an
application program or ad hoc query language such as

SEQUEL.
The last level of the methodology concerns the

internal, physical details of implementing the relational
schema with selectors and adaptive selectors in some
particular operating environment. Specifically,
recommendations were made for providing storage structure
support for selectors and adaptive selectors.
Additionally, several proposals were advanced which
concern the on-going management of an operational

database.

6.2 Contributions
The single, most important contribution of this work

lies in the recognition of the occurrence dimension in the
art and practice of database design. First, by being able
to conceptualize occurrences of data objects in the art of
abstract data modeling, significantly more of the semantic

209

meaning of those data objects can be explicitly
represented in the preliminary abstract design.

In order to demonstrate the nature and importance of
the occurrence dimension, an example of a hypothetical
college database design problem was presented. This design
problem, while obviously over simplified, was constructed
so as to motivate the kinds of situations which would give
rise to the need for the occurrence dimension.

Four quite natural semantic rules were included in the
information requirements for the college database which
could not be explicitly represented in a two-dimensional
abstract data model. The reason is that these semantic
rules concern properties of the occurrences of the
college's data objects and traditional abstract data
modeling suppresses the notion of occurrences. To address
this problem, the selector and adaptive selector database
abstractions were introduced. These database abstractions
are defined exclusively in the occurrence dimension.

The selector abstraction was presented in two forms -
the simple selector and the relationship selector. Each
form was defined as a partitioning of the occurrences of a
given entity based on a boolean qualification of one of
its attribute values. The definition of a simple selector
on an entity does not affect its participation in any
relationships. Rather, any relationships involving the
entity are assumed to be potentially valid for all entity
occurrences regardless of their selection. With a

210

relationship selector, however, membership in the selected
subset is a necessary precondition for an entity
occurrence to participate in certain relationships.

It was then shown how these two forms of selector
abstraction could be used to adequately capture and
represent two of the given semantic rules which were
otherwise not representable. Although the examples were
taken from the context of the sample design problem, they
are representative of a large class of similar situations
which occur frequently in database design.

Similarly, two forms of adaptive selector were
presented - the simple adaptive selector and the
relationship adaptive selector. In each form of adaptive
selector, the membership of the selected subset was based
on a temporal criterion. The simple adaptive selector is
intended to identify a temporally active subset of the
occurrences of an entity. The membership criterion is
predicated on the observed recency and frequency of
reference to the entity occurrences. In the relationship
adaptive selector, membership is based on the entity
occurrence's participation in a stated relationship at any

given time.
These two forms of adaptive selector abstraction were

also demonstrated in the context of the sample design
problem. They were shown to be capable of adequately
representing the remaining two semantic rules. Again,
although the examples were contrived, it is evident that

211

the use of adaptive selectors enhances the ability of a
database designer to capture semantically meaningful
aspects of enterprise’s information requirements in an

abstract data model.
#ith the art of abstract data modeling extended into

the occurrence dimension, it was then necessary to map
this modeling environment into the structures, operators,
and constraints of a generic data model, in this case, the
relational model of data. Because the selector and
adaptive selector database abstractions do not create any
new entities or relationships within a particular database
design, they would have no direct representational form as
base relations. To address this problem, the concept of
artificial relations was introduced. The artificial
relations are intended to serve as surrogates for any
selectors or adaptive selectors present in the abstract

data model.
A complete relational schema definition corresponding

to an abstract data model was then defined as a collection
of base relations along with any necessary artificial
relations. These artificial relations effectively
represent the occurrence dimension in the relational model
of data. In order to demonstrate the practicality of
incorporating artificial relations, and consequently
selectors and adaptive selectors, into the relational
model of data, a relational data definition language

facility was defined.

