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Abstract 

 There is considerable evidence on the benefits of forest diversity for overall stand 

growth. Diversity has also been shown to buffer forests from climate disturbance. Knowing the 

species-specific impacts of diversity on tree growth is critical to assess, manage, and potentially 

design, resilient local forests under global change. We aim to address this knowledge gap using 

a combination of a dendrochronological study with a predictive modeling framework to 

understand the effects of forest neighborhood diversity across a gradient of June precipitation. 

We expected that: 1) under drought conditions increasing levels of diversity would impact 

species differently depending on their hydraulic strategies and 2) under typical/non-drought 

water availability, intraspecific interactions would have a more negative effect on growth than 

interspecific interactions, due to higher competition with resource overlap. We found that 

species do in fact respond to varying scenarios of diversity differently based on water 

availability. However, diverse ecosystems were not beneficial to drought tolerant Quercus 

species during high water availability, contrary to our prediction. Neighborhood dynamics are 

likely influenced by functional traits beyond hydraulic diversity including shade tolerance, water 

uptake depth, and growth strategy. Our findings indicate a potential trend in which Quercus 

species are released from competition under drought. The future environmental conditions in 

the region are predicted to have greater variability and clarifying neighborhood interactions 

helps to understand future trends in forest growth patterns. 
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INTRODUCTION 

There is a mounting body of evidence that biodiversity has a positive effect on forest 

ecosystem productivity and on other ecosystem services (Morin et al. 2011, Gamfeldt et al. 

2013, Forrester 2015). Furthermore, greater species diversity has the potential to mitigate 

some of the negative impacts associated with climate change in forests (Merlin et al. 2015, 

Anderegg et al. 2018a, Aussenac et al. 2019, Fichtner et al. 2020). Despite the overall benefits 

of biodiversity to forest communities, there is considerable variation in the effects of diversity 

among co-occurring tree species and in the way in which these diversity effects are modulated 

by environmental conditions (Liang et al. 2007, Haase et al. 2015, Uriarte et al. 2018, Ammer 

2019, Bosela et al. 2019, Taylor et al. 2020). Still, knowing the species-specific impacts of 

diversity on tree growth is critical to assess, manage, and potentially design, resilient local 

forests under global change (Ibanez et al. 2019). We address this knowledge gap by 

investigating how the diversity of the forest neighborhood (adjacent individuals) affects the 

yearly growth of target trees under varying environmental conditions. In our study region, 

extreme weather events of drought and heavy rainfall are predicted to increase (Hayhoe et al. 

2007, Villarini et al. 2011). The study period of 2006 to 2017 experienced ~ 4mm June 

precipitation between 2011 and 2012 resulting in severe drought indicated by a Palmer 

Drought Severity Index (PDSI) of -2.46 and higher than average rainfall in 2014 with ~ 15 mm 

during the month, demonstrating the wide environmental variability predicted to increase (Dai 

et al. 2004).   

In forest ecosystems, biodiversity can benefit tree growth and resilience to 

environmental variability through both niche complementarity (Hooper et al. 2005, Morin et al. 

2011, Forrester 2015, O'Keefe et al. 2019, Searle and Chen 2019) and/or competitive release 

(Gomez-Aparicio et al. 2011, Clark et al. 2014, Manso et al. 2015, Ford et al. 2017, Oboite and 

Comeau 2020). These benefits of biodiversity emerge under diverse conditions because there is 

a decrease in the overlap between conspecific trees in resource acquisition, growth strategies, 

and life history. When considering performance at the individual level, functional diversity of 

species can alleviate competition pressure if there are fewer similarly functional  species vying 

for the same resource pools (Manso et al. 2015, Oboite and Comeau 2020). At the community 
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level, complementarity between species results in higher growth because of a greater efficiency 

of soil water use and more diversity in shade tolerance and thus canopy architecture (Forrester 

2015, O'Keefe et al. 2019). While complementarity between species results in an overall 

increase in ecosystem productivity due to resource and light use efficiency, it is unclear if all 

species will have the commensurate increases in growth compared to less diverse stands.  

In addition to complementarity, forest stands are shaped by competition (Clark et al. 

2011, Clark et al. 2014). Co-occurring tree species compete for light, nutrients, water and space 

(Gomez-Aparicio et al. 2011); and under global warming competition for water will increase 

(Fernandez-de-Una et al. 2015). Warming temperatures are not only increasing the demand for 

water but also increasing loses due to evaporation (McDowell et al. 2008). There has been 

much attention paid to how tree species diversity might ameliorate the increasing competition 

for soil water (Anderegg et al. 2018a, Bello et al. 2019, Vanhellemont et al. 2019, Fichtner et al. 

2020). Tree species are often classified along a gradient of hydraulic strategies. Anisohydric 

species, which are typically better adapted to tolerate water stress, keep their stomata open 

despite drought, in order to maintain positive photosynthetic rates (McDowell et al. 2008). In 

contrast, isohydric, drought-intolerant species will close their stomata to reduce water loss and 

maintain less-negative interior water potentials (McDowell et al. 2008). Anisohydric species 

prioritize carbon assimilation while increasing the risk of xylem embolisms under extreme 

conditions. Isohydric species minimize the risk of cavitation but increase the risk of carbon 

starvation due to increased respiration relative to photosynthetic assimilation. This functional 

trait enables anisohydric species to be more productive during mild droughts, but at the risk of 

hydraulic failure if drought is extreme, while isohydric species prevent hydraulic failure closing 

their stomata but with the risk of carbon starvation due to reduced photosynthetic function 

(Sperry 2003, McDowell et al. 2008, Anderegg et al. 2016, Anderegg et al. 2018b, Choat et al. 

