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Abstract 

 

Metallic melt containing iron (Fe) and carbon (C) is likely present in subducted slabs at 

depths greater than 250 km inside the Earth. Depending on its wetting behavior, such dense 

melt may be trapped in the mantle or drain into the core. Here, high-pressure and high-

temperature experiments were conducted to assess the fate of slab-derived metallic melt. At 

the conditions of the mid-mantle, between 10 and 23 GPa in pressure and 1600 and 1800 ˚C 

in temperature, the measured dihedral angles of Fe-C melt in olivine, ringwoodite, and 

bridgmanite-ferropericlase matrixes are 108˚ to 119°, well above the critical value of 60°. 

The large dihedral angles correspond to percolation threshold of at least 6%, which is the 

minimum melt fraction needed to develop long-range melt connectivity. This result implies 

that Fe-C melt in the mid-mantle is expected to occur as isolated pockets and will not 

percolate through silicate matrix to reach greater depths. 
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1. Introduction 

 

Isotopic studies found that most of the Earth’s core formed rapidly in the early stage of the 

Earth’s history at about 4.5 billion years ago (e.g. Yin and Jacobsen, 2006). It is widely 

accepted that by about 4 billions years ago, the core has reached its current size and its 

growth ceased (Rubie et al., 2007). A number of recent studies, however, suggest that iron-

rich alloys may be actively produced in the mantle, thus opening up the possibility of core-

growth of the Earth through percolation at the present time. Previous studies suggest that the 

lower mantle is metal-saturated because bridgmanite can incorporate a significant amount of 

ferric iron (e.g. Frost et al., 2004). Rohrbach et al. (2007) showed that the deep parts of the 

upper mantle are likely metal-saturated as well because pyroxene and garnet can also 

incorporate ferric iron. Furthermore, they proposed that metallic iron may reduce subducted 

carbonates to produce elemental carbon or carbide. As a field evidence, iron carbide was 

found as inclusions in diamond from Juina, Brazil, which are thought to have originated in 

the mantle transition zone or the lower mantle (Kaminsky and Wirth, 2011). Taken together, 

these studies suggest that iron carbon mixtures are likely present in both the upper and lower 

mantle. 

 

The hypothesis of on-going core growth has become particularly intriguing because recent 

studies suggested iron-carbon melt may form near the core-mantle boundary (e.g., Liu et al., 

2016). If the iron-carbon melt remains trapped in the matrix of solid silicates or oxides, it 

may be returned to the shallower part of the mantle through global convection. Alternatively, 

the iron-carbon melt may percolate through the silicate or oxide and drain into the core. The 

latter scenario implies that the Earth's core is actively growing. Liu et al, (2016) proposed that 

some Ultra Low Velocity Zones (ULVZs) might be isolated patches containing iron-carbon 
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melts. They showed that the eutectic-melting curve of the Fe-C binary system crosses the 

mantle geotherm near the core-mantle boundary, and that the presence of Fe-C melt can 

explain seismically observed density and velocity features of such ULVZs.  

 

In fact, the amount of density excess and velocity reductions partly depend on the wetting 

behavior of metallic melt on the solid matrix, especially for the reduction in shear wave 

velocity (VS). In Liu et al. (2016)’s models, depending on the wetting behavior of the Fe-C 

melt in silicate matrix, the fraction of Fe-C in the ULVZs patches ranges from 5-11% to 9-

16%. With large dihedral angle, the Fe-C melt is not wetting and has a higher percolation 

threshold. In this case, a relatively large-fraction of melt will be trapped in the mantle without 

draining into the core. If the dihedral angle is below the critical value of 60˚, then the Fe-C 

melt will form connected network and eventually drain into the core. Knowledge of the 

wetting behavior of Fe-C is therefore critical for understanding the dynamic behavior of such 

ULVZs and predicting their fate. Draining of Fe-C melt would imply active core growth. 

With an estimated 1 wt.% Fe-C in the mantle (e.g. Wood et al., 2013), loss of Fe-C from 40% 

of the mantle corresponds to 0.8% growth in core mass at the expense of 0.4% reduction in 

mantle mass, which is equivalent to about 10km expansion in core radius over Earth's history. 

