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Abstract Trust miscalibration issues, represented by
undertrust and overtrust, hinder the interaction be-

tween drivers and self-driving vehicles. A modern chal-
lenge for automotive engineers is to avoid these trust
miscalibration issues through the development of tech-

niques for measuring drivers’ trust in the automated
driving system during real-time applications execution.
One possible approach for measuring trust is through
modeling its dynamics and subsequently applying clas-

sical state estimation methods. This paper proposes a
framework for modeling the dynamics of drivers’ trust
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in automated driving systems and also for estimating
these varying trust levels. The estimation method in-
tegrates sensed behaviors (from the driver) through a
Kalman filter-based approach. The sensed behaviors in-
clude eye-tracking signals, the usage time of the system,

and drivers’ performance on a non-driving-related task
(NDRT). We conducted a study (n = 80) with a sim-
ulated SAE level 3 automated driving system, and an-

alyzed the factors that impacted drivers’ trust in the
system. Data from the user study were also used for
the identification of the trust model parameters. Re-
sults show that the proposed approach was successful in

computing trust estimates over successive interactions
between the driver and the automated driving system.
These results encourage the use of strategies for model-

ing and estimating trust in automated driving systems.
Such trust measurement technique paves a path for the
design of trust-aware automated driving systems capa-

ble of changing their behaviors to control drivers’ trust
levels to mitigate both undertrust and overtrust.

Keywords Trust · Trust models · Human-robot
interaction (HRI) · Automated driving systems ·
Driving simulation

1 Introduction

Trust is fundamental to effective collaboration between
humans and robotic systems [38]. Trust has been stud-
ied by the human-robot interaction (HRI) community,
especially from researchers who are interested in robotic
technologies acceptance and human-robot teams [8,19,
38,40,51]. Researchers have been trying to understand
the impacts of robots’ behaviors on humans’ trust evo-
lution over time [41]. Moreover, they aim to use this un-
derstanding to design robots that are aware of humans’
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trust to operate in contexts involving collaboration with

those humans [7, 8]. Particularly for self-driving vehi-

cles and automated driving systems (ADSs), trust has

been used to explore consumer attitudes and enrich

the discussion about safety perception [21]. Trust in

ADSs, is directly linked to perceptions of their safety

and performance which is vital for promoting their ac-

ceptance [28,46,53].

Trust is a highly abstract concept, and this abstract-

ness makes measuring trust a challenging task [24]. Pop-

ular measures of trust are typically self-reported Likert

scales, based on subjective ratings. For example, indi-

viduals are asked to rate their degree of trust on a scale

ranging from 1 to 7 [7,15,30]. Although self-reports are

a direct way to measure trust, they also have several

limitations. First, self-reporting is affected by peoples’

individual biases, which makes a precise trust quantifi-

cation hard to achieve [32]. Second, it is difficult to ob-

tain repeated and updated measures of trust over time

without stopping or at least interrupting the task or

activity someone is engaged in [10, 52]. Specifically, it

is not reasonable to expect ADSs to repeatedly inter-

rupt drivers and ask them to complete a trust surveys.

As such, self-reported measures of trust are not an ap-

proach that can be relied on to assess drivers’ trust in

real-time.

An alternative approach to measuring drivers’ trust

through Likert scale surveys is real-time estimation,

done through observing drivers’ actions and behaviors.

However, there is still much to learn about real-time

trust estimation techniques as the current approaches

have various limitations. Current approaches fail to pro-

vide trust measurements in scales traditionally used for

trust in automation [1], or require prohibitive sophis-

ticated sensing and perception methods [1, 25]. These

sophisticated methods include the processing of psy-

chophysiological signals (e.g.: galvanic skin response),

that are not practical for the vehicular environments,

where driver-ADS interactions are likely to take place.

Considering the potential implications for ADS and

the far-reaching importance of trust estimation to HRI

researchers, our lack of knowledge in this area is a sig-

nificant gap. For example, given the difficulties involved

in measuring real-time trust in the HRI area, such tech-

niques could prove to be valuable across a wide range

of robotic interactions with humans. In the case of self-

driving vehicles, the ability to indirectly measure trust

would open several design possibilities, especially for

adaptive ADSs capable of conforming to drivers’ trust

levels and modifying their own behaviors accordingly.

Trust estimations could be used in solutions for issues

related to trust miscalibration—i.e., when drivers’ trust

in the ADS is not aligned with system’s actual capabil-

ities or reliability levels [23, 30, 43]. In a simplified ap-

proach, trust can be inferred with only the identifica-

tion and processing of observable variables that may be

measured and processed to indicate trust levels. These

observation variables essentially represent the behav-

ioral cues present in interactions between drivers and

ADSs. However, because of the uncertainty involved

in humans’ behaviors and actions, a successful trust

estimation method must be robust to the uncertainty

present in measurements of these observation variables.

Predictive models for the variable to be estimated can

be used for the development of estimation methods that

are robust to uncertainty. Thus, there is a fundamen-

tal need for trust dynamic models, describing: (i) how

drivers’ trust in the ADS changes over time and (ii) the

factors that induce changes in drivers’ trust in the ADS.

This need highlights the importance of developing de-

scriptive models for trust dynamics over the events that

occur within driver-ADS interactions. Ultimately, these

trust dynamics models are useful for the development

of reliable trust estimation techniques.

To address this gap, this paper proposes a frame-

work for the estimation of drivers’ trust in ADSs in real-

time. The framework is based on observable measures of

drivers’ behaviors and trust dynamic models. Although

different trust estimation approaches have been previ-

ously reported in the literature [1, 25], our method is

simpler to implement. Those previous approaches rep-

resented trust as conditional probabilities. Our trust

estimates, instead, are represented in a continuous nu-

merical scale, which is more consistent with Muir’s scale

[31] and, therefore, also more consistent with the the-

oretical background on trust in automation. Moreover,

our estimation framework relies on a discrete, linear

time-invariant (LTI) state-space dynamic model and

on a Kalman filter-based estimation algorithm. This

formulation makes our trust estimation framework ap-

propriate for treating the unpredictability that char-

acterizes drivers’ behaviors and for the design of in-

novative trust controllers. The trust dynamic model is

derived from experimental data obtained in a user ex-

periment with a self-driving vehicle simulator. The es-

timation algorithm processes observation variables that

are suitable for the driver-ADS interaction conditions.

This trust estimator is intended to provide a means

for the self-driving vehicle’s ADS to track drivers’ trust

levels over time. It enables tracking drivers’ trust lev-

els without the need for directly demanding drivers to

provide self-reports, which can be disruptive and im-

practical [24].