2018). 

The distinct functional diversity of these two groups led us to predict that productivity 

of anisohydric tree species will benefit from a diverse neighborhood under drought conditions 

due to a greater availability of water from the closure of stomata in isohydric neighbors. 

Conversely, we expect no effect of neighborhood diversity on isohydric species’ growth during 
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drought due to their stomatal closure and subsequent reduction of photosynthetic activity. 

However, during high water availability, both isohydric and anisohydric species likely benefit 

from neighborhood diversity when water availability due to complementarity between the 

diverse water uptake depths, water storage strategy, growth strategy, and  

To better understand how forest diversity may differentially affect tree species 

performance we assess how environmental conditions, i.e., water availability, and biodiversity 

interact to affect tree growth of tree species on the continuum of more isohydric (Acer) to 

anisohydric (Quercus) (Matheny et al. 2015, Roman et al. 2015, Mirfenderesgi et al. 2019). Our 

goal was to quantify the effect of the different neighborhoods surrounding individuals and how 

these effects might vary depending on water availability. We expected that: 1) under drought 

conditions increasing levels of diversity would impact species differently depending on their 

hydraulic strategies, with anisohydric species deriving benefits from diversity under drought 

conditions, while isohydric species would not benefit from a diversity of neighbors due to their 

reduced photosynthetic activity. 2) Under typical/non-drought water availability, intraspecific 

interactions would have a more negative effect on growth than interspecific interactions, due 

to higher competition with resource overlap. Therefore, both anisohydric and isohydric species 

would benefit from more functionally diverse neighborhoods. Biodiversity has benefits to 

community performance, but at the local species level is not entirely clear who benefits most 

from diversity and how these benefits may change as a function of environmental conditions.  

Understanding the benefits of biodiversity at the local scale is crucial for improving our 

predictions of future forest performance and informing effective forest management practices.  

 

METHODS 

Study Locations 

We conducted this study in two mapped forest stands in southeast Michigan, USA: 

Stinchfield Woods (42.399 N, -83.925 W) and Radrick Forest (42.289 N, -83.658 W) 

(Supplementary Material, S1). Both stands are temperate mesic hardwood forests dominated 

by Acer and Quercus species. The climate is similar across both sites with growing seasons 

(June-August) averaging 22.2 °C and 260 mm of precipitation. Mean annual precipitation is 
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75.84 cm. At each site, we identified all trees within a 100 m2 plot to species level, measured 

their diameter at breast height (DBH), and recorded their position on a Cartesian grid (Figure 1., 

S2). These forests are both mid to late successional secondary growth forests categorized as 

mixed oak-hickory with a range of microtopography. Stratification of both sites include 

overstory of Acer, Quercus, Carya, Prunus, Tilia, and some Sassafras, while the understory 

consists of largely Acer species and Ostrya virginiana. There is little shrub layer and a relatively 

open forest floor or herbaceous layer. 

 

Data Collection  

Tree Cores: Field & Processing 

Between 2018 and 2019 we identified all Acer and Quercus individuals larger than 10 cm 

DBH within the forest stands. We extracted tree cores from these individuals at breast height 

(1.3 m) using Haglöf 5.15 mm increment borers (Haglöf Inc.; Madison, MS, USA). The north and 

south side of each tree was cored to the pith, and cores were stored in paper straws until they 

could be dried. We dried core samples overnight in a 100 °C oven and mounted them 

afterwards in cradles. Cores were then sanded with progressively finer sandpapers starting at 

100 grit and ending at 600 grit for Quercus species and 1600 grit for Acer species. Broken or 

incomplete cores were not used for analysis. We digitized the prepared samples using a flatbed 

scanner at a resolution of 1200 dpi.  

 

Environmental Data 

Environmental data for Washtenaw county was obtained from the National Center for 

Environmental Information (NCEI) Climate at a Glance time series product 

(https://www.ncdc.noaa.gov/cag/). The datasets include average monthly temperature and 

total monthly precipitation from 2006-2017.  

 

  



 

 

5 

Analysis 

Tree Cores: Measurement & Crossdating 

We measured annual ring width (growth) of digitized scans at a precision of 0.001 mm 

using the Cybis CooRecorder program. We then used Cybis CDendro to crossdate samples and 

assemble chronologies by site and species, estimating pith using the geometric method if not 

present on the sample (Duncan 1989). We estimated historical DBH for tree i in year y using 

ring width and the diameter of trees in 2017. To measure yearly growth, we calculated Basal 

Area Increment (BAI) as 𝐵𝐴𝐼!,# = 𝜋 ∙ ($%&!,#
'

(
− $%&!,#$%

'

(
) for use in our model.  

 

Data Analysis 

We developed a model to explain the impact of species-specific neighborhood effects 

(NE) and environmental conditions on the growth of individual trees (hereafter ‘target trees’). 

