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Abstract16

Purpose: Automated segmentation could improve the efficiency of modeling-based17

pelvic organ prolapse (POP) evaluations. However, segmentation performance is lim-18

ited by the blurry soft tissue boundaries. In this study, we aimed to present a hybrid19

solution for uterus, rectum, bladder, and levator ani muscle segmentation by combining20

a convolutional neural network (CNN) and a level set method.21

Methods: We used 24 sagittal pelvic floor magnetic resonance (MR) series from six22

anterior vaginal prolapse and six posterior vaginal prolapse subjects (a total 528 MR23

images). The stress MR images were performed both at rest and at maximal Valsalva.24

We assigned 264 images for training, 132 images for validation, and 132 images for25

testing. A CNN was designed by introducing a Multi-Resolution Features Pyramid26

module (MRFP) into an encoder-decoder model. Depth separable convolution and27

pre-training were used to improve model convergence. Multi-class cross entropy loss28

and multi-class Dice loss were used for model training. The Dice Similarity Coefficient29

(DSC) and average surface distance (ASD) were used for evaluating the segmentation30

results. To prove the effectiveness of our model, we compared it with advanced segmen-31

tation methods including Deeplabv3+, U-Net, and FCN-8s. The ablation study was32

designed to quantify the contributions of MRFP, the encoder network, and pre-training.33

Besides, we investigated the working mechanism of MRFP in the segmentation network34

by comparing our model with three of its variants. Finally, the level set method was35
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used to improve the CNN model further.36

Results: Dice loss showed better segmentation performance than multi-class cross37

entropy loss. MRFP was efficacious for different encoder networks. With MRFP, U-38

Net and U-Net-X (X represents Xception encoder network) have improved the DSC,39

on average by 6.8 and 5.3 points. Compared with different CNN models, our model40

achieved the highest average DSC of 65.6 points and the lowest average ASD of 2.941

mm. With the level set method, the DSC of our model improved to 69.4 points.42

Conclusions: MRFP proved to be effective in addressing the blurry soft tissue bound-43

ary problem on pelvic floor MR images. A hybrid solution based on CNN and level44

set method was presented for pelvic organ segmentation both at rest and at maximal45

Valsalva; with this method, we achieved state-of-the-art results.46

47
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I. Introduction70

Pelvic organ prolapse (POP) is an abnormal caudal displacement and deformation of one71

or more female pelvic floor organs. POP can cause considerable discomfort to women both72

physically and mentally. In the United States, about 200,000 women undergo POP surgery73

every year, at a total cost of more than $1 billion1,2. The most common imaging techniques74

to evaluate POP include magnetic resonance (MR) and ultrasound imaging. Due to the75

good contrast of soft tissues, MR imaging has always been the golden standard for organ76

segmentation. Organ segmentation is crucial for three-dimensional (3D) geometric model re-77

construction, finite element simulation of POP, and surgical planning3,4. Currently, manual78

organ segmentation is still the most widely used technique. However, the manual segmen-79

tation is not only time-consuming but also susceptible to large inconsistencies depending on80

the experience and skill of the evaluators and the quality of MR scans. To speed up the81

segmentation process, computer-aided diagnostic techniques may hold promise.82

Several difficulties constrain the pelvic organ segmentation performance. First, MR83

images do not provide high enough contrast at the boundary of each organ, which makes84

segmentation particularly challenging for humans. Second, the occurrence rate is unbalanced85

between organs, which limits model convergence. For example, organs like the bladder are86

present in more MR images, whereas some organs, including rectum and uterus, may not87

be seen at all in many MR images, when viewed laterally. Adding to that challenge, some88

patients have undergone hysterectomy and lack a uterus. Third, large variations exist in89

these data. For instance, the shape and size of pelvic organs vary widely between resting90

and stressed (Valsalva) states (Fig. 1). Besides, the levator ani muscle exhibits a large91

inter-subject variance on MR images due to its structural complexity.92

Computer-aided segmentation techniques include both deep learning and non-deep93

learning methods. The non-deep learning methods, including the deformable model and94

level set methods, have played an important role in the segmentation of the cardiac ventri-95

cle and other human body regions5,6,7,8. One limitation is that those methods often fail to96

converge for images with blurry boundaries. Besides, their segmentation speeds do not fulfill97

the current needs for rapid segmentation as they require much human interaction. Moreover,98

the poor generalization is a typical problem that both automatic and semi-automatic meth-99

ods face. Generalization problems are usually related to generalization in new regions or on100
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page 2 F.Feng, J.A. Ashton- Miller, J.O.L. DeLancey, J. Luo

new data. The first generalization problem means that one organ segmentation algorithm is101

usually not suitable for another organ. This hampers POP analysis since we usually want102

to obtain a segmentation of the uterus, bladder, levator ani muscle, rectum, vaginal walls,103

and other tissues simultaneously. The second generalization problem is even more crucial104

for the clinical application of automatic segmentation tools. Since there are large variations105

in the structural profiles, it is challenging to find a solution that can adapt to inter-subject106

variability in MR images.107

Recently, the convolutional neural network (CNN) has become the mainstream method108

for approaching many computer vision and medical imaging analysis problems. These in-109

clude cell, lesion, tumor, retinal vessel, cardiac structure, and brain segmentation9,10,11,12,13.110

