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Context-Adaptive Management of Drivers’ Trust in
Automated Vehicles

Hebert Azevedo-Sa', Suresh Kumaar Jayaraman?, X. Jessie Yang', Lionel P. Robert Jr.! and Dawn M. Tilbury?

Abstract—Automated vehicles (AVs) that intelligently interact
with drivers must build a trustworthy relationship with them.
A calibrated level of trust is fundamental for the AV and the
driver to collaborate as a team. Techniques that allow AVs
to perceive drivers’ trust from drivers’ behaviors and react
accordingly are, therefore, needed for context-aware systems
designed to avoid trust miscalibrations. This letter proposes a
framework for the management of drivers’ trust in AVs. The
framework is based on the identification of trust miscalibrations
(when drivers’ undertrust or overtrust the AV) and on the
activation of different communication styles to encourage or warn
the driver when deemed necessary. Our results show that the
management framework is effective, increasing (decreasing) trust
of undertrusting (overtrusting) drivers, and reducing the average
trust miscalibration time periods by approximately 40%. The
framework is applicable for the design of SAE Level 3 automated
driving systems and has the potential to improve the performance
and safety of driver—AV teams.

Index Terms—Intelligent Transportation Systems; Social
Human-Robot Interaction; Human Factors and Human-in-the-
Loop

I. INTRODUCTION

RUST influences the interactions between people and au-
T tomated systems [[1]. In this letter, trust is defined as “the
attitude that an agent will help achieve an individual’s goals in
a situation characterized by uncertainty and vulnerability” [2].
In the future, automated systems will be expected to become
aware of humans’ trusting behaviors and to adapt their own
behaviors, seeking to improve their interaction with humans
[3]. One way to implement those adaptive capabilities is to
develop methods for trust management, which we consider to
be a robot’s ability to estimate and, if needed, to recalibrate a
human’s trust in that robot.

Trust miscalibration is defined as a mismatch between a
human’s trust in an automated system and the capabilities
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Don't worry about driving,
you can trust me!
Focus on your other task!

Fig. 1. An undertrusting driver is encouraged by the AV system simulator
to focus on his non-driving-related task (NDRT), to increase his trust level.
An analogous situation would take place if the driver overtrusted the AV’s
capabilities, with the system then demanding his attention to the driving task.

of that system [4]], [5]. Trust miscalibration is characterized
by overtrusting or undertrusting an automated system, and it
can harm the performances associated with the use of that
system. Overtrusting an automated system can lead to misuse,
where the human user relies on the system to handle tasks that
exceed its capabilities. Undertrusting an automated system can
lead to disuse, where the human fails to fully leverage the
system’s capabilities. Proper trust management can avoid both
misuse and disuse of the automated system by estimating and,
if needed, influencing the human’s trust in the system to avoid
trust miscalibration.

The ability to manage trust and avoid miscalibration is
especially crucial for automated systems that can put people’s
lives at risk, such as automated vehicles (AVs). Either misuse
or disuse of an AV is a risk to the performance and safety
of the team formed by the driver and the AV. Considering
the current technology race in the automotive industry for
AV development [|6], AVs that can manage drivers’ trust
are a significant—if not urgent—demand. In the driver-AV
interaction context, the trust management problem consists of
two main challenges: 1) the accurate estimation of trust in
the AV and 2) the recalibration or realigning of the driver’s
trust with the AV’s capabilities. The goal of trust estimation
is to provide accurate real-time estimates of the drivers’
trust in the AV based on behavioral cues. The goal of trust
calibration is to set the driver’s trust to appropriate levels
through a trust influence mechanism, for instance, by adapting
the communication between the AV and the driver.