Our timeframe of growth was between 2006 and 2017. This short time period was used to 

ensure that no major changes in the neighborhood surrounding the target trees had taken 

place (e.g., a large neighboring canopy tree falling). We first performed exploratory data 

analysis to assess relationships between growth and environmental variables. April 

temperature and June precipitation were the variables most strongly correlated with growth 

and were therefore chosen to be used in model selection. We also included previous year 

growth to account for lag effects (Ibanez et al. 2018) and DBH to detrend the size-growth 

relationship (Cook 1990, Bigelow et al. 2020). We assessed several combinations of explanatory 

variables; below we describe the best model fitting the data (based on deviance information 

criterion [DIC]; Spiegelhalter et al. 2002) which included site specific random effects and an 

interaction between June precipitation and NE. For each species independently, we modeled 

BAI for tree i in year y (baii,y) with a log-normal likelihood: 

𝑏𝑎𝑖!,#~𝐿𝑛𝑜𝑟𝑚𝑎𝑙4𝑅!,# , 𝜎(!,#8 

And process model: 

𝑅!,# = 𝛼)!*+	(!) + 𝑁𝐸! + 𝛽	/ ∙ 𝐽𝑢𝑛𝑒𝑃𝑟𝑒𝑐𝑖𝑝# + 𝛽( ∙ 𝐽𝑢𝑛𝑒𝑃𝑟𝑒𝑐𝑖𝑝# ∙ 𝑁𝐸!+𝛽	0 ∙ 𝐴𝑝𝑟𝑖𝑙	𝑇𝑒𝑚𝑝# + 𝛽'

∙ log	(𝐷𝐵𝐻!) + 𝛽1 ∙ 𝐵𝐴𝐼!,#2/ 
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Neighborhood effects (NE) for tree i, NEi, were estimated for each individual i as the sum of the 

effects of each neighbor j, 10 m in any cardinal direction, effects varied for each species of 

neighbor and as a function of the sizes and distance of the neighbor and target trees: 

𝑁𝐸! = ∑ 𝜆)3+4!+)	!,5(𝐷𝐵𝐻5/𝐷𝐵𝐻!)
67.6+!9:;7<)	!
5=/ /𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒!,5. Parameter 𝜆 represented the 

effect of species j on species i. Positive	𝜆 values indicated facilitation between species and 

neutral values indicated complementarity, whereas a negative 𝜆 indicated competition. 

During data exploration we observed that the variance of growth increased with a greater DBH. 

To account for this, we estimated the variance (𝜎(!,*) as a function of DBH (Lines et al. 2012): 

𝜎(!,* = 𝑎 + 𝑏 ∙ ln	(𝐷𝐵𝐻!,*)  

We estimated model parameters within a Bayesian framework from non-informative prior 

distributions,𝛼∗~𝑁𝑜𝑟𝑚𝑎𝑙(𝐴, 𝜎?(), 1/𝜎?(~𝐺𝑎𝑚𝑚𝑎(0.001,0.001), A, 

𝛽∗, 𝜆∗, 𝑏~𝑁𝑜𝑟𝑚𝑎𝑙(0, 10,000), 𝑎~𝑙𝑜𝑔𝑁𝑜𝑟𝑚𝑎𝑙(1, 0.0001).  

 

Simulated neighborhoods 

 Using parameter estimates from the analysis we created simulated neighborhoods in 

order to describe the effect of increasing diversity on growth in three scenarios: 1) a 

neighborhood of species composition representative of our field sites (observed), 2) a 

simulated higher diversity neighborhood that included an even distribution of the dominant 

species found across the sites (high diversity), and 3) an scenario without neighbors (no 

neighbors) (S3). For these diversity scenarios we assumed that target trees had a DBH equal to 

the respective species’ mean DBH in the data (A. rubrum, 19.26 cm; A. saccharum, 25.2 cm; Q. 

alba, 42.87 cm; Q. velutina, 52.54 cm), while neighbor trees were given the average DBH for the 

whole data set (13.2 cm). We then used the posterior parameter estimates from the model 

(mean, variances and covariances) to estimate growth across the gradient of June precipitation 

experienced at our sites between 2006 and 2017. We used the mean temperature for April (15° 

C), as exploratory analysis showed that variation in April temperatures did not alter the effects 

of neighborhoods.  

Analyses were performed in OpenBugs version 3.23 (Lunn et al. 2009). We ran three 

Markov Chain Monte Carlo simulations for 300,000 iterations. Once chains converged, we 
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estimated the posterior parameter means, standard deviation (SD), and the 95% credible 

intervals for each variable and simulations values (model code, S4). 

 

RESULTS 

Our final analysis included 270 target trees between the two sites. Acer rubrum included 

78 individuals with an average DBH of 19.3 cm, a minimum of 10.1 cm, and a maximum of 49.4 

cm. Acer saccharum included 40 individuals with an average DBH of 25.2 cm, a minimum of 

12.1 cm, and a maximum of 52.8 cm. Quercus alba included 88 individuals with an average DBH 

of 42.9 cm, a minimum of 19.4 cm, and a maximum of 85.9 cm. Finally, Quercus velutina 

included 64 individuals and an average DBH of 52.5 cm, a minimum of 21.3 cm, and a maximum 

of 80.3 cm (Figure 1; S2). 

Effects of neighbor species identity on growth of target trees 

Neighborhood effects varied in sign and magnitude among the target species (Fig. 1; 

Table 1; see S4 for parameter values). In general, isohydric maple species exhibited negative 

interactions with their neighbors (i.e., competition), while anisohydric oak species showed none 

or positive effects of neighbors on growth (i.e., complementarity) (Figure 1). Acer rubrum and 

A. saccharum demonstrated significantly positive interactions with Ostrya virginiana neighbors, 

A. saccharum growth was negatively affected by Ulmus americana neighbors and by congeneric 

A. nigrum neighbors. All neighbor effects were non-significant for Q. alba but generally positive.  

Q. velutina growth was positively affected by four neighbor species, while growth was 

negatively affected by conspecific Q. velutina neighbors (Table 1).  