Compared with non-deep learning methods, CNN usually does not rely on much prior knowl-111

edge of the data14,15, and it is trained with MR data from different subjects. Thus it has good112

generalization performance. The basic idea of the CNN method is that it uses several convo-113

lution layers to extract features so it can provide pixel-wise segmentation. Some researchers114

have proved that the sequentially stacked convolution layers are difficult to converge, so115

the residual connection and shortcut connection were proposed in ResNet16 and U-Net10116

respectively, to smooth the model training process and preserve more detailed information.117

Several CNN models were designed for different segmentation problems. U-Net10118

adopted the encoder-decoder network to accomplish neuronal structures segmentation and119

cell tracking tasks. V-net17 used a 3D convolution to accomplish the volumetric segmenta-120

tion task. DeepMedic11 employed a dual-path 3D CNN based on dense patch ideas to deal121

with the high computational burden when training 3D CNN for brain lesion segmentation.122

UNet++18 connected the encoder and decoder networks by a series of dense skip connec-123

tions to avoid eliminating the gap between encoder and decoder networks and obtained124

better performance than U-Net and wide U-Net on four segmentation datasets.125

However, these designs could not capture different scales of semantic information. Seg-126

mentation is a task that needs details at different scales. Coarse segmentation could be127

achieved from lower resolution feature maps, while the fine-grained boundary information128

must be detected from higher resolution feature maps. Therefore, different sizes of features129

may preserve different scales of context information19. Inspired by the image pyramid, an130

ensemble method of using different scales of features has been proposed to combine informa-131
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June 30, 2020 page 3

tion from different scales of features to preserve different levels of image details. Initially, it132

was used for image classification and object detection. For example, spatial pyramid pool-133

ing20 was proposed to deal with the variance in scale, size, and aspect ratio for the image134

classification problem. However, it was modified to detect objects with various scales, sizes,135

and aspect ratios. Single Shot MultiBox Detector21 kept six different size feature maps for136

object detection and achieved a better detection performance. Feature Pyramid Networks22137

generated predictions at different feature levels for a single scale input image in order to take138

advantage of different levels of semantic information. Pyramid Scene Parsing Network23 has139

been proposed for the pyramid pooling module to take advantage of prior global semantics140

and to capture different scales of contextual information by a parallel feature map stacking141

method. Deeplabv3+24 used the atrous spatial pyramid pooling to replace the downsampling142

method to avoid the risk of potential information loss.143

In this study, we present a CNN-based solution for segmenting four female pelvic organ144

structures from MR images both at rest and at maximal Valsalva. In the deep CNN model,145

a Multi-Resolution Feature Pyramid (MRFP)24 module was inserted into the U-Net skip146

connections to capture the semantic information from different scales to improve segmenta-147

tion performance in blurry regions. Depth separable convolution was used to improve the148

encoder network convergence. Transfer learning was applied to deal with inadequate training149

data. In post-processing, a level set method was used to further improve the CNN perfor-150

mance. The novelty of our work could be summarized in three areas. First, it represents151

a novel application for pelvic organ segmentation both at rest and at maximal Valsalva in152

women with and without POP, based on a deep learning method with MR images. Second,153

it is a novel design to combine MRFP with U-Net for blurry region segmentation of medical154

images. We proved its effectiveness in blurry pelvic organ segmentation of high-variance155

MR images in POP. Third, we applied a post-processing method to deal with the failure156

cases and further improve segmentation performance. As a result, compared with existing157

segmentation methods, our method achieves the best performance.158
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page 4 F.Feng, J.A. Ashton- Miller, J.O.L. DeLancey, J. Luo

II. Materials and Methods159

II.A. Data population and processing160

We used 24 sagittal pelvic floor MR series of 12 subjects from the Michigan Pelvic Floor161

Research Collection that had been obtained with the approval of the institutional ethics162

review committee in case-control studies of POP. The subjects included six anterior vaginal163

prolapse and six posterior vaginal prolapse cases. Three women with and three women164

without a uterus were included per group. Supine, multi-planar MR imaging was performed165

in both resting and stressed states (maximal Valsalva when the patient attempts to increase166

the intra-abdominal pressure in order to push the pelvic organs out through the vaginal167

canal). All of the studies were scanned with a 3T superconducting magnet (Philips Medical168

Systems Inc, Bothell, WA, USA) with accompanying software (v. 2.5.1.0). In the sagittal169

plane, at rest, of each subject 30 slices were taken in a field of view of 200× 200 mm, with170

a thickness of 4 mm per slice and a spacing between slices of 1 mm; at maximal Valsalva,171

due to the time limitation for the subjects to hold the stressed status, of each subject 14172

slices were taken of scanning range 360× 360 mm with a thickness of 6 mm per slice and a173

spacing of 1 mm25. The annotation of uterus, rectum, bladder, and levator ani muscle was174

accomplished based on previous anatomic work26 using 3D Slicer software (v.3.4.2009-10-175

15). The annotation was accomplished by one expert and reviewed by another senior expert.176

