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Abstract 
 
Humans are able to thrive in many environments around the world, including the extremes, 
ranging from hot and humid to cold and dry. To make this possible, various internal structures of 
the nose regulate the temperature and humidity of inhaled air before it reaches the bronchi and 
lungs, preventing damage to delicate pulmonary structures in harsh environments. Therefore, the 
shape of the nose reflects morphological changes caused by climatic pressures. It has been 
observed that external nasal morphology correlates with a cline from hot-humid climates to cold-
dry climates: the closer to the equator, the lower and wider the noses, and the closer to the poles, 
the higher and narrower the noses. However, relatively little research has been conducted on the 
links between genetics and the phenotypic patterns in nasal morphology related to climate 
adaptation. 

This study examines the correlation between genes and single nucleotide polymorphisms 
(SNPs) that have been previously linked to the nose (C5orf64 SNP rs11738462, PAX1 SNP 
rs2424399, and PAX3 SNP rs7559271), with phenotypic nasal morphology, which is 
quantitatively measured by 3D facial landmarking. These SNPs were isolated within DNA 
collected from Maya individuals residing in Palenque, Chiapas, Mexico, a population which has 
historically inhabited this constant warm and humid climate. Genotype data were then analyzed 
and compared to nasal phenotype data collected from the same cohort. Phenotype data from a 
cohort of Northern European individuals whom have historically inhabited a colder and drier 
climate were also compared to phenotype data collected from the Maya cohort in order to see if 
climate has a significant impact on nasal morphology. The results of this study show no 
genotype-phenotype correlation within the Maya cohort, but significant differences in nasal 
phenotype were found between the two cohorts.  
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Introduction 
 

Humans have inhabited a wide range of climates around the world throughout our 

evolutionary history, ranging across extremes from hot and humid to cold and dry. Cultural and 

behavioral adaptations have allowed for success in these climates, including the production and 

use of insulated clothing and shelter. Yet these environmental pressures can cause physiological 

and genetic adaptations within bodies as well.  

 Many organisms, including humans, follow general ecogeographical rules to maximize 

thermoregulatory efficiency, including Bergmann’s and Allen’s rules. Allen’s rule states that 

body shape tends to me more compact and rounded in cold climates and more elongated in warm 

climates. Bergmann’s rule states that body size increases as environmental temperature 

decreases. These rules reflect how surface area to volume ratios impact the thermogenic 

properties of an organism: the lower the surface area to volume ratio an organism has, the more 

heat will be retained. These rules have been found to apply to humans, as body mass varies 

inversely with annual temperature, and the surface area to volume ratio is positively correlated 

with temperature (Katzmarzyk and Leonard 1998; Savell et al. 2016). These trends act to most 

efficiently preserve or expel heat in a given environment.  

Similar to general body form, the shape of the nose also reflects morphological changes 

caused by climatic pressures. Various internal structures of the nose regulate the temperature and 

humidity of inhaled air before it reaches the bronchi and lungs. This regulation prevents damage 

to delicate pulmonary structures in harsh environments, where inhaled air must be very close to 

body temperature and highly saturated for optimal gas exchange (Negus 1954). The nasal cavity 

is particularly important for this regulation, as this is where most of the heat and moisture 

exchange of inhaled air takes place, and the nose can provide approximately 90% of the 
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temperature and humidity changes required in the air for proper gas exchange (Naftali et al. 

2005). This is achieved via contact between the air and the mucosal tissues within the nasal 

cavity, which can be altered by changing the shape of the nasal cavity. The degree to which 

inhaled air is warmed and humidified depends on the amount of contact created between the air 

and the nasal mucosal tissues (Clement and Gordts 2005, Mowbray and Gannon 2001; Seren and 

Seren 2009). Surface area to volume ratio, residence time, and degree of turbulence each impact 

the degree that air contacts the mucosal tissues within the nasal cavity, and thus the degree to 

which air is warmed and humidified (Churchill et al. 2004; Clement and Gordts 2005; Naftali et 

al. 2005; Noback et al., 2011; Seren and Seren 2009).  

Both the variation in nasal cavity shape and external shape of the nose correlates with a 

cline from hot-humid climates to cold-dry climates — the closer to the equator, the lower and 

wider the noses, and the closer to the poles, the higher and narrower the noses. This is because 

high and narrow noses correspond to greater contact between the air and mucosal tissues within 

the nasal cavity via increased turbulence and a greater surface-to-volume ratio in the cavity 

(Noback 2011; Seren and Seren 2009). These morphological differences have been recorded 

among human populations (Evteev et al. 2014; Fusake et al. 2015, Hernandez et al. 1997, 

Wolpoff 1968, Yokley 2009; Zaidi et al. 2017), as well as in non-human primate groups like 

macaques (Rae et al. 2003) and non-primate groups like rats (Rae et al. 2006).  