Previous research has obtained promising results regarding
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trust estimation in AVs using drivers’ behaviors and actions
[7]-19]. The second challenge, however, has not received as
much attention. In fact, we know of no prior research that
has addressed the problem of trust calibration, with the goal
of manipulating trust in AVs to avoid undertrust or overtrust
in real time. This letter presents a framework for managing
trust in AVs, focusing on how to recalibrate drivers’ trust
after a trust miscalibration has been identified. Our framework
integrates a Kalman filter-based trust estimator developed
in previous work [9] and an unprecedented real-time frust
calibrator. We draw inspiration from recent approaches that
have provided valuable insights for the development of trust
estimators [7[], [8]. These approaches, however, fall short on
presenting strategies for adapting the behavior of the AV
and manipulating the driver’s trust to, ultimately, improve the
driver—AV team performance through trust calibration.

Our contribution is a rule-based trust calibrator that can be
integrated with previously proposed trust estimators. With this
integration, we introduce the novelty of a trust management
framework. The trust calibrator compares the AV’s capabilities
with the driver’s trust estimates to identify trust miscali-
brations, and modifies the interactive behavior of the AV
accordingly. The AV is the element that directly interacts with
the drivers, providing verbal messages intended to influence
drivers’ trust in the AV. We validated our trust management
framework on a user study with 40 participants, where the
participants operated an AV simulator while simultaneously
performing a non-driving-related task (NDRT) and having
their behavior observed (from which their trust levels were
estimated). Our results show that the proposed framework
was successful in its intent, being able to increase trust levels
when drivers undertrusted the system and to decrease trust
levels when drivers overtrusted the system. With the proposed
trust calibrator, our management framework reduced the time
periods for which trust was miscalibrated by approximately
40%. Consequently, the method introduced in this paper miti-
gates the occurrence of unsafe driving scenarios and generally
improves the driver—AV team performance and safety. Fig. [I]
illustrates our study situation, where an undertrusting driver is
exhorted by the AV system to focus on his NDRT (with the
objective to increase his trust level). An analogous situation
would take place if the driver overtrusted the AV’s capabilities,
with the system demanding his attention to the driving task.

This letter’s remaining content is as follows. Section [IIj pro-
vides the theoretical bases for trust management in the driver—
AV interaction context. Section [[II| presents our experimental
methodology. In Section we discuss the results of the
study. Finally, Section [V]concludes the letter and presents our
suggestions for future work.

II. MANAGEMENT OF TRUST IN AVS

A. Related Work: Trust in Automated Systems, Trust Estima-
tion and Trust Calibration

Trust has been long discussed as a factor that mediates the
interaction between humans and automated systems in the field
of supervisory control [4]], [5], [10]-[13]]. Researchers have es-
tablished formal definitions that evolved from social science’s

original descriptions of trust in interpersonal relationships [[14],
[15]. Measuring trust in automated systems is a challenging
task because trust is an abstract concept that depends both on
the context and on the individual trustor. That challenge led to
the establishment of standard scales for measuring trust [[13]],
[16]. When using these scales, the measurement procedure
relies on users’ self-reports, which have clear practical limi-
tations when researchers are interested in tracking trust levels
for real-time applications. Given these limitations, techniques
for trust estimation that can take advantage of models for trust
dynamics have been investigated [7]], [[17]-[21].

Trust estimation is the first challenge to be overcome in
a trust management framework. To avoid collecting self-
reports from users, systems have to use advanced percep-
tion techniques to process users’ behaviors and actions. For
instance, eye—tracking has been used for estimating trust
in unmanned aerial vehicle controllers [22f]. Specifically for
AVs, researchers have worked with physiological signals (i.e.,
electroencephalography and galvanic skin response) to develop
a classifier-based empirical trust sensor [7]]. The privileged
sensing framework (PSF) was applied with that same type
of physiological signals to anticipate and influence humans’
behaviors, with the goal of optimizing changes in control
authority between the human and the automated system [8]],
[23]. Classic methods, such as Kalman filtering, have also been
used for trust estimation [9]].

