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ABSTRACT 

 Correct diagnostic classification of kidney tumors is critical to providing accurate prognostic 

information and enabling potential precision medicine opportunities, however this often requires 

assessing numerous clinical biomarkers by multiple approaches that are both time- and cost-intensive. 

Here, we sought to determine whether a multiplex-PCR based RNA sequencing (mxRNAseq) panel 

targeted to kidney cancer relevant genes could facilitate diagnosis of both common and rare kidney 

tumors as well as inform on prognosis and therapeutic targets. Through assessment of over 146 clinical 

formalin fixed paraffin embedded (FFPE) samples using a 122 target gene mxRNAseq panel, we 

demonstrate that this approach enables robust classification of common kidney tumor subtypes using both 

supervised and unsupervised techniques. To facilitate precision medicine opportunities, we demonstrate 

that inclusion of cell-cycle related genes enables the calculation of a previously described 31-gene cell-

cycle proliferation progression (CCP) score, while immune related genes enables identification of 

immune “hot” and “cold” tumors. Taken together, these results support the feasibility and broad potential 

applicability of targeted mxRNAseq for kidney tumor diagnosis, classification, prognosis and therapeutic 

prediction.    

INTRODUCTION 

An emerging management strategy for kidney and other tumors is precision medicine – 

targeting interventions to specific molecular properties. However, such a strategy requires 

accurate assays for all relevant biomarkers. In some tumors this is relatively straightforward – 

management of many colon cancers has been revolutionized by the use of a few driving markers 

to manage care (e.g. KRAS mutations and microsatellite stability status1). However, in kidney 

tumors, such management is made more difficult by the wide variety of subtypes, and the 

morphologic overlap that often requires extensive immunohistochemistry (IHC), fluorescence in 
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situ hybridization (FISH), and/or DNA sequencing for complete subtyping. This heterogeneity 

also complicates the development of broadly applicable prognostic and predictive assays.   

IHC remains the gold standard for measuring protein markers, as it measures the actual 

expressed protein, verses upstream RNA expression or DNA variants that may not impact the 

actual phenotype. Correct subclassification of kidney tumors often requires a battery of 

immunostains2, which makes accurate diagnosis manually intensive and costly. RNA based 

assays may simplify kidney cancer subtyping – if it can be demonstrated that RNA expression is 

a true proxy for protein levels and the loss of spatial expression information and expression 

patterns does not compromise accuracy. Recently, RNAseq has proven to be a method of choice 

for high-throughput RNA analysis. Most RNAseq analyses involve counting transcripts mapped 

to the reference genome, however RNAseq data can also be used to identify mutations in exonic 

regions if probes are designed to capture such regions.3 

Most RNAseq uses a transcriptomics approach, measuring all transcribed mRNA, 

typically by selecting for mRNA poly-A tails, or by using capture probes for exonic regions.4  

This requires a relatively large amount of sequencing capacity to be able to gain a large dynamic 

range but provides data about a sample’s entire transcriptional activity. Unfortunately, such 

approaches are not compatible with RNA isolated from routine FFPE tissues, as it is degraded to 

formalin induced crosslinking. Importantly, FFPE material is available for essentially all patients 

with kidney cancer, after fine needle aspiration, kidney biopsy, partial nephrectomy, 

nephrectomy, or biopsy of metastatic lesions. Likewise, although capture based RNAseq largely 

alleviates issues with poly-A selection and reverse transcription, if often requires hundreds of 

nanograms to microgram quantities of RNA4, which are not available from routine biopsy or fine 

needle aspiration samples.4,5  
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Typical clinical analysis will only focus on a known subset of targets validated for 

analysis – all other protein biomarkers or transcripts are irrelevant and wasteful if the cost is too 

high. One technology enabling sequencing of only targeted regions is multiplexed PCR (after 

reverse transcription for RNA assessment). Sequencing libraries are prepared by first amplifying 

only the targets of interest using specific primers, then sequencing the products, and counting 

reads mapped to genome as with conventional RNAseq. Such a solution enables sequencing 

more samples/patients at a lower cost as well as lower input requirements by focusing on targets 

of interest.  In addition, multiplex-PCR based  amplicon sequencing can be used with smaller 

and more degraded nucleic acids6 than conventional poly-A selection7, as reverse transcription is 

primed using random primers and mRNA specificity is achieved using highly sensitive PCR with 

exon-spanning primers. This enables the use of smaller biopsies for clinical or prospective 

research use and allows for retrospective studies on time and chemically degraded samples. 