The remainder of this paper is organized as follows:

Section 2 discusses relevant literature. Sections 3 and

4 establish the theoretical basis for the development of
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our model and estimation solution. Section 5 presents

details about the user experiment. Section 6 presents

the analysis of factors that impact trust and the pro-

cedure for trust estimation. Sections 7 and 8 discusses

the results and concludes the paper.

2 Related Work

2.1 Trust in Automation and Trust in Robots

Trust in automation has been discussed by researchers

since it was first identified as a vital factor in supervi-

sory control systems [39]. Formal definitions of trust in

machines came from interpersonal trust theories [3, 33]

and were established by Muir in the late eighties [30].

Muir identified the need to avoid miscalibrations of

trust in decision aids “so that [the user] neither under-

estimates nor overestimates its capabilities” [30]. Her

work was then extended by Lee and Moray, who used an

autoregressive moving average vector form (ARMAV)

analysis to derive a transfer function for trust in a simu-

lated semi-automatic pasteurization plant [20]. The in-

puts for this model were system performance (based on

the plant’s efficiency) and faults. They later focused on

function allocation problems, and found that the dif-

ference between trust and self-confidence is crucial for

users to define their allocation strategies [22].

The theoretical background on trust in automation

has formed the basis for the development of more spe-

cific trust in robots measurement scales. Schaefer devel-

oped a scale that relies on the assessment of forty trust

items, related to the human, the robot and the envi-

ronment where they operate [38]. Yagoda [51] created

a measurement scale considering military applications

and defining a list of HRI-related dimensions suggested

by experts with extensive experience in the field. Char-

alambous et al. gathered qualitative trust-related ques-

tions focusing on the industrial human-robot collabora-

tion (HRC) niche, and developed a trust measurement

scale for that specific context [6].

In this paper, we consider the widely accepted def-

inition of trust as “the attitude that an agent will help

achieve an individual’s goals in a situation character-

ized by uncertainty and vulnerability” [23]. This def-

inition aligns with Muir’s standard questionnaire for

trust self-reporting, which we used for trust quantifi-

cation. Trust in automation is distinct from reliance

on automation. Trust is an attitude that influences hu-

man’s reliance behavior, characterized by engaging in

automation usage. Trust miscalibrations are likely to

induce inappropriate reliance, such as automation mis-

use or disuse [23].

2.2 Dynamics of Trust and Trust Estimation

Castelfranchi and Falcone [5] define the main aspects

of trust dynamics as: how do the experiences of the

trustor agent (both positive and negative experiences)

influence trust changes; and how the instantaneous level

of trust influences its subsequent change. These aspects

are especially important when a human agent (in this

case, the trustor) interacts with a machine (i.e., the

trustee). As in a dynamic system, trust evolution is

assumed to depend on the trust condition at a time

instance and on the following inputs represented by

the trustor’s experiences with the trustee [20]. Several

works have considered these basic assumptions and pre-

sented different approaches for trust dynamics mod-

eling. The argument-based probabilistic trust (APT)

model establishes the representation of trust as the prob-

ability of a reliable action, given the situation and sys-

tem features [9]. In the reliance model, reliance is con-

sidered a behavior that is influenced by trust [23]. The

three-layer hierarchical model describes trust as a result

of dispositional, situational and learned factors involved

in the human-automation interaction [15].

A relevant approach for modeling the dynamics of

trust is that of Hu et al. [16], who developed a linear

state-space model for the probability of trust responses

within two possible choices: trust or distrust in a virtual

obstacle detection system. In addition to developing

trust-related dynamic models, researchers have tried

to use different psychophysiological signals to estimate

trust. For instance, extending Hu’s work [16], Akash et

al. [1] proposed schemes for controlling users’ trust lev-

els, applying electroencephalography and galvanic skin

response measurements for trust estimation. However,

psychophysiology-based methods suffer from at least

two drawbacks. First and foremost, when using the re-

ported psychophysiological methods, trust is not di-

rectly measured. Rather, the results of that method are

conditional probabilities of achieving two states (trust

or distrust), given prior signal patterns. Although this is

a reasonable approach, previous research suggests that

trust should be directly measured and represented in a

continuous scale [6,18,31,38]. Second, the sensor appa-

ratus applied in psychophysiology-based methods is in-

trusive and can influence users’ performance negatively,

bringing practical implementation issues in applications

such as self-driving vehicles.

The work presented in this paper differs from pre-

vious research in two ways. First, we propose a model

that has trust as a continuous state variable, defined

in a numerical scale consistent with Muir’s subjective

scale [31]. Second, we propose a simpler trust sensing

method that relies only on eye-tracking as a direct mea-
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sure of drivers’ behavior. Other variables that are used

for sensing are intrinsic to the integration between ADS

and the non-driving-related task (NDRT) executed by

the driver.

2.3 System Malfunctions and Trust

When not working properly, machines that are used

to identify and diagnose hazardous situations—which

might trigger human intervention—can present two dis-

tinct malfunction types: false alarms and misses [42].

False alarms occur when the system wrongfully diag-

noses nonexistent hazards. On the other hand, when

the system can not identify the existence of a hazard

and no alarm is raised, a miss occurs. These different er-

ror types influence system users differently [2,26,27,54],

and also have distinct impacts on trust. The influence

of false alarms and misses on operators’ behaviors was

investigated by Dixon et al. [12], who has established a

relationship with users compliance and reliance behav-

iors. After being exposed to false alarms, users reduced

their compliance behavior, delaying their response to

or even ignoring alerts from the system (the “cry wolf”

effect). On the contrary, after misses, users allocated

more attention to the task environment [11,47,48].

It is clear that false alarms and misses represent ex-

periences that influence drivers’ trust in ADSs. As sys-

tems that are designed to switch vehicle control with

the driver in specific situations, ADSs rely on collision

sensors that monitor the environment to make the de-

cision to request drivers’ intervention. Therefore, while

other performance-related factors—such as the ADS’s

driving styles [4] or failures on different components of

the ADS—could affect drivers’ trust, we consider that

those collision sensors were the most relevant and safety

critical elements in SAE level 3 ADSs. In our study, we

introduce system malfunctions only in the form of false

alarms and misses on the simulated vehicle’s collision

warning system, while keeping other factors such as the

vehicles driving style and other failure types unchanged

and generally acceptable: the vehicle followed the stan-

dard speed of the road, and no other type of system

failure occurred.