Trust calibration is as important as trust estimation and plays
a fundamental role in trust management. In this study, the
objective of trust calibration was to manipulate drivers’ trust
in the AV for aligning trust with the AV’s capabilities (i.e.,
avoiding trust miscalibration). Several studies have identified
factors that significantly impact trust in AVs, and, therefore,
could be used for trust manipulation purposes. The most
important of these factors are situation awareness and risk
perception, which are influenced by the ability of the AV
to interact with the driver. For instance, enhancing drivers’
situation awareness facilitates increased trust in AVs [24],
[25]]. On the other hand, increasing drivers’ perception of risk
reduces their trust in AVs [26]-[28]]. Our framework takes
advantage of these studies’ results and seeks to influence trust
by varying situation awareness and risk perception through
verbal communications from the AV to the driver.

B. Problem Statement

Considering the context of a driver interacting with an AV
featuring an SAE Level 3 automated driving system (ADS),
we addressed two main problems. First, we aimed to identify
instances for which drivers’ trust in the AV is miscalibrated,
i.e., when the driver is undertrusting or overtrusting the AV.
Second, we focused on manipulating drivers’ trust in the AV
to achieve calibrated levels, i.e., trust levels that match the
AV’s capabilities [2]]. In other words, our goal was to increase
or decrease drivers’ trust in the AV whenever drivers were
undertrusting or overtrusting the AV, respectively.

In SAE Level 3 ADSs, drivers are required to take back
control when the system requests intervention or when it fails
[29]]. We assume that the AV features automated lane keeping,
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Fig. 2. Circuit track used in this study. The portions of the road correspond
to the capability of the AV. In the regular direction, drivers start at point A,
follow the “straight” path in the clockwise direction, cover the curvy path and
finish the trial at point B, right after passing through the dirt road portion.
In the reverse direction, drivers start at point C, follow the curvy path in
counterclockwise direction, cover the straight path, continue to the curvy path
(until the dirt portion), pass through the dirt portion, and finish the trial at
point D. Both directions have 12 events (encounters with obstacles), and it
took drivers approximately 10 to 12 minutes to complete a trial.

cruise control and forward collision alarm functions that can
be activated (all at once) and deactivated at any time by the
driver. The AV can also identify different road difficulty levels
and process drivers’ behavioral signals to estimate their trust
in the AV.

C. Solution Approach

We implemented a scenario to represent the problem context
described in Subsection with an AV simulator. We estab-
lished simulations where drivers took trials in a predefined
circuit track. The circuit track was divided into distinct parts,
having three predefined risk levels, corresponding to the diffi-
culty associated with each part of the circuit track. The easy
parts of the circuit track consisted of predominantly straight
roads; the intermediate difficulty parts were curvy paved roads;
and the difficult parts were curvy dirt roads. Within these trials,
drivers encountered abandoned vehicles on the road, which
represented obstacles that the AV was not able to maneuver
around by itself (using its automated driving functions). At
that point, drivers had to take over control, pass the obstacle
and then engage the autonomous driving mode again. Fig. 2]
shows the circuit implemented in the simulation environment.

We needed to compare drivers’ trust levels and the AV’s
capability levels to identify trust miscalibrations. Therefore,
we defined three capability levels for the AV, corresponding
to the difficulty of the circuit track parts. The AV’s forward
collision alarm was able to identify the obstacles and also to
trigger an emergency brake if the driver did not take control in
time to maneuver around the obstacles. These two actions were
activated at different distances to the obstacles, represented
by the two circular regions represented in Fig. 3] On straight
paved roads these distances were larger, representing the
longer perception ranges of the AV sensors. On more difficult
parts of the circuit (i.e., curvy or dirt), however, the curves and

Fig. 3. Concentric circles represent the distances for which the warning mes-
sage “Stopped vehicle ahead!” was provided to the driver, and the emergency
brake was triggered. The distances varied according to the difficulty of the
road. If the emergency brake was triggered, the drivers were penalized on
their NDRT score.

the irregular terrain reduced that perception range, implying
shorter distances. The AV was able to identify the obstacle,
warn the driver and eventually brake at a fair distance from
the obstacle when it was operated on straight roads. This
condition corresponded to the AV’s high capability. On curvy
and dirt roads, the AV was not able to anticipate the obstacles
at a reasonable distance, giving drivers less time to react
and avoid triggering the emergency brake. These conditions
corresponded to the AV’s medium and low capabilities.