Some pre-processing steps were applied to reduce the variance between these data. All of the177

slices were interpolated to the same interval in height and width dimensions. These images178

were then resampled into 256 × 256 pixel sizes for CNN model training. As there were a179

total of 24 sagittal pelvic floor MR series from 12 subjects and a total of 528 MR images,180

the different datasets were assigned as 12 3D MR series (264 images) from six subjects for181

training, six 3D MR series (132 images) from three subjects for validation, and six 3D MR182

series (132 images) from three subjects for testing. The organ occurrence rate in the training183

data is shown in Table 1. The uterus had the lowest occurrence rate, and the bladder had184

the highest occurrence rate.185
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June 30, 2020 page 5

II.B. Convolutional neural network structure186

The main conceptual framework for our CNN model is illustrated in Fig. 2. The model187

had an encoder-decoder network structure10,27. When constructing the encoder network, we188

adopted the Xception10,28 structure with residual connections. To extract different scales’189

context information, we used the MRFP module in the skip connections between the encoder190

and decoder, which will be introduced in the following subsection.191

II.B.1. Multi-resolution feature pyramid192

To merge context information at multiple scales, we needed these operations to have fields193

of view of different sizes. Larger kernel size and dilated convolution are two options. Since194

the parameter quantity increases drastically as the increase of kernel sizes, we adopted di-195

lated convolution. Each MRFP module consists of four dilated convolutional layers and one196

average pooling layer (Fig. 2). We used 1× 1 convolution with dilation 1, 3× 3 convolution197

with dilation 1, 3 × 3 convolution with dilation 2, and 3 × 3 convolution with dilation 3 to198

perceive context information at scales of 1× 1, 3× 3, 5× 5, and 7× 7. All feature maps in199

different branches were concatenated together for the decoder network. A convolution layer200

was used to mix the feature maps from different scales. Therefore, the MRFP module is201

capable of capturing multi-scale contextual information. It was applied to all five shortcut202

connections in our model.203

II.B.2. Encoder network structure204

The encoder network (Fig. 3) is essential for feature extraction as well as for segmentation.205

Our encoder network adopted the Xception idea28, which takes advantage of depth sepa-206

rable convolution to achieve the decomposition of ordinary convolution into channel-wise207

convolution and point-wise convolution. Customization of the model structure was proposed208

with modification on the downsampling operation. To preserve more detail, we replaced the209

pooling layers with a convolution of stride 2. Besides, we used fewer layers in the Middle210

Flow to avoid overfitting.211
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page 6 F.Feng, J.A. Ashton- Miller, J.O.L. DeLancey, J. Luo

II.C. Post-processing method212

The level set is a partial differential equation (PDE)-based method. A curve could be defined213

as φ(t, x, y), and after giving an initialization, the curve evolves based on image-driven forces.214

The PDE equation is as follows29:215

∂φ

∂t
= ∇φ · F, φ(0, x, y) = φ0 (1)216

where t is the iteration times, x and y are image coordinates, φ0 = 0 defines the initial217

segmentation, and F is the velocity field. To be specific, in post-processing we used the level218

set method to improve the segmentation organ by organ. Using the bladder as an example,219

before applying the level set method, we first computed the minimum 3D boundary that220

includes the CNN-based bladder segmentation. This 3D boundary was then used to crop221

the 3D data including the bladder from the original 3D MR data. Finally, with CNN-based222

bladder segmentation as the initialization, we applied the level set method to the cropped223

MR data slice-by-slice for bladder segmentation. During model testing, compared with the224

ground truth, we evaluated our results using Dice Similarity Coefficient (DSC) metric and we225

kept the results of the level set method if they are better than the initial results. In practical226

applications, since ground truth values are not available, users need to determine whether227

the CNN model makes acceptable predictions. When users find the predictions provided228

by the CNN model to be unacceptable, such as the MR image segmentation is far beyond229

the normal range, the level set method will be applied for post-processing, although we will230

only keep the better final result. For convenience, we used the morphological chan vese 30
231

function in the scikit-image library31.232

II.D. Loss function and metrics233

We investigated two different loss functions for model training, that is, pixelwise multi-class234

cross entropy loss (CE) and multi-class Dice loss (DL):235

DL = 1− 2

∑N
l=1

∑

n tlnpln
∑N

l=1

∑

n(tln + pln)
(2)236

CE =
N
∑

l=1

∑

n

(−tlnlog(pln)) (3)237
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June 30, 2020 page 7

where N = 5 in our case, representing the background, uterus, rectum, bladder, and levator238

ani muscle classes, tln is the ground truth labeling on the nth pixel position for class l, and239

pln is the prediction result on the nth pixel position for class l.240

Four metrics were used for individual organ segmentation evaluation, that is, the DSC,241

Average Symmetric Surface Distance (ASD), Relative Absolute Volume Difference (RAVD),242

and Organ Detection Recall (ODR). Following the definition of DL, the DSC is defined as243

follows:244

DSC = 2

∑N
l=1

∑

n tlnpln
∑N

l=1

∑

n(tln + pln)
× 100 (4)245

And the ASD is defined as follows:246

ASD = 2
1

|ST |+ |SP |





∑

st∈ST

min
sp∈SP

‖st − sp‖2 +
∑

sp∈SP

min
st∈ST

‖sp − st‖2



 (5)247

where ST and SP are the surface of the ground truth and model prediction, respectively, and248

st and sp are corresponding points in them. The RAVD is defined as follows:249

RAVD =
|VT − VP |

VT

× 100 (6)250

where VT and VP are the volume of ground truth and model prediction, respectively. The251