212

The programming language PASCAL was chosen as the
vehicle for describing the proposed data definition
language facility* This choice was motivated by similar
approach taken by Smith and Smith [SMIT77a, SMIT77b]. The
syntax of the data definition language was completely
defined including data typing facilities for both
selectors and adaptive selectors. The extensional
counterparts of these data types were given in terms of
PASCAL variable definitions. In particular, the variable
definition of adaptive selectors was based on the abstract
data type of the powerset [HOAR72J,

In addition to providing data definition language
capabilities for representing the occurrence dimension
within the relational model of data, it was also necessary
to provide data manipulation language facilities to
operate on the selectors and adaptive selectors. For this
purpose, five new operators were proposed for the
relational algebra. Each of these operators was carefully
defined and related to the original five primitive
operators which constitute the basis for the relational
algebra.

To demonstrate their usefulness, a series of sample
database queries was proposed. Using the stated
assumptions regarding the number of data occurrences in
the sample database design problem, the queries were first
formulated in an extended version of the query language
SEQUEL which implements the five new operators. Each query

213

was then formulated without the appropriate artificial
relation and extended operators. It was shown that
significant performance gains could be realized when the
artificial relations and extended operators were employed.
These gains were measured in terms of the number of tuple
occurrences which would have to be retrieved from
secondary storage in order to satisfy the query request.
Also, it was shown in several of the queries that the
formulation with the extended operators was more concise
and more easily understandable.

The definition and subsequent manipulation of the
artificial relations which represent the occurrence
dimension in the relational model of data presupposed that
they will have some form of physical representation. It
was assumed, in the context of the sample database design
problem, that each base relation extension would be stored
as a separate flat file. A hierarchic dense block index
storage structure was then associated with each base
relation in order to provide a primary access path to the

tuple occurrences.
It was suggested that artificial relations be

implemented as separate storage structures for the
associated base relations. For each type of artificial
relation (selector or adaptive selector), a recommended
storage structure was given. In the case of simple
selectors, relationship selectors, and relationship
adaptive selectors, the hierarchic dense index was the

214

recommended choice. Arguments in support of this choice
were given based upon the relative efficiency, simplicity,
and flexibility of this storage structure. Additionally,
it was shown that this recommended storage structure would
be quite suitable for supporting the extended relational

operators in responding to queries.
For the simple adaptive selector, the Bloom filter

storage structure [BL0070] was recommended. This choice
was predicated on the unique requirements of the simple
adaptive selector, specifically the ability to rapidly
adapt to changing patterns of usage and to efficiently
support the set membership operator. A discussion of the
Bloom filter paramenter selection problem as it relates to
simple adaptive selectors was also given.

Lastly, several requirements for the operational
support and maintenance of these storage structures were
reviewed. Among these, a specific contribution was made in
the proposal for a new DBMS buffer management policy. This
policy (LFRU) offers the potential to greatly reduce the
number of buffer faults which would be experienced during
the operation of a database. In support of this claim, the
results of a series of simulation experiments were
presented which demonstrate the potential gains. Although
this policy would be most effective in the presence of
adaptive selectors, its usefulness extends to any
operational DBMS environment where on-going performance
monitoring would provide the necessary information.

215

6.3 Further Research
The recognition of the occurrence dimension in data

modeling has created new opportunities for the
representation of semantics in the art of database design.
The introduction and definition of the selector and
adaptive selector database abstractions represent but two
possibilities for capturing and implementing semantically
meaningful aspects of the real world as they might arise
in a database design. There are undoubtedly other such
abstractions which are still to be discovered.

One such possibility could be in the area of
distributed databases. While the occurrences of an entity
may be viewed globally as a set of homogeneous data
objects, each occurrence has a location characteristic
indicating the site at which it is physically stored. A
form of database abstraction could be used to represent
this aspect of the entity throughout the design process.
Further examination of the nature of the occurrence
dimension should lead to a much greater understanding of
the process of data modeling.