In the scenario, drivers also had to simultaneously perform
a visually demanding NDRT, consisting of a visual search
on a separate touchscreen device that exchanged information
with the AV. They performed the NDRT only when the self-
driving capabilities were engaged. The behavioral measures
taken from the drivers were their focus on the NDRT (from
an eye tracker); their ADS usage rate; and their NDRT perfor-
mance, measured by the number of correctly performed visual
searches per second. Drivers were penalized if the emergency
brake was triggered, which gave them a sense of costs and
risks of neglecting the AV operation. Specific details about
the tasks are given in Section [[lI-C|

The block diagram in Fig. [] presents our proposed trust
management framework, composed of two main blocks: the
trust estimator and the trust calibrator. The AV block represents
elements of the vehicle, such as the sensors to monitor the
environment and the ability to output verbal messages to
interact with the driver. We present the definitions and the
notation used in this letter in Table [

D. Trust Estimator

Fig. EI illustrates the trust estimator block, with the AV’s
alarms and the observation variables ¢y, v; and 7 as inputs,
and a numerical estimate of drivers’ trust in the AV as the
output Ty. The observation variables capture the drivers’
behavior, which is affected by drivers’ trust in the AV. This
trust estimator is a simplified version of what is presented
in [9], and was chosen because of its simple implementation
and proven ability to track drivers’ trust. Alternative trust esti-
mators could be integrated to the proposed trust management
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Fig. 4. Block diagram that represents the trust management framework. The trust estimator block provides a trust estimate 7}, to the trust calibrator, which
compares it to the capabilities of the AV during operation. The calibrator then defines the communication style that the AV should adopt, and the AV provides
the corresponding verbal messages to the driver. Ly represents an alarm provided by the ADS when an obstacle on the road is identified. The observation

variables ¢, v and 7y represent drivers’ behaviors, from which drivers
represented by the z~! block.

TABLE 1
DEFINITIONS AND NOTATION

Definition, L
. Characterization
notation
Trial Trials occur when drivers operate the
rial, . .
4 vehicle on a predefined route, and are
[to,tf] €R . . L
characterized by their corresponding time intervals.
Events occur each time the ADS warns the
Events, X
driver about an obstacle on the road at ¢,
k € N\ {0}
to <t <ty.
Boolean variable that is set when the AV
Alarm, correctly identifies an obstacle and warns
L, €{0,1} the driver at the event k. It is reset after
the driver passes the obstacle
Drivers’ focus on the NDRT, the ratio
Focus, . . .
of time the driver spends looking at
Pr € [07 1] -
the NDRT screen during [tg, t5+1)-
Drivers’ ADS usage, the ratio of time
Usage, R .
the driver spends using the AV’s
v, € [0,1] - s .
self-driving capabilities during [t, tr+1)-
Drivers’ NDRT performance, the number of points
Performance, . .
obtained on the NDRT during [tx,tx+1),
T, €R

divided by Atk = tk+1 - tk.
Drivers’ estimated trust in the AV. It is assigned

Trust in the AV,

to the interval [tg,t , computed from s
T}, € [0,100] [tk tiet1). comp Ph

vk, Tk and is associated with the covariance 7.

framework if the inputs they require can be captured in real-
time. Differently from [9], we considered that the alarms Ly
were always reliable (true alarms), and could not be false
alarms or misses. For the sake of completeness, we briefly
describe the trust dynamics model used in this study.