Research has also been conducted on maxillary sinus shape and variation within this 

structure relating to climate (Butaric and Maddux 2016; Shea 1977). Results of these studies are 

similar to those produced by studies conducted on correlation between external nose shape and 

nasal cavity shape with climate. Though measurements of the maxillary sinus are independent 

from external nose shape, studies have revealed how important internal nasal structures, like the 
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maxillary sinus, are for regulating air conditions. Individuals with narrower nasal cavities have 

wider maxillary sinuses, and tend to be from colder environments; those with wider nasal 

cavities have narrower maxillary sinuses, and tend to be from hotter climates (Butaric and 

Maddux 2016). These results support the idea that the internal nasal structures, including the 

maxillary sinus, are correlated with climate due to their air conditioning capacities.  

It is challenging to determine if these differences between human populations in nasal 

morphology have been caused by natural selection or genetic drift. Several studies have found 

that the human skull, particularly regions surrounding and including the nose, are differentiated 

to a greater degree among human populations than would be expected under genetic drift alone 

(Evteev et al. 2014; Guo et al. 2014; Hubbe et al. 2009; Roseman 2004; Roseman and Weaver 

2004; Zaidi et al. 2017). One study found that the width of the nares and the alar base width 

diverge from the expectations for variance caused exclusively by genetic drift (Zaidi et al. 2017). 

Therefore, differences in these measurements of the nose between different populations can be 

attributed to divergent selection. However, nares width was only found to be weakly correlated 

with temperature, so there are other factors contributing to nasal shape divergence as well (Zaidi 

et al. 2017). 

Several genome-wide association studies (GWAS) have been conducted in the past in 

order to find locations within the genome that have some correlation with mid-facial morphology 

(Claes et al. 2014, Liu et al. 2012, Paternoster et al. 2012, Shaffer et al. 2016). Several locations 

within the genome have been suggested to impact nasal morphology, like four genes of interest 

identified by Adhikari et al. (2016): DCHS2, RUNX2, GLI3, and PAX1. Studies have also 

repeatedly found significant association between single nucleotide polymorphisms (SNPs) in 
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PAX3 and nasion position (the point on the nose between the eyes) (Adhikari et al. 2016, Liu et 

al. 2012, Paternoster et al. 2012). 

Here, an exploration was carried out on the correlation between external nasal 

morphology and variation in genotype at various locations in the genome. A population from a 

climate that is warm and humid consistently throughout the year (a cohort of Maya ancestry) was 

compared to a population from a colder, less humid environment (a cohort of Northern European 

ancestry). As air conditions in hot and humid environments are very close to optimal for gas 

exchange within the lungs without much alteration, very little stress is placed on nasal 

morphology by the environment, and thus pressure for natural selection to act on genes 

controlling nasal morphology is expected to be minimal. However, there is a higher likelihood 

for natural selection to have had an impact on Northern European populations, where the cold 

and dry climate favors a higher and narrower nose for efficient air conditioning.  
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Methods 

Participant recruitment and population samples 

Research participants for this study were recruited from Palenque, Chiapas, Mexico, a 

city with a significant indigenous Maya population. Unrelated adult participants between the 

ages of 18 and 35 were recruited to participate. Language was used as a proxy to control for 

Maya ancestry, as recruited individuals were required to either speak a Maya language or have 

both parents and both sets of grandparents speak a Maya language. All participants were in good 

health, without cardiovascular, pulmonary or metabolic problems, and were not smokers.  

A total of 101 male and female individuals between the ages of 18 and 35 years old were 

recruited and consented to the study. Height was measured using a stadiometer and weight was 

measured using a scale. Six mls of blood were drawn from an antecubital vein by a local health 

professional for anemia testing and DNA extraction; saliva samples were also collected for DNA 

extraction. DNA was stabilized in the field and hand transported to the University of Michigan. 

DNA extraction was performed using the Puregene protocol (Qiangen, Hilden, Germany) 

according to the manufacturer’s instructions. Mid-facial morphology measurements were taken 

by collecting 3D facial photographs (3dMD, Atlanta, GA). Three photos were taken of each 

participant while standing. The three images were then stitched together using the 3dMDface 

system. All participants provided informed, written consent and the study was approved by the 

University of Michigan IRB and by the ethics committee at the Centro de Investigación y 

Docencia Económica (CIDE), Mexico City, Mexico. 