3 Problem Statement

Our problem is to estimate drivers’ trust in ADS from

drivers’ behaviors and actions in real-time, while they

operate a vehicle equipped with a SAE Level 3 ADS

and concurrently perform a visually demanding NDRT.

Our method must provide continuous trust estimates

that can vary over time, capturing the dynamic nature

of drivers’ trust in the ADS. The estimation method

must avoid the impractical process of repeatedly ask-

ing drivers their levels of trust in the ADS, and be as

unobtrusive as possible for sensing drivers’ behaviors

and actions.

4 Method

4.1 Scope

To define the scope of our problem, we make the fol-

lowing assumptions about the ADS and the driving sit-

uation:

(i) the ADS explicitly interacts with the driver in events

that occur during vehicle operation, and provides

automated lane keeping, cruise speed control and

collision avoidance capabilities to the vehicle;

(ii) the NDRT device is integrated with the ADS, al-

lowing the ADS to monitor drivers’ NDRT perfor-

mance. The ADS can also track driver’s head and

eyes orientations;

(iii) drivers can alternate between using and not using

the driving automation functions (i.e., the vehicle’s

self-driving capabilities) at any time during the op-

eration;

(iv) when not using the driving automation functions,

drivers have to perform the driving task, and there-

fore operate the vehicle in regular (non-automated)

mode;

(v) using the capabilities provided by the ADS, the ve-

hicle autonomously drives itself when the road is

free but it is not able to maneuver around obsta-

cles (i.e., abandoned vehicles) on the road. Instead,
the ADS warns the driver whenever an obstacle is

detected by the forward collision alarm system, at

a fair reaction distance. In these situations, drivers

must take over driving control from the ADS and

maneuver around the obstacle manually to avoid a

collision; and

(vi) the forward collision alarm system is not perfectly

reliable, meaning that both false alarms and misses

can occur, and the ADS acknowledges when these

errors occur. These false alarms and misses lead to

interactions that are likely to decrease drivers’ trust

in the ADS. As mentioned in Section 2.3, no other

system malfunctions were implemented in the sim-

ulation.

4.2 Problem Solving Approach

Assuming that the variations of trust caused by the

interactions between the driver and the ADS can be
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quantified, we decide to apply a classical Kalman filter-

based continuous state estimation approach for trust.

There are three reasons for applying a Kalman filter-

based approach: (i) the fact that the continuous out-

put measures of the estimator could be useful for the

design of controllers and decision making algorithms

in future applications; (ii) the aforementioned well ac-

cepted practice of using continuous numerical estimates

for trust in automated systems; and (iii) the difficulties

related to the stochasticity of drivers’ behaviors, which

can be mitigated by the Kalman filter with recurring

measurements. Therefore, to represent trust as a state

variable we need the mathematical derivation of a state-

space model that represents the dynamics of trust. We

assume that the dynamics of trust is influenced by the

trustor agents’ instantaneous level of trust and their

experiences over time [5].

The implementation of a Kalman filter requires the

definition of observation variables that can be measured

and processed in real-time. These observation variables

must be related to the variable to be estimated. There-

fore, to satisfy the ease of implementation requirements

stated on Section 3, we select a set of variables that were

easy to sense and suitable for being used in a vehicular

spatial configuration. The variables are: (i) the amount

of time drivers spent using the autonomous capabili-

ties provided by the ADS, i.e., ADS usage time ratio;

(ii) the relative amount of time drivers spent focusing

on a secondary task (the NDRT), measured with an

eye-tracker device, i.e., focus time ratio [24]; and (iii)

drivers’ performance on that same NDRT, i.e., NDRT

performance. The focus time ratio obtained with the

eye tracker is chosen because it is conveniently easy to

be measured in a vehicle, and has been shown to be suc-

cessfully representative of trust metrics [24]. The other

variables are chosen because they are assumed to be

proportional to trust: the more a driver trusts an ADS,

the more s/he will use it; the more a driver trusts the

ADS, the better s/he will perform on her/his NDRT.

Finally, to identify the parameters of a model for

drivers trust in ADS, we need to obtain a training

dataset containing both inputs and their corresponding

outputs. The outputs must be represented by drivers’

true levels of trust in the ADS, which we can obtain by

collecting their self-reports in a controlled user experi-

ment. Therefore, only for the purpose of obtaining this

training dataset, we establish a procedure for asking

drivers their levels of trust in the ADS.

4.3 Definitions

To implement our solution methodology, we must firstly

define the terms that will be used in our formulation.

Definition 1 (Trial)

A trial is concluded each time the driver operates the

vehicle and reaches the end of a predefined route.

Trials are characterized by their time intervals, lim-

ited by the instants they start and end. Denoting these

by t0 and tf , t0 < tf , the time interval of a trial is given

by [t0, tf ] ∈ R+.

Definition 2 (Event)

An event, indexed by a k ∈ N \ {0}, is characterized

each time the ADS warns or fails to warn the driver

about an obstacle on the road. Events occur at specific

time instances tk corresponding to k, t0 < · · · < tk <

· · · < tf , when the ADS:

(i) correctly identifies an obstacle on the road and alerts

the driver to take over control;

(ii) provides a false alarm to the driver; or

(iii) misses an existent obstacle and does not warn the

driver about it.

Definition 3 (Event Signals)

The event signals are booleans L(tk), F (tk) and M(tk)

corresponding to the event k that indicates whether the

event was:

(i) a true alarm, for which L(tk) = 1 and F (tk) =

M(tk) = 0;

(ii) a false alarm, for which F (tk) = 1 and L(tk) =

M(tk) = 0; or

(iii) a miss, for which M(tk) = 1 and L(tk) = F (tk) = 0.

Definition 4 (Instantaneous Trust in ADS)

Drivers’ instantaneous trust in ADS at the time in-

stance t, t0 ≤ t ≤ tf is a scalar quantity, denoted by

T (t).

T (t) is computed from trust variation self-reports

and from questionnaires answered by the driver, adapted

from the work by Muir and Moray [31]. We re-scale the

numerical range of the survey responses to constrain

T (t) ∈ [Tmin, Tmax], and arbitrarily choose Tmin = 0

and Tmax = 100. We also assume that T (t) is im-

mutable between two events, i.e., for tk ≤ t < tk+1.

We consider T (t) to be our basis for the development

of the proposed trust estimator.

Definition 5 (Instantaneous Estimate of Trust in ADS)

The estimate of trust in ADS at the time instance t,

t0 ≤ t ≤ tf is the output of the trust estimator to

be proposed, and is represented by T̂ (t). Its associated

covariance is denoted by Σ̂T (t).
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ADS

Stopped vehicle ahead!
Take control now! 

