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Abstract 

BACKGROUND:​ Heart disease has become a major health problem over the world. Valvular 

heart disease is one of the most common and serious forms of heart disease and can be diagnosed 

with cardiac auscultation. However, auscultation can be subject to inter-listener variability, 

subjectivity, environment, and training. Recent development of digital stethoscopes and machine 

learning tools enable computer-aided auscultation in clinical settings, among which the analysis 

of phonocardiogram (PCG) signals is one of the most popular and developed ones. In our present 

study, we focused on developing an R package, PCGCleaner, for the preprocessing of PCG 

signals. We replicated parts of a well-established algorithm for heart sound analysis in MATLAB 

code and translated them into R. We also implemented this tool on a heart sounds database 

established by the University of Michigan. 

METHODS:​ In the package PCGCleaner, we mainly incorporated two parts of functions for 

heart sound signal preprocessing, including denoising and homomorphic envelope detection. The 

raw heart sound recordings are recommended to be firstly pre-processed with band pass filters 

and remove noisy spikes to reduce the background noise during the denoising step. After 

denoising, homomorphic envelope detection can be performed for further single cardiac cycle 

identification. In order to examine the use of our package, we also implemented it on larger heart 

sounds samples which were collected from the University of Michigan Health System between 

2017 and 2020. 

RESULTS AND DISCUSSION:​ Among the study sample, our package PCGCleaner performs 

well in preprocessing of the raw heart sound signals. Our works enable researchers to preprocess 
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their raw heart sound signals in simple steps, which are fundamental but essential work before 

any further experiments of segmentation, feature extraction, or classification. Our future work 

will incorporate more functions for preprocessing and options for segmentation. The ultimate 

goal is to develop an R package to accomplish the feature extraction of heart sounds with 

multiple simple steps and provide a set of clean, adequate features for further sound 

classifications with various machine learning models.  

 

Background 

1. Heart disease in the US population 

Heart disease, as the leading cause of death in the United States, has become a major 

health problem over the years. About 647,000 Americans die from heart disease each year, 

which accounts for one out of every four deaths.​1​ Heart disease costs, including health care 

services, medicines, and lost productivity due to death, were about $555 billion in 2016, and will 

skyrocket to $1.1 trillion by 2035.​2​ According to the Center for Disease Control and Prevention 

(CDC), 12.1% of adults in the US were with diagnosed heart disease in 2019.​1​ Given this large 

prevalence and mortality, identifying individuals with early vascular or cardiac disease in need of 

intervention is extremely important. Studies have shown that early detection and treatment of 

heart disease could delay or prevent the onset of symptoms and thereby reduce the incidence of 

cardiovascular events in susceptible individuals.​3,4  

Heart valve disease is one of the most common and serious forms of heart disease. More 

than five million Americans are diagnosed with heart valve disease each year.​5​ There are four 
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valves in the heart, including aortic, mitral, tricuspid and pulmonary valves. These valves open 

and close as the blood flows into and away from the heart. Valvular heart disease is when any 

valve has damage or is diseased. These problems may include regurgitation and stenosis. 

Regurgitation refers to the condition that the valve flaps don’t close properly, causing blood to 

leak backward in the heart. In valve stenosis, the valve flaps become thick or stiff, and they may 

fuse together, resulting in a narrowed valve opening and reduced blood flow through the valve. 

A moderate or severe valve disease can lead to heart failure, stroke, blood clots, and other 

complications if it is not discovered and treated in a timely fashion. Heart valve disease treatment 

depends on severity of the condition, heart valve surgery  may eventually be needed to repair or 

replace the diseased heart valve. Some valve repair procedures require an open surgical approach 

whereas others can be done through an endovascular approach.​6  

An echocardiogram is the gold standard to confirm the diagnosis of a heart valve disease 

and to evaluate its effects on a patient’s heart. As an essential tool for the accurate diagnosis of 

various heart conditions in the field of cardiology, an echocardiogram is an imaging procedure 

that uses high-frequency sound waves to create pictures of a heart’s chambers, valves, walls, and 

blood vessels.​7​ A standard echocardiogram has the advantage of being painless, safe, and without 

exposure to radiation. However, it can cost $2,000 or more for people who do not have health 

insurance in the United States, and up to half the cost for those with an insurance due to a 

co-pay.​8​ Performing and interpreting an echocardiogram requires special expertise in cardiac 

imaging. This expertise is particularly limited in some developing countries, which limits the 

global availability of echocardiograms.  
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2. Heart sounds and auscultation 

Heart valve diseases are also associated with and reflected by the sounds that the heart 

produces. The heart sounds in healthy adults are described as the first heart sound (S1) caused by 

the closure of atrioventricular valves, and the second heart sound (S2) caused by the closure of 

semilunar valves. The interval between the beginning of S1 to the beginning of the following S1 

is called a cardiac cycle.  ​Systole​ refers to the interval between the end of S1 to the beginning of 

the same cycle’s S2. ​Diastole​ refers to the interval between the end of S2 to the beginning of the 

next cycle’s S1.​9​ On the other hand, cardiac cycles of abnormal heart sounds include elements 

other than S1 and S2. 