Northern European data were taken from a dataset published by Zaidi et al. (2017), which 

is part of a larger dataset for studies at the Pennsylvania State University and the University of 

Illinois at Urbana-Champaign. A total of 236 male and female individuals between the ages of 18 
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and 59 were recruited from Ireland (N = 151) and Poland (N=85). Each participant reported that 

all four of their grandparents were from the sampling region. Standing height and body weight 

measurements were collected, and 3D facial photographs were taken (3dMD, Atlanta, GA). 

Genotype data for the SNPs of interest were unavailable for this population. 

 

Candidate gene and SNP selection 

A set of candidate genes potentially associated with craniofacial variation centered 

around nasal morphology was identified. A preliminary list of genes was put together by 

searching the Online Inheritance of Man (OMIM) database (https://www.omim.org), using 

keywords including “craniofacial” and “nasal morphology”. These searches generally yielded 

genes that have previously been linked to disorders that result in craniofacial abnormalities. The 

Web of Science (https://apps.webofknowledge.com) was used to find published research on 

correlations between genes and SNPs within them, and external nasal features. SNPs that have 

been identified as having a correlation between external nasal features were added to the list of 

candidate SNPs. More data on those SNPs were collected using the UCSC Genome Browser 

(http://genome.ucsc.edu). The list of candidate SNPs was then narrowed down by looking at the 

human genomic population data on the 1000 Genomes Project Browser 

(http://phase3browser.1000genomes.org), and SNPs with higher allelic frequency differences 

between Indigenous American populations and European populations were favored. Using these 

methods, three SNPs were chosen to be tested for associations with variation in nasal 

morphology: rs11738462 in C5orf64, rs2424399 in PAX1, and rs7559271 in PAX3. A summary 

of methods used for SNP selection is provided in Figure 1.  
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Figure 1: Summary of methods used to select the three SNPs (rs11738462 in C5orf64, 
rs2424399 in PAX1, and rs7559271 in PAX3) used in this study. 
 
 
 The three chosen SNPs, rs11738462 in C5orf64, rs2424399 in PAX1, and rs7559271 in 

PAX, were ultimately chosen for their previously identified associations with measurements on 

and around the nose. The SNP in C5orf64 was found to have an association with the pronasale to 

alare distance as well as nasal ala length (Paternoster et al. 2012); the SNP in PAX1 was found to 
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have an association with nasal width (Shaffer et al. 2016); and the SNP in PAX3 was found to 

have an association with the nasion to mid-endocanthion point (Adhikari et al. 2016, Liu et al. 

2012, Paternoster et al. 2012) (Table 1, Figure 3). However, in a study by Shaffer et al. (2016), 

the associations between the SNPs in C5orf64 and PAX3 with nasal morphology were not found.
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Table 1: Summary of information on each of the three chosen SNPs, compiled from the UCSC Genome Browser, publications made 
available through the Web of Science, and population genetics data provided through the 1000 Genomes Project Browser. 

		 		 		 		 		 		 1000	Genomes	Project	Findings	(derived/ancestral	allele)	 		 		 		

Gene	 Chromosome	 SNP	ID	 Derived/	
Ancestral	
Allele	

Function	 Literature	Findings	 All	
American	

Medellin,	
Columbia	

Los	
Angeles,	
California	

Lima,	Peru	 All	
European	

Northern	
and	
Western	
European	
ancestry	in	
Utah	

Finnish	
in	
Finland	

British	in	
England	
and	
Scotland	

C5orf64	 chr5	 rs11738462	 A/G	 intron	 Association	with	pronasale	to	alare	
distance	(tip	of	nose	to	widest	part	of	
the	nostril)	and	nasal	ala	length	
(Paternoster	et	al.	2012)	
No	evidence	for	this	association	found	
by	Shaffer	et	al.	(2016)	

0.18/0.82	 0.25/0.75	 0.19/0.81	 0.06/0.94	 0.19/0.81	 0.24/0.76	 0.25/	
0.75	

0.18/0.82	

PAX1	 chr20	 rs2424399	 A/C	 intron	 Association	with	nasal	width	(Shaffer	et	
al.	2016)	

0.59/0.42	 0.60/0.40	 0.57/0.43	 0.50/0.50	 0.76/0.24	 0.73/0.27	 079/0.21	 0.72/0.28	