ODR is defined as follows:252

ODR =
TP

TP + FP
× 100 (7)253

where TP is the number of images in which an organ is correctly detected and FP is the254

number of images in which the same organ is not correctly detected.255

II.E. Experiments256

The experiment setup was summarized as below. Experiments were implemented with Keras257

(v.2.2.0) using Python (v.3.5.0). Adam solver was used to minimize the loss function. Our258

choice for the learning rate was 0.0001, with a learning rate decay of 0.98 after each epoch.259

A total of 800 epochs were used for training. We used an NVIDIA 1080Ti graphic card to260

enable the parallel computing process, with a batch size of 4. To reduce overfitting because261

of insufficient data, we used data augmentation. The augmentation techniques included262

image rotation, shear and shift, sharpening, blurring, and contrast normalization. Before263

images were fed to the CNN model, they were set to zero mean and unit standard variance.264
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page 8 F.Feng, J.A. Ashton- Miller, J.O.L. DeLancey, J. Luo

The Xception encoder network was trained on a cardiac structure segmentation dataset32265

for transfer learning.266

Experiments were conducted as follows. First, we compared DL with the CE func-267

tion. Second, we compared the proposed method’s performance with three other advanced268

segmentation methods, that is, Deeplabv3+33, U-Net10, and FCN-8s34. Deeplabv3+33 is a269

state-of-the-art semantic segmentation method, FCN-8s34 has obtained state-of-the-art re-270

sults on a PASCAL VOC 2012 Segmentation dataset, and U-Net10 is a classical biomedical271

segmentation method which won a challenge competition in 2015. Third, we quantified the272

effectiveness of the Xception encoder network and the MRFP module using ablation studies.273

Compared with U-Net with the Xception (U-Net-X), and U-Net with MRFP (U-Net-M), our274

model used U-Net with both the Xception and MRFP (U-Net-XM). Fourth, we investigated275

the effects of the MRFP module among different skip connections between the encoder and276

decoder networks. In our model, as the encoder has five downsampling stages, there are277

five corresponding skip connections, which are the first to fifth skip connection from top278

to bottom in Fig. 2. Our model used MRFP in all the five connections so we called it279

U-Net-XM12345. We compared our model with its three variants, that is, U-Net-XM123, U-280

Net-XM135, and U-Net-XM345. Finally, we used the level set method to improve the results281

of all segmentation methods in the second experiment.282

III. Results283

III.A. Loss function comparison284

The DL function obtained a much better segmentation result (Table 2), both with and285

without pre-training. Hence, in the following training, we compared different methods using286

the DL function. The model with pre-training showed better performance than without287

pre-training under both loss function configurations. The pre-training improved the average288

DSC from 64.0 to 65.6 when using DL. However, the pre-training operation exhibited the289

“butterfly effect”, which means the model performance improved more in the post-processing290

step (Table 7), as discussed in Section III.E.291
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June 30, 2020 page 9

III.B. Performance comparison with other advanced segmentation292

methods293

The proposed method yielded better results with respect to the DSC than the other three294

methods (Table 3). Our model without pre-training had an average DSC of 64.0, wining295

in three of four individual tasks (uterus, rectum, and bladder). FCN-8s showed better296

performance on the rectum, but its average DSC was only 58.2. Compared with Deeplabv3+297

(60.2), FCN-8s (58.2), and U-Net (54.8), our model achieved an average DSC that was 3.8,298

5.8, and 9.2 points higher than them, respectively. However, our model with pre-training did299

not exhibit better bladder segmentation performance than the model without pre-training300

because the bladder of one subject was outside the normal range (Fig. 5e). Segmentation of301

this subject was improved in the post-processing step (see Section III. E).302

We also compared the model performances using the ODR and the RAVD (Table 4).303

Our model obtained the best RAVD, but did not show a distinct advantage with respect to304

the ODR. The ODR is the proportion of images with this organ that were correctly detected305

of the total number of images with this organ. The results indicate our model does not have306

a better organ detection ability. However, our model showed a markedly better segmentation307

performance (Table 3), which means that for the images that were correctly detected, our308

model had results closer to the ground truth. A comparison of the models’ predictions is309

shown in 4.310

III.C. Ablation study311

Ablation experiments were performed to quantify the effectiveness of the MRFP and the312

encoder network. The difference between U-Net-M and U-Net is the use of MRFP. The313

difference between U-Net-X and U-Net is the use of Xception encoder network. Therefore,314

the difference between our model (U-Net-XM12345) with U-Net-X or U-Net-M is the use of315

MRFP or Xception, respectively. The result is summarized in Table 5.316

The DSC of U-Net-M, compared with U-Net, increased from 54.8 to 61.6, an increase317

of 6.8 points; the DSC of our model, compared with U-Net-X, increased from 58.7 to 64.0,318

an increase of 5.3 points; the DSC of U-Net-X, compared with U-Net, increased from 54.8319

to 58.7, an increase of 3.9 points; the DSC of our model, compared with U-Net-M, increased320
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page 10 F.Feng, J.A. Ashton- Miller, J.O.L. DeLancey, J. Luo

from 61.6 to 64.0, an increase of 2.4 points. This proved the effectiveness of MRFP when used321

with U-Net or U-Net-X. Besides, MRFP made a larger contribution to the final segmentation322

performance. For each organ, with respect to the DSC, MRFP made a larger contribution323

to the uterus and the bladder than for the rectum and the levator.324

III.D. Different MRFP combinations comparison325

The detailed segmentation results are summarized in Table 6. For the average DSC, our326

model (U-Net-XM12345) obtained almost the same results with U-Net-XM345 and U-Net-327