 

In this study, we measure the dihedral angle of Fe-C melt in olivine polymorphs and 

bridgmanite at high pressures and high temperatures. The results are applied to test the 

hypothesis of on-going core growth through percolative drainage of iron-carbon alloys 

through the mantle into the core. 
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2. Methods

2.1 Experimental 

Starting materials were mixtures of powdered San Carlos olivine and Fe-C. The natural 

olivine sample had an approximate composition of (Mg0.9Fe0.1)2SiO4 and Fe-C powders 

contained 96 wt.% reduced Fe powder and 4 wt.% graphite. The silicate composition with 

Fe#=0.1 are applicable to the mantle composition of the Earth (e.g. Ringwood, 1991), and the 

Fe-C composition corresponds to its eutectic composition at 10 GPa (Fei and Brosh, 2014). 

The San Carlos olivine were ground to fine grains of 5-10 µm under ethanol in an agate 

mortar for one hour and dried at 100 °C before mixed with powdered Fe-C. The starting 

materials were fully packed into a sintered MgO capsule between two layers of fine MgO 

powder (a schematic configuration is shown in Fig. 1). The MgO capsule and powder were 

dried at 950 °C for approximately 2 hours to avoid trapped moisture before sample loading. 

The volume fraction of Fe-C in the loaded mixture was 3 vol.%, which is less than the melt 

fraction at the connection boundary where the percolation threshold is ~71º (von Bargen and 

Waff, 1986). 

High pressure experiments were carried out using the 1000-ton Walker-type multi anvil press 

at the University of Michigan. Experiments at pressures up to 17 GPa used Toshiba-Tungaloy 

F-grade tungsten carbide (WC) cubes with 5mm truncation edge length (TEL) and those at

pressures up 23 GPa used similar WC cubes with 3mm TEL. In addition, LaCrO3 heaters 

were used to minimize thermal gradient across the sample (Li et al., 2003). Temperature was 

monitored using the power curves determined by previous multi-anvil experiments with 

5 of 32



	
 

	

W97Re3-W75Re25 thermocouples for. Pressure uncertainty is estimated within ± 5% on basis of 

duplication experiments and does not include the effect of temperature. More experimental 

setup and calibration details were discussed in Li and Li (2015). 

 

In all experiments, the sample was first pressurized at 5 GPa and then sintered for 8-12 hours 

during the compression process to the target pressures. Target temperatures were located 

below the melting temperatures of the silicate phases and above the melting temperatures of 

the iron-rich mixture. Until quenched by cutting power to the heater, target pressures and 

temperatures in all experiments were maintained for approximately 30 mins. In the previous 

studies of the silicate-Fe-melt system, the time scale of the textural equilibrium was reported 

to be from 12 minutes at 25 GPa and 2500 K (Takafuji et al., 2004) to 50 minutes at 14 GPa 

and 1700 ºC (Shannon, 1998). We suggest that 30 minutes is long enough to establish a local 

textural equilibrium existed at the interface which allows reproducible dihedral angle 

measurements. 

 

2.2 Analytical  

 

Recovered run products were mounted in epoxy, aluminum-coated, sectioned and polished 

for composition and texture analyses using a JOEL 700FLV field emission SEM and a 

CAMECA SX100 electron microprobe in the Central Campus Electron Microbeam Analysis 

Laboratory (EMAL) at the University of Michigan. Currently, the carbon content of 

quenched iron liquid was estimated using electron dispersive spectra (EDS) data. Electron 

probe measurement on quenched iron melt and solid matrixes are to be performed. 

Identification of the silicates phases in the recovered runs were conducted using a Renishaw 

inVia confocal Raman microscope.  
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Apparent dihedral angles were measured from back scattered electron (BSE) images of the 

recovered sample by using the thresholding and protractor functions of the image processing 

software ImageJ. As a mean to establish a consistent criterion and hence to increase 

reproducibility of dihedral angle measurement, the BSE images of the measured areas were 

processed by the “thresholding” function by ImageJ (Fig. 2, Perez and Pascau, 2013). Each 

individual dihedral angle was measured by the “protractor” function in ImageJ. The true 

dihedral angles were taken to be the median value of the apparent dihedral angle distribution, 

so-called “effective dihedral angle” (Stickels and Hucke, 1964). The measurement error of 

the dihedral angle is based on ± 10º around the population median (e.g. Jurewicz and 

Jurewicz, 1986; Holness, 2010). Between 91 and 257 measurements were conducted in this 

study. It is possible that a small amount of dihedral angle measurements (<~100) can be 

inadequate to determine the effective dihedral angles reproducibly.  