PAX3	 chr2	 rs7559271	 A/G	 intron	 Association	with	nasion	to	mid-
endocanthion	point	(midpoint	between	
the	left	and	right	endocanthi,	the	
innermost	corners	of	the	eyes)	
(Paternoster	et	al.	2012)	
No	evidence	for	these	associations	
found	by	Shaffer	et	al.	(2016)	

0.42/0.58	 0.52/0.48	 0.31/0.69	 0.28/0.72	 0.60/0.40	 0.61/0.39	 0.63/	
0.37	

0.60/0.40	
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SNP genotyping 

 Primer design was performed using Primer Design 3 Plus (http://primer3plus.com/cgi-

bin/dev/primer3plus.cgi) and restriction enzymes were selected using NEB Cutter V2.0 

(http://nc2.neb.com/NEBcutter2/). SNPs were genotyped using polymerase chain reaction (PCR) 

followed by restriction enzyme digestion. Genotyping was performed using agarose gel 

electrophoresis. The amplified fragments of DNA containing the C5orf64 SNP rs11738462 and 

the PAX1 SNP rs2424399 were digested with the restriction enzyme BsrDI and the fragment 

containing the PAX3 SNP rs7559271 was digested with the restriction enzyme PstI. See Table 2 

for a summary of primers and PCR conditions used, and Table 3 for a summary of restriction 

enzyme digestion information. 

Before the DNA samples from the Maya cohort were genotyped, optimizations were 

performed to increase the sensitivity of the assays. To do this, several trials of PCR using control 

DNA were performed using varying amounts of MgCl2, betaine, and annealing temperatures. By 

taking these PCR products and running them through gel electrophoresis, it was determined (i) if 

the desired segment of DNA was amplified by checking the length (bp) of the DNA fragments, 

and (ii) which conditions are optimal for visualizing genotype results on the agarose gels. The 

conditions that produced the brightest bands of the correct length on the agarose gel were chosen 

(Table 2).  

After optimization, a practice PCR/digestion was performed under the optimized 

conditions for each SNP to ensure that the restriction enzymes cut at the appropriate site on the 

PCR product. Seven DNA samples including both lab control DNAs and DNA from the Maya 

cohort were used in this process. After digestion at the temperature suggested by the 
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manufacturer of the enzymes, gel electrophoresis was performed, and each enzyme was found to 

have cut at the appropriate location (Table 3). PCR and restriction enzyme digestion were then 

performed under optimized conditions on the entire Maya cohort. Electrophoresis was performed 

using 2% agarose gels with ethidium bromide staining. Genotypes were visually determined by 

examining the length of the DNA fragments in each sample, which corresponds to a particular 

genotype (Table 3). 
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Gene	 SNP	ID	
Forward	Primer	Sequence	
(5'-3')	

Reverse	Primer	Sequence	
(5'-3')	

PCR	
product	
size	

Annealing	
Temperature	
(°C)	

Amount	
of	1.25	
mM	
dNTPs	

Amount	
of	10x	
PCR	
Buffer	

Amount 
of 
MgCl2  

Amount of 
Taq 
polymerase 

Amount 
of 
Betaine 

Amount 
of DNA 

C5orf64	 rs11738462	 GCCAAGTCCCGATTCCTGTA	 CCTTGGCCTTGGCATGTAA	 308	bp	 58°C	 4.00	µL	 5.00	µL	 2.50	µL	 0.25	µL	 0	µL	 2.00	µL	

PAX1	 rs2424399	 GATGCATGCGTTCCTCCTCT	 TTACTGAGAGGGGCCTCCAG	 565	bp	 63°C	 4.00	µL	 5.00	µL	 3.00	µL	 0.25	µL	 5.00	µL	 2.00	µL	

PAX3	 rs7559271	 GTGGCAGGGTTCAAAAGCAAT	 AAGCAAAACTAGACCCGCCC	 345	bp	 63°C	 4.00	µL	 5.00	µL	 3.00	µL	 0.25	µL	 0	µL	 2.00	µL	
 
Table 2: A summary of the optimized PCR conditions for each SNP. Amount of reagent used refers to the amount needed to run one 
sample 
 
 

Gene	 SNP	ID	 Enzyme	
Bands	if	Homozygous	
Ancestral	 Bands	if	Heterozygous	

Bands	if	Homozygous	
Derived	

C5orf64	 rs11738462	 BsrDI	 GG	=	101,	207	bp	 GA	=	101,	207,	308	bp	 AA	=	308	bp	
PAX1	 rs2424399	 BsrDI	 AA	=	349,	216	bp	 AC	=	349,	216,	565	bp	 CC	=	565	bp	
PAX3	 rs7559271	 PstI	 GG	=	242,	103	bp	 GA	=	242,	103,	345	bp	 AA	=	345	bp	