The discrete LTI state-space model for trust dynamics has
the form (T)),

Tiy1 = ATy + BLj + uy, (1a)
Pk
v | = CTy + wg. (1b)
Tk

Ty+1, the trust estimate at the event k£ + 1, depends on
T}, the alarm Ly, and the process noise ug. The observation

’

real” trust (considered a latent variable) is estimated. A delay of one event is

variables depend on the estimated trust and output noise wg.
A =[1.0];B=[040];C=10"%x[7.0 42 9.2] ;uy~
N(0,0.25%); and wy, ~ N(0,diag(0?,07,02)), with 0, =
1.8x107%, 0, = 7.0x107° and 0, = 5.7x 1072, (Please see
Table [[| for variables’ definitions.) The parameters for (I are
found by fitting linear models [30] using a previously obtained
data set. The state-space structure permits the application of
Kalman filter-based techniques for the estimator design. The
trust estimator is initialized with

1
Toz(wﬂoﬂo) ©)

3 C1 Co C3

where g, vo and 7y measured over the interval [tg,t;) and
c1, C2, c3 are the entries of C.

E. Trust Calibration

The trust calibrator block represented in Fig. 4] was intended
to affect drivers’ situation awareness (or risk perception) by
changing the communication style of the AV, with the goal
of influencing drivers’ trust in the AV [31]. At every event
k, the AV interacted with the driver through verbal messages
corresponding to the communication style defined in the trust
calibrator block. The AV can encourage the driver to focus on
the NDRT, moderately warn the driver about the difficulties of
the road ahead, or harshly warn the driver, literally demanding
driver’s attention. Table [l presents the messages the AV
provided to the driver in four different communication styles.

To identify trust miscalibrations, the trust calibrator com-
pares the trust estimates with the capability of the AV. Lee
and See [2] considered both trust in the automated system and
the capabilities of the system as continua that must be compa-
rable within each other. We assumed that the AV’s capability
corresponds to the three difficulty levels of the road where the
AV is operated. We divided the interval [0,100], for which
drivers’ trust in the AV was defined, into three sub-intervals:
[0,25) corresponding to low trust, [25,75) corresponding to
medium trust and [75,100] corresponding to high trust. The
uneven distribution of the sub-interval lengths was chosen to
mitigate the uncertainty involved in trust estimation. We fit a
wider range of values in the medium level, and considered as
“low trust” or “high trust” only the estimates that were closer
to 0 or 100, respectively. The quantization of both the driver’s
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TABLE II
MESSAGES PROVIDED BY THE AV IN EACH COMMUNICATION STYLE

AV Communication Message
Style
Encouraging “Hey, this is an easy road.
You don’t need to worry about driving.
I will take care of it while you focus
on finding the Qs.”
Silent [No message]
Warning “Hey, this part of the road is not
(moderate) very easy. You can still find the Qs, but
please pay more attention to the road.”
Warning “Look, I told you! I do need your
(harsh) attention. I can feel the road is terrible.

12

I don’t know if I can keep us totally safe

trust in the AV and the AV’s capability in three levels facilitates
the real-time comparison of these metrics. Moreover, it permits
the definition of a finite set of rules for the trust miscalibration
issues. Depending on the application context, alternative quan-
tizations or AV capabilities distributions can be implemented
without significant changes to the trust calibrator’s framework.

A trust miscalibration is identified whenever there is a
mismatch between the AV’s capabilities and the driver’s level
of trust in the AV. The communication style of the AV is then
selected after the trust miscalibration is identified. At every
event, this comparison results in the identification of one of
four distinct driver trust states: undertrusting the AV (Under);
having an appropriate level of trust in the AV (Calibrated);
overtrusting the AV (Over); or extremely overtrusting the AV
(X-over). Fig. [5] shows the rule set and the correspondence
with the resultant communication styles of the AV. Note that
the establishment of three levels for trust and AV capability is
able to cover the occurrence of both undertrust and overtrust,
and also allows the identification of extreme overtrust. Extreme
overtrust occurs when a driver has a high level of trust in
the AV while the AV’s capability is low, which is likely to
be crucial for driver safety. Therefore, we consider extreme
overtrust a trust miscalibration issue that should be seriously
addressed.