In this thesis, I describe how a custom target multiplex RNA sequencing panel 

(mxRNAseq) developed by the Tomlins Lab can be used to characterize features of kidney 

cancers. I focus primarily on two features in which high-throughput molecular interrogation 

provides particular value: Subtyping using multiple expression targets, and assessment of 

proliferation as a potential prognostic feature via a “cell-cycle progression” gene expression 

module. Additionally, I discuss whether inclusion of many targets may provide strategies for the 

better management of Kidney cancers that currently go unclassified by typical means. 

We focused on the ability to classify four common types of kidney tumors based off 

availability in our dataset, the presence of reference data in The Cancer Genome Atlas project, 

and the frequent use of immunohistochemistry to resolve this common differential diagnosis: 

Clear Cell Renal Cell Carcinomas (RCC), Chromophobe RCC, Papillary RCC, and Urothelial 
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Carcinomas.  Classification of these types is typically performed using IHC of six targets: TP63, 

PAX8, CA9, KRT7, KIT, and AMACR. How each of these markers contribute to classification 

is shown in Figure 1. TP63, a key marker of urothelial differentiation8, and PAX8, a PAX family 

transcription factor regulating organogenesis during fetal development5), are used primarily as 

markers differentiating Urothelial Carcinomas from RCCs. Within RCCs, Carbonic Anhydrase 

IX (CA9), a carbonic anhydrase expressed in hypoxic environments serves as a strong marker for 

Clear Cell RCC.10,11  KIT, a protooncogenic stem cell factor12,13, is a strong marker for 

Chromophobe RCC.  Cytokerin KRT7/CK7 is also used to differentiate Chromophobe and 

Papillary RCCs from Clear Cell RCC.2 

Figure 1: A summary of markers used to classify kidney tumors subtypes discussed. Red 

represents presence of protein expression, blue represents absence, and grey represents equivocal 

for a particular subtype.  

 Beyond classification, high-throughput multi-target assays also present the opportunity 

for summary signatures that can capture the behavior of many targets belonging to a larger 

biological process. One example of such a signature is the Cell Cycle Progression (CCP) score, a 

signature averaging expression of 31 cell cycle related genes, originally validated and 

commercialized for prostate cancer.14,15  Our group previously described3 efforts to port this 

signature to a mxRNAseq targeted panel for prostate cancer. Given the near universal relevance 
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of cell cycle/proliferation to molecular oncology (with high proliferation being associated with 

more aggressive disease16), we included these targets on our separate kidney panel to determine 

the feasibility of characterizing cell cycle/proliferation in kidney tumors.  

 Here I describe development and validation of a targeted multiplex RNAseq panel 

capable of assaying both markers relevant for kidney cancer subtyping, and for interrogating 

larger biological events.   

METHODS 

Panel Design and Sequencing 

 Tomlins Lab members identified relevant expression targets from internal and external 

comprehensive evaluation efforts, and designed a custom Ampliseq mxRNAseq panel using  Ion 