 
Table 3: Enzymes used for restriction enzyme digests for each of the SNPs, including the length of the DNA fragments expected 
based on the genotype of the individual. 
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Phenotyping with 3D facial images 

 The 3D images from the Maya cohort were taken, assembled, and processed using the 

3dMDface system (3dMD, Atlanta, Georgia) at Dr. Mark Shriver’s lab at Pennsylvania State 

University. An anthropometric mask was placed upon each of the photos, which were then 

imported into the MeshLab system (Visual Computing Lab, ISTI – CNR, Pisa, Italy) for 

landmarking and distance measuring. Four landmarks around the nasal region were placed by 

hand using visual estimation, including the left and right alares and the left and right alar 

curvatures. Linear distances between these points were measured in millimeters to give the alar 

base width and the nares width (Figure 3). These distances were also calculated for the Northern 

European cohort and were provided in the publication by Zaidi et al. (2017). These landmarks on 

each face were then compared within and between the Maya and Northern European cohorts and 

against the Maya genotype data to interrogate for links between nasal phenotype and genotype.  

Figure 2: Measurements used in this study to quantify nasal morphology. Landmarked locations 
include the left and right alare and the left and right alar curvature. Linear distances were then 
measured between those points to give the alar base width and nares width.  
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Statistical analysis 

 For statistical analysis, SPSS version 22.0 (IBM, Armonk, New York) was primarily used, 

as well as Plotly (Plotly, Montreal, Canada) for graphical outputs. T-tests were utilized to 

determine if there were statistically significant differences within and between the Maya and 

Northern European cohorts regarding sex, nares width, and alar base width. Linear regression 

models were used to determine if there were statistically significant correlations between nasal 

phenotype and genotype independently for each of the three SNPs.  
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Results 

Population data 

 Of the 101 Maya individuals recruited, 100 were used in this study due to the corruption 

of the 3D facial images of one individual. Of this cohort, 50 were female and 50 were male, and 

they ranged between the ages of 18 and 35 years of age. For males and females combined, the 

nares width ranged from 32.7152 to 44.5768 mm with a mean of 38.2787 ± 2.6179 mm; the alar 

base width ranged from 26.5229 to 39.4572 mm with a mean of 32.4445 ± 2.9440 mm (Table 4). 

Male and female nares width (male average = 39.4833 mm, female average = 37.0742 mm, P = 

3.087×10-6) and alar base width (male average = 33.4243 mm, female average = 31.4648 mm, P 

= 0.0007156) differed significantly (Table 5, Figure 3). 

 Data from 236 Northern European individuals were available for this study. I removed all 

individuals above the age of 35, resulting in 215 individuals ranging in age between 18 and 35 

years old. Of this cohort, 134 were female and 81 were male. The nares width ranged from 

23.3690 to 39.8688 mm with a mean of 32.0755 ± 2.6608 mm; the alar base width ranged from 

26.0144 to 40.7801 mm with a mean of 33.8606 ± 2.4384 mm (Table 4). Again, male and female 

nares width (male average = 34.1278 mm, female average = 30.8350 mm, P = 1.308×10-20) and 

alar base width (male average = 35.4397 mm, female average = 32.9061 mm, P = 7.167×10-14) 

were significantly different (Table 5, Figure 3). 
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		 		 Nares	Width	Range	 Mean	Nares	Width	
Alar	Base	Width	
Range	

Mean	Alar	Base	
Width	

Maya	Cohort	 All	
32.7152-	44.5768	
mm		 38.2787	±	2.6179	mm	

26.5229-	39.4572	
mm		

32.4445	±	2.9440	
mm	

		 Males	
34.8129-44.5518	
mm	

39.4833	±	32.0612	
mm	

26.9787-39.4572	
mm	

33.4243	±	2.9358	
mm	

		 Females	
32.7152-44.5768	
mm	 37.0742	±	2.603	mm	

26.5229-39.1588	
mm	

31.4648	±	2.6666	
mm	

Northern	
European	Cohort	 All	

23.3690-39.8688	
mm	 32.0755	±	2.6608	mm	

26.0144-40.7801	
mm	

33.8606	±	2.4384	
mm	

		 Males	
30.0819-39.8688	
mm	 34.1278	±	2.2379	mm	

30.1686-40.7801	
mm	

35.4397	±	2.2872	
mm	

		 Females	
23.3690-35.0399	
mm	 30.8350	±	2.0649	mm	

26.0144-38.2964	
mm	

32.9061	±	1.9960	
mm	

Table 4: Ranges and averages of nares width and alar base width measurements within the Maya 
and Northern European cohorts.  
 