Growth effects of temperature and precipitation; interaction with neighborhood effects 

 Three of the target species  showed a significant positive relationship of growth to April 

temperature and June precipitation (Fig. 2; A. rubrum, Q. alba, and Q. velutina; A. rubrum, A. 

saccharum, and Q. velutina, respectively).  The interaction between June precipitation and 

neighborhood effects was negative for all four study species, and significant for A. saccharum, 

Q. alba and Q. velutina (Fig. 2). This interaction indicates that with increasing precipitation, the 

negative and positive effects of neighbors would diminish. 
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Predicted growth in contrasting diversity scenarios  

 The predictive model framework showed broad similarity among target species’ 

responses to diversity, but individual species had some distinguishing trends (Figure 3). A. 

rubrum showed no response to diversity as the mean growth trends for no neighbors, 

observed, and high diversity scenarios were all similar across the precipitation gradient. A. 

saccharum exhibited its highest potential growth under the high diversity scenario and its 

lowest growth in the observed neighborhood scenario (Figure 3b.). Q. alba in drought 

conditions had its highest growth in the high diversity scenario, but with high precipitation the 

observed neighborhood and no-neighbor scenarios yielded the highest mean annual growth 

(Figure 3c.). Q. velutina mean growth in drought conditions was highest under the observed 

neighborhood scenario, but growth was similar at high precipitation for all three diversity 

scenarios (Figure 3d). 

 

DISCUSSION 

Several studies have shown that a diversity of functional traits helps to maintain forest 

performance under drought (Anderegg et al. 2018a, Uriarte et al. 2018, Bello et al. 2019, 

Fichtner et al. 2020). Still, it is unclear if all species benefit similarly or if the benefits of 

biodiversity vary among co-occurring species. We used a spatially explicit dendrochronological 

study and modeling framework to describe the influences of neighborhood diversity on 

performance of four temperate tree species. We found that the effect of biodiversity on growth 

varied in magnitude and direction between the study species. We found that while Acer rubrum 

showed little response to neighborhood diversity, Acer saccharum benefitted from  absence of 

neighbors and from high neighborhood diversity. Quercus spp. benefited from nearby 

biodiversity only under drought conditions.  Land managers looking to enhance growth of these 

species can focus on promoting beneficial neighborhoods with targeted thinning of species 

showing negative interactions. Forest or Dynamic Global Vegetation Models (DGVM) can 

benefit from our results with enhanced clarity of species interactions .  
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Effects of low precipitation 

 As we predicted, all species responded positively to more favorable growing conditions, 

in this case, warmer springs and higher early summer precipitation (Fig. 2). A. rubrum is usually 

considered a very adaptable species, but a recent study corroborated our findings showing that 

Acer rubrum are sensitive to growing season droughts due in part to their hydraulic strategy 

(Hoffmann et al. 2020). Forest managers should focus less on stand thinning that reduces 

neighborhood competition to promote growth of Acer rubrum and should consider the local 

edaphic conditions more when planting stands in areas projected to experience increased 

drought (McCollum and Ibanez, 2020). 

Acer saccharum is an important economic and ecological species in temperate forests 

experiencing decline due to factors including drought (Bal et al. 2015), and our results confirm 

this vulnerability. Isohydric species like A. saccharum rely on stored non-structural 

carbohydrates to maintain function during drought periods (Kannenberg and Phillips 2020). 

These stores are built during favorable growing conditions, and as our results show these may 

be affected by competition jeopardizing the ability of this species to cope with drought 

(Kunstler et al. 2012).  

Effects of diversity in low precipitation years  

Temperate forests in the eastern United States are projected to see an increasing 

frequency of short term droughts with heavier rainfall in between (Hayhoe et al. 2007, Villarini 

et al. 2013). This increase in weather extremes will test the physiological limits of trees on each 

side of the hydraulic strategy spectrum and the interactions between these functional types 

have important implications for performance and future succession. We found partial support 

for our prediction that under drought conditions increasing levels of diversity would impact 

species differently depending on their hydraulic strategies. Anisohydric species, i.e., Quercus, 

benefitted from neighborhood interactions and diversity under drought conditions, while 

isohydric Acer rubrum was not affected by neighborhood interactions and Acer saccharum 

tended to benefit most from neighbors under high precipitation.  

Our results imply that forest succession models considering Acer rubrum could solely 

focus on weather and site factors as neighborhood interactions seem to play a lesser role in 
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determining performance under drought. Bigelow et al. 2020 found that Acer saccharum 

growth was negatively impacted by competition especially under warmer, drier conditions; 

supporting our conclusion that sugar maples may decline under drought with intraspecific 

interactions. In addition to hydraulic complementarity, it is possible that Acer saccharum 

performance is benefitting from partitioned canopy structure and shade tolerance between 

species; a fundamental benefit of forest diversity (Morin et al. 2011). This means that if Acer 

saccharum are cultivated in monoculture, a common practice, the effects of prolonged 

droughts could be particularly damaging; instead, and to minimize the impact of drought, 

management of these stands should target higher functional diversity.  

Under low precipitation conditions, the high diversity scenario was particularly 

beneficial for growth of Quercus alba but not for Quercus velutina. In drought prone areas 

anisohydric species are likely to benefit from a diversity of hydraulic strategies not only from 

the complementarity between species, but also the subsequent soil water availability from 

isohydric species that have reduced photosynthetic activity (Mirfenderesgi et al. 2019, Mrad et 

al. 2019). Our findings support a body of previous work that has shown diversity as a buffer to 

drought conditions for specific species (Anderegg et al. 2018a, Bello et al. 2019, Fichtner et al. 

2020). We see that anisohydric species benefit from diversity, but also isohydric Acer 

saccharums would benefit from an increase in neighborhood diversity.  