AmpliSeq Designer (Thermo Fisher Scientific, Waltham MA.). The panel consisted of 15 

housekeeping genes, and 122 total target genes.  Lab members prepared RNA sequencing 

libraries using the Ion Ampliseq RNA Library kit, and sequenced samples on Ion Torrent Proton 

or Ion Torrent S5 sequencers as described.3 

Patient Cohort 

Routine FFPE tissues were obtained from the University of Michigan Department of 

Pathology Tissue Archive with Institutional Review Board (IRB) approval. Diagnostic 

hematoxylin and eosin–stained slides were reviewed by board-certified anatomic pathologists 

with areas for microdissection/punching indicated as necessary. For each specimen, 1-3 1mm 

punches or 3-10 × 10μm FFPE sections were cut from representative blocks, using 

macrodissection with a scalpel as needed to enrich the tumor content. DNA and RNA were 

isolated and quantified using the Qiagen AllPrep FFPE DNA/RNA Kit (Qiagen, Valencia, CA) 

and the Qubit 2.0 fluorometer (Life Technologies), respectively, as described.3 
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Data Processing 

Torrent suite version 5.04 was used to process raw sequencing data. End to end read 

counts for each panel target were obtained from the Torrent Suite Coverage Analysis plugin 

version 5.0.4.0. All downstream analyses were conducted using R 3.4.1 and Python 3.7.0. All 

statistical models were implemented using the Scikit-learn package17 version 0.20.0.  

Prior to normalization, sample and target gene amplicon quality was assessed to eliminate 

technical artifacts. Samples were only included in downstream analyses if they had at least 

500,000 mapped reads, with at least 60% being end to end. Target gene amplicons were only 

included if they had at least 200 reads in at least 2 samples or more than 1000 reads in at least 

one sample. To ensure robust normalization, performance of all housekeeping genes included on 

the panel was assessed prior to normalization. Only housekeeping genes with median reads 

between 50,00-100,000 reads were averaged for normalization. 

Raw read counts were normalized as previously described.3 Briefly, log2 transformed 

read counts were divided by the geometric mean of the included housekeeping genes. For more 

intuitive plotting, each sample was then scaled by its median for plotting purposes only.  

Data from The Cancer Genome Atlas’ Clear Cell RCC, Chromophobe RCC, Papillary 

RCC, and Urothelial Carcinoma studies18–21 was also included to increase sample size for model 

training. RSEM normalized RNAseq data was downloaded from cBioPortal.22,23 TCGA 

transcriptome RNAseq data was filtered to only include targets included on the targeted 

mxRNAseq panel.  

To ensure analysis comparability, both the TCGA and mxRNAseq datasets were centered 

and scaled according to their mean and standard deviation to ensure a unit mean and variance. 
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Since the TCGA data was used for model training, all data was scaled and centered only 

according to the properties of the training data. Homogenization was confirmed using principal 

component analysis and hierarchical clustering (Figure 2).  

 

Figure 2: Homogenization of TCGA and mxRNAseq data. Panel A: Merged heatmap of 

mxRNAseq and TCGA data for available subtypes. B+C: Principal component analysis(PCA) of 

the merged dataset both combined(B) and separated(C).  

 

Subtype Identifying Models  

We used the Scikit-learn17 package to train statistical models to classify kidney cancer 

subtypes. To ensure model generalization, we trained the model on 75% of the TCGA cohorts, 

and validated on the remaining 25%, and the entire mxRNAseq dataset. 
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We first designed a composite classifier that uses a separate logistic regression classifier 

for each gene, and classifies each sample based on a composite of each gene’s classifications 

according a pre-provided rule set. Each component model was trained by inferring a training 

sample’s component gene class from the provided rule set. We additionally designed a variant of 

this composite model including correlated genes in each of the component models.  

We also used classification and regression trees24, as they provide a simple to interpret 

structure similar to the clinical algorithm. A decision tree was trained using a maximum tree 

depth of 3 nodes, and a minimum sample split of 5. 