Heart murmurs are sounds made by turbulent blood in or near the heart during the 

heartbeat cycle. The blood turbulence is mainly caused by the opening and closing of heart 

valves, as well as fast accelerations and retardations of blood flow in the heart chambers.​10​ There 

are two types of heart murmurs in general: physiologic and pathologic murmurs. A physiologic 

murmur is usually harmless, but a pathologic one, on the other hand, could be an indicator of a 

vital heart problem such as valve calcification, rupture, or endocarditis.​11​ Therefore, it is essential 

to identify an abnormal heart murmur at an initial stage of its onset to avoid deterioration or 

fatality. 

Cardiac auscultation is one of the key clinical skills used by physicians to screen for 

cardiac pathologies, especially in the diagnosis and assessment of valvular heart disease.​12​ It has 

been playing an essential role in the clinical workflow over a century, not only because it is 

cheap, quick, instantly and universally available, but also by using the stethoscope, practitioners 

are able to interact with the patient in a personal, tangible way that exemplifies they care about 
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the patient as a unique, valued individual.​13​ However, interpreting auscultated heart sounds is 

affected by many factors, including inter-listener variability, subjectivity, environment, and 

training.​14​ The training for auscultation takes time and focus, and the accuracy varies by the 

listener’s skill and experience. According to a study conducted by Favret et al, the internal 

medicine and family medicine residents heard 40% of the extra heart sounds and made a correct 

diagnosis in only 24% of cases, and even experienced physicians missed 31% of murmurs.​15 

Clinicians’ low accuracy in auscultating heart sounds may be lead to delays in diagnosis and 

treatment. On the other hand, a computer assisted system may help the general physician in 

coming up to a more accurate and reliable diagnosis at early stages and also can reduce 

unnecessary referrals of patients to expert cardiologists at a distance. 

3. Machine learning in abnormal heart sounds detection 

 Machine learning approaches have been proved to be useful for modeling complex 

biomedical data by offering better performance in various tasks such as image processing, 

identifying abnormalities, clinical decision making and so on.​16​ A substantial amount of work 

has been done towards the identification and classification of heart sounds using machine 

learning tools. Beyond that, the recent development of digital stethoscopes has enabled digital 

recording and opened the door to a number of unique possibilities using computer-aided 

auscultation in clinical settings. Sounds collected by digital stethoscopes are converted to 

electrical signals which can then be amplified for optimal listening and be processed for signal 

analyses.​17​ The analysis of those electrical signals, i.e., phonocardiogram (PCG) signals, is one 

of the most popular and developed ones, which has been proved to be useful for objective 

interpretation of the heart sounds and early detection of heart diseases. 
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Signal processing refers to the procedures applied on measured data or sampled data to 

reveal the information contained in the measurements.​18​ Digital signal processing of the PCG 

enables the characterization of heart sounds into a quantified way, in other words, different heart 

sounds and murmurs can be distinguished by characteristics including timing (i.e., systolic or 

diastolic), duration, pitch (i.e., frequency), and intensity. Researchers have tried to extract 

various features in different domains using fast Fourier transforms (FFT), wavelet transforms, etc 

and have classified the PCG signals into various classes with different machine learning 

models.​19  

PCG signal processing usually involves three steps, pre-processing, feature extraction, 

and classification. The pre-processing step usually includes denoising, and sometimes 

segmentation. The second step, feature extraction, is to calculate the identifying parameters from 

segmented data. Finally, the classification of PCG signals, mostly into two classes (normal and 

abnormal), is based on those extracted features and generally performed by utilizing machine 

learning tools.​20​ A conceptual diagram of heart sound signal processing module is depicted in 

Figure 1​.  

 
Figure 1.​ ​Conceptual diagram of heart sound signal processing module 

Researchers have proposed several algorithms with fairly high accuracies for PCG signal 

processing and heart sound classification, where the majority of works were based on Artificial 
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Neural Networks (ANN) and Support Vector Machines (SVM).​21​ Turkoglu et al. developed an 

ANN-based system in 2002 that achieved an accuracy of 94% for normal and 95.9% for 

pathological heart sounds.​22​ Another approach developed by Wu et al. using SVM as the main 

classifier gave 95% of accuracy to distinguish normal heart sounds from abnormal ones.​23  

4. Objectives of the study 

In our present study, we focused on developing a software package in R for the 

preprocessing of PCG signals. We replicated parts of a well-established algorithm for heart 

sound analysis introduced by Schmidt et al.​24​ in MATLAB code and translated them into R. We 

also implemented this tool on a heart sounds database established by the University of Michigan. 