 

Effect of neighborhood diversity during high growing season precipitation 

We did not find support for our prediction that all functional types will benefit from 

diverse neighborhoods under conditions with high water availability. Neither anisohydric nor 

isohydric tree species benefitted from more functionally diverse neighborhoods under high 

growing season precipitation (Fig. 4). Isohydric species growth responded similarly to diversity 

under dry and wet conditions, while anisohydric species experienced either neutral or negative 

impacts of diversity under high growing season precipitation, potentially due to the contrasting 

hydraulic strategies and competitive advantage. While droughts are becoming more frequent in 

temperate forests, they will be punctuated by heavier rainfall events (Hayhoe et al. 2007, 
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Villarini et al. 2013). These weather extremes will impact growth in tandem with neighborhood 

interactions.  

Contrasting hydraulic traits and community effects 

The null effect of diversity on isohydric species may be linked to either a competitive 

advantage during high soil water availability or a complementarity in water uptake depth when 

in crowded, diverse neighborhoods. While Acer species are less drought tolerant, studies of 

forest succession in the area have found in mesic conditions isohydric Acer species have a 

competitive advantage over anisohydric Quercus species (Kutta and Hubbart 2018, Palus et al. 

2018). Along the same isohydric-anisohydric spectrum previous studies have found maple 

species are able to shift their water uptake between shallow and deeper soil water stores 

(Brinkmann et al. 2019, O'Keefe et al. 2019, Lanning et al. 2020). Soil water access has 

important implications under drought, but also may explain buffering of maples from 

competition or neighborhood interactions during high growing season precipitation, if 

surrounding species are more acquisitive competitors at shallow soil profiles. For mesic sites, 

our findings have positive implications for future performance of isohydric species in a wide 

range of neighborhood diversity and neighborhood density.  

Anisohydric oaks in our study responded negatively or neutrally to neighborhood 

diversity for potentially the same reason that isohydric maples are buffered from biotic 

interactions under high water availability. Quercus species are prized for their cultural and 

aesthetic value along with being an important timber product in temperate forests (Hanberry et 

al. 2012, Knoot et al. 2015, Vander Yacht et al. 2019). Moist, favorable growing conditions have 

led to a process coined as “mesophication” in many sites (Nowacki and Abrams 2008). This 

process manifests as the replacement of xeric, shade-intolerant genera, with mesic, shade-

tolerant ones (Hanberry et al. 2012, Knoot et al. 2015), and has led to a homogenization of 

forest species and a reduction in biodiversity that is driven by positive feedback between 

canopy closure and growth of shade-tolerant genera (Knott et al. 2019). Our findings suggest 

that effects of environmental conditions are mediated by species hydraulic traits. 

Understanding neighborhood dynamics in detail will help clarify what is happening to Acer and 
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Quercus species in mesophy-ing forests (Fichtner et al. 2017, Anderegg et al. 2018a, Fichtner et 

al. 2020).   

 

Implications of species pairwise interactions 

Our study describes the interactions between specific species in our sites, which reveals 

important information about community dynamics (Table 1; S4). Quercus species generally 

benefitted from heterospecific neighbors while Acer species had largely negative interactions 

with neighbors. The size class of our target species likely contributed to these results beyond 

drought alone. A. rubrum were consistently in the smallest size classes and surrounded by 

larger competing neighbors, while Quercus species were generally the largest tree in their 

neighborhood. These differences in size class likely explains some of our findings considering 

competition for light as well as belowground resources (D'Amato et al. 2011, 2013). These 

findings have important implications for the inclusion of NE in modeling of forest succession, 

but also for management of forest stands to promote growth of desired species. (Ibanez and 

Rodriguez) showed that specific species combinations should be considered when restoring 

woody plant communities to enhance growth. Acer species are both positively influenced by 

Ostrya virginiana neighbors, which may be a positive feedback when O. virginiana creates 

shade conditions for Acer species and rarely grows above the understory (Cox et al. 2016, 

Goode et al. 2020). The negative effect of Ulmus americana on Acer saccharum growth could 

be due to the difference in hydraulic traits, although these are not generally abundant 

neighbors in our sites (Ellmore and Ewers 1985). When considering biotic interactions removed 

from climate, Acer nigrum’s negative effect on A. saccharum growth is likely due to the same 

shade tolerance and growth strategies vying for similar resources, especially at similar size 

classes (Woodrum et al. 2003).  

 Quercus alba in our study had no significant effect of any one neighbor likely due to 

their placement along the shade tolerance spectrum for oak species (Izbicki et al. 2020). It is 

possible that under many different conditions neighbors have varying effects on Quercus alba, 

especially when persisting in the understory for prolonged periods. Our findings for Quercus 

velutina with pairwise interactions support our prediction on increased intraspecific 
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competition (Uriarte et al. 2018). Quercus velutina represented the largest size classes in our 

study and it is possible that whenever they were in close proximity, size was a defining variable 

for negative interactions (Liang et al. 2007, D'Amato et al. 2011, 2013). The benefit of many 

different species to Quercus velutina is evidence for complementarity between species when 

considering diversity alone. Our findings present compelling motivation to investigate the 

pairwise interactions between species in management or silvicultural applications to promote 

growth of desired species. 