While the selector and adaptive selector abstractions
have been rather narrowly defined, there also exists the
possibility of expanding upon their definitions. More
general criteria could be used in the formulation of the
predicates used to define selectors thereby extending
their applicability. Similarly, recent work in the area of

216

representing the semantics of time in databases [CLIFF83]
is quite interesting. The concept of historical databases
intersects somewhat with the role of adaptive selectors
and may prove to be a fruitful extension of both ideas.

Lastly, the possibility of implementing these ideas
in an actual database management system should be
undertaken. The true potential of the research presented
here will be better understood when a database management
system incorporating selectors and adaptive selectors is
available for experimentation and observation.

APPENDIX

217

218

APPENDIX

SIMULATION MODEL ASSUMPTIONS
The simulation model used to derive the results

contained in Table 5.2 was based on the Independent
Reference Model [COFF73]. The simulated database is
assumed to consist of a finite number of tuple occurrences
organized into blocks which constitute the unit of
transfer between levels of memory. Associated with each
tuple occurrence is a known, stationary probability of
reference. The simulation then involves generating a
sequence of independent and identically distributed
references to the stored tuples. The figure of merit is
the observed rate of buffer faults obtained for a given

buffer management policy.
The Independent Reference Model has been criticized

for the assumption of independent requests to tuples.
However, Easton [EAST75] and Fagin and Easton (FAGI76]
have validated the Independent Reference Model against
trace data taken from an operational (IMS/VS) database. A
possible rationalization for the success of their
validation experiments may lie in the observation that a
DBMS services many users simultaneously and when their
request streams are merged, the result is an apparently

independent sequence.
Assume that the simulated database contains a total

of N tuple occurrences numbered sequentially

219

(i=l,2,...,N). These tuples are then randomly assigned to
one of B = N/n blocks where there are n tuples per block.
The assignment of tuples to blocks was accomplished by
using a simple hashing algorithm. The simulated reference
stream consists of sequence of i.i.d. random variables

denoted:

, ...» Xj# ...»
The probability of a reference to the i-th stored tuple at
reference Xj is given in the following mass function:

Pr[Xj = i] = [i% - (i-l)k 1 /

The parameter k determines the skewness of the mass
function. The values of k=0.8 (nearly uniform), k=0.5
(modestly skewed), and k=0.1386 (the 80/20 Rule) were used

here.
To generate a simulated sequence of references to the

database, the probability integral transform method was
used. By first generating a uniform random deviate, U, the
ordinal number of the corresponding reference is obtained

from:

i = N U1/k

Each random tuple reference, Xj, is then transformed to
the appropriate block reference by again using the hashing

function.

220

The observed buffer fault rate for a sequence of M
such random references is determined as the ratio of the
number of faults occurring relative to the number of block
switchings. A block switching occurs at reference j+1 when
the block referenced by is not the same as the block
referenced by X^,

The reason for using block switchings as the unit of
discrete "time" is to avoid the unnecessary consideration
of rereferencing blocks consecutively. Easton [EAST75]
found that fault rates simulated over "real time" tended
to be quite high when validating them against actual data.
By ignoring consecutive references to the same block, he

was able to validate his model.
For each stored tuple, two quantities were

maintained. One was the block number to which it was
assigned and the other was a reference count field. In the
Least Recently Used (LRU) buffer management policy, the
reference count field was not used because this
information is not used in the policy. In the AO policy,
the reference count field contained the actual (constant)
probability of reference because this assumed to be known
in this policy. Lastly, in the Least Frequently and
Recently Used (LFRU) policy, the field was incremented
during the simulation to build up an empirical reference
distribution which is used in calculating the residual

life expectancy.

221

The actual simulation experiments consisted of
storing a total of N = 20,000 tuple occurrences in B =
2,000 blocks. The database buffer region in processor
memory was capable of holding at most 20 blocks (or 1%) of
the database. A simulated reference stream of M = 100,000
references was then generated.