Given a lack of current resources in PCG signal processing in R, this work provides researchers 

opportunities to conduct data preprocessing, which is a foundation of any further works of PCG 

signal processing. Though this tool is built for PCG signal processing specifically, some 

functions in this package may also be introduced to other kinds of sound analysis and become an 

open resource for a broader audience. 

Related Work 

1. Preprocessing of heart sound signals 

Preprocessing of heart sound signals is not a new topic, however, it is still in a developing 

stage as far as its embedded applications are concerned. Two general steps, denoising and 

segmentation, are commonly used in PCG signal processing. Denoising is generally achieved by 

suitable filters and wavelet transforms. Segmentation is a process in which to determine the 

boundaries of cardiac cycles from contiguous heart sound signals.  
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Because the heart sound signal is a kind of weak signal of the human body, it is highly 

susceptible to external noise interference during the process of signal collection. When heart 

sound signals are collected, it is inevitable to receive the noise around, such as electromagnetic 

interference, power frequency interference, electrical interference with the human body, breath 

sounds and lung sounds interference and so on. Those noises can sometimes contaminate the 

effective information and may cause great influence on the further steps of segmentation and 

classification in signal processing works. As a result, a certain filtering technology to further 

denoise the signals is crucial to lay a good foundation for the feature extraction and identification 

of heart sounds. Typical frequencies of heart sounds and murmurs are within the range from 20 

to 500 cycles per second (Hz), which are at the lower end of sound frequencies the human ear 

can hear (20 to 20,000 Hz).​25​ Higher or lower frequencies are not of clinical significance for 

analysis and diagnosis. Previous works have shown the advantage of applying high-pass and 

low-pass filters in PCG signals including the separation of heart sounds (S1 and S2), heart 

murmurs and clicks. According to Cherif et al, two types of filters, “Butterworth” and “Bessel”, 

are the most suitable for filtering PCG signals.​26 

After denoising, the PCG signals are ready for segmentation. As one of the most difficult 

steps in heart sound analysis, segmentation has been the subject of many studies. In most cases, 

the activities in the PCG signal relating to a given disease are contained in a single interval of 

cardiac cycle. Thus, detecting a single cardiac cycle is necessary and essential for future 

implementation of automatic analysis such as extracting features from the single cycle and then 

classifying the signal. Several popular approaches mentioned in the former literature include 

homomorphic filtering, average normalized Shannon energy, complexity signatures, energy of 
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wavelet coefficients and so on. All these studies fall under the envelope analysis approach and 

are based on analysis of the envelope signals, only different by detection methods.​27  

Among all approaches of envelope analysis, homomorphic filtering was proved to be 

useful to indicate a single detected cycle. Homomorphic filtering technique resulted in a smooth 

envelope enabling easy peak detection. Then parameters of the peaks like peak start point, end 

point, peak width, and distance between peaks can be found and labeled as S1 or S2. And by 

clustering of these parameters of the peaks, the occurrence of single cardiac cycles can be 

identified for further feature extraction.​28​ This segmentation algorithm has shown a success rate 

of 90.29%.​28​ Detailed mechanisms of homomorphic envelope and steps to implement are 

described in the ​Method Section 1.2​.  

On the other hand, peak detection and the segmentation of S1 and S2 can become tedious 

and sometimes inaccurate due to several reasons: 1) the results can depend highly on where and 

how hard the stethoscope is placed on the chest. Thus a threshold could be too high to miss the 

normal S1 or S2 or too low to detect more extra peaks; 2) the assumption that systole is shorter 

than diastole is not always true. Above a certain heart rate, the length of diastole could be 

roughly the same length as systole; 3) in cases with severe murmur, one normal heart sound may 

become very large and the other may disappear from the envelope signal altogether. Some 

cardiac cycles may be incorrectly segmented and there is no way to automatically distinguish 

correctly segmented cycles from incorrectly segmented ones. And allowing incorrectly 

segmented cycles to enter feature extraction results in bad training vectors for the classifier.​27  

In our study, we only incorporate the first step of homomorphic filtering in our R tool, 

that is, the homomorphic envelope detection for single cardiac cycle identification. The further 
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segmentation into different parts of the cardiac cycle (S1 and S2) is not supported in the current 

version.  