 

		

Male	
Mean	
Nares	
Width	

Female	
Mean	
Nares	
Width	 p-value	 Conclusion	

Male	
Mean	Alar	
Base	
Width	

Female	
Mean	Alar	
Base	Width	 p-value	 Conclusion	

Maya	
Cohort	

39.4833	
mm	

37.0742	
mm	 3.087×10-6	

Significant	
difference	

33.4243	
mm	 31.4648	mm	 0.0007156	

Significant	
difference	

Northern	
European	
Cohort	

34.1278	
mm	

30.8350	
mm	 1.308×10-20	

Significant	
difference	

35.4397	
mm	 32.9061	mm	 7.167×10-14	

Significant	
difference	

Table 5: Results from two-sample t-tests to test for a significant difference in nares width and 
alar base width between males and females. Significance is considered if p<0.05. 
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Figure 3: Boxplot comparing varying nares widths and alar base widths between the sexes 
among the two cohorts. Male and female nares width and alar base width were statistically 
significantly different within the Maya and Northern European cohorts (p<0.05). 
 
 Next, nasal measurements were compared between the Maya cohort and the Northern 

European cohort. These two populations significantly differed for both nares width (Maya 

average = 38.2787 mm, N. Eur. average = 32.0755 mm, P = 2.0102×10-47) and alar base width 

(Maya average = 32.4445 mm, N. Eur. average = 33.8606 mm, P = 0.000048831) (Table 6, 

Figure 4). 

Mean	Maya	
Nares	Width	

Mean	N.	Eur.	
Nares	Width	 p-value	 Conclusion	

Mean	Maya	
Alar	Base	
Width	

Mean	N.	Eur.	
Alar	Base	
Width	 p-value	 Conclusion	

38.2787	mm	 32.0755	mm	 2.0102×10-47	
Significant	
difference	 32.4445	mm	 33.8606	mm	 0.000048831	

Significant	
difference	

Table 6: Results from two-sample t-tests to test for significant difference in nares width and alar 
base width between the Maya cohort and the Northern European cohort. Significance is 
considered if p<0.05. 
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Figure 4: Boxplot comparing the varying the distribution of nares width and alar base width 
among the Maya and Northern European cohorts. Nares width and alar base width were 
statistically significantly different between the Maya and Northern European cohorts (p<0.05). 
 
 
SNP Associations with nares width and alar base width 

 Genotype and allele frequencies were calculated for each polymorphism in 100 

individuals from the Maya cohort. For the C5orf64 SNP rs11738462 there were 78 GG 

homozygotes, 20 GA heterozygotes, and 2 AA homozygotes (78%, 20%, and 2% of the 

population, respectively); for the PAX1 SNP rs2424399 there were 19 AA homozygotes, 29 AC 

heterozygotes, and 52 CC homozygotes (19%, 29%, and 52% of the population, respectively); 

for the PAX3 SNP rs7559271 there were 69 GG homozygotes, 25 GA heterozygotes, and 6 AA 

homozygotes (69%, 25%, and 6% of the population, respectively) (Table 7, Figure 5). 

 

 



 23 

Gene	 SNP	ID	
Genotype	
Frequencies	

Allele	
Frequencies	

C5orf64	 rs11738462	 GG:	78%	 G:	88%	
		 	 GA:	20%	 A:	12%	
		 		 AA:	2%	 		
PAX1	 rs2424399	 AA:	19%	 A	=	33.5%	
		 		 AC:	29%	 C	=	66.5%	
		 		 CC:	52%	 		
PAX3	 rs7559271	 GG:	69%	 G:	81.5%	
		 	 GA:	25%	 A:	18.5%	
		 		 AA:	6%	 		

Table 7: Summary of genotype and allele frequencies for each SNP from the Maya cohort. 
 

 
Figure 5: Genotype and allele frequencies for each SNP, based on results collected from the 
Maya cohort. 
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 For the Maya cohort, the mean nares width and mean alar base width were calculated for 

each genotype (Table 8). A linear regression model was used to assess the impact of genotype 

(minor allele frequency) on phenotype within the Maya cohort. This model was used to test each 

SNP separately against nares width and alar base width. All three SNPs, C5orf64 SNP 

11738462, PAX1 SNP rs2424399, and PAX3 SNP rs7559271, were found to be not significantly 

associated with nares width or alar base width (Table 9).  