The transient period until the buffer was first
filled was very short and was not considered to
significantly contaminate the observed results. In the
case of the LFRU policy, however, the transient period did
have an effect because the time to develop a reasonably
accurate empirical reference distribution was fairly long.
If a warm-up period were allowed to enable the empirical
reference distribution to begin to stabilize before
recording buffer faults, then the empirical distribution
would rapidly approach the true distribution and the LFRU
policy would approximate the AO (optimum) policy. It was
decided not to allow a warm-period so as not to bias the
results in favor of the proposed LFRU policy. The results
for the LFRU policy shown in Table 5.2 then underestimate

its true performance.
E a c h e x p e r i m e n t c o r r e s p o n d e d t o a c h o i c e o f t h e

s k e w n e s s p a r a m e t e r k a n d o n e o f t h e t h r e e b u f f e r

m a n a g e m e n t p o l i c i e s r e s u l t i n g i n a t o t a l o f n i n e

e x p e r i m e n t s . T h e m o d e l i t s e l f w a s c o d e d a s a PASCAL

p r o g r a m .

BIBLIOGRAPHY

222

223

BIBLIOGRAPHY

[AGHI82] A g h i l i , H o u t a n a n d D.G, S e v e r a n c e , "A p r a c t i c a l
g u i d e t o t h e d e s i g n o f d i f f e r e n t i a l f i l e s f o r
r e c o v e r y o f o n - l i n e d a t a b a s e s , " ACM TODS,
Vol. 7, No. 4, December 1982, pp. 540-565.

[ASTR76] Astrahan, M.M., et al., "System CGl*tional
approach to database management, ACM TODS,
Vol. 1, No. 2, June 1976, pp. 97-137.

[BL0070] Bloom, B.H., "Space/time trade-offs in hash
coding with allowable errors,” Comm* ACM,
vol. 13, No. 7, July 1970, pp.422-426.

ICHEN761 Chen, P.P-S., "The entity relationship model -
toward a unified view of data, ACM TODS,
Vol. 1, No. 1, March 1976, pp. 9-36.

[CL1FB3] Clifford, James and D.F. Warren, "Formal
semantics of time in databases," ACM TODS,
Vol. 8, No. 2, June 1983, pp. 214-254.

[CODD70] Codd, E.F., "A relational model of data for
large shared data banks," Comm. ACM, Vol. 13,
No. 6, June 1970, pp. 377-387.

[CODD79] Codd, E.F., "Extending the database relational
model to capture more meaning," ACM TODS,
Vol. 4, No, 4, December 1979, pp. 397-434.

[COFF73] Coffman, E.G. and P.J. Denning, Operating
systems theory, Prentice-Hall, 1973*

IDATE811 Date, C.J., An introduction to database systems,
3rd Edition, Addison-Wesley, 1981.

[DATE83] Date, C.J., An introduction to database systems.
Volume II, Addison-Wesley, 1983.

224

[DENN671 Denning, P.J., "The working set model for
programming behavior," Comm. ACM, Vol. 11,
No. 5, May 1967, pp. 323-333.

IDENN68] Denning, P.J., Y.C. Chen, and G.S. Schedler, A
model of program behavior under demand paging,
IBM T.J. Watson Research Center, RC2301,
September 1968.

[DENN70] Denning, P.J., "Virtual memory," ACM Computing
Surveys, Vol. 2, No. 3, September 1970, pp. 153—
189.

[EAST75] Easton, M.C., "Model for interactive data base
reference string," IBM J. of Res. Dev., Vol. 19,
No, 6, November 1975, pp. 550-556.

[FAGI76] Fagin, Ronald and M.C. Easton, "The independence
of miss ratio on page size," J . of ACM, Vol. 23,
No. 1, January 1976, pp. 128-146.

[GIBS741 Gibson, C.F. and R.L. Nolan, "Managing the four
stages of EDP growth," Harvard Business Review,
Vol. 52, No. 1, January-February 1974, pp. 76-
88.