2. Signal processing work in R 

After the first release in 1995, R has quickly taken an important role in statistical and 

graphical computing. According to the 2017 Burtch Works Survey, 40% of all surveyed data 

scientists prefer R, compared to 34% prefer SAS and 26% Python.​29​ R and its libraries are able to 

handle a variety of analyzing techniques, including classical statistical tests, linear and nonlinear 

modeling, time-series analysis, clustering, classification, and others. It has been widely used in 

bioinformatics, genetic research, epidemiology, and for analyzing clinical data nowadays.​30 

Most of the current heart sound signal processing work was conducted in MATLAB, 

which is not open source to the general public. Unlike MATLAB, R is a free programming 

language and software environment for statistical computing. There are some existing R 

packages developed by researchers for different kinds of signal processing. The ​signal​ package 

developed by Ligges et al. is one of the basic signal processing tools that contains a set of 

functions originally written for MATLAB and Octave, including filtering, filtering generation, 

resampling, interpolation, and visualization of filter models.​31​ In addition to the basics, R 

contains some good implementations of signal processing algorithms that also can be applied to 

statistical analysis and machine learning. For example, ​wavelets​ and ​fftw​ are two packages that 

specialized in wavelet and FFT analysis respectively.​32​ For machine learning tasks, R has 

extensive library sets to explore data, select features, validation schemes and many more, which 

makes machine learning easy and approachable. 
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R is also highly cost effective for a project of any size. Because it is an open source, 

developments in R happen at a rapid scale and the community of developers is huge. Along with 

a tremendous amount of learning resources makes R programming a perfect choice for 

beginners. All of these makes R an ideal choice for our tool development of PCG signal 

processing. 

Methods 

1. Development of the R package: PCGCleaner 

In the package PCGCleaner, we mainly incorporated two parts of functions for heart 

sound signal preprocessing, including denoising and homomorphic envelope detection. In order 

to avoid repetition of work, the signal package is embedded in our package. The raw heart sound 

recordings are recommended to be firstly pre-processed with band pass filters and remove noisy 

spikes to reduce the background noise during the denoising step. After denoising, homomorphic 

envelope detection can be performed for further single cardiac cycle identification. As we 

mentioned before, we only included the homomorphic envelope detection, which is the first step 

of homomorphic filtering in our R tool. 

1.1 Denoising 

Common noise sources in the heart sound recordings include endogenous or ambient 

speech, motion artifacts, and physiological sounds, such as intestinal and breathing sounds. In 

order to reduce the influence of low and high frequency noise, the raw signal should be filtered 

with one or more band pass filters with appropriate cut-off frequencies. Two functions, 

butterworth_low_pass_filter()​ and ​butterworth_high_pass_filter()​ ​were 
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created to filter a given signal using a forward-backward, zero-phase butterworth 

low-pass/high-pass filter. Both filters will first filter the raw signal in the forward direction, and 

the filtered sequence is then reversed and run back through the filter to obtain zero phase 

distortion. Taking the low pass filter as an example, the inputs and outputs of the functions are as 

follow: 

butterworth_low_pass_filter(original_signal,order,cutoff,sampling_freq

uency): 

Inputs: 
● original_signal: the 1D signal to be filtered 
● order: the order of the filter (1,2,3,4 etc). NOTE: This order is effectively doubled as this 

function uses a forward-backward filter that ensures zero phase distortion 
● cutoff: the frequency cutoff for the low-pass filter (in Hz) 
● sampling_frequency: the sampling frequency of the signal being filtered (in Hz). 

Outputs: 
● low_pass_filtered_signal: the low-pass filtered signal 

We also identified and removed the potential friction spikes with exceptionally high 

amplitudes using a function ​schmidt_spike_removal()​ based on methods introduced by 

Schmidt et al,​24​ which follows the steps below: 

1) The recording was divided into windows of 500 ms. 

2) The maximum absolute amplitude (MAA) in each window was identified. 

3) The following steps would be carried out if at least one MAA exceeds three times the 

median value of the MAA’s, or else continues to step 4. 

a) The window with the highest MAA was chosen. 
b) The location of the MAA point was identified as the top of the noise spike. 
c) The beginning of the noise spike was defined as the last zero-crossing point 

before the MAA point. 
d) The end of the spike was defined as the first zero-crossing point after the 

maximum point. 
e) The defined noise spike was replaced by zeros. 
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f) Resume at step 2. 

4) Procedure completed. 