Before event           : 
ADS does not warn
the driver about the

stopped vehicle ahead

time

True Alarm

False Alarm Miss

Before events
and   :

Fig. 1 Timeline example for the stated problem. The event
k − 1 is a true alarm (there is an obstacle car and the ADS
warns the driver about it); the event k is a false alarm (there
is no car but the ADS also warns the driver); and the event
k+1 is a miss (there is an obstacle car and the ADS does not
warn the driver about it).

Definition 6 (Focus)

Drivers’ focus on the NDRT, represented by ϕ(tk), is

the percentage of time the driver spends looking at the

NDRT screen during the interval [tk, tk+1).

Definition 7 (ADS Usage)

Drivers’ ADS usage, represented by υ(tk), is defined by

the percentage of time the driver spends using the ADS

self-driving capabilities during the interval [tk, tk+1).

Definition 8 (NDRT Performance)

Drivers’ NDRT performance, represented by π(tk), is

the total points obtained by the driver in the NDRT

during the interval [tk, tk+1) divided by ∆tk = tk+1−tk.

We also call ϕ(tk), υ(tk), and π(tk) our observation

variables.

Fig. 1 shows a timeline scale that represents events

within a trial. The NDRT and its score policies are ex-

plained in Section 5.

4.4 Trust Dynamics Model

To translate Castelfranchi’s and Falcone’s main aspects

of trust dynamics [5] into mathematical terms, we must

represent the experiences of the trustor agent, the sub-

sequent change in trust, and relate those variables. De-

scribing the user experiences with the passing time and

the event signals, while also considering their discrete

nature, we can expect a general relationship with the

form represented by Equation (1),

T (tk+1) = f(tk, T (tk), L(tk), F (tk),M(tk)) , (1)

where f : [t0, tf ]×[Tmin, Tmax]×{0, 1}3 → [Tmin, Tmax].

Additionally, we can expect the relationship between

observations and trust to take the form represented by

Equation (2),ϕ(tk)

υ(tk)

π(tk)

 = h(tk, T (tk), L(tk), F (tk),M(tk)) , (2)

where h : [t0, tf ]× [Tmin, Tmax]× {0, 1}3 → [0, 1]2 × R.

For simplicity, we assume the functions f and h to

be linear, time-invariant, with additional random terms

representing drivers’ individual biases. Moreover, we

model trust and the observation variables as Gaussian

variables, and consider the observations to be indepen-

dent of the event signals and within each other, repre-

senting the dynamics of trust in the ADS with the LTI

system state-space model in Equations (3),

T (tk+1) = AT (tk) + B

L(tk)

F (tk)

M(tk)

+ u(tk) ;

ϕ(tk)

υ(tk)

π(tk)

 = CT (tk) + w(tk) ,

(3)

where A =
[
a11
]
∈ R1×1, B =

[
b11 b12 b13

]
∈ R1×3,

C =
[
c11 c21 c31

]> ∈ R3×1, u(tk) ∼ N (0, σ2
u) and

w(tk) ∼ N (0,Σw).

4.5 Trust Estimator Design

The state-space structure permits the application of

Kalman filter-based techniques for the estimator design.

We then propose the procedure presented in Algorithm

1. Fig. 2 shows a block diagram representation of this

framework, highlighting the trust estimator role in the

interaction between the driver and the ADS.

5 User Study and Data Collection

We reproduced the situation characterized in Section 4

with the use of an ADS simulator. A total of 80 partici-

pants were recruited (aged 18-51, M = 25.0, SD = 5.7,

52 male, 26 female and 2 who preferred not to spec-

ify their genders). Participants were recruited via email

and printed poster advertising. All regulatory ethical

precautions were taken. The research was reviewed and

approved by the University of Michigan’s Institutional

Review Board (IRB).
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Algorithm 1 Trust Estimator

1: procedure Trust Estimation(T̂ (tk), Σ̂T (tk),
L(tk), F (tk),M(tk), ϕ(tk), υ(tk), π(tk))

2: if k = 0 then

3: T̂ (t0)← (C>C)−1C>

ϕ(t0)
υ(t0)
π(t0)


4: Σ̂T (t0)← 1 . Initializes trust estimate and

co-variance
5: else
6: K ← Σ̂T (tk)C>(CΣ̂T (tk)C> +Σw)−1 .

Measurement update starting with Kalman gain compu-
tation

7:

ϕ̂(tk)
υ̂(tk)
π̂(tk)

← CT̂ (tk)

8: v←

ϕ(tk)
υ(tk)
π(tk)

−
ϕ̂(tk)
υ̂(tk)
π̂(tk)

 . Innovation

9: T (tk)← T̂ (tk) +Kv

10: ΣT (tk)← Σ̂T (tk)−KCΣ̂T (tk)

11: T̂ (tk+1)← AT (tk) + B

L(tk)
F (tk)
M(tk)

 . Time Update

12: Σ̂T (tk+1)← AΣT (tk)A> + σu
13: end if
14: return T̂ (tk+1), Σ̂T (tk+1)
15: end procedure

Fig. 2 Block diagram representing the trust estimation
framework. The event signals L, F and M indicate the occur-
rence of a true alarm, a false alarm or a miss. The observations
ϕ, υ and π represent the drivers’ behaviors. T is drivers’ trust
in ADS while T̂ and Σ̂T are the estimates of trust in ADS
and the covariance of this estimate. A delay of one event is
represented by the z−1 block.

5.1 Experiment and Data Collection

5.1.1 Study design

We employed a 4 (ADS error types) × 2 (road shapes)

mixed user experimental design. Each participant ex-

perienced 2 trials, and each trial had 12 events. These

2 trials had the same ADS error type (between-subjects

condition) and 2 different road shapes (within-subjects

condition). The ADS error types that varied between

subjects corresponded to 4 different conditions: con-

trol, for which all 12 events were true alarms; false

alarms only, for which the 2nd, 3rd, 5th, and 8th events

were false alarms; misses only, for which the 2nd, 3rd,

5th, and 8th events were misses; and false alarms and

misses combined condition, for which the 2nd and 5th

events were false alarms, while the 3rd and 8th events

were misses. The ADS error type was assigned accord-

ing to the participants’ sequential identification num-

ber. The road shapes were represented by straight and

curvy roads, and were assigned in alternating order to

minimize learning and ordering effects.