 

Gene	 SNP	ID	 Genotype	
Mean	Nares	
Width	

Mean	Alar	
Base	Width	

C5orf64	 rs11738462	 GG	 38.2017	mm	 32.2876	mm	
		 	 GA	 39.1289	mm	 33.1804	mm	
		 		 AA	 35.0081	mm	 31.2090	mm	
PAX1	 rs2424399	 CC	 37.9138	mm	 32.0059	mm	
		 		 CA	 37.0330	mm	 31.1382	mm	
		 		 AA	 39.1263	mm	 32.9119	mm	
PAX3	 rs7559271	 GG	 38.0905	mm	 32.2124	mm	
		 	 GA	 38.7768	mm	 33.2158	mm	
		 		 AA	 38.3681	mm	 31.9005	mm	

Table 8: Mean nares width and mean alar base width for each genotype of the Maya cohort.  
 
		 		 		 		 		 Nares	Width	 Alar	Base	Width	

Gene	 SNP	ID	
Ancestral/Derived	
Allele	

Minor	
Allele	

Minor	
Allele	
Frequency	 R2	 p-value	 R2	 p-value	

C5orf64	 rs11738462	 G/A	 A	 0.12	 0	 0.996	 0.005	 0.486	
PAX1	 rs2424399	 C/A	 A	 0.335	 0.03	 0.085	 0.019	 0.168	
PAX3	 rs7559271	 G/A	 A	 0.185	 0.008	 0.39	 0.019	 0.168	

Table 9: Summary of results from the linear regression model used to test correlation between 
genotype (minor allele frequency) on nares width and alar base width. No significant association 
was found between genotype and phenotype. Significance is considered if p<0.05 and p<0.016 
after a Bonferroni correction for multiple tests, α = 0.05). 
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Figure 6: Distribution of nares width and alar base width for each genotype, based on results 
collected from the Maya cohort.  
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Discussion 

Summary of findings 

 The goal of this study was identify markers of natural selection and genetic adaptation 

caused by climactic pressures placed upon nasal form and function. Inhaled air must be at or near 

body temperature and almost completely saturated before it hits the bronchi for optimal gas 

exchange. The nose plays an important role in altering the temperature and humidity of this 

inhaled air (Negus 1954). Therefore, nasal shape is particularly important where there is a drastic 

difference between external conditions and the air conditions necessary for optimal breathing and 

gas exchange. In cold-dry climates, the pressure placed upon nasal structure to optimize air 

contact with nasal mucosal tissues is high. In contrast, in warm-humid climates, where inhaled 

air is consistently near or at optimal temperature and humidity levels, climatic pressures are 

relieved as the nose should have very little need to influence air conditions.  

 The phenotypic comparisons between the Maya cohort and the Northern European cohort 

carried out in this study supports previous research (Farkas, Kolar and Munro 1986; Franciscus 

and Long 1991, Zaidi et al. 2017). Both nares width and alar base width were found to be 

significantly different between the cohorts (P = 2.0102×10-47 and P = 0.000048831, respectively) 

(Table 6, Figure 4). Nares width was significantly larger in the Maya cohort compared to the 

Northern European cohort, which supports previous data demonstrating that populations adapted 

to cold-dry climates (like the Northern Europeans) have narrower noses than those adapted to 

warm-humid climates (like the Maya) (Farkas, Kolar and Munro 1986; Franciscus and Long 

1991, Zaidi et al. 2017). However, the Northern European cohort had a higher average alar base 

width (32.4445 mm) compared to the Maya cohort (33.8606 mm). This suggests that alar base 

width may be less directly tied to air conditioning capabilities of the nose and thus weakly, if at 



 27 

all, correlated with climate. These data support findings by Zaidi et al. (2017) that suggested that 

it is not merely the width of the nose that is under climatic selective pressure, which would 

include the nares width and the alar base width, but it is the width of the nares that is specifically 

under selective pressure. 

 This study’s results suggested that within the Maya cohort there is no association 

between the three SNPs (the C5orf64 rs11738462, the PAX1 rs2424399, and the PAX3 

rs7559271) and nares width and alar base width. These results, however, are not completely 

surprising when viewed from an evolutionary perspective, as it is unexpected that the Maya 

cohort experienced selective pressures that impacted nasal morphology. However, DNA was not 

available from the Northern European cohort for this study, and thus these data should serve as a 

comparative set to be used in future genetic investigations in cold-dry-adapted populations. 