RESULTS 

 Given the foundational importance of classification to kidney tumor management, we 

first sought to assess the utility of our mxRNAseq panel for diagnosis of common tumor 

subtypes. In total, we generated mxRNAseq profiles for 146 informative clinical FFPE samples 

using our panel of 122 target genes. Unsupervised hierarchical clustering of both gene targets 

and samples is shown in Figure 3. Cell-cycle/proliferation targets clustered closely, indicating 

the ability of the assay to robustly detect a variety of proliferation signals. Targets indicative of 

immune-oncology response, such as CD8A, GZMA, CTLA4, FOXP3, and others, also showed 

strong clustering, consistent with the ability of the assay to detect immune infiltration. For 

example, CD8A – a marker of cytotoxic T lymphocytes clustered directly next to GZMA – a 

cytotoxic T lymphocyte protease.25 Samples clustered primarily by cell-cycle/proliferation 

(unsurprising given the number of related transcripts included in the panel), with highly 

proliferative Urothelial Carcinoma and Clear Cell RCC separating from most other samples. 

Within the proliferative sample cluster, Urothelial Carcinoma strongly separated from other 

subtypes, driven predominantly by urothelial markers PAX8 and TP63. 
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Figure 3: Unsupervised hierarchical clustering of samples and gene targets sequenced on 

the 122 gene targeted assay. After normalization, genes were centered by their medians, and 

outlier values were bounded between -5 and 5. Left panel shows all samples, while right shows 

only the most predominant subtypes.  

 

CCP Scores 

Using methodology previously described3, we calculated a derived Cell Cycle Progression 

(mxCCP)15 prognostic score for all samples, shown in Figure 4 with its composite genes. 

Urothelial Carcinoma samples showed the highest scores, with Clear Cell RCC samples also 

trending higher than others, as expected given their clustering behavior. Of note, some samples, 

for example KI-123, show high mxCCP scores while only showing high expression for a 
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minority of proliferation targets, supporting the role of multi-gene assays in measuring general 

proliferation activity.  

Figure 4: Heatmap of 31 genes that make up the cell cycle progression score. The derived 

score was calculated as previously described and was centered and scaled by all samples in this 

cohort to have unit variance and mean. Samples are ordered by score from left (least 

proliferative) to right (most proliferative). Highly proliferative Urothelial Carcinoma uniformly 

showed the highest scores, while Chromophobe RCC and Papillary RCC predominantly showed 

low-proliferation scores.  

 

 Although limited in sample number and not the focus of this initial assessment, we did not find 

significant differences in mxCCP scores across nuclear (Furhman) grades in Clear Cell RCC, as 

shown in Figure 5. 



Kaplan 12 

 

 

Figure 5: Heatmap and boxplot of Clear Cell RCC samples, annotated with Fuhrman 

Nuclear Grade. mxCCP score is not predictive of Fuhrman Grade, indicating other processes 

play a role in poor nuclear differentiation measured by this score. 

 

Subtype Multivariate Modeling 

As diagnosis of renal tumors often involves a battery of immunostains, even for 

pathologists with extensive genitourinary pathology experience, there is the potential to augment 

or replace an immunohistochemistry (IHC) based approach with mxRNAseq, given this 

platform’s ability to measure many targets simultaneously at a low cost even on very small 

biopsy samples. Hence, we attempted to characterize the panel’s ability to accurately classify 

primary renal tumor subtype using two approaches. First, we looked at whether measuring the 

RNA expression of canonical IHC markers2 could yield an accurate classifier on their own. 
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Secondly, we sought to see whether the inclusion of other potentially relevant markers included 

on the targeted panel might allow for better classification. 

To assess whether markers traditionally used in IHC diagnostics could provide an 

accurate diagnosis at the RNA level, we first attempted to replicate the decision rubric used to 

evaluate canonical IHC antigens2 (Figure 1). This model performed relatively well in our 

withheld TCGA testing data set with ROC curves with AUC values shown in Figure 6 but had 

difficulty generalizing to the mxRNAseq data. Of note, because each gene’s positive/negative 

status is predicted independently of one another, this can produce a pattern that does not match 

any trained subtype. This occurred in 90 TCGA testing samples, and 32 mxRNAseq validation 

samples, and were always scored as incorrect for performance validation purposes.  