5.1.2 Tasks

We used a driving simulation designed and implemented

with the Autonomous Navigation Virtual Environment

Laboratory (ANVEL) simulator [13]. The NDRT was an

adapted version of the Surrogate Reference Task [17],

implemented with the Psychology Experiment Building

Language (PEBL) [29]. Fig. 3(a) shows the experimen-

tal setup with the tasks performed by the driver.

In the driving task, participants operated a simu-

lated vehicle equipped with an ADS that provided it

automatic lane keeping, cruise control, and collision

avoidance features. Participants were able to activate

the ADS (starting autonomous driving mode) by press-

ing a button on the steering wheel, and to take back

control by braking or by steering. Fig. 3(b) shows the

driving task interface with the driver.

With the ADS activated (i.e., with the vehicle in

self-driving mode), participants were expected to exe-

cute the visual search NDRT. They were not allowed

to engage in both driving and executing the NDRT

simultaneously, and the experimenters would stop the

test if they did so. Participants were informed that the

vehicle could request their intervention if they identi-

fied obstacles on the road, as it is expected for Level 3

ADSs [35]. They needed to find a “Q” character among

several other “O” characters, and obtained 1 point for

each correctly chosen “Q”. Fig. 3(c) shows the NDRT

interface with the driver.

Participants could not focus only on the NDRT, be-

cause the ADS demanded them to occasionally take

control of the driving task. They were asked to be ready

to take control upon intervention requests from the

ADS, as some obstacles occasionally appeared on the

road. At that point, the ADS identified the obstacles

and asked the driver to take control, as the vehicle was

not able to autonomously change lanes and maneuver

around them. If drivers did not take control, the emer-

gency brake was triggered when the vehicle got too close

to an obstacle, and then drivers lost points on their on-
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going NDRT score. In that situation, they still needed

to take control of the driving task, maneuver around the

obstacle and re-engage the autonomous driving mode.

They lost 5 points each time the emergency brake got

triggered.

With the events characterized by true alarms or

misses, drivers had to take control and pass the obsta-

cle. Subsequently, they were asked about their “trust

change”. When asked, they had to stop the vehicle to

answer the question on a separate touchscreen. They

reported their trust change in the events characterized

by true alarms, false alarms, and misses. They had 5

choices, varying from “Decreased Significantly” to “In-

creased Significantly”, as shown in Fig. 3(d). These

choices were then used as indicators of the differences

∆TQk ∈ {−2,−1, 0, 1, 2} (we use the superscript Q to

indicate that the differences were quantized).

5.1.3 Procedure

Upon arrival, participants were asked to complete a

consent form as well as a pre-experiment survey related

to their personal information, experience with ADS,

mood and propensity to trust the ADS. After the sur-

vey, the tasks were explained and the experimenter gave

details about the experiment and the simulated vehicle

control. Participants then completed a training session

before the actual experiment began and, in sequence,

completed their two trials. After each trial, participants

were asked to complete post-trial surveys related to

their trust in the ADS. These surveys were adminis-

tered electronically. Each trial took approximately 10

to 15 minutes, and the whole experiment lasted ap-

proximately 60 minutes.

A basic fixed level of cash compensation of $15.00

was granted for the participants. However, they also

had the possibility of receiving a performance bonus.

The bonus was calculated according to their best final

NDRT score, considering both trials experienced by the

participant. Those who made up to 199 points in the

NDRT did not receive a bonus. However, bonuses of

$5.00 were granted for those who made between 200

and 229 points; $15.00 for those who made between

230 and 249 points; and $35.00 for those who made 250

points or more. From the total of 80 participants, 28

got $5.00 bonuses, 6 participants got $15.00 bonuses,

and no participant got the $35.00 bonus.

5.1.4 Apparatus

As illustrated in Fig. 3(a), the simulator setup was com-

posed of three LCD monitors integrated with a Logitech

Please indicate the degree that your trust changed after this encounter.

Decreased
Significantly
-2

Decreased
Slightly

-1
No Change

0

Increased
Slightly

1

Increased
Significantly

2

(d)

(c)

(b)

(a)

(b)

(c)

(d)

Fig. 3 Experimental design (a), composed of the driving task
(b), the NDRT (c) and the trust change self-report question
(d). The trust change self-report question popped up after
every event within the trials (there were 12 events per trial),
including true alarms, false alarms, and misses.
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G-27 driving kit. Two other smaller touchscreen mon-

itors positioned to the right hand of the participants

were used for the NDRT and for the trust change self-

report questions. The console was placed to face the

central monitoring screen so as to create a driving ex-

perience as close as possible to that of a real car. In

addition, we used Pupil Lab’s Pupil Core eye tracker

mobile headset, equipped with a fixed “world camera”

to measure participants’ gaze positional data.

5.1.5 Measured Variables

Measured variables included participants’ subjective re-

sponses, behavioral responses and performance. Obser-

vation variables ϕ(tk), υ(tk) and π(tk) were also mea-

sured and averaged for the intervals [tk, tk+1]. Subjec-

tive data was gathered through surveys before and af-

ter each trial, including trust perception, risk percep-

tion, and workload perception. We used questionnaires

adapted from [31] and [34] to measure post-trial trust

and risk perception, respectively. Eye-tracking data in-

cluded eyes’ positions and orientations, as well as videos

of the participants’ fields of view.

T (tk) was computed from the post-trial trust per-

ception self-reports T (tf ) and the within trial trust

change self-reports ∆TQk , as in Equation (4),
T (t12) = T (tf ) ;

T (tk) = T (tf )− α
12∑

i=k+1

∆TQi ,
(4)

where k ∈ {0, 1, 2, . . . , 11}, and α = 3. Therefore, the

trust measures T (tk) were back-computed for the events

within a trial. The α value was chosen to characterize

noticeable variations in T (tk), but also avoiding T (tk)

values falling outside the interval [Tmin, Tmax]. Positive

values for α between 1 and 3 were tested and provided

results similar to those reported in Section 6.

5.2 Model Parameters

Considering the formulation presented in Section 4 and

the data obtained in the user study, we turn to the

identification of parameters for the trust model and the

design of the trust estimator. We found the best fit pa-

rameters for the short-term (i.e., with respect to events)

trust dynamics represented by the state-space model

in Equation (3). From the 80 participants, we selected

4 from the dataset—each one chosen randomly within

each of the 4 possible ADS error type conditions—and

used the data from the remaining 76 to compute the

parameters, which are presented in Table 1. We used

the data from the 4 selected participants for validation.