XM135, while it was 2.4 points higher than U-Net-XM123. For individual organ segmentation,328

our model achieved almost the same results with U-Net-XM345 and U-Net-XM135 for the329

uterus and bladder, and slightly worse results for the rectum, and slightly better results for330

the levator. The rectum results improved using the post-processing technique in Section331

III.E (Table. 7). With respect to the ASD, our model obtained the best results. Besides,332

U-Net-XM123 obtained better results than U-Net-XM345 and U-Net-XM135.333

III.E. Post-processing improvement334

We improved all CNN methods’ results with the level set method. A comparison of the335

models’ predictions is shown in Fig. 5. We demonstrated the re-segmentation results by336

organs. Since the levator and rectum were usually connected and showed no visible edges, it337

was difficult to segment them using the level set method. Therefore, the uterus (Fig 5a and338

b), rectum (Fig 5c and d), and bladder (Fig 5e and f) were used for comparison. With the339

deep learning model’s prediction as prior knowledge, the level set method remedied the failure340

cases to a certain extent (Fig. 5a, c, and e). However, compared with the deep learning341

method, the level set method did not provide better segmentation results in some general342

cases (Fig. 5b, d, and f) even with the deep learning model’s prediction as initialization.343

Final segmentation results of CNN methods after post-processing are summarized in344

Table 7. Our model obtained the best DSC and ASD results for both individual organs and345

the overall average. The model without pre-training achieved an average DSC of 66.1 points,346

outperforming other methods with 4.0 to 9.7 points. Our model with pre-training obtained347

the highest average DSC (69.4 points) and best average ASD (2.9 mm).348
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IV. Discussion349

IV.A. CNN application to POP analysis350

Our work represents a novel application for female pelvic organ segmentation both at rest and351

at maximal Valsalva in women with and without POP, using a CNNmethod with MR images.352

In the end, we presented a hybrid solution for simultaneous uterus, rectum, bladder, and353

levator ani muscle segmentation and showed good results qualitatively and quantitatively.354

There are some differences with previous investigations35,36,37,38,39,40. Different modalities355

of medical imaging techniques have their own advantages. Two groups used ultrasound356

images to accomplish levator hiatus segmentation using the fully CNN (FCN) and U-Net37,41.357

Wang et al.38 and He et al.39 investigated prostate, rectum and bladder segmentation using358

axial view computed tomography based on a multi-stage FCN. Techniques including dilated359

convolution42 and full-resolution residual network43 were also investigated to deal with the360

blurry edges of objects by capturing a larger field of view information. The level set technique361

as a shape prior has been considered previously for natural image segmentation44.362

Although MR imaging is the golden standard for analyzing POP, it is quite challenging,363

even for clinical experts, to segment pelvic organs in MR images at rest and at maximal364

Valsalva of women with and without POP. Our deep learning model’s performance is also365

limited by the imaging quality, the stress state, the prolapse status, and the training set size,366

etc. For example, the difficulty changes with segmentation from different views35,39. Prolapse367

is a downward displacement and deformation of pelvic organs, and thus its analysis is usually368

done from sagittal views. However, it might be more difficult for both humans and computer369

models to segment the uterus, levator, and rectum in the sagittal view compared with the370

axial view, in which the smaller organs have a higher occurrence rate. For the MR images in371

the sagittal view, the rest images have a thickness of 4 mm and 1 mm spacing. At maximal372

Valsalva, the stress images have a thickness of 6 mm and 1 mm spacing. The difficulty373

increases when segmenting small or thin organs, such as the levator ani and the rectum.374

The organs of women with POP also showed more variance than those of healthy women at375

maximal Valsalva compared to resting state, i.e., bladders of prolapsed women might become376

longer at maximal Valsalva, which is very different from the bladder segmentation of men.377

Besides, we only included 24 sagittal MR series of 12 subjects, and images of six subjects378
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were used for model training, limiting the deep learning model’s performance. Despite379

these challenges, nevertheless, our deep learning model still obtained the best performance380

compared with other methods (Table 7).381

IV.B. Effectiveness analysis of different components382

The effectiveness of the MRFP module is illustrated by the ablation experiments. As shown383

in Table 5, the average DSC of U-Net-M improved by 6.8 points compared with U-Net. The384

average DSC of our model improved by 5.3 points compared with U-Net-X. These results385

suggest that MRFP is efficacious for different encoder networks. Comparing the DSC for386

individual organs (Table 5), MRFP made larger improvements for the uterus and bladder387

than for the rectum and levator, because no information is obtained on the edge between388

the levator and rectum, as shown in Figs. 4 and 5. It is even tricky for humans to segment389

the rectum and levator. Models with different MRFP combinations (Table 6) revealed that390

our model (U-Net-XM12345) had almost the same average DSC as U-Net-XM345 and U-Net-391