 

 

3. Results and discussion 

 

At the pressure and temperature conditions of all experiments, the Fe-C melt formed pockets 

at the grain boundaries of silicate/oxide matrix (Fig. 3), and the original phase of San Carlos 

olivine recrystallized to form olivine at 10 GPa, ringwoodite at 17 GPa and bridgmanite-

ferropericlase at 23 GPa (Fig. 4). The quenched Fe-C melt assumed relatively spherical shape 

and froze into interspersed carbon-rich and carbon-poor domains with characteristic dendritic 

texture (Fig. 5). Most of the quenched melt consists dominantly of Fe and C, with minor 

amount of Ni and O that may come from natural sample starting materials (Fig. 6b). The 
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median values of the dihedral angles of Fe-C melt in olivine, ringwoodite, and bridgmenite-

ferropericlase are 116 º at 10 GPa, 119 º at 17 GPa and 108º at 23 GPa, respectively (Table 1).  

 

3.1 Dihedral angle and percolation 

 

The underlying theory of wetting phenomena, which relates grains, phases and interfaces, has 

been well developed for the ideal case of an isotropic system to interpret rock microstructures: 

The feasibility of percolation is determined by the ratio of the solid-liquid interfacial energy 

(𝛾"") and the solid-solid interfacial energy (𝛾"#) (Fig. 7), If the two grains of solid phases are 

the same material and isotropic, then the equation above can be simplified to (e.g. Porter, 

1983): 

𝛾""
𝛾"#

= 2 cos
𝜃
2	 

A dihedral angle of θ = 60° or less leads to the formation of an interconnected network of 

liquid regardless of the melt fraction, whereas a dihedral angle θ that is greater than 60° 

implies that a significant fraction of iron melt may be stranded as isolated pockets.   

 

3.2 Effect of pressure on dihedral angle 

 

The results from this study show little pressure dependence of the dihedral angle θ between 

10 to 23 GPa (Fig. 8a). A small reduction in the effective dihedral angle from 119º at 17 GPa 

to 108º at 23 GPa falls within the measurement uncertainty of approximately ±10º. Literature 

data at lower pressure show that Fe-C melt with 4.3 wt.% carbon at 3 GPa and 1400 °C has 

an effective dihedral angle of 115° (Duncan and Fei, 2017), which corresponds to the 

dihedral angles of Fe-C melt measured in this study at higher pressures. Studies on Fe-Si melt 
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up to 47 GPa and 3000 K (Takafuji et al., 2004) and the Fe-S melt up to 64 GPa and 3300 K 

(Shi et al., 2013), however, demonstrated that at higher pressures the dihedral angles of 

molten iron-alloys in bridgmanite matrix decreased with the increasing pressures and 

temperatures and would reach the critical value of 60 º (Fig. 8b). 

 

The lack of pressure dependence for the dihedral angle of Fe-C melt in silicate is as expected 

from the known wetting behavior at 1 bar and theoretical understanding of interfacial 

thermodynamics. The change of interfacial energy between melt and solid (𝛾"") at a given 

temperature (T) can be described by the Gibbs adsorption isotherm (Lyklema, 2000): 

𝑑𝛾 = 𝛿𝑑𝑃 − 𝛤0𝑑𝜇0 

where 𝛿 is the thickness of the interface between melt and solid, P is pressure, 𝛤0 is surface 

excess concentration per unit area, and 𝜇0 is chemical potential of component i in the melt. 

The pressure dependence of interfacial energy between melt and solid (𝛾"#) at a given 

composition (𝜇) and temperature (T) can be derived by applying the Gibbs-Duhem relation 

(Everett, 1987), which results in  

	
𝑑𝛾
𝑑𝑃 = 𝛿 − 𝛤34#5𝑉34#5 

Where 𝑉34#5 represents the partial molar volume of the melt. At the ambient pressure and 

1843 K, the surface excess of sulfur (𝛤7489) is 11.6×108?𝑚𝑜𝑙	𝑚8C	in iron-rich melt 

containing ~0.1wt. % sulfur (Halden and Kingery, 1955). Both values are positive and the 

𝛤	34#5𝑉34#5 term is much larger than the thickness of the interface, typically a few times of 

lattice spacings (e.g. Woodruff, 1973), and therefore result in negative pressure dependence 

of the interfacial energy. Assuming the interfacial energy between solid grains (𝛾"") is less 

sensitive to pressure, a reduction in 𝛾"# will lead to smaller dihedral angle. In comparison, the 

surface excess of carbon in iron-rich melt is virtually zero, implying no pressure effect. If the 
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adsorption behaviors of these elements behave in the same way at high pressures, the dihedral 

angle of Fe-S melt will have a strong negative pressure dependence while that of Fe-C melt 

will not be affected by compression. This simplified relation can explain the wetting behavior 

of Fe-S melts at high pressures (e.g., Shi et al., 2013), and the results on Fe-C melt from this 

study.  