III. METHODS

A total of 40 participants (page = 31; cagep = 14
years) were recruited to take part in the study. From these, 18
were female, 21 male and 1 preferred not to specify gender.
We used emails and specialized advertising on a web portal
for behavioral and health studies recruitment. All regulatory
ethical concerns were taken, and the study was approved by
the University of Michigan’s Institutional Review Board.

A. Procedure

Participants signed a consent form and filled out a pre-
experiment survey as soon as they arrived at the experiment
location. Next, the functions of the AV and the experiment
dynamics were explained, and a training drive allowed partic-
ipants to get familiar with both the AV simulator controls and
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Fig. 5. Rule set for the trust calibrator. The driver’s trust state and the
communication style are defined when the AV compares its capability and
the driver’s trust level. E.g.: when trust is lower than the AV’s capabilities
(light blue cells), the driver is undertrusting the AV, and the encouraging
communication style is selected.

the NDRT. Participants put the eye-tracker device on and, after
it was calibrated, started their first trial on the AV simulator.
After the trial, they filled out a post-trial survey. Next, they
had their second trial and filled out the post trial survey for
the second time. Each experiment took approximately 1 h,
and the participants were compensated for taking part in the
study. The compensation varied accordingly to their highest
total number of points obtained in the NDRT, considering both
of their trials. Minimum compensation was of $15, and the
participants were able to achieve $20, $30 or $50 in total with
a performance cash bonus.

B. Conditions Randomization

All participants experienced one trial with the trust cali-
brator and one trial without the trust calibrator. To avoid the
participants driving in exactly the same conditions in both
of their trials, we varied the direction of the driving on the
circuit track. Participants drove in clockwise direction (i.e.,
regular direction) and counterclockwise direction (i.e., reverse
direction), as mentioned in Fig. |Z[ The “trust calibrator use”
x “drive direction” conditions were randomly assigned, de-
pending on the participant’s sequential identification number.

C. Tasks and Apparatus

The driving task was implemented with AirSim over Unreal
Engine [32]. The visual search NDRT consisted of finding “Q”
characters among a field of “O” characters. Participants’ score
increased by 1 point every time they correctly selected the
targets on the screen, and they lost 20 points each time the
emergency brake was activated. The NDRT was implemented
with PEBL [33]. Source codes for both tasks are available at
https://github.com/hazevedosa/tiavManager.

The experimental setup is shown in Fig. [T} The simulator
was composed of three screens integrated with a Logitech G-
27 driving console, another touch screen for the NDRT and a
Pupil Lab’s Mobile eye-tracker headset.
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TABLE III
COMMUNICATION STYLE FIXED EFFECTS ON DRIVERS’ TRUST IN AV DIFFERENCE (AT'), OBTAINED WITH A LINEAR MIXED-EFFECTS MODEL [30]]

Trust State / Communication Style  Parameter  Estimate  Standard Error (S.E.)  Student’s ¢ p-value Lower Bound  Upper Bound
Calibrated / Silent* Bo 1.7 1.8 0.92 0.36 -1.9 53
Under / Encouraging b1 +15.4 33 4.7 3.3x1076 9.0 21.8
Over / Warning (moderate) B2 -9.0 2.8 -3.2 1.7x103 -14.6 -34
X-over / Warning (harsh) B3 -22.9 -4.5 9.9%x106 -33.0 -12.8

Obs.: *Model intercept reference; Significant parameter estimates (p < 0.01) in bold font. A random intercept is assigned to each

participant in the data set.

IV. RESULTS AND DISCUSSION

We analyzed the impacts of using the trust calibrator’s
adaptive communication with different communication styles
on drivers’ trust in the AV (i.e., real-time estimated trust
Ty). For this, we analyzed the differences in drivers’ trust
estimates between consecutive events, after they had heard the
messages from the AV. Drivers’ trust differences are given by
AT =T, — T)_1, i.e., the difference between trust estimates
after and before the event k. AT was specifically computed
for the analysis, and indicates how participants’ trust estimates
changed after they were encouraged or warned by the AV at the
event k (i.e., after the AV interacted with the drivers adopting
the communication style corresponding to drivers’ trust states
at the event k).