XM135, but a better result on average ASD. U-Net-XM123 achieved a lower average DSC392

than U-Net-XM345 and U-Net-XM135, but a better average ASD. A possible explanation for393

these observations is that MRFP on higher-order (fourth and fifth) skip connections could394

improve model convergence, while MRFP on lower-order (first and second) skip connections395

could smooth the segmentation results. In the end, our model U-Net-XM12345, achieved the396

best results for both average DSC and ASD, and it is therefore the recommended design.397

The effectiveness of the Xception encoder network is shown in Table 5. The average398

DSC of U-Net-X was 3.9 points higher than that of U-Net. The average DSC of our model399

was 2.4 points higher than that of U-Net-M on average DSC. This proved the importance of400

an encoder network, and a better encoder network is useful to improve segmentation.401

The effectiveness of pre-training was proved in Tables 3 and 7. We can conclude the402

pre-training made a larger contribution to the uterus and levator segmentation than to the403

rectum and bladder segmentation. We used a cardiac MR dataset for pre-training, but a404

larger pelvic MR dataset might give better results. It also means more training data could405

be helpful to improve segmentation.406

The effectiveness of the post-processing method is shown in Tables 3 and 7. It also407
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proved useful for all the CNN methods in our experiments. However, these improvements408

were based on using the CNN model prediction as prior knowledge. The level set method409

made improvements for some failure cases, such as for the examples in Fig. 5a, c, and e.410

However, for general cases, the level set method did not provide better segmentation than411

the CNN method even with the CNN prediction as initialization, such as for the examples412

in Fig. 5b, d, and f. This suggests that the CNN method has an advantage in blurry region413

segmentation due to training with “big data”. On the contrary, since it is often challenging414

to collect medical imaging data and to label them, the non-deep learning method could be415

useful to improve the model performance to some extent. So far, whether post-processing416

has improved the results needs to be compared with the ground truth. This means that417

it is up to the user to determine whether or not post-processing is needed. Fortunately,418

comparison is a much easier task than manual segmentation. But it points to the fact that419

we can integrate the level set method into the CNN workflow to achieve better and faster420

segmentation.421

IV.C. Segmentation performance analysis422

We improved the segmentation performance from three aspects. First, we used the MRFP423

module to improve the blurry region segmentation on pelvic MR images. The average DSC424

when using MRFP increased from 54.8 to 61.6 points (Table 5). Second, we built the encoder425

network based on the Xception idea and transfer learning technique. With the Xception,426

our model’s performance increased from 61.6 to 64.0 points (Table 5). Pre-training process427

improved the average DSC from 64.0 to 65.6 points (Table 3). However, the pre-training428

operation contributed to more improvements (3.8 points) in the post-processing step (Table429

7). Third, we introduced the level set method as a post-processing technique to deal with the430

limited training data and high-variance problems. Using post-processing, our model with431

pre-training improved from 65.6 to 69.4 points on average DSC (Table 7). With respect432

to the DSC, our model outperformed other methods with 7.3 to 13.0 points. Additionally,433

we compared the models’ performances using the ODR and the RAVD (Table 4). Our434

model did not show a distinct advantage with respect to the ODR, which means our model435

does not detect more organs than other methods. Nevertheless, our model showed better436

segmentation performance (Table 3), suggesting that with respect to the organs that were437
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correctly detected, our model’s results are closer to the ground truth.438

The segmentation performance was ordered as follows: bladder > rectum > uterus >439

levator. The results of the bladder were markedly better, because the bladder has larger size,440

and clearer boundary than that of other organs. The rectum is easy to detect since its ODR441

results were higher compared to the levator and uterus (Table 4). Half of the subjects did442

not have a uterus, which further exacerbated the shortage of training data and the imbalance443

of the data, resulting in a low ODR. However, our model could predict whether there is a444

uterus from the subject level evaluation. After post-processing, the highest DSC for the445

uterus was 65.3, which exhibited the largest improvement, as shown in Tables 3 and 7. The446

levator ani had the worst segmentation results, since it has the smallest size and does not447

have a clear boundary; identifying the levator ani is always a challenge, even for experienced448

clinicians.449

V. Conclusions450

To segment pelvic organs at rest and at maximum Valsalva (stress), we proposed a novel451

CNN design by integrating the MRFP module into an encoder-decoder model. This proved452

useful to address the blurry soft tissue boundary problem on MR images in POP. Together453

with the Xception encoder network and model pre-training, our model obtained better seg-454

mentation results than Deeplabv3+, FCN-8s, and U-Net. Moreover, due to the limited455

training data problem, a level set method was used to improve the segmentation of failure456

cases. Future directions include feature fusion between 2D and 3D CNNs to exploit spatial457

context information as discussed by Isense et al.9. Model pre-training with unlabeled data458

using unsupervised or self-supervised methods, which could take advantage of more data,459

can also potentially improve the segmentation quality.460
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Figures615