 

3.3 Effect of melt composition on dihedral angle  

 

The dihedral angle of iron-rich melt in silicate is influenced by the presence of alloying 

elements such as O, S, and Si (e.g. Takafuji et al., 2004; Mann et al., 2008; Terasaki et al., 

2008). For example, adding oxygen to an Fe-S melt lowers its dihedral angles in silicate 

matrix, which could fall below the critical value of 60 ˚at sufficiently high oxygen 

concentrations (Terasaki et al., 2008). Other non-metal elements, such as S (e.g. Terasaki et 

al., 2005), Si (e.g. Mann et al., 2007) and P (e.g. Terasaki et al., 2007) can also reduce the 

dihedral angle of iron-rich melt in silicate, although the effect is weaker than oxygen.  

 

At the ambient pressure, the surface tension of iron-rich liquid can be measured 

experimentally in Halden and Kingery (1955).  It demonstrates that, at the ambient pressure 

and 1843 K, adding 0.1 wt.% oxygen rapidly decrease the surface tension of liquid iron by 

about 35% and adding the same amount of sulfur liquid iron has smaller decrease in surface 

tension. Instead the addition of carbon in iron-rich alloy has no effect on its surface tension. 

Even though the dihedral angle of iron-rich melt at high pressures and temperatures is 

characterized by the interfacial energy between iron liquid and the silicate matrix, which is 

different from most metallurgical studies. The general trend of surface energy decrease by 
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adding certain amounts of light elements (e.g., oxygen, sulfur and carbon) holds in both case 

if we assume the solid phases would not contribute to the shape of iron melt significantly.  

 

An oxidized starting materials or moistures trapped in the capsule might introduce excess 

oxygen in the melt during experiment. The ex-solution of FeO component when the liquid 

was quenched formed tiny blobs in the iron-rich melt phase in Terasaki et al. (2005). In this 

study, no tiny blob was observed within Fe-C melt phase. We assumed the oxygen content of 

the Fe-C melt was minimized and did not contribute to the dihedral angles of iron-rich melt in 

all experiments.  However, the oxygen solubility in the liquid decreases dramatically upon 

quenching (Naldrett, 1969) and the oxygen dissolved in the iron-rich melt will not be 

preserved completely in the recovered samples and hence remains difficult to determine 

accurately.  

 

3.4 Effect of crystalline structure on dihedral angle 

 

In this study on the dihedral angles of Fe-C melt, the silicate matrix recrystalized to form 

olivine at 10 GPa, and ringwoodite at 17 GPa. At a higher pressure of 23 GPa, bridgmanite 

and ferropericlase were formed due to the complete break-down of ringwoodite (Fig. 6a). 

Therefore, the solid phase transition, olivine and its polymorphs, at 10 and 17 GPa, and 

bridgmanite and ferropericlase at 23 GPa may affect the wetting behavior of iron-rich melt. 

The measured effective dihedral angles of Fe-C melt on different silicates and/or oxides over 

the pressure range from 10 to 23 GPa do not show a significant change and remained at about 

115 º. In Shannon and Agee (1998), however, an abrupt drop in dihedral angle was observed 

after the lower mantle phase transition, which does not agree with this study. The dihedral 

angle of Fe-S melt drops from approximately 108 º at upper mantle conditions to 71 º at 25 
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GPa. This discrepancy may arise from the compositional effect where carbon and sulfur 

possess dissimilar adsorption behaviors. However, since their experiments were carried out 

with natural chondrite materials and using a different heating procedure from this study 

(completely melting the sample at a higher temperature and then cooling back below the 

silicate solidus), presence of the solid phases other than silicates and oxides and higher 

experimental temperature may explain this different observation. In addition, it is not known 

how the dynamics of the lower mantle transition (e.g grain size decrease and grain boundary 

change) contribute to the dihedral angle of iron-rich melt. In this study, bridgmanite and 

ferropericlase broken down from ringwoodite were the solid phases to model the major 

mineral assemblage of Earth’s lower mantle. The additional ferropericlase phase may interact 

with iron-rich melt. Otsuka and Karato (2012) reported that ferropericlase (Mg,Fe)O in 

contact with iron-rich liquids leads to a morphological instability, causing blobs of iron-rich 