 

Figure 6: Receiver operating characteristic(ROC) curves measuring the performance of 

RNAseq replicated IHC decision tree. Separate logistic regression models were trained for 

each gene involved in IHC-based subtyping, and their predictions for each sample were 

combined according to the IHC decision tree to yield a predicted subtype. Left panel shows 

performance on TCGA testing data, right on mxRNAseq validation.  

 

Thus, we next assessed whether statistical learning algorithms could recapitulate the 

algorithm currently used in clinical practice. We trained a multinomial logistic regression model 

on just expression of targets measured in clinical IHC-based analysis. The directionality 
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(positive/negative) of the trained coefficients (Table 1) was mostly concordant with the 

directionality used to subtype tumors using IHC. For example, CA9 and AMACR are both 

negative in Chromophobe RCC and show negative coefficients for Chromophobe RCC. This 

approach performed well, with performance gains in both the TCGA and mxRNAseq datasets 

(Figure 7).  Of note, Papillary RCC is the only subtype in which this not the case; the 

directionality of its coefficients do not match the known marker status for TP63 and AMACR.  

 
Chromophobe RCC Clear Cell RCC Papillary RCC Urothelial Carcinoma 

TP63 -1.75828 -3.44541 0.006539 1.405575 

PAX8 -0.04699 -0.81781 2.593376 -4.37143 

KRT7 -0.36471 -2.34942 -0.70006 1.990789 

KIT 0.957877 0.078807 -0.57821 -1.09337 

CA9 -2.27608 2.797833 -1.99381 -1.71269 

AMACR -1.12483 -0.13133 0.769411 -0.94736 

Table 1 – Multinomial logistic regression coefficients  

 

Figure 7: ROC curves measuring the performance of multinomial logistic regression. A 

multinomial logistic regression models was trained on markers used for IHC analysis. Left panel 

shows performance on TCGA testing data, right on mxRNAseq validation.  

 

We also attempted to use non-linear models, such as classification and regression trees. 

These models have the benefit of generating a hierarchical structure similar to ones used in 

clinical practice, and can capture non-linear relationships that don’t appear in the linear models. 

This model recapitulated the IHC decision tree, while eliminating redundant markers.  
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Figure 8: Classification tree and ROC curve performance derived from RNAseq data. 

Panel A: A learned classification tree from RNAseq analysis of only IHC targets. Urothelial 

Carcinoma samples are classified solely on PAX8 expression. CA9 expression determined 

whether a non-UC sample was Clear Cell or not, with KIT expression being the final determinant 

of the Papillary RCC vs. Chromophore RCC subtype.  B: ROC Curves of model performance. 

Model shows high performance on TCGA data, but generalizes poorly to Papillary RCC in the 

mxRNAseq cohort.  

 

We next attempted to determine whether analyzing the entire panel (outside of the 

already known IHC genes) might provide additional insight. We trained a random forest 

classifier, and adaptive boosted trees classifier on the entire panel, and while it performed well 

on the TCGA data, it generalized poorly to the mxRNAseq validation data, especially for 

Chromophobe and Papillary RCC samples (Figure 9). One explanation for this discrepancy may 
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be proliferation - proliferation markers including UBE2C, KIF11, and RAD51 make up 3 of the 

top genes in the model by gini score, and could be driving classification behaviors on 

proliferation instead of other biology if there are proliferation differences between the cohorts.  

Figure 9: ROC curves of random forest model trained on all targets. Models have strong 

performance within the TCGA dataset, but generalize poorly to the mxRNA dataset outside of 

Urothelial Carcinoma.  

 

Unclassified RCCs 

A major problem in the management of RCC are tumors that don’t meet the classification 

criteria for any particular subtype, and are therefore deemed “unclassified”. Such diagnosis is 

usually made only after extensive IHC, resulting in a large cost for a diagnosis with little utility 

to the urologist/medical oncologist. We thus sought to apply our models (trained on classified 

samples) to these unclassified samples, to see if these models could inform on their potential 

underlying phenotype. Of the 12 Unclassified RCCs in our cohort, the single gene models only 

mapped one to the known subtypes – one with Oncocytic features to Chromophobe RCC. The 

remaining 11 samples had expression patterns that did not match any of the trained subtypes.  