Table 1 Trust in ADS state-space model parameters

Parameter Value Estimate S.E.M†

a11 0.9809 4.0× 10−3

b11 3.36 0.29

b12 −0.61 0.32

b13 −1.30 0.31

c11 6.87× 10−3 3.3× 10−4

c21 9.10× 10−3 1.0× 10−4

c31 4.38× 10−3 1.0× 10−4

σ2
u 1.24 –

Σw diag(1.0, 1.6, 1.8)× 10−3 –

†S.E.M = Standard error of the mean.

The parameters of the state-space model from Equation

(3) were identified with maximum likelihood estimation

through linear mixed-effects models. Our models in-

cluded a random offset per participant to capture their

individual biases and mitigate the effects of these biases

in the results, and to represent normally distributed

random noises.

6 Results

6.1 Participants’ Data Analysis

For each of the observation variables, we obtained 1920

measurements (80 participants × 2 trials per partici-

pant × 12 events per trial). The parameters describing

these distributions are presented in Table 2. The his-

tograms for these distributions are shown in Fig. 4; the

probability density functions corresponding to normal

distributions N (µϕ, σ
2
ϕ), N (µυ, σ

2
υ) and N (µπ, σ

2
π) are

also shown.

Table 2 Parameters for the Focus ϕ, ADS usage υ and
NDRT performance π measurements distributions

Parameter
Distributions

ϕ υ π

Minimum 0.02 0.17 0.00

25th percentile 0.32 0.69 0.28

50th percentile 0.47 0.74 0.33

75th percentile 0.65 0.79 0.38

Maximum 0.97 0.92 0.56

Mean µ 0.49 0.73 0.32

Standard Deviation σ 0.20 0.08 0.08



10 Hebert Azevedo-Sa et al.

Fig. 4 Histograms for the Focus ϕ, ADS usage υ and NDRT performance π measurements distributions and overlapping
probability density functions with corresponding means and standard deviations. Each distribution had 1920 measurements
(= 80 participants × 2 trials per participant × 12 measurements per trial).

6.2 Trust Estimation Results

After obtaining the model parameters, we applied Algo-

rithm 1 to estimate the trust levels of the participants

that were excluded from the dataset. Fig. 5(a1:a4) and

Fig. 6(a1:a4) present the trust estimation results for

these participants (identified as A, B, C and D). Partic-

ipant A experienced the combined ADS error type con-

dition; participant B experienced the false alarms only

condition; participant C experienced the control con-

dition; and participant D experienced the misses only

condition. The plots bring together their two trials and

the different estimate results for each trial. For partici-

pants A and B, trial 1 was conducted on a curvy road

and trial 2 on a straight road. For participants C and

D, trial 1 was conducted on a straight road and trial 2

on a curvy road.

The accuracy of our estimates improved over time,

as the participants interacted with the ADS. Fig. 5(a1)

shows that, for participant A, trial 1, the initial trust

estimate T̂ (t0) and the initial observed trust T (t0) were

close to each other (in comparison to Fig. 5(a2)). This

means that the estimate computed from the observa-

tions taken at the beginning of the trial, i.e., ϕ(t0),

υ(t0), and π(t0), approximately matched the partici-

pants self-reported trust level. Considering the Kalman

filter’s behavior, the curves remained relatively close

together over the events, as expected. Therefore the

estimate followed the participants’ trust over the trial

events. This accuracy, however, was not achieved at the

beginning of the second trial, as can be observed in Fig.

5(a2). This figure shows that, in trial 2, T̂ (t0) and T (t0)

had a greater difference, but this difference decreased

over the events as the curves converged. A similar ef-

fect can be observed for participants B, trial 2 as in Fig.

5(a3:a4) and for participant C, as in Fig. 6(a1:a2).

Participants’ responses to similar inputs were not

always coherent, and varied over time or under certain

conditions. Predominantly, participants’ self-reported

trust increased after true alarms (indicated by the pre-

vailing positive steps at the events that are character-

ized by orange circles). In addition, after false alarms

and misses, they usually reported trust decreases (in-

dicated by the prevailing negative steps at the events

characterized by yellow diamonds and purple triangles).

However, it is noticeable that, for participant A, trial 2,

the self-reported trust was more “stable”, as indicated

by fewer steps on the red dashed curve. Two different

factors could have contributed to the less frequent varia-

tions on T (tk): as the participant was on a straight road,

the perceived risk might not have been high enough to

induce drops after false alarms; or, as it was the par-

ticipant’s second trial, the learning effects might have

softened the self-reported trust changes (especially af-

ter false alarms). In any case, the difference between the

curve patterns in Fig. 5(a1) and Fig. 5(a2) suggests a

non-constancy on participant A’s characteristic behav-

iors. A similar behavior was observed for participant C,

trial 1 after the 8th alarm and for trial 2.

The observation variables we selected were effective

in representing drivers trusting behaviors. Fig. 5(b1:d4)

show the observation variables corresponding to the

trust curves in Fig. 5(a1:a4), while Fig. 6(b1:d4) cor-

respond to 6(a1:a4). All observation variables have a

positive correlation with trust, and therefore it can be

observed that some noticeable peaks and drops in the

observation variables correspond to positive and neg-

ative variations in the estimate of trust in ADS. This

is especially true for counterintuitive behaviors of the

participants. For instance, as it can be seen in Fig.

5(a3:d3), after the 8th event—which was a false alarm—

participant B reported a drop in his/her trust level,
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indicating that T (t8) < T (t7). However, his/her be-

haviors did not reflect that drop: we can notice that

ϕ(t8) > ϕ(t7), υ(t8) > υ(t7) and π(t8) > π(t7). As a

result, the trust estimate had an increase, and even-

tually we had T̂ (t8) > T̂ (t7). Similar counter-intuitive

situations can be identified for participants A, C and

D.

The accuracy of the estimates depends on the co-

variance parameters, which can be tailored for the driver.

The trust estimate bounds represented by blue bands

in Fig. 5(a1:a4) and Fig. 6(a1:a4) are approximations

obtained with the overlay of several simulations (100 in

total). This variability is due to the uncertainty repre-

sented by the random noise parameters u(tk) and w(tk),

and the width of the bound bands is related to the com-

puted covariances σ2
u and Σw. Both lower values for σ2

u

and higher values for Σw entries would imply a nar-

rower band, meaning that the estimator would have

less variability (and therefore could be slower on track-

ing trust self-reports). Meanwhile, higher σ2
u and lower

values of Σw entries would imply, respectively, a less

accurate process model and on observations considered

more reliable. This would characterize wider bands, and

thus the variations on the estimate curves would be

more pronounced.