melt to wet the oxides without forming an interconnected network. If this morphological 

instability, indeed, exists in other Fe-rich melt like Fe-C and Fe-S, it will change the wetting 

behavior of the Fe-C melt in the bridgmanite-ferropericlase matrix. In this study, however, 

presence of ferropericlase at the lower mantle conditions due to the break-down reaction does 

not seem to change the dihedral angle measurement. In the run without break-down of 

ringwoodite at 17 GPa, a trace amount of ferropericlase was also observed and it might result 

from buffer reactions reported in some previous studies (Terasaki et al, 2005). Because the 

unexpected ferropericlase were a minor phase and not contact with Fe-C melt directly in that 

sample, we suggest that its presence would not affect the dihedral angle measurement 

significantly. 

 

When the percolation model for core formation was first proposed, it requires that the matrix 

is a single isotropic solid phase.  However, most mantle silicates are anisotropic and the 
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simplified surface energy relation defining the dihedral angles 𝑐𝑜𝑠 F
C
= GHH

GHI
  does not hold 

accurately and wetting behavior is more complicated than can be expressed by a single 

dihedral angle value. In an isotropic solid matrix, interconnectivity of the melt can form when 

the dihedral angle of the melt phase is below the critical value of 60º. Laporte and Watson 

(1995) showed that, however, a sufficiently high anisotropy of 𝛾"# may prompt the same melt 

phase to form plane-faced pockets isolated at grain corners. The wetting behavior of melt is 

fairly sensitive to GHH
GHI

 (to a lesser extent 𝛾""), depending on the lattice orientation of its 

surrounding grains to the grain boundary. Few experimental studies on the anisotropy of  𝛾"# 

within the olivine-basalt interface at low pressures were carried out but the iron-rich-melt 

system remains unknown. (e.g. Schäfer and Foley, 1997) 

 

3.5 Effect of temperature on dihedral angle 

 

The temperature effect on dihedral angle has been little studied at high pressures, but 

temperature dependence of surface energies of iron alloys was observed in some 

metallurgical studies (e.g. Passerone and Sangiorgi, 1984). It demonstrates that in eutectic 

systems surface energy decreases with increasing temperature monotonically, but not linearly. 

The dihedral angle of the melt phase drops to zero at a temperature below the melting point 

of the solid matrix. In Shannon and Agee (1998), the experiment on Fe-S melt at 25 GPa was 

pressurized and heated up to a temperature just below the silicate solidus and showed a 

significant dihedral angle drop from the experiments at lower pressures. This experiment at 

~25 GPa was, indeed, run at the sub-solidus temperature of the silicate (Mg0.76Fe0.24)SiO3, and 

the abrupt reduction on dihedral angle of Fe-S melt reported may be possibly explained by 

the singular temperature effect at the sub-solidus temperature of the solid matrix. A similar 
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temperature effect on Fe-Si melt was reported in Takafuji et al. (2004), where the effective 

dihedral angle at 25 GPa decreases from 94 º at 2400 K to 70 º at 2800 K. Similarly, the large 

drop in dihedral angle was observed at a temperature close to the solidus of the silicate matrix 

(Mg0.9Fe0.1)SiO3, which may also result from the sub-solidus temperature effect.  

 

In this study, the Fe-C melt were investigated at different pressure conditions close to the 

eutectic temperature, which ensured the iron alloys were fully molten. The run temperatures 

were far below the solidus of the silicate matrixes. No apparent temperature effect was 

observed over this upper mantle pressures between 1600 ºC and 1800 ºC. If the wetting 

behavior of iron-rich melt, indeed, will be affected significantly only at a sub-solidus 

temperature, it’s likely that Fe-C melt behave as same as Fe-S and Fe-Si and decreases its 

dihedral angles on the silicate matrix right below the silicate solidus. 

 

In the deep Earth, the combined effect of pressure and temperature makes difficult for us to 

investigate either of them constrained by reliability of phase diagram. The target temperature 

for experiments has to fall within the temperature interval beyond the liquids of iron-rich melt 

and below the solidus of silicates. It narrows down the temperature regime we are able to 

investigate while this small temperature regime shifts as pressure increases which also makes 

difficult investigating the pressure effect at same temperature.  