 

Future Studies and Limitations 

 Our findings address the role of biotic interactions and neighborhood diversity and 

growth on two genera of importance in the region. While we have evidence for some potential 

mechanisms, showing a causal relationship is particularly difficult in forest communities with 

long organismal lifespans and many confounding factors for growth at the site and even 

microsite level (McCollum & Ibanez 2020). A future study that accounts for growth of all 

neighbors could show this mechanism, if Acer species do in fact ramp down growth during 

drought conditions and release the Quercus individuals in our study. As a general critique of 

forest community studies, we collected growth and neighborhood data for a relatively short 

period of time and did not account for mortality over the forests’ history. Future studies should 

aim for long term datasets on growth and mortality to understand forest succession and 

species interactions. Finally, these results may be interpreted differently if we investigated 

below ground interactions and differences in microbial communities between the two genera: a 

worthwhile pursuit for future research.  

 

CONCLUSIONS 

 Our study has presented evidence that biodiversity and climate interact to influence 

growth differently at the species level. During drought and high growing season precipitation 

this relationship between performance and diversity changes with each species.  Climate 

change in the Midwest region is expected to increase drought and storm severity; these 

changing abiotic conditions along with neighborhood diversity will affect tree growth.   
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Figure 1. Stem maps of target trees with calculated neighborhood effects. Green signifies 
positive impacts of neighbors on growth, red negative, and yellow neutral.  
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Table 1. Neighbor species effects on BAI (parameter λ) for the four target species. Plus, or 
minus signs indicate direction of effects. Shaded boxes indicate significance (95% CI do not 
intersect with zero; green positive effect, red negative effect). NA, not applicable if less than 10 
neighbors were represented. 

 
 
 
  

    Target Species 
Neighbor n A. rubrum A. saccharum Q. alba Q. velutina 
A. saccharum 1876 + + + + 
A. rubrum 1742 - - - + 
O. virginiana 1253 + + + + 
A. nigrum 935 - - + + 
P. serotina 467 - + - + 
Q. alba 345 - + + - 
U. americana 321 - - + - 
Q. velutina 296 - + + - 
P. virginiana 241 - - + - 
C. glabra 180 + + - + 
F. americana 55 + NA + - 
Q. rubra 48 - + - NA 
T. americana 45 + NA NA + 
S. albidum 29 + NA NA +  
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Figure 2. Beta parameters by species for April temperature, June precipitation, and the 
interaction of June precipitation with neighborhood effects. Points above the dotted zero line 
indicate a positive effect on growth, while points below the dotted line indicate a negative 
effect on growth. Points and 95% CI that do not intersect with the zero are significant; 
parameters are standardized about the variable mean.  
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Figure 3. Predictions of growth target species across a June precipitation gradient for the 
average April temperature observed in the data for each scenario of neighborhood diversity. 
Lines indicate mean prediction and shaded regions indicate the 95% predicted intervals (PI).  
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Supplementary Material 
 
S1. Locations of field collection sites within Washtenaw County, Michigan. Included are the 
forest cover types circa 1800 (Michigan Open Data).  
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S2. Stem maps of each site with target trees filled in with color, size of point relates tree 
diameter. 
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S3. Graphical depiction of neighborhood diversity scenarios used in annual growth simulation 
across a June precipitation gradient. Size of simulated target tree varied based on average 
diameter for each species, size of all neighbors was the average diameter of all trees across 
sites (13.2 cm). 
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S4. Model Code: 
 
model{ 
for(i in 1:270){     #Number of individual trees 
   for(y in 3:12){    #Number of years analyzed 
      bai[i,y]~dlnorm(R[i,y],tau[i,y]) C(0,) #likelihood 
      bai.h[i,y]~dlnorm(R[i,y],tau[i,y]) C(0,) #predictions 
R[i,y]<-
AA[sp[i],Site[i]]+NE[i]+beta[sp[i],1]*Juneprecip[y]+beta[sp[i],2]*June
precip[y]*NE[i]+ 
beta[sp[i],3]*Apriltemp[y]+beta[sp[i],4]*log(dbh[i,y])+beta[sp[i],5]*b
ai[i,y-1] 
 
tau[i,y] <- 1/var[i,y] 
var[i,y] <- a[sp[i]]+b[sp[i]]*log(dbh[i,y])  #variance is estimated as 
a function of the dbh (tree size) 
}} 
 
for(i in 1:270){  #plants analyzed 
for(j in 1:NNeigh[i]){  #neighbors 
NE0[i,j]<-
(Size[SNN[i]+j]/dbh[i,12])*lambda[sp[i],SpeciesN[SNN[i]+j]]/Dist[SNN[i
]+j] 
} 
NE[i]<-sum(NE0[i,1:NNeigh[i]]) 
} #neighbors 
 
for(q in 1:4){  #tag 267 Radrick 
for(c in 1:NNeighsim[q]){  #neighbors 
#observed  
NEsim1[q,c]<-
(Sizesim[SNNsim[q]+c]/dbhp[q])*lambda[spp[q],observed[SNNsim[q]+c]]/Di
stsim[SNNsim[q]+c] 
#High Diversity 
NEsim2[q,c]<-
(Sizesim[SNNsim[q]+c]/dbhp[q])*lambda[spp[q],highdiv[SNNsim[q]+c]]/Dis
tsim[SNNsim[q]+c] 
}} 
for(q in 1:4){ 
NEobs[q]<-sum(NEsim1[q,1:NNeighsim[q]]) 
NEsim[q]<-sum(NEsim2[q,1:NNeighsim[q]]) 
} #neighbors predictions 
 