Trust estimates may be more accurate with the in-

dividualization of the model parameters. Although we

used the average parameters presented in Table 1 for

the results, a comparison of Fig. 5(a2), Fig. 6(a1) and

Fig. 6(a3:a4) with Fig. 5(a4), suggests that the bal-

ance between σ2
u and Σw should be adapted to each

individual driver. It can be seen that these parameters

permitted a quick convergence of T (tk) and T̂ (tk) for

participants A, C and D, but that 12 events were not

enough for the estimator to track the trust self-reports

from participant B. We also computed the root-mean-

square (RMS) error of the estimate curves resulting

from the 100 simulations for participants A, B, C and

D. The RMS error distributions had the characteristics

presented in Table 3.

Considering the 100-points trust range, for partici-

pant A the error stands below 10%, while for partici-

pants B, C and D it stands below 20%. This difference

suggests that the parameters of the model are more

suitable for participant A than for participant B, C and

D.

7 Discussion

7.1 Contributions and Implications

The goal of this paper was to propose a framework for

real-time estimation of drivers’ trust in ADS based on

Table 3 RMS error of the estimate curves from Fig. 5 and
Fig. 6

Participant Trial Mean Standard Deviation

A 1 4.9 2.4

A 2 10.0 2.1

B 1 14.5 2.8

B 2 19.1 1.2

C 1 14.2 0.4

C 2 2.7 0.6

D 1 20.7 2.2

D 2 13.8 3.4

drivers’ behaviors and dynamic trust models. As shown

by the results, our framework successfully provides esti-

mates of drivers’ trust in ADS that increase in accuracy

over time. This framework is based on a novel method-

ology that has considerable advantages over previously

reported approaches, mainly related to our trust dy-

namics model and the simpler methods needed for its

implementation.

First, the sensing machinery required for implement-

ing our methodology is as simple and as unobtrusive as

possible. Considering practical aspects related to the

framework implementation, we have chosen observa-

tion variables that are suitable for the estimation of

drivers’ trust in ADS. An eventual implementation of

the proposed estimator on an actual self-driving ve-

hicle would depend only on the utilization of an eye-

tracking system and on the integration between the

ADS and the tasks performed by the driver. Our unique

observation variable that comes from a direct instru-

mentation of drivers’ behavioral patterns is the eye-

tracking-based focus on the NDRT. The other observa-

tion variables (NDRT performance and ADS usage) are

indirectly measured by the ADS. Eye-tracking-based

metrics are appropriate for trust measuring as they do

not require sensory devices that would be impractical

and/or intrusive for drivers. Although we have used an

eye tracker device that has to be directly worn by the

participant, there exist different eye-tracking systems

that do not need to get in direct contact with the driver

to sense their gaze orientations, and could be used in a

real world implementation of this framework.

Second, the results of our framework show that it

can successfully estimate drivers’ trust in ADS levels,

but the estimates accuracy were different depending on

the driver. The application of the model represented

by Equation (3) in the trust estimator algorithm re-

quired average (population-wise) state-space model pa-

rameters. These parameters were computed with a min-

imization problem, and they are indications of reason-
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Fig. 5 Trust estimation results for participants A and B. Participant A experienced both false alarms and misses (combined
ADS error type condition) while participant B experienced false alarms only (false alarms only condition). For both participants,
the first trial was conducted on a curvy road, while the second trial was conducted on a straight road. Curves in (a1:a4) show

the estimation results, indicating that the estimator can track the trust self-reports, i.e., T̂ (tk) approaches T (tk) over the
events. This is made possible with the processing of the observations variables focus time ratio (ϕ), ADS usage time ratio (υ),
and NDRT performance (π) presented in (b1:d4).
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Fig. 6 Trust estimation results for participants C and D. Participant C experienced only true alarms (control ADS error
type condition) while participant D experienced misses only (misses only condition). For both participants, the first trial was
conducted on a straight road, while the second trial was conducted on a curvy road.

able statistics for average values conditioned to our pool

of participants. However, these parameters could vary

drastically from driver to driver. In a more sophisti-

cated implementation of our modeling and estimation

methodology, the values from Table 1 should serve as

preliminary parameters only. A possible way to improve

our proposed methodology would be to the integrate it

with learning algorithms to adapt the model parame-

ters to individual drivers. Moreover, as drivers become

accustomed to the ADS’s operation, these parameters

might also vary over time (making the time-invariant

description from Equation (3) not useful). Therefore,

an eventual ADS featuring our framework should also

be sufficiently flexible to track the changes in individ-
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ual drivers’ model parameters over time, as proposed

in [49].

Third, the paper’s framework opens paths for more

research on the development of more complex models

and estimation techniques for trust. These techniques

may encompass both the driver-ADS context and other

contexts characterized by the interaction between hu-

mans and robots. In the case of driver-ADS contexts,

the events that trigger the propagation of the trust

state do not need to be restricted to the forward col-

lision alarm interactions characterized by true alarms,

false alarms and misses. A wider range of experiences

could be considered in the process model represented by

Equation (3), such as events related to the ADS driving

performance or to external risk perceived by the ADS.

Drivers could be engaged in alternative NDRTs, as long

as they are integrated with the ADS and a continuous

performance metric is defined as observation variable.

In the case of interactions between humans and robots

in different scenarios, the concepts that were defined

in Section 4 are easily expandable to other contexts.

The main requirement would be the characterization of

what are the events that represent important (positive

and negative) experiences within interactions between

the human and robot. These positive and negative expe-

riences would generally characterize the robot’s perfor-

mance, which is an essential factor describing the basis

of trust, as identified by Lee and See [23]. Robots that

execute specific tasks in goal-oriented contexts could

have their performances measured in sequential time

instances that would trigger the the transition of the

trust state. For instance, these performance measures

could be a success/failure classification, such as pick

and place task with a robotic arm [40,44,50]; or a con-

tinuous performance evaluation, such as when a follower

robot loses track of its leader due to the accumulation

of sensor error [36,37].

Finally, the paper’s framework provides trust esti-

mates that are useful for the design of trust controllers

to be embedded in new ADSs. In our framework, trust

is modeled as a continuous state variable, which is con-

sistent with widely used trust scales and facilitates the

processing and analysis of trust variations over time.

This trust representation permits considering the in-

cremental characteristics of the trust development phe-

nomena, which is consistent with the literature on trust

in automation and opens a path for the development

of future trust control frameworks in ADSs. Since it

is developed in the state-space form, our method for

modeling drivers’ trust in ADS enables the use of clas-

sical application-proven techniques such as the Kalman

filter-based method we have used in Algorithm 1.