Drivers showed significant positive or negative differences
in their trust estimates after the AV encouraged or warned
them. Table [[TI] and Fig. [6] present the results obtained with a
linear mixed-effects model for AT Linear mixed-effects mod-
els are regression models that include both fixed and random
effects of independent variables on a dependent variable. Fixed
effects represent the influence of the independent variables or
treatments of primary interest (in this case, the communication
styles) on the dependent variable (i.e., trust difference AT).
Random effects represent differences that are not explained
by the factors of primary interest but are rather related to
hierarchical organizations present in the sample population
(e.g., groups of data collected from the same participant) [30].
For instance, in this analysis, a random intercept for each
participant in the experiment was added to the AT linear
mixed-effects model. In summary, we sought the § parameters
that best fit the model

AT = By + frx1 + Baza + Baxs + €p, 3

where ;1 = 1 when the communication style was “Encourag-
ing” and z; = 0 otherwise; xo = 1 when the communication
style was “Warning (moderate)” and zo = 0 otherwise; and
z3 = 1 when the communication style was “Warning (harsh)”
and 3 = 0 otherwise. The random effect ¢, had mean
1 = 0 and standard deviation o = 25.3, and represented each
participant’s characteristic intercept and the irreducible error
of the model. Table shows that all § parameter estimates
corresponding to the non-silent communication styles were
significant (p < 0.01).

In general, the reaction of the drivers to the AV messages
followed an expected trend. The lack of messages did not
significantly change driver’s behaviors when their trust in
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Fig. 6. Distributions of drivers’ trust in the AV differences (AT), for

the different driver trust states. Overtrusting drivers received the warning
communication styles and responded with negative differences. Undertrusting
drivers received the encouraging communication styles and responded with
positive differences. Drivers with calibrated trust had relatively small positive
differences on average. The average values were obtained from the parameter
estimates in Table

the AV was calibrated: the average difference—considered
the reference intercept for the linear mixed-effects model—
was 1.7 units, but the p-value of 0.36 indicates that it was
not significantly different from 0. The encouraging messages
helped drivers to increase their trust in the AV: as shown
in Table the average increase was 1.7 4+ 15.4 = 17.1
units for undertrusting drivers. The warning messages had the
effect of decreasing their trust in the AV: trust estimates of
overtrusting drivers varied by 1.7 — 9.0 = —7.3 units, and
for extremely overtrusting drivers, trust estimates varied by
1.7 —22.9 = —21.2 units. Fig. [/| exemplifies the time trace
for a participant’s trust estimates during a trial, indicating the
messages provided by the AV and the regions for which trust
would be considered calibrated.

The use of the calibrator reduced trust miscalibrations for
29 (out of 40) participants. We computed trust miscalibration
time ratios, representing the amount of time drivers’ trust
state was different from “Calibrated”, relative to the total
time of each trial. For the computation, we removed the
intervals right after a change in AV’s capabilities, where
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miscalibrations were intentionally caused. For all participants,
the average trust miscalibration time ratio was 70% in trials
for which the calibrator was not used. This ratio was reduced
to 43.7% when the calibrator was used. Considering only
the 29 participants that had their miscalibration time ratios
reduced (when using the trust calibrator), these ratios were
82% and 42%, respectively. For the remaining 11 participants,
the reasons for their lack of decreased trust miscalibration
are unknown, although we believe these reasons could be
related to the limitations imposed by the short duration of
the experiment.