The inputs and outputs of the function ​schmidt_spike_removal()​ are as follow: 

schmidt_spike_removal(original_signal,fs): 

Inputs: 
● original_signal: the original (1D) audio signal array 
● fs: the sampling frequency (Hz) 

Outputs: 
● despiked_signal: the audio signal with any spikes removed 

 

1.2 Homomorphic envelogram 

The homomorphic envelogram has been shown to be effective in extracting amplitude 

envelopes of phonocardiograms.​33​ The homomorphic envelogram can be extracted with a 

homomorphic filter. This approach was based on the similarity in structure of heart sounds to 

modulated components, assuming that the heart rate is uniform for the entire sequence of PCG 

signal recording. Since normal heart sound signals (S1, S2) and heart murmurs are similar to 

amplitude and frequency modulated waveforms, homomorphic filtering, which has been used to 

extract voiced components of the speech,​34​ can be applied to heart sounds to find the envelope. 

By applying logarithmic transformation, it converts a non-linear combination of signals 

(multiplied in time domain) into a linear combination. And thus, the resulting spectrum can be 

viewed as a combination of slowly varying and fast varying parts wherein the high frequency 

content would be removed using a low-pass filter. Details can be explained as follow: 

Since the signal is viewed as a product of a slowly varying component controlling the 

signal amplitude and a fast varying component representing the oscillating part of the signal: 
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(t) (t) ⋅ o(t)    a(t) 0x = a >   

where ​a(t)​ is the amplitude component and ​o(t)​ is the oscillating component. The log 

transformed signal is the addition of the amplitude and oscillating components: 

n|x(t)| n|a(t)| ln|o(t)|  l = l +   

Thereby the multiplication is replaced by addition and it is possible to reject the high frequency 

component with a linear low pass filter: 

(ln|x(t)|) (ln|a(t)|) L(ln|o(t)|) ≈ L(ln|a(t)|)L = L +   

where ​L​ is a low pass filter. The homomorphic envelogram is created by a reverse 

transformation: 

Env(t) xp(L(ln|x(t)|)) ≈ a(t)H = e  

Given the envelope of the signal detected by homomorphic filtering, we can further do 

peak detection, which is important to find the locations of S1 and S2.  

In ​PCGCleaner​, we created a function ​homomorphic_envelope_with_hilbert() 

to fulfill the homomorphic envelope detection. This function finds the homomorphic envelope of 

a signal with the Hilbert transformation as suggested by Schmidt et al.​24​ A zero-phase low-pass 

Butterworth filter is used to extract the envelope. The inputs and outputs of the function 

homomorphic_envelope_with_hilbert()​ are as follow: 

homomorphic_envelope_with_hilbert(input_signal,sampling_frequency,lpf_

frequency=8): 

Inputs: 
● input_signal: the original signal (1D) signal 
● sampling_frequency: the signal's sampling frequency (Hz) 
● lpf_frequency: the frequency cut-off of the low-pass filter to be used in the envelope 

extraction (Default = 8 Hz as in Schmidt's publication). 

Outputs: 
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● homomorphic_envelope: the homomorphic envelope of the original signal (not 
normalized) 

 

1.3 Normalization 

Furthermore, we also included a function ​normalize_signal()​ to allow the envelope 

signals to be normalized by subtraction of the mean value and dividing with the value of the 

standard deviation. The purpose of the normalization is to reduce the amplitude difference from 

subject to subject and be prepared for machine learning applications. The signal is thereby a 

one-dimensional observation sequence describing the normalized signal amplitude. The inputs 

and outputs of the function ​normalize_signal()​ are as follow: 

normalize_signal(signal): 

Inputs: 
● signal: the original signal 

Outputs: 
● normalized_signal: the original signal, minus the mean and divided by the standard 

deviation 
 

2. Application of the R package to Pre-Process Sounds in the 1000 Heart Sounds database 

Most of the existing studies of PCG analysis have relied on a limited number of sound 

samples, potentially resulting in over-fitting for a particular dataset. Some of the heart sounds 

were artificially created, which were not ideal for a real scenario because of the need for human 

interaction. In addition, the modeling buildings and predictions were mostly based on purely 

clinical diagnosis. It is unclear if the echocardiographic findings were taken into account during 

the diagnoses in those studies. Furthermore, previous studies have not considered other clinical 

factors, such as demographic factors, comorbidities, and laboratory results, which could also 

show significant impacts on the diagnosis of heart diseases.  
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In order to examine the use of our package, we implemented it on larger heart sounds 

samples which were collected in a real clinical setting. 

2.1 Heart sound collection 

Patients were recruited from the University of Michigan Health System between 2017 

and 2020. Eligible patients were aged 18 years and older with outpatient or inpatient encounters, 

with a scheduled or planned transthoracic echocardiograph within 72 hours of collection. Heart 

sounds were recorded at four auscultatory sites (aortic area, pulmonic area, tricuspid area, mitral 

area), using 3M Littmann Electronic Stethoscope devices. Patients were informed with potential 

risks and benefits of participating in the study and their willingness to contribute to the study 

were taken in the form of written consent. A total of 377 patients with various pathologies were 

analyzed in our current study.  Heart sounds were recorded in a quiet room with assistance from 

the patients. The recordings for analysis were saved in a *.wav format on cloud after 

de-identified. 