#average NE effect per species 
NEp[1]<-(mean(NE[1:46])+mean(NE[157:188]))/2 
NEp[2]<-(mean(NE[47:66])+NE[189:208])/2 
NEp[3]<-(mean(NE[67:112])+mean(NE[209:250]))/2 
NEp[4]<-(mean(NE[113:136])+mean(NE[251:270]))/2 
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#priors 
for(i in 1:4){ 
 for(s in 1:2){AA[i,s]~dnorm(A[i],tau1[i])} 
for(k in 1:5){beta[i,k]~dnorm(0,0.001)} 
a[i]~dlnorm(1,0.01) 
b[i]~dnorm(0,0.0001) 
for(n in 1:19){lambda[i,n]~dnorm(0,0.1)} 
A[i]~dnorm(0, 0.0001) 
tau1[i]~dgamma(0.0001, 0.0001) 
} 
 
#predictions, growth along a gradient of precipitation and three 
neighborhoods 
 
for(y in 1:4){ 
tp[y]<-1/vp[y] 
vp[y]<-a[y]+b[y]*log(dbhp[y]) 
 
for(e in 1:12){ 
 
#NO NEIGHBORS 
 Bai1[y,e]~dlnorm(Rp2[y,e],tp[y]) 
     Rp1[y,e]<-
A[y]+beta[y,1]*Junepredi[e]+beta[y,3]*log(dbhp[y])+beta[y,4]*baip[y]+b
eta[y,5]*15 
 
#Observed Neighborhood  
 Bai2[y,e]~dlnorm(Rp8[y,e],tp[y]) 
     Rp2[y,e]<-
A[y]+beta[y,1]*Junepredi[e]+beta[y,3]*log(dbhp[y])+beta[y,4]*baip[y]+b
eta[y,2]*Junepredi[e]*NEobs[y]+NEobs[y]+beta[y,5]*15 
 
#High Diversity  
 Bai3[y,e]~dlnorm(Rp11[y,e],tp[y]) 
     Rp3[y,e]<-
A[y]+beta[y,1]*Junepredi[e]+beta[y,3]*log(dbhp[y])+beta[y,4]*baip[y]+b
eta[y,2]*Junepredi[e]*NEsim[y]+NEsim[y]+beta[y,5]*15 
}} 
}#end model 
 
#inititals 
 
list( 
a = c(1,1,1,1), b = c(0,0,0,0), 
lambda=structure(.Data=c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), .Dim=c(4,19))  , beta = 
structure(.Data = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0),  
.Dim = c(4,5)), tau1 = c(1,1,1,1), A = c(0,0,0,0) 
)  
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S5. Posterior parameter estimates, mean ± SD and 95% credible intervals (CI) 

Parameter A. rubrum A. saccharum Q. alba Q. velutina 

AA1: Site_1 -2.124 ± 0.3521  
(-2.873, -1.434) 

-0.348 ± 0.3553  
(-1.05, 0.3997) 

-1.552 ± 0.2785  
(-2.147, -1.047) 

-2.669 ± 0.5428  
(-3.604, -1.647) 

AA2: Site_2 -2.216 ± 0.3683  
(-2.988, -1.516) 

-0.3571 ± 0.3594  
(-1.07, 0.3935) 

-1.544 ± 0.2812  
(-2.145, -1.039) 

-2.859 ± 0.5575  
(-3.82, -1.812) 

β1: Effect of June precip. 
on BAI 

0.01977 ± 0.004859  
(0.01035, 0.02956) 

0.0159 ± 0.00654  
(0.003032, 0.02897) 

0.008008 ± 0.006798  
(-0.005079, 0.02152) 

0.02375 ± 0.00619  
(0.01277, 0.037) 

β2: Effect of June precip. 
* NE interaction on BAI 

-0.0214 ± 0.02027  
(-0.05725, 0.02279) 

-0.03689 ± 0.01223  
(-0.05704, -0.008833) 

-0.1131 ± 0.03177  
(-0.1628, -0.04061) 

-0.04698 ± 0.01345  
(-0.06846, -0.0162) 

β3: Effect of DBH on BAI 0.6712 ± 0.09291  
(0.4994, 0.8683) 

0.652 ± 0.08225  
(0.4773, 0.8122) 

0.7719 ± 0.0698  
(0.649, 0.9208) 

1.125 ± 0.1287  
(0.8781, 1.347) 

β4: Effect of prev. growth 
on BAI 

0.06632 ± 0.003582  
(0.05916, 0.07329) 

0.03651 ± 0.002861  
(0.03096, 0.04219) 

0.03959 ± 0.002101  
(0.03547, 0.04368) 

0.02212 ± 0.001251  
(0.01973, 0.02462) 

Β5: Effect of April temp. 
on BAI 

0.08547 ± 0.008628  
(0.0681, 0.1024) 

-0.006475 ± 0.009801  
(-0.02607, 0.01289) 

0.03564 ± 0.006217  
(0.02386, 0.04773) 

0.03023 ± 0.006857  
(0.01673, 0.04319) 

λ1: Acer rubrum -0.01613 ± 0.03929  
(-0.09926, 0.05666) 

-0.1536 ± 0.1966  
(-0.5447, 0.2271) 

-0.003387 ± 0.006387  
(-0.01601, 0.009537) 

0.2097 ± 0.1159  
(-0.01806, 0.4397) 

λ2: Acer saccharum 0.1204 ± 0.06478  
(-0.000335, 0.2559) 

0.07889 ± 0.06389  
(-0.04208, 0.2089) 

0.000776 ± 0.07989  
(-0.124, 0.1812) 

0.2624 ± 0.114  
(0.04617, 0.4935) 

λ3: Quercus alba -0.03837 ± 0.03214  
(-0.1064, 0.0213) 

0.01412 ± 0.03415  
(-0.05369, 0.08129) 

0.1158 ± 0.1216  
(-0.162, 0.3165) 

-0.01208 ± 0.1517  
(-0.3153, 0.2862) 