In addition, a practical implication of the proposed

estimation framework is that it could be used in inno-

vative adaptive systems capable of estimating drivers’

trust levels and reacting in accordance with the esti-

mates, in order to control drivers’ trust in ADS. These

functionalities would need to involve strategies to mon-

itor not only drivers’ behaviors but also the reliability

of the system (for example, the acknowledgment of false

alarms and misses mentioned in Section 4.1, assumption

(vi)). These errors could be identified after a sequence

of confirmations or contradictions of the sensors’ states,

while the vehicle gets closer to the event position, en-

tering the ranges of higher accuracy of those sensors.

Moreover, the system could request the driver to pro-

vide it feedback about issued alarms to identify its own

errors, asking confirmation about identified obstacles or

enabling quick report of missed obstacles, a functional-

ity that is currently present in GPS navigation mobile

applications [45]. Although these questions could repre-

sent an inconvenient distraction, this strategy is not as

disruptive as demanding drivers to provide trust self-

reports, especially during autonomous operation. The

integration between the ADS and the NDRTs would

also be needed for the assessment of observation vari-

ables and, eventually, actions to increase or decrease

trust in ADS could be taken to avoid trust-related is-

sues (such as under- and over-trust). These trust control

schemes would be useful for improving driver-ADS in-

teractions, having the goal of optimizing the safety and

the performance of the team formed by the driver and

the vehicle.

7.2 Limitations

7.2.1 Trust modeling and Estimation Methodology

A limitation of our study relates to the assumptions

associated with how we derive the state-space model

for trust in the ADS. The relationships represented by

Equations (1) and (2) restrict the experiences of the

trustor agent (the driver) to the events represented by

true alarms, false alarms and misses of the forward

collision alarm. In fact, other experiences such as the

ADS’s continuous driving performances can character-

ize events that could be represented by signals of dif-

ferent types other than booleans. The simplification of

the relationships represented by (1) and (2) to the LTI

system represented by (3) is useful and convenient for

the system identification process and for the trust es-

timator design. However, the resulting model fails to

capture some phenomena that are likely to occur dur-

ing the interactions between drivers and ADSs. These
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phenomena might include the variation of model pa-

rameters over time (i.e., after a reasonable period of

drivers’ interaction with the ADS) or the possibly non-

linear relationship between trust and the observation

variables. An example is the relationship between trust

and NDRT performance: it is unlikely that in a more

rigorous modeling approach we could consider these

variables to be directly proportional. Usually an ex-

cess of trust (overtrust) in a system can lead to human

errors, which might eventually result in performance

drops.

7.2.2 User Study

There are several other limitations that relate to our

experimental study. First, most participants were young

students, very experienced with video games and other

similar technologies. Our results could have been biased

by these demographic characteristics.

Second, we employed a simulator in our experimen-

tal study. The use of a simulated driving environment

is a means of testing potentially dangerous technolo-

gies. In general, people tend to act similarly in real and

simulated environments [14]. However, due to the risks

involved in driving, we acknowledge that participants

might not have felt as vulnerable as they would if this

study had been conducted in a real car.

Finally, we employed a specific NDRT to increase

the participants’ cognitive load. The recursive visual

search task gives drivers the opportunity to switch their

attention between the driving and the NDRT very fre-

quently. Other types of NDRTs could demand drivers’

attention for longer periods of time, and this could in-

duce a different effect on trust, risk perception or per-

formance. The NDRT performance metric in this study

is very specific and may or may not be generalizable to

other task types.

7.3 Future Work

Future research should focus on the use of this modeling

technique to design a trust management system com-

posed of the estimator and a trust controller. The trust

management system could compare the trust level esti-

mates with the assessed capability and reliability of the

vehicle in different situations, which would depend on

the risk involved in the operation. From the compar-

ison, the trust calibration status could be evaluated,

and a possible mismatch between trust and capability

(or reliability) levels would indicate the need for system

reaction. This reaction would consist of actions to ma-

nipulate trust levels, seeking to increase trust in case

of distrust (or undertrust) and to decrease it in case of

overtrust.

Additional improvements to our framework may be

achieved by addressing the limitations of the reported

user study. A vehicle with autonomous capabilities can

be utilized to make the participants’ experience as sim-

ilar as possible to a realistic situation. Additionally, our

methodology could be tested in other different scenarios

where the complexity of the NDRT and of the environ-

ment are increased.

8 Conclusion

In this paper we presented a framework for the estima-

tion of drivers’ trust in ADSs. Our framework is appli-

cable for SAE level 3 ADSs, where drivers conditionally

share driving control with the system, and that system

is integrated with a visually demanding NDRT. In com-

parison to previous trust estimation approaches, it has

practical advantages in terms of implementation ease

and of the format of its trust estimates outputs.

We investigated the effectiveness of the proposed

framework with a user study that is reported in Section

5. In this user study, participants operated a simulated

vehicle featuring an ADS that provided self-driving ca-

pabilities for the vehicle. Participants conducted two

concurrent (driving and non-driving) tasks, while re-

porting their levels of trust in the ADS. Our goal was

to establish a computational model for drivers’ trust in

ADS that permitted trust prediction during the inter-

actions between drivers and ADSs, considering the be-

haviors of both the system and the driver. We found the

parameters of a discrete-time, LTI state-space model for

trust in ADS. These parameters represented the average

characteristics of our drivers, considering the resultant

experiment dataset. With the parameters calculation it

was possible to establish a real-time trust estimator,

which was able to track the trust levels over the inter-

actions between the drivers and the ADS.

In summary, our results reveal that our framework

was effective for estimating drivers’ trust in ADS through

the integration of the NDRT and behavioral sensors to

ADSs. We also show, however, that a more advanced

strategy for trust estimation must take into considera-

tion the individual characteristics of the drivers, mak-

ing systems flexible enough to adjust their model pa-

rameters during continuous use. Our technique opens

ways for the design of smart ADSs able to monitor and

dynamically adapt their behaviors to the driver, in or-

der control drivers’ trust levels and improve driver-ADS

teaming. More accurate trust models can improve the

performance of the proposed trust estimation frame-

work and, therefore, are still required. However, the
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utilization of this trust estimation framework can be

a first step to designing systems that can, eventually,

increase safety and optimize joint performances during

the interactions between drivers and ADSs embedded

in self-driving vehicles.
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