2.2 Echocardiogram, basic demographic and medical comorbidities 

Patients’ transthoracic echocardiograph findings and their basic health information were 

retrieved from the Electronic Health Records (EHRs) system and de-identified under the Health 

Insurance Portability and Accountability Act of 1996 (HIPAA) regulation. Transthoracic 

echocardiograph findings were interpreted by one experienced research assistant as different 

categories of heart diseases, including aortic stenosis, mitral stenosis, pulmonic stenosis, 

tricuspid stenosis, aortic regurgitation, mitral regurgitation, pulmonic regurgitation, and tricuspid 

regurgitation. The severity of the disease was recorded accordingly, including mild, mild to 
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moderate, moderate, moderate to severe, and severe. In addition, patients’ prosthetic valve 

information was also collected. 

Basic demographic information such as age and sex and their cardiovascular related 

medical comobidities such as hypertension and stroke status were also collected for future 

analysis. By incorporating comorbidities, which alongside the development of digital 

stethoscopes creates an opportunity to build a diagnostic algorithm to change the paradigm on 

how cardiac auscultation is performed and taught to trainees. 

Results 

1. Summary of the package 

The ​PCGCleaner​ package is developed for basic preprocessing for PCG signals. Two 

main steps are involved in this package, denoising and homomorphic envelope detection. 

Denoising work consists of the implementation of one or more low/high-pass filters and spike 

removals to reduce potential noises in the heart sound recordings such as frictions, intestinal and 

breathing sounds. Homomorphic envelope detection is the process of using a homomorphic filter 

to detect a single cardiac cycle, which can be useful for the segmentations of S1 and S2 (not 

supported by our package for now). Our package enables the preprocess of the raw heart sound 

signals in several simple steps, and offers fundamental data for segmentation, feature extraction, 

and classification in the PCG signal analyses. ​Table 1 ​below summarizes the functions included 

in the package and the description and purpose for each function. 
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Table 1. Summary of functions in PCGCleaner 

Function Description 

butterworth_low_pass_filter()  A function that low/high-pass filters a given 
signal using a forward-backward, zero-phase 
butterworth low/high-pass filter. It inputs the 1D 
signal to be filtered, and outputs the 
low/high-pass filtered signal. 

butterworth_high_pass_filter() 

schmidt_spike_removal() 

A function to remove potential spikes in the 
signals. In a window of 500 ms, if the maximum 
absolute amplitude (MAA) is larger than three 
times the median value of MAA, a noise spike 
will be flagged at the MAA and replaced by 
zero. It inputs the 1D audio signal array and 
outputs the signal with any spikes removed.  

homomorphic_envelope_with_hilbert() 

A function that finds the homomorphic envelope 
of a signal, and extracts the envelope with a 
zero-phase low-pass butterworth filter. It inputs 
the 1D signal array and outputs the 
homomorphic envelope of the original signal. 

normalize_signal() 

A function to normalize a 1D signal by 
subtracting the mean and divided by the 
standard deviation. It inputs the 1D signal array 
and outputs the normalized signal. 

 

2. Examples 

Here we use several examples to illustrate the usage of the ​PCGCleaner​ package. 

Sample heart sounds were collected from recordings in the 1000 Heart Sound database. In our 

examples, we intentionally chose patients with diseases at one or more of the four heart valves to 

explain features for different valvular diseases and observe the effects of interactions. Different 

severities were also selected to make comparison between signals. Pseudo patient ID, the 

auscultatory site of the recording, and patient’s echocardiogram diagnosis are described in ​Table 

2​. We followed the workflow below to conduct heart sound data cleaning for each patient: 1) a 
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fourth order Butterworth band pass filters with frequency range cut-offs at 25 Hz and 400 Hz; 2) 

remove noisy spikes; 3) homomorphic envelope detection. Results along with the codes to 

generate are displayed side by side for comparison.  