λ4: Quercus velutina -0.01235 ± 0.03138  
(-0.0838, 0.04112) 

0.00604 ± 0.07312  
(-0.1347, 0.1546) 

0.05452 ± 0.07914  
(-0.09865, 0.2172) 

-0.3692 ± 0.1289  
(-0.6334, -0.1285) 

λ5: Carya glabra 0.1255 ± 0.09454  
(-0.04622, 0.3301) 

0.01344 ± 0.05764  
(-0.09812, 0.1313) 

-0.05416 ± 0.3011  
(-0.6688, 0.5272) 

0.4815 ± 0.24  
(0.013, 0.9625) 

λ6: Ostrya virginiana 0.263 ± 0.07797  
(0.1277, 0.4318) 

0.7113 ± 0.2095  
(0.3137, 1.134) 

0.03123 ± 0.2145  
(-0.35, 0.4948) 

0.1906 ± 0.1461  
(-0.09083, 0.485) 

λ7: Prunus serotina -0.06571 ± 0.04618  
(-0.1665, 0.01715) 

0.06329 ± 0.07371  
(-0.07851, 0.2122) 

-0.04957 ± 0.08899  
(-0.2325, 0.1226) 

0.3721 ± 0.1612  
(0.06612, 0.704) 

λ8: Quercus rubra -0.02928 ± 0.02832  
(-0.08706, 0.02552) 

0.04175 ± 0.03391  
(-0.02336, 0.1108) 

-0.01074 ± 0.3401  
(-0.6188, 0.7219) 

-0.005431 ± 0.364  
(-0.7173, 0.723) 

λ9: Ulmus americana -0.2769 ± 0.2133  
(-0.6896, 0.1603) 

-0.8968 ± 0.4184  
(-1.739, -0.09259) 

0.5611 ± 0.4493  
(-0.2715, 1.509) 

-0.2216 ± 0.6893  
(-1.551, 1.18) 

λ10: Euonymus alatus 0.02023 ± 0.9008  
(-1.81, 1.791) 

-0.01797 ± 3.174  
(-6.227, 6.211) 

0.001118 ± 3.16  
(-6.179, 6.227) 

1.374 ± 3.128  
(-4.731, 7.524) 

λ11: Prunus virginiana -0.4348 ± 0.3448  
(-1.123, 0.2478) 

-0.5034 ± 1.188  
(-2.821, 1.855) 

2.014 ± 1.942  
(-2.577, 4.965) 

-1.967 ± 1.594  
(-5.112, 1.171) 

λ12: Sassafras albidum 0.02274 ± 0.05868  
(-0.09266, 0.1413) 

0.2792 ± 0.6388  
(-0.9673, 1.553) 

-0.1347 ± 0.8965  
(-1.419, 1.895) 

0.1825 ± 0.5906  
(-0.9554, 1.368) 

λ13: Acer nigrum -0.1194 ± 0.1276  
(-0.3564, 0.1566) 

-0.6084 ± 0.2634  
(-1.148, -0.1204) 

0.01678 ± 0.02696  
(-0.02985, 0.07591) 

0.8474 ± 0.2962  
(0.2965, 1.455) 

λ14: Tilia americana 0.09603 ± 0.5832  
(-0.8948, 1.437) 

0.479 ± 0.5423  
(-0.5633, 1.589) 

0.5671 ± 1.222  
(-2.155, 2.619) 

0.2376 ± 1.074  
(-1.786, 2.453) 

λ15: Fraxinus americana 0.7249 ± 0.9121  
(-0.9387, 2.691) 

-1.531 ± 2.874  
(-7.145, 4.114) 

1.245 ± 2.416  
(-3.776, 5.696) 

-1.776 ± 3.019  
(-7.656, 4.176) 

λ16: Acer platanoides -1.878 ± 1.231  
(-4.216, 0.6828) 

1.732 ± 3.021  
(-4.179, 7.667) 

0.01205 ± 3.171  
(-6.197, 6.222) 

-0.001725 ± 3.164  
(-6.181, 6.208) 
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λ17: Carya ovata 
-0.01382 ± 3.142  

(-6.178, 6.171) 
-0.002713 ± 3.17  

(-6.193, 6.206) 
0.8634 ± 2.665  
(-4.439, 5.994) 

0.009499 ± 3.169  
(-6.205, 6.212) 

λ18: Cornus florida 
-0.000319 ± 1.598  

(-3.318, 3.01) 
-0.006709 ± 3.165  

(-6.197, 6.183) 
-0.3824 ± 3.167  
(-6.525, 5.923) 

0.5839 ± 3.113  
(-5.539, 6.684) 

λ19: Lonicera maackii 
1.887 ± 3.13  

(-4.254, 8.013) 
-0.106 ± 2.867  
(-5.701, 5.533) 

0.6608 ± 2.489  
(-4.229, 5.537) 

-0.5884 ± 3.154  
(-6.813, 5.598) 

a: variance intercept 
0.02398 ± 0.04126  
(6.78e-08, 0.1476) 

0.2472 ± 0.06991  
(0.1115, 0.3878) 

0.3355 ± 0.07174  
(0.1913, 0.4708) 

0.4916 ± 0.07761  
(0.3414, 0.6468) 

b: variance slope 
0.0518 ± 0.01449  

(0.009376, 0.06478) 
-0.03777 ± 0.02139  

(-0.07955, 0.004662) 
-0.05991 +- 0.0188  
(-0.0948, -0.02163) 

-0.09933 +- 0.019  
(-0.1371, -0.06235) 
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S6.  Model fit for each target species with R2 values. 
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