 

3.6 Percolation threshold and connectivity 

 

The dihedral angles of Fe-C melt on silicate matrix from 4 to ~23 GPa are well above the 

critical value of 60º and are not able to form an interconnected network, percolating through 

the silicates matrix with an estimated 3 vol.% melt. In fact, an increasing melt fraction is 
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likely to facilitate the wetting of iron-rich melt on its solid phase so that the interconnected 

network can form when the dihedral angle is still above the critical value of 60 º. The relation 

between percolation threshold and melt fraction was estimated for homogenously distributed 

melt on solid matrix by von Bargen and Waff (1986): 

𝑓K ≈ 0.009 (𝜃 − 60) 

Where 𝑓K is the percolation threshold for melt fraction and this relation holds if 60 ≤ 𝜃 ≤

100 (e.g. Stevenson, 1986). In our runs except M063016, Fe-C melt is estimated to be 3 vol.% 

and it corresponds to a percolation threshold of ~71°, which is far below the measured 

dihedral angles of Fe-C melt in this study.  

 

Jurewicz and Jones (1995) carried out a series of electrical conductivity experiments with 

iron-rich melt in silicates at subsolidius temperature and reported approximately 20 vol.% 

iron melt allowed detection of electrical signal due to connectivity. In M060316 the melt 

fraction of Fe-C was increased to more than 20 vol.% to compare with other experiments 

with estimated 3 vol.% of Fe-C melt. The Fe-C melt in M060316 shows less spherical shape 

but still does not form a long-distance connectivity (Fig. 5). It is clear that a significant 

amount of iron-rich melt changes the topology of mantle silicates with iron melt, however, 

the 20 vol. % of Fe-C melt was shown to be still not enough to form interconnected network 

to percolate through the bridgmanite-ferropericlase matrix. Frost et al. (2004) estimated up to 

~1 wt. % metallic iron is likely to present in the deep mantle, which is far below the 

percolation threshold of at least 20 vol. % we observed in the experiment M060316. 

Therefore, Fe-C melt present in the deep mantle will be well trapped and is not able to 

percolate into the core. 

 

3.7 Percolation-enabling mechanisms 
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The average value of 115º for the dihedral angle of Fe-C melt in mantle matrix does not allow 

an on-going core growth at upper mantle pressures. Multiple percolation-enabling 

mechanisms for iron-rich melt in silicates matrix were proposed, including partially molten 

silicates (e.g., Duncan and Fei, 2017) and shear deformation (e.g., Karato, 2011).  

 

Partial molten silicates do not show strong evidence of decreasing dihedral angles of iron-rich 

melt and hence facilitate its percolation (e.g. Holzheid, 2013). However, if silicate melt is 

present in a large amount and significantly more than iron-rich melt. It may form discrete 

droplets within silicate melt and be separated from solid silicate phases due to density 

contrast. The wetting behavior of Fe-S-C melt from partial molten silicates was recently 

studied at 1-3 GPa and was found to be feasible when the amount of silicate melt is high 

enough to create channels that allow Fe-S-C melt to contribute to the core formation process 

(Duncan and Fei, 2017). However, the present-day mantle geotherm is not high enough to 

sustain a large amount of partial molten silicates, and therefore percolation of iron-rich melt 

with assistance of partial molten silicates is not likely to occur.  

 

The dihedral angle of iron-rich melt on silicates with shear deformation was proposed as 

potential percolation mechanism for planetary core formation but it was barely studied due to 

experimental difficulty and less theoretical knowledge. Few deformation studies report the 

permeability of Fe-S melt under shear deformation are the same within uncertainty and do not 

exhibit a change with increasing deformation (e.g. Todd et al., 2016). Most likely, the effect 

of shear deformation also depends on the melt fraction, and the influence of shear 

deformation on the wetting behavior of iron-rich melt is small for a small melt fraction 
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(Karato, 2011). Therefore, without presence of enough melt, Fe-C melt will not be able to 

percolate through the silicate/oxide matrix to drain into the core nowadays. 

 

4. Implications for mantle heterogeneity and core growth 

 

Core-mantle segregation represents one of the most important differentiation events in Earth's 

history. The process of core formation likely consists of a series of events, starting as early as 

5 million years after the origin of the solar system and possibly continuing to the present day 

(e.g., Vidal and Dosso, 1978; Liu et al, 2016). Previous quench experiments (e.g., Shannon 

and Agee 1998) and a recent synchrotron transmission x-ray microscopy study (Shi et al. 