 
Table 2. Patient auscultation information and echocardiogram diagnosis  

Patient ID Auscultatory Site Echocardiogram Diagnosis 

1 pulmonic area normal 

2 pulmonic area mild pulmonic stenosis and mild pulmonic stenosis, aortic 
prosthetic valve 

3 mitral area moderate mitral regurgitation 

4 tricuspid area moderate to severe tricuspid regurgitation, mild mitral 
regurgitation, mild pulmonic regurgitation 

5 aortic area severe aortic stenosis, mild aortic, mitral, pulmonic and 
tricuspid regurgitation 

6 aortic area severe aortic regurgitation and mild mitral regurgitation 

 

2.1 Preprocessing of a normal heart sound signal 

Figure 2​ shows the preprocessing of a 30-second PCG signal from a patient with normal 

heart echocardiogram diagnosis. The raw signals (​2A​) show fluctuations around amplitude of 

zero, indicating the existence of noises in the heart sound recordings such as intestinal and 

breathing sounds. ​2B​ shows the filtered signals for the same patients after denoising with a 

fourth order Butterworth band pass filter with cut-off frequencies at 25 Hz and 400 Hz using 

butterworth_low_pass_filter()​ and ​butterworth_high_pass_filter()​ ​functions 

in the package. Compared to the raw sound signals, the filtered ones are more aligned to a 

straight line, which is less subject to the noise sources we mentioned before and peaks can be 
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easily detected in these normal heart sound signals. ​Example codes to implement band pass 

filters (​2B​): 

# Set up the time array for plotting (30 seconds) 
timeArray <- c(1:30000) 
 
# 25 - 400Hz 4th order Butterworth band pass 
ex_sound_low <- butterworth_low_pass_filter(s1,2,400,audio_Fs=4000) 
ex_sound_high <- butterworth_high_pass_filter(s1,2,25,audio_Fs=4000) 
plot(timeArray,ex_sound_high,type='l',col='black',xlab='Time(ms)',ylab='Ampl
itude') 

 

2C​ shows the filtered signals for the same patient after removing the potential friction 

spikes with exceptionally high amplitudes using the function ​schmidt_spike_removal()​ ​in 

the ​PCGCleaner​ package. ​Example codes to implement spike removals (​2C​): 

# Spike removal for the cleaned signals: 
ex_sound_spike_remove <- schmidt_spike_removal(ex_sound_high,audio_Fs=4000) 
plot(timeArray,ex_sound_spike_remove,type='l',col='black',xlab='Time(ms)',yl
ab='Amplitude') 

 

2D​ shows the homomorphic envelograms which were extracted by the function of 

homomorphic_envelope_with_hilbert()​ ​for the same patient. In our example here, a 

first-order Butterworth filter with an empirical decided cut-off frequency at 8 Hz was used. As 

we mentioned in the ​Related Work​ section, these smooth envelopes enable easy peak detection 

and thereby useful for segmentation of S1 and S2 if needed. Then a single cardiac cycle can be 

identified for further steps of feature extraction and classification. ​Example codes to implement 

homomorphic envelope detection (​2D​): 

# Find the homomorphic envelope 
homomorphic_envelope <- 
homomorphic_envelope_with_hilbert(ex_sound_spike_remove,audio_Fs=4000) 
plot(timeArray[1:length(timeArray)-1],homomorphic_envelope,type='l',col='bla
ck',xlab='Time(ms)',ylab='Amplitude') 
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Figure 2. Preprocessing of a normal PCG signal with the PCGCleaner package 

Figure 2 Step Name PCG results 

A Raw signal 

 

B 25 - 400Hz 4th order 
Butterworth band pass 

 

C Spike removal 

 

D Homomorphic envelope 
detection 
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To better observe effects of each function on the PCG signal, shorter periods (5 seconds) 

of the sound signals are also displayed for further exploration (​Figure 3​). Compared to ​3A​, ​3B 

and ​3C​ show the signals aligned in a straighter line, indicating the removal of potential noises. 

Peaks are clear and easy to detect in those cleaned signals. ​3D​ describes the homomorphic 

envelograms from 10 seconds to 15 seconds of the recordings. Peaks on the homomorphic 

envelograms are aligned with the peaks on original signals, which indicates good performances 

of the current homomorphic envelope detection.  

 

Figure 3. Preprocessing of a normal PCG signal with the PCGCleaner package (5-second signals) 

Figure 3 Step Name PCG results (5 seconds) 

A Raw signal 

 

B 25 - 400Hz 4th order 
Butterworth band pass 
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C Spike removal 

 

D Homomorphic envelope 
detection 

 

 

2.2 Preprocessing of abnormal heart sound signals 

Abnormal heart sounds contain components that are not one of the fundamental heart 

sounds (S1 and S2), so it increases the difficulty of locating peaks and the detection of a cardiac 

cycle. This can cause problems for heart sound analysis in the segmentation state because most 

segmentation algorithms are based on determining the locations and types of S1 and S2. In the 

following examples, we listed different types of heart valve diseases of various severities. ​Figure 

4​ shows PCG signals for each patient in the order of raw signals, denoised signals (after 

band-pass filtering and spike removal), and homomorphic envelogram of the signals, along with 

their echocardiogram diagnosis. Steps and parameters were identical to what we used in ​1.2.1​ for 

the preprocessing of the normal heart sound signal.  
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It can be seen that cardiac cycles still exist in mild to moderate abnormal heart sounds 

(Patient ID 2, 3 and 4) and we could determine the cycle by analyzing peaks from the 

homomorphic envelope as we did the normal heart sounds analysis. However, peaks are not 

typical in severe abnormal heart sounds (Patient ID 5 and 6). And it could be even harder to label 

the type of each peak, which may lead to the false identification of a number of peaks in the 

envelope signal and ultimately wrong segmentation and classification results. 