These results support the effectiveness of our trust man-
agement framework or, more specifically, our trust calibrator,
which is the main intended contribution of this letter. When
undertrusting drivers increase their trust in the AV, their trust
state is likely to approach the condition of trust calibration.
Equivalently, when overtrusting drivers decrease their trust in
the AV, they are more likely to reach trust calibration. The
increase of trust for undertrusting drivers means that after the
communication from the AV, drivers were able to use the self-
driving capabilities more confidently, which was reflected by
the increases of their related observation variables. Likewise,
the framework was able to reduce drivers’ trust levels if they
presented overtrusting behaviors, when the driving context
was not favorable to the AV’s autonomous operation. The AV
communication demanding drivers’ attention to the driving
task was effective, tending to adjust (i.e., decrease) drivers’
behaviors when they overtrusted the AV.

The proposed real-time trust calibration method was in-
spired by the relationships among situation awareness, risk
perception and trust. Previous works reported on the effec-

tiveness of situation awareness and perceived risk to impact
drivers’ trust in AVs [25[]-[28]]. We applied different commu-
nications styles and messages in an attempt to vary drivers’
situation awareness and risk perception in real time. In conse-
quence, we deliberately induced equivalent real-time changes
in trust, supporting the drivers to avoid trust miscalibrations
by reducing the difference between their trust estimates and
the AV’s capability references. The main applicability of the
proposed trust management framework is to enable AVs to per-
ceive drivers’ trusting behaviors and react to them accordingly.
Smart ADSs featuring this capability would likely enhance
the collaboration between the driver and the AV because it
permits the adaptation of attentional resources according to
the operational environment and situation.

Our method can be considered a complement to [7] and
[22]. The work in [22] supported our insights for the use of
eye-tracking-based techniques for real-time trust estimation. In
comparison to [7], we used different methods and behavioral
variables for trust estimation and extended their ideas to
include the trust calibrator and propose our trust management
framework.

The limitations of the framework are mostly related to
the uncertainty involved in influencing drivers’ trust with
different messages, which might not be very effective for some
drivers. These drivers might need several interactions to be
persuaded by the AV. An example is illustrated in Fig. [7]
where the driver was encouraged to trust the AV twice before
the increase in AT = T3 — T, was registered. The spreads
of the box plots represented in Fig. [6] suggest that, in less
frequent cases, drivers could present an unexpected behavior,
not complying with AV’s encouraging or warning messages.
The lack of a process for customizing the parameters of our
framework contributes to this uncertainty. Relying on average
model parameters in the trust estimation block can reduce
the accuracy of the estimates because the parameters of each
driver can be very different from the averages. Therefore, the
trust estimation algorithm (and consequently, the management
framework) might work more efficiently if adapted to each
individual driver. Another limitation is that the capability of
the AV was defined by the circuit track difficulty levels only.
Other factors can affect AV capability and could be considered,
such as those related to vehicular subsystems or to the weather.

V. CONCLUSIONS

This letter proposed a framework for managing drivers’
trust in AVs in order to avoid trust miscalibration issues. This
framework relies on observing drivers’ behaviors to estimate
their trust levels, comparing it to capabilities of the AVs, and
activating different communication styles to encourage under-
trusting drivers and warn overtrusting drivers. Our proposed
framework has shown to be effective in inducing positive or
negative changes on drivers’ trust in the AV and, consequently,
mitigating trust miscalibration.

Future works could focus on addressing the limitations
of our framework. An individualized system identification
scheme, able to capture drivers’ behavioral parameters for
the dynamic model used in the trust estimator, could be
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included in the trust estimator algorithm. The individualization
of model parameters might increase the effectiveness of the
method, enabling more accurate trust estimates and faster trust
calibrations. Additionally, as we have assumed that the AV can
sense the environment and recognize its own capabilities ac-
cordingly, future efforts to develop this capabilities assessment
could complete our framework.

The proposed trust management framework is applicable
to intelligent driving automation systems, providing them the
ability to perceive and react to drivers’ trusting behaviors,
improving their interaction with the AVs, and maximizing their
safety and their performance in tasks other than driving.
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