2013) on Fe-C melt found a critical reduction in the dihedral angle from the conditions of the 

Earth’s upper mantle to that of the lower mantle. The results imply that Fe-rich melt is likely 

to percolate through the lower mantle efficiently to join the core. However, the dihedral angle 

of Fe-C melt remains well above the critical value of percolation up to 23 GPa and it 

indicates percolation of Fe-C melt would not be efficient enough as a core formation 

mechanism and the iron melt with presence of carbon produced in the mantle would be well 

trapped without drainage into the core to sustain an on-going core growth.  

 

As discussed above, however, the quenched iron-rich liquid discovered in diamond inclusions 

consists not only Fe and C but also S and H (Smith et al. 2016). Meanwhile, light elements in 

core materials possibly consists like O, Si, S and H besides C (e.g. Poirier, 1994). Since 

dihedral angles of the iron-rich melt depend on its composition, the combinations of carbon 

and hydrogen, carbon and sulfur, or carbon, sulfur and hydrogen are all candidates of iron-

rich melt that are likely present in the deep mantle. The decrease in interfacial energy of iron 

liquid with addition of sulfur is significant and may be able to reduce its dihedral angle below 
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the critical value of 60º. In addition, the wetting behavior of iron-rich melt with hydrogen still 

remains not known. It is possible that the dihedral angle of Fe-C melt with addition of S 

and/or H is lower or close to the critical value of percolation, which allows an on-growing 

core growth. We may note that the combination of carbon and oxygen is unlikely in this case. 

Their presences require different redox environments and they are expected to be mutually 

exclusive in iron-rich melt. 

 

The possible sub-solidus temperature effect discussed above may not influence the wetting 

behavior of iron-rich melt present in the present-day mantle and hence enable the on-going 

core growth. It is due to a lower temperature constrained by the present geotherm. However, 

it may have a significant implication at core-mantle boundary. Iron enrichment is proposed to 

explain low seismic wave velocities and high electrical conductivity at the bottom of the 

mantle (e.g. Liu et al. 2016). According to Liu et al. (2016)’s model, if the Fe−C melt does 

not wet the grain boundaries, then as much as 9 vol.% melt would be required to reproduce 

the ULVZ seismic observed properties. To sustain a large amount of iron-rich melt at the 

lowermost of the Earth’s mantle, Otsuka and Karato (2009) reported that the iron-rich melt 

completely wets the grain boundaries of ferropericlase and proposed another possible 

mechanism of morphological instability between iron-rich melt and ferropericlase to explain 

the seismic observation of ULVZs. As discussed above, similar sub-solidus temperature 

effects were reported on Fe-S and Fe-Si in silicate matrixes at about 25 GPa. Since across the 

core-mantle boundary region, the temperature jump is estimated to be over 1500 K, which 

allows the silicates at the lowermost mantle to be heated up close to a temperature just below 

its solidus, it implies iron-rich melt may be able to wet two major phases at the lowermost 

part of Earth’s mantle and it may help explain large velocity reductions and high electrical 

conductivities of some regions in the D” layers.  Further studies of this proposed sub-solidus 
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temperature effect will help us to understand the chemical heterogeneity of the core-mantle 

boundary including the Ultra Low Velocity Zone that still remains enigmatic. 

 

5. Conclusions 

 

Experiments showed that effective dihedral angles between silicates and Fe-C melt remain a 

similar value of ~115° at 10 to 23 GPa. There is no measureable pressure on the dihedral 

angles of Fe-C melt over this pressure range. The results combined with previous studies on 

silicates and oxides imply that dihedral angles of iron-rich melt through the mantle pressures 

up to 23 GPa are well above the percolation threshold. Percolation of Fe-C melt on silicate 

matrix is not feasible at upper mantle pressures of the Earth. Fe-C melt remains trapped in the 

matrix of solid silicate or oxide at upper mantle and may be returned to the shallower part of 

the mantle through global convection. However, that the iron-rich melt may percolate through 

the silicate or oxide is not ruled out with addition of other light elements present in the 

Earth’s mantle. 
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a) 

 

b)  

Fig. 1 Configurations of cell assemblies for high-pressure experiments  

(a) cross-section of modified COMPRES 10/5 mm assembly showing the sample (red) in 

an MgO container (white), MgO spacers (gray) and zircon end-plugs (dark). 

(b) cross-section of modified COMPRES 8/3 mm assembly showing the sample (red) in an 

MgO container (white), which is surrounded by an alumina sleeve (light gray), and MgO 

spacers (gray).  
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a)  

b)  

Fig. 2 Illustration of the procedure to measure apparent dihedral angle.  