Figure 1: Left lateral views of a patient with anterior vaginal wall prolapse. (a and d) Midsagittal
MR images at rest and at maximum Valsalva. (b and e) Similar images of the pelvic floor organs,
including the uterus, rectum, bladder, and levator ani muscle, shown at rest and at maximum
Valsalva. (c and f) Views of the 3D models of the pelvic floor organs.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



page 22 F.Feng, J.A. Ashton- Miller, J.O.L. DeLancey, J. Luo

Figure 2: CNN model structure. Feature maps of skip connection and upsampling branches were
combined using a concatenation method.
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Figure 3: Diagram illustrating the structure of the encoder network.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



page 24 F.Feng, J.A. Ashton- Miller, J.O.L. DeLancey, J. Luo

Figure 4: A comparison of segmentation results among our model, Deeplabv3+, FCN-8s, and
U-Net . (a) Resting example with uterus. (b) Stressed example with uterus. (c) Resting example
without uterus. (d) Stressed example without uterus. Results of different methods were compared
with the ground truth labeling.
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Figure caption616

• Figure 1. Left lateral views of a patient with anterior vaginal wall prolapse. (a and d)617

Midsagittal MR images at rest and at maximum Valsalva. (b and e) Similar images of618

the pelvic floor organs, including the uterus, rectum, bladder, and levator ani muscle,619

shown at rest and at maximum Valsalva. (c and f) Views of the 3D models of the620

pelvic floor organs.621

• Figure 2. CNN model structure. Feature maps of skip connection and upsampling622

branches were combined using a concatenation method.623

• Figure 3. Diagram illustrating the structure of the encoder network.624

• Figure 4. A comparison of segmentation results among our model, Deeplabv3+, FCN-625

8s, and U-Net . (a) Resting example with uterus. (b) Stressed example with uterus.626

(c) Resting example without uterus. (d) Stressed example without uterus. Results of627

different methods were compared with the ground truth labeling.628

• Figure 5. Examples of re-segmentation results using the level set method. (a and629

b) Uterus re-segmentation. (c and d) Rectum re-segmentation, (e and f) Bladder630

re-segmentation. The composite results were obtained by replacing the models’ pre-631

dictions with the level set results on the corresponding organ. Results were compared632

with the ground truth labeling.633
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Figure 5: Examples of re-segmentation results using the level set method. (a and b) Uterus
re-segmentation. (c and d) Rectum re-segmentation, (e and f) Bladder re-segmentation. The
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Tables634

Table 1: Organ occurrence rate in training data.
Organ Uterus Rectum Bladder Levator
Number of occurrence 103 152 197 112
Number of total images 256 256 256 256
Presence rate 0.40 0.59 0.77 0.44

Table 2: Model performance comparison using different loss functions. Units: DSC in %, and ASD

in mm. (+) means with pre-training, and (*) means without pre-training. Number in the () is the

standard deviation.

Methods
Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD
DL(+) 55.0 (9.3) 5.2 (1.7) 64.1 (17.6) 2.5 (1.3) 82.7 (16.5) 1.6 (0.5) 60.8 (7.4) 2.3 (1.4) 65.6 2.9
DL(*) 53.5 (18.3) 6.6 (4.6) 62.0 (17.9) 2.7 (1.1) 84.8 (10.0) 1.6 (0.5) 55.6 (9.4) 3.6 (2.5) 64.0 3.6
CE(+) 37.3 (9.8) 7.8 (2.6) 57.7 (21.6) 3.3 (1.7) 84.5 (11.7) 1.6 (0.5) 50.6 (8.3) 10.1 (11.1) 57.6 5.7
CE(*) 40.4 (19.4) 10.8 (5.6) 56.4 (16.7) 3.5 (1.4) 84.4 (10.9) 1.6 (0.3) 45.3 (13.7) 10.1 (13.6) 56.6 6.5

Table 3: Models’ performance comparison with other advanced segmentation methods. Units: DSC

in %, and ASD in mm. (+) means with pre-training, and (*) means without pre-training. Number

in the () is the standard deviation.

Methods
Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD
Proposed (+) 55.0 (9.3) 5.2 (1.7) 64.1 (17.6) 2.5 (1.3) 82.7 (16.5) 1.6 (0.5) 60.8 (7.4) 2.3 (1.4) 65.6 2.9
Proposed (*) 53.5 (18.3) 6.6 (4.6) 62.0 (17.9) 2.7 (1.1) 84.8 (10.0) 1.6 (0.5) 55.6 (9.4) 3.6 (2.5) 64.0 3.6
Deeplabv3+ 45.0 (11.2) 7.3 (3.3) 58.9 (16.8) 3.0 (1.2) 83.3 (10.7) 1.9 (0.5) 53.4 (13.1) 3.8 (2.0) 60.2 4.0
FCN-8s 39.8 (14.9) 6.9 (4.8) 65.6 (11.7) 2.5 (1.0) 80.0 (13.7) 1.9 (0.7) 47.4 (16.9) 9.5 (11.6) 58.2 5.2
U-Net 45.0 (16.0) 14.3 (7.6) 42.0 (27.2) 4.7 (2.6) 77.2 (23.2) 2.9 (2.2) 54.6 (11.0) 5.2 (5.6) 54.8 6.8

Table 4: Models’ performance comparison using other metrics. Units: ODR in %, and RAVD in %.

(+) means with pre-training, and (*) means without pre-training. Number in the () is the standard

deviation.