Using the well performing multinomial model, we calculated the probability of an 

unclassified sample belonging to each trained subtype. 6/8 samples with Sarcomatoid features 

were most likely to be Clear Cell RCC, with the remaining 2 most likely Papillary RCC. One 
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sample with both Papillary and Sacromatoid features was mostly Clear Cell RCC (77.4%), but 

had a strong Papillary RCC component (22.4%). While this analysis can’t definitively classify 

these samples, it suggests that RNAseq may enable increased resolution. 

 

DISCUSSION 

 Our group developed a targeted mxRNAseq panel for the comprehensive profiling of 

kidney tumors. The panel shows the robust ability to differentiate various kidney cancer 

subtypes, both unsupervised (as in without any priors as shown in Figure 3) and supervised (as 

in the various models shown in Figures 6-9). In addition, we show that a mxRNAseq derived 

version of the Cell Cycle Progression score is capable of assessing the underlying proliferation of 

the tumor. We also demonstrate the potential utility of using RNAseq based methods to better 

characterize unclassified disease through increased molecular resolution.  

 Our approach has several limitations. The major motivator of this study is to use RNA-

based technologies for simpler and higher-throughput classification and characterization of 

kidney cancers. However, this approach relies on mRNA expression levels of protein targets to 

be accurate proxies for protein expression. In this case, we show that they are for the purposes of 

classifying the most common subtypes in our cohort, but the variety of gene regulatory 

mechanism, including micro-RNA (miRNA) and epigenetic regulation may preclude this 

approach from working with all subtypes, or different driving molecular alterations. 

 In addition, the use of TCGA data to train supervised models adds potential bias to our 

models. We used TCGA data homogenized with our mxRNAseq data to provide substantial 

training examples for model parameter estimation. However, while our homogenization was 
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seemingly effective as shown in Figure 2, there are artifacts associated with comparing full 

transcriptome sequenced via a poly-A selection method with targeted amplicons that may not 

been removed by a standard unit mean and variance homogenization. Additionally, several 

studies have demonstrated the misclassification of tumors in TCGA data26, potentially 

confounding our ability to accurately train model parameters.  

 The targeted mxRNAseq approach we use poses its own limitations. While targeted 

mxRNAseq holds promise for its ability to characterize degraded samples and lower cost than 

traditional transcriptome RNAseq, it also accordingly provides less data than a full transcriptome 

might. For subtyping or clinical purposes described here, that poses little problem, as that mostly 

is occurring on a constrained set of genes, However, for characterizations of unclassified RCCs, 

this technique doesn’t fully characterize the expression activity of these cancers. While we have 

shown that the additional range of detection afforded by RNAseq technologies may allow for 

deconvolution of known subtypes within unclassified tumors, our panel does not enable the 

characterization of targets not known to be involved in this cancer. However, future studies 

involving deep full-transcriptome sequencing of unclassified RCCs may be beneficial to 

understanding their composition and relationship to known subtypes.  

 Integration of RNAseq data in this study and DNA somatic single nucleotide and copy 

number variants may also provide important information for proper characterization of these 

cancers, as the Tomlins laboratory has shown in other tumor types.3,27 While mRNA expression 

provides valuable information about the expression state of the tissue, it doesn’t encode the 

driving mutation(s) responsible for the malignancy. 

 Importantly, targeted mxRNAseq provides opportunities to simplify and reduce the costs 

of cancer research. Here we have shown that a kidney cancer specific mxRNAseq assay has the 
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ability to accurately classify major subtypes using markers clinically used in protein analysis, 

and the potential for the assay to be used to characterize multi-target phenotypes, such as cell 

cycle/proliferation. 
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