 
Figure 4. Preprocessing of abnormal PCG signals with the PCGCleaner package (5-second signals) 

ID Diagnosis PCG Signals (5 seconds): raw signal, denoised signal, homomorphic envelogram 

2 

mild pulmonic 
stenosis and mild 
pulmonic stenosis, 
aortic prosthetic 

valve 

 

3 moderate mitral 
regurgitation 

 

4 

moderate to severe 
tricuspid 

regurgitation, mild 
mitral and 
pulmonic 

regurgitation 
 

5 

severe aortic 
stenosis, mild 
aortic, mitral, 
pulmonic and 

tricuspid 
regurgitation 
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6 
severe aortic 

regurgitation and 
mild mitral 

regurgitation 

 

 
  

2.3 Normalizing the signals 

We also included a function ​normalize_signal()​ ​for the normalization of the PCG 

signal,  which allows the signals to be normalized by subtraction of the mean value and dividing 

with the value of the standard deviation. It limits the signal dynamic range from -1 to 1. The 

advantage of the normalization is to reduce the variance across subjects and could be useful for 

further machine learning models. ​Figure 5​ shows a comparison of the same person’s PCG 

signals before and after normalization (5 seconds). ​Example codes to implement normalization: 

# Normalize a signal 
normalized_ex_sound_high <- normalize_signal(ex_sound_high) 

 

 

  
Figure 5. Normalization of a PCG signal: before (left) and after (right) normalization 
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Discussion and Future Work 

Our present study developed an R software package for the preprocessing of PCG signals 

based on a study conducted by Schmidt et al,​24​ and we also implemented the tool on a larger 

sample of heart sounds collected in the real-world setting at Michigan Medicine to evaluate its 

use. Based on some functions from the ​signal​ R package, we built the functions of denoising and 

homomorphic envelope detection for PCG signal processing. Recommended workflows of heart 

sound data cleaning are as follow: 1) use one or more band pass filters with appropriate 

frequency range cut-offs to reduce the background noises on the raw heart sound recordings 

(function ​butterworth_low_pass_filter()​ and ​butterworth_high_pass_filter() 

in the package); 2) remove noisy spikes to decrease potential frictions with exceptionally high 

amplitudes (function ​schmidt_spike_removal()​ ​in the package); 3) homomorphic envelope 

detection to identify a single cardiac cycle and further segmentation of S1 and S2 if needed 

(function ​homomorphic_envelope_with_hilbert()​ ​in the package). 

Although many studies have been done on heart sounds analysis so far, our works have 

some innovations and potential impacts on the analysis of signal pre-processing. Firstly, we 

reimplemented some well-established works from MATLAB to R, which is more cost-effective 

and has a broader community of users and developers. The current stage of signal processing in 

R, PCG signal processing especially, is quite limited. Our works enable researchers to preprocess 

their raw heart sound signals in simple steps, which are fundamental but essential work before 

any further experiments of segmentation, feature extraction, or classification. Secondly, the heart 

sound library we mentioned in this study also serves as a valuable resource for future studies on 
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heart sounds analyses. Not only because it has a larger study population, but it collected the 

patients’ transthoracic echocardiograph records along with other demographic and medical 

information, which can be extremely helpful for algorithm development and model evaluation. 

Furthermore, though this tool is built for PCG signal processing at the beginning, it is possible to 

introduce it to general sound and signal analysis in the future.  

Our future work will incorporate more functions for preprocessing and options for 

segmentation. The ultimate goal is to develop an R package to accomplish the feature extraction 

of heart sounds with multiple simple steps and provide a set of clean, adequate features for 

further sound classifications with various machine learning models. From the long run, this tool 

will be beneficial to the development of smarter cardiac auscultation devices and clinical support 

tools of cardiovascular diseases for both researchers and health care providers throughout the 

world, enabling more efficient and effective clinic visits. In addition to the clinic setting, there 

are significant implications in a growing home health market. A digital stethoscope capable of 

diagnosing valvular disease could be used by care providers of any skill level to assess patients 

and identify need for referral. Finally, with the growth of telemedicine, a device such as the one 

proposed could enable cardiac screening without the physical presence of a skilled care provider 

in rural areas. 
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