[GREM82] Gremillion, L.L., "Designing a bloom filter for
differential file access," Comm. ACM, Vol. 25,
No. 9, September 1982, pp. 600-604.

[HAER78] Haerder, Theo, "Implementing a generalized
access path structure for a relational database
system," ACM TODS, Vol. 3, No. 3, September
1978, pp. 285-298.

[HAMM78] Hammer, M.M. and D.J. McLeod, "Semantic
integrity in a relational data base system,"
Proc. 1st VLDB, September 1975, pp. 25-47.

[HEIS63] Heising, W.P., IBM Systems Journal, Vol.
No. 2, 1963, pp. 114-115.

2,

[HELD78J Held, Gerald and Michael Stonebreaker, "B-trees
re-examined," Comm. ACM, Vol. 21, No. 2,
February 1978, pp. 139-143.

IHOAR72] Hoare, C.A.R., "Notes on data structuring," in
Dahl, O.-J., E.W. Dijkstra, and C.A.R. Hoare,
Structured programming. Academic Press, 1972.

(JENS76) Jensen, K. and N. Wirth, PASCAL user manual and
report, 2nd Edition, Springer-Verlag, 1976.

225

[KENT781

(KING711

(KNÜT691

(KNÜT73J

[MART75J

[NOLA791

[SEVE76]

[SMIT77a]

[SMIT77b]

ISMIT78J

ITEOR80]

ITSIC76]

[TSIC821

[ULLMBO]

K e n t , W i l l i a m , D a t a a n d r e a l i t y , N o r t h - H o l l a n d ,
1978.
King , W.F., III, "Analysis of paging
algorithms," Proc, IFIP Conference, August 1971,
pp. 485-490.
K n u t h , D . E . , T h e a r t o f c o m p u t e r p r o g r a m m i n g .
V o l u m e 2: S e m i n u m e r i c a l A l g o r i t h m s , A d d i s o n -
W e s l e y , 1969.
K n u t h , D . E . , T h e a r t o f c o m p u t e r p r o g r a m m i n g .
V o l u m e 3: S o r t i n g a n d S e a r c h i n g , A d d i s o n - W e s l e y ,
1973.
M a r t i n , J a m e s , C o m p u t e r D a t a - B a s e O r g a n i z a t i o n ,
P r e n t i c e - H a l l , 1975.
Nolan, R.L., "Managing the crises in data
processing," Harvard Business Review, Vol. 5/,
No. 2, March-April 1979, pp. 115-126.
Severance, D.G. and G.M. Lohman, "Differential
files: their application to the maintenance of
large databases," ACM TODS, Vol.l, No. 3,
September 1976, pp. 256-267.
Smith, J.M. and D.C.P. Smith, "Database
abstractions: aggregation," Comm. ACM, Vol. 20,
No. 6, June 1977, pp.405-413.
Smith, J.M. and D.C.P. Smith, "Database
abstractions: aggregation and generalization,
ACM TODS, Vol. 2, No. 2, June 1977, pp. 105-133.
Smith, J.M., "A normal form for abstract
syntax," Proc. 4th VLDB Conference, September
1982 , p p . 156- 162.

Teorey, T.J. and J.P. Fry, "The logical record
access approach to database design," ACM
Computing Surveys, Vol. 12, No. 2, June 1980,
pp. 179-212.
T s i c h r i t z i s , D.C., "LSL: a l i n k a n d s e l e c t o r
l a n g u a g e , " P r o c . ACM SIGMOD C o n f e r e n c e , 1976,
pp. 123-133.
T s i c h r i t z i s , D . C . a n d F . H . L o c h o v s k y , D a t a
M o d e l s , P r e n t i c e - H a l l , 1982.
O i l m a n , J . D . , P r i n c i p l e s o f d a t a b a s e s y s t e m s .
C o m p u t e r S c i e n c e P r e s s , 1980.