Methods
Uterus Rectum Bladder Levator Average

ODR RAVD ODR RAVD ODR RAVD ODR RAVD ODR RAVD
Proposed (+) 84.8 (16.2) 34.5 (14.9) 100 (0.0) 41.0 (31.6) 91.6 (4.6) 10.8 (8.8) 95.1 (5.8) 19.9 (16.0) 92.9 26.6
Proposed (*) 84.5 (14.1) 43.3 (7.0) 94.6 (8.0) 37.6 (21.0) 98.0 (4.4) 8.6 (5.0) 91.6 (8.6) 22.2 (19.4) 92.1 28.0
Deeplabv3+ 87.2 (15.7) 52.7 (35.6) 94.5 (8.0) 27.8 (16.4) 94.7 (5.4) 6.2 (5.4) 80.1 (16.2) 30.4 (16.3) 89.1 29.3
FCN-8s 84.1 (14.9) 61.9 (34.9) 96.7 (7.5) 21.0 (8.2) 98.0 (2.8) 11.9 (17.9) 91.7 (8.6) 52.8 (29.3) 92.6 36.9
U-Net 94.2 (9.9) 47.5 (33.5) 82.5 (21.6) 55.2 (26.7) 90.6 (5.7) 23.6 (24.2) 91.4 (8.9) 20.5 (16.3) 90.0 36.6

Table 5: Ablation study results. Units: DSC in %, and ASD in mm. Proposed model is the

U-Net-XM12345. (*) means without pre-training. Number in () is the standard deviation.

Methods
Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD
Proposed (*) 53.5 (18.3) 6.6 (4.6) 62.0 (17.9) 2.7 (1.1) 84.8 (10.0) 1.6 (0.5) 55.6 (9.4) 3.6 (2.5) 64.0 3.6
U-Net-M 49.5 (11.3) 9.8 (6.8) 63.6 (16.6) 3.3 (2.2) 79.4 (18.4) 2.0 (0.8) 52.8 (10.0) 6.8 (10.0) 61.6 4.9
U-Net-X 41.2 (13.4) 11.0 (6.5) 63.4 (14.8) 2.9 (1.5) 76.1 (28.3) 2.9 (2.8) 54.2 (8.0) 3.3 (1.8) 58.7 5.0
U-Net 45.0 (16.0) 14.3 (7.6) 42.0 (27.2) 4.7 (2.6) 77.2 (23.2) 2.9 (2.2) 54.6 (11.0) 5.2 (5.6) 54.8 6.8
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Table 6: Models’ performance comparison for different MRFP configurations. Units: DSC in %,

ASD in mm. Proposed model is the U-Net-XM12345. (*) means without pre-training. Number in ()

is the standard deviation.

Methods
Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD
Proposed (*) 53.5 (18.3) 6.6 (4.6) 62.0 (17.9) 2.7 (1.1) 84.8 (10.0) 1.6 (0.5) 55.6 (9.4) 3.6 (2.5) 64.0 3.6
U-Net-XM123 50.9 (14.0) 8.3 (6.5) 66.1 (12.4) 2.6 (1.0) 83.7 (12.1) 2.0 (0.7) 45.8 (11.0) 4.7 (3.3) 61.6 4.4
U-Net-XM135 54.1 (10.6) 7.5 (5.6) 65.6 (14.5) 2.8 (1.4) 84.6 (12.5) 1.6 (0.7) 52.3 (9.6) 6.5 (4.3) 64.2 4.6
U-Net-XM345 53.6 (16.2) 10.8 (6.3) 65.5 (12.8) 3.5 (2.2) 84.8 (11.8) 1.6 (0.7) 52.6 (12.1) 3.3 (1.8) 64.1 4.7
U-Net-X 41.2 (13.4) 11.0 (6.5) 63.4 (14.8) 2.9 (1.5) 76.1 (28.3) 2.9 (2.8) 54.2 (8.0) 3.3 (1.8) 58.7 5.0

Table 7: Model performance comparison after using the level set method. Units: DSC in %, and

ASD in mm. (+) means with pre-training, and (*) means without pre-training. Number in () is the

standard deviation.

Methods
Uterus Rectum Bladder Levator Average

DSC ASD DSC ASD DSC ASD DSC ASD DSC ASD
Proposed (+) 65.3 (3.8) 5.4 (1.9) 66.3 (15.0) 2.1 (0.9) 85.6 (10.0) 1.6 (0.4) 60.8 (7.4) 2.3 (1.4) 69.4 2.9
Proposed (*) 58.3 (18.6) 6.6 (5.1) 65.8 (14.4) 2.4 (1.1) 84.8 (10.1) 1.7 (0.5) 55.6 (9.4) 3.6 (2.5) 66.1 3.6
Deeplabv3+ 52.0 (14.8) 9.2 (5.5) 59.8 (17.0) 3.3 (2.0) 83.3 (10.7) 1.9 (0.5) 53.4 (13.1) 3.8 (2.0) 62.1 4.5
FCN-8s 46.0 (18.3) 8.3 (6.2) 66.0 (11.8) 2.3 (0.8) 80.7 (12.2) 1.9 (0.5) 47.4 (16.9) 9.5 (11.6) 60.0 5.6
U-Net 47.6 (15.0) 11.8 (16.3) 47.6 (22.8) 7.3 (4.4) 80.8 (15.5) 2.6 (1.2) 54.6 (11.0) 5.2 (5.6) 56.4 5.3
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