 There was a high degree of sexual dimorphism seen in nose shape, as males in both 

cohorts had significantly larger nares width and alar base width measurements (Table 4, Table 5, 

Figure 3). Could this sexual dimorphism be a result of sexual selection, and if so, is it a result of 

an honest signal of adaption to the local environment, or merely a preferred aesthetic 

appearance? Could cultural differences in preferred nasal shape have influenced varying shapes 

across cultures and regions? Previous research has found that sexual selection and/or local 

adaptation could have played important roles in shaping human mid-facial soft-tissue 

morphology (Guo et al. 2014). Environmental selective pressures and sexual selection may have 

reinforced each other (Zaidi et al. 2017), but more research needs to be done to investigate these 

questions. Other research has suggested that the relatively larger noses seen in males compared 

to females is a result of differing activity levels and increased respiratory demands in males 

(Holton et al. 2016). This relates to previous findings that the size of the airway is a result of the 
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energetics of the organism, while the shape of the airway is more reflective of adaptation to 

climate (Bastir and Rosas 2013). However, the strength of the correlation between the two is 

unclear and further investigation is required.  

 

Limitations and complications  

 Originally, the 3D facial images of the 101 recruited Maya participants were to be 

processed and landmarked by a research team at a laboratory external to the University of 

Michigan. However, they were unable to perform the promised analyses in time for the thesis. 

Therefore, I performed the landmarking by hand. I marked each of the four landmarks on each of 

the 100 facial images one time. For greater statistical accuracy, it would have been optimal to 

have two separate individuals place each landmark two to three times and average the results 

(Aldridge et al. 2005). Unfortunately, due to the limited time available to complete the 

landmarking and analysis, this was not possible. This may have caused inaccuracies in the data.  

 Furthermore, because of the limited time available to complete the landmarking, only 

four landmarks were placed (right and left alar curvature, right and left alares) to measure two 

distances (the alar base width and the nares width). I chose these landmarks and distances 

because they relate to external nasal width and were relatively easy to accurately mark and 

measure. However, the three SNPs that I chose had not previously been found to be explicitly 

associated with these distances. The C5orf64 SNP rs11738462 and the PAX1 SNP rs2424399 

were found to be associated with nasal width (Shaffer 2016), but the C5orf64 SNP rs11738462 

was also found to be associated with the pronasale to left alare distance (tip of the nose to the 

widest part of the left nostril) (Paternoster et al. 2012), and the PAX3 SNP rs7559271 was found 

to be associated with the nasion to mid-endocanthion point (point on the surface of the nose 
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between the eyes to the midpoint between the innermost corner of the eyes [not on the facial 

surface]) (Paternoster et al. 2012). Therefore, it was not expected that the PAX3 SNP rs7559271 

would correlate with nares width or alar base width, and there was only a small chance that the 

C5orf64 SNP rs11738462 correlate with either of those measurements. This study would have 

been more powerful if it examined many more landmarks around the nose (including the nasion, 

pronasale, subnasale and left and right endocanthii, for example) and used Euclidian Distance 

Matrix Analysis (EDMA) (Lele and Richtsmeier 1991) to measure the distances between all of 

these landmarks.  

 This study would have been more powerful if it had larger sample sizes, particularly from 

the Maya cohort. Having only 100 participants is decent, but less than ideal and certainly not 

powerful enough when looking for significant phenotype-genotype associations. Principal 

components analysis (PCA) could have better controlled for significant principal components 

(PCs), which would reduce the data to only a few variables that have the most genetic variability 

information. More importantly, this study would have yielded more useful and powerful results 

if DNA samples from the cold-dry adapted population, the Northern European cohort, had been 

available. It is likely that evidence of natural selection would have been found if the genotypes of 

a hot-humid adapted population had been compared to a cold-dry adapted population.  

 

Conclusion 

Variation in nasal morphology seen around the world can be explained in large part by 

physiological adaptation to air conditions. This study confirmed previous findings that 

populations in cold-dry climates tend to have narrower noses than populations in warm-humid 
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environments. Though no significant genotype-phenotype relationships were identified, 

phenotype-phenotype trends observed between the Maya and Northern European cohorts suggest 

that genetic adaptation and thus evolution by natural selection has taken place in response to 

climatic pressures. Further study is required to test to see if there are genotype-phenotype 

correlations within cold-adapted populations. 

 Relatively little is known about how genotype controls phenotype. This research 

contributes to our general understanding of how DNA functions, its impact on phenotype, and 

how it can be altered by pressures from external climatic conditions. These pressures may 

change not only your phenotype and genotype, but those changes may be passed down to future 

generations as an adaptation that vies a survival advantage in a given environment.  
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