(a) Back scattered electron (BSE) image showing quenched Fe-C melt (bright, nearly 

spherical domains) at a triple junction of bridgmanite grains (gray). (b) The same BSE 

image in black-and-white scale, which is used to locate the separation point between 

adjacent grains to allow reproducible determination of apparent dihedral angle.  
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a) 

 

 

b) 

 

 

c) 

 

 

Fig. 3.  Back-scattered-electron (BSE) images of experimental products and distributions 

of apparent dihedral angles.  

(a) Experiment M053016 at 10 GPa showing quenched Fe-C melt (bright pocket) 

trapped in olivine matrix (gray). The median value of the apparent dihedral angles, taken 

as the effective dihedral angle, is 116˚. (b) Experiment M052416 at 17 GPa, showing 

quenched Fe-C melt (bright) in ringwoodite matrix (gray). The effective dihedral angle 

is 119 ˚. (c) Experiment M013017 at 23 GPa the dark grey is bridgmanite while the light 

gray is ferropericlase, and the effective dihedral angle, is 108˚. 
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Fig. 4 (c) Raman spectra of silicate phases in experimental products. Reference spectra 

(dashed) for olivine (Ol), ringwoodite (Rw), and bridgmanite (Bm) are from RRUFF. 
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Fig. 5 Back scattered electron (BSE) image of the product of experiment M060316 at 

~23 GPa showing Fe-C melt (bright) in a matrix of bridgmanite (Bg) and ferropericlase 

(fp). Even at an estimated volume fraction of melt at 20%, the Fe-C melt did not 

establish interconnectivity, suggesting a high percolation threshold. 
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a) 
 

b) 
 

Fig. 6 Texture and composition of the product from experiment M013017. 

(a) Scanning electron microscope (SEM) image, showing Fe-C melt (bright), xx (gray), 

and xx (dark); (b) Energy dispersive spectra (EDS) spectra of an area (gray box) in the 

quenched Fe-C melt with semi-quantitative chemical compositions indicated in the upper-

right corner. Nickel (Ni) comes from the natural San Carlos olivine in the starting material 

and an aluminum (Al) peak is present because the sample was coated with Al. 
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Fig. 5 Back scattered electron (BSE) image of the product of experiment M060316 at ~23 

GPa showing Fe-C melt (bright) in a matrix of bridgmanite (Bg) and ferropericlase (fp). 

Even at an estimated volume fraction of melt at 20%, the Fe-C melt did not establish 

interconnectivity, suggesting a high percolation threshold.  
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Fig. 6a Effective dihedral angle of Fe-rich melt in silicate/oxide matrix as a function of 

pressure.  

(a) For Fe-C melt no pressure effect can be resolved within the range of 4 to 23 GPa. The 

open square represents a measured dihedral angle between an Fe-C melt containing 4.3 

wt.% carbon (Duncan and Fei (2017)) in olivine. Solid squares are from this study. Vertical 

bar indicates the boundary where Ringwood (Rw) breaks down to form bridgmanite (Bgm) 

and ferropericlase (Fp) at 1600 ˚C. 
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Fig. 6b Existing data on oxygen-free iron-rich melt suggest a general trend of negative 

pressure effect between ~25 and 64 GPa (shaded band) and no resolvable pressure effect 

between 1 bar and ~ 25 GPa.  Data sources are: Fe-Si (open triangles, Takafuji et al. (2004, 

Mann et al. (2008), Fe-S (red open circles Shannon and Agee. (1996), Shannon and Agee. 

(1998), and Shi et al. (2013).  
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Table 1 Summary of experimental conditions and measurement results 

 

Exp. ID Pressure 

(GPa)a 

Temperature b 

(°C) 

Carbon  

contentc 

(wt.%) 

solid 

 phase 

# of 

angles 

measured 

Dihedral  

angled (°) 

M053016 10 1600 6 olivine 208 116 

M052416 17 1600 3 ringwoodite 91 119 

M013016 23 1800 4 bridgmanite-

ferropericlase 

257 108 

M060316e 23 1800 6 bridgmanite-

ferropericlase 

- - 

 Duration is 30 min. 

 aUncertainties in pressure is estimated at 2 GPa. 
 bUncertainty in temperature is estimated ±100 °C.  
cCarbon content is estimated from EDS spectra and semi-quantitative. 
 dUncertainties in the measured dihedral angle is estimated at ± 10°. 
 eThe sample contains a larger melt fraction, and Fe-C melt occurred as large domains with 

irregular shapes and did not allow determination of dihedral angle. 
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