
Appendix S1: Supplementary methods1

Here, we provide more information on the quantification of the experimental excretion rates2

used for model validation in the main text and the parameters needed to run the model. Table3

1 shows the sample size for each part of data collection per species.4

Table 1. Sample size for each component of data collection conducted within the framework5

of this study.6

Species Excretion Turnover Metabolism Growth Body CNP Diet CNP
Zebrasoma scopas 43 11 21 13 16 NA
Balistapus undulatus 34 8 11 8 26 15
Epinepehlus merra 51 8 15 17 43 10

1. Fish excretion7

We measured excretion estimates in situ following the methodologies of Schaus et al. (1997),8

as modified by Whiles, Huryn, Taylor, & Reeve (2011). We placed individual fish in an in-9

cubation chamber (0.47 – 75 L Ziploc bag) containing a known volume (0.08 to 19.5 L) of10

pre-filtered seawater (0.7 µm pore size Gelman GFF) for 30 minutes (Allgeier, Wenger, Rose-11

mond, Schindler, & Layman, 2015; Whiles et al., 2011). We incubated a set of controls (typ-12

ically n = 6) for the same time period at each sampling event. All incubated fishes and con-13

trols were kept at a constant temperature during the excretion trial (25 – 27.5˚C). We extracted14

seawater samples from each bag (filtered with 0.45 µm pore size Whatman nylon membrane15

filters) and immediately placed them on ice. We analysed samples for ammonium and phos-16

phorous.17

Seawater samples extracted from each incubation container (filtered with 0.45 µm pore size18

Whatman nylon membrane filters) and placed immediately on ice. Within 12 hours, samples19

were analysed for ammonium using the methodologies of Taylor et al. (2007), or frozen for20

transport to University of California Santa Barbara (UCSB) for soluble reactive phosphorus21

analyses using the ascorbic acid method and colorimetric analyses (Eaton, Clesceri, Green-22

berg, & Franson, 1995). Excretion rates were converted to g d-1 by multiplying hourly esti-23

mates by 24.24
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2. Turnover rates of N and P25

Following equations 6 and 7, we measured FN and FP as minimal excretion rates for N and P.26

Fish (n = 27) were collected by divers in Moorea in 2018 and placed in a holding tank (1,00027

L) with flow-through seawater for 72 hours with no food. Following the starvation period,28

individuals were placed in incubation containers and nutrient samples were taken using the29

same methodology as for excretion rates. Water samples were frozen immediately after filtra-30

tion and analysed in Moorea at CRIOBE using standard methods following Aminot & Kérouel31

(2007). Here we assume turnover to be equal to the measured excretion rates of starved fish.32

As expected, F0Pz < F0Nz because bone cells, which contain most P, generally degrade slowly33

compared to other cell types (FP ≈ 0.0003 g P d-1, 10% per year; Manolagas, 2000; Sterner &34

Elser, 2002). There were no significant differences in minimal excretion rates among the three35

species, so average across-species values were used.36

3. Metabolism37

We used flow-through respirometry to measure standard metabolic rate (SMR) and maximum38

metabolic rate (MMR), which is defined as the maximum rate of oxygen consumption that a39

fish can achieve at a given temperature (Norin & Clark, 2016) for a wide range of body sizes40

(see 3.2). Here SMR is considered a synonym of FCr. The parameters α , f0 and θ were ob-41

tained by fitting a Bayesian regression model of SMR and MMR (g C d-1) as a function of42

body mass (g) using the R package brms (see 3.3, Bürkner, 2017). Estimates for the cost of43

growth, ϕ , were obtained using the model of Barneche & Allen (2018) (equation 5, main text),44

and values for trophic level and aspect ratio were extracted from FishBase using fishflux45

functions trophic_level() and aspect_ratio(), respectively.46

3.1 Fish capture47

Fish were caught by divers using nets and clove oil in the lagoon at 1–8 m depth near Op-48

unohu Bay in Moorea, French Polynesia during fall 2018. After capture, fish were transported49

to the lab and were starved for 24 to 48 h at 27–28˚C in large tanks.50
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3.2 Respirometry51

Oxygen consumption was measured using intermittent-flow respirometry combined with py-52

roscience optic fibre, following the methods described by Svendsen, Bushnell, & Steffensen53

(2016). Intermittent-flow respirometry combines short measurement periods in a recirculating,54

but closed, respirometer with clean water flush periods (Svendsen et al., 2016). One complete55

measurement cycle consists of three timing periods: the flush period where the chamber is56

open followed by two closed periods, wait and measure. The wait period is required before57

measuring oxygen consumption to allow all the water in the chamber to mix and the oxygen58

content to decline linearly (Svendsen et al., 2016). The respirometer volume should be cho-59

sen depending on the fish’s volume and behaviour while still being small enough to result in a60

readable decline in oxygen concentration. A respirometer:organism volume ratio between 2061

and 50 appears to be comfortable for most organisms but is small enough to result in a 10%62

drop in oxygen concentration (Svendsen et al., 2016). Three different volumes of chambers63

(0.36 L, 0.97270 L and 4.4 L) were used to have a chamber volume-to-fish volume ratio of64

61:1–9:1 for Epinephelus merra, 358:1–10:1 for Zebrasoma scopa, and 241:1–10:1 for Bal-65

istapus undulatus. When the ratio was too high or too low, the closing time (respirometry cy-66

cle) of the chamber was adapted to obtain accurate MO2 measurements. Respirometry cycles67

were processed during a 20 h period (12 p.m. to 8 a.m. the following day) while leaving the68

fish undisturbed in the chamber. For each measurement and each chamber size, a blank cham-69

ber was used simultaneously, and a post blank measurement was processed for each chamber70

at the end of the run to account for microbial respiration. Temperature was kept constant to71

28.20 ± 0.35˚C, and a light cycle of 12 h was used (6 a.m. to 6 p.m.).72

SMR was calculated using MO2 measurement during the entire period. Noisy measurements73

were removed by checking the R2 of the drop in oxygen. Then, SMR was defined, using the74

average of the lowest 10% of the MO2 values, after removal of the outliers, following recom-75

mendations by Chabot, Steffensen, & Farrell (2016).76

At the start of a respirometry run, all fish where chased for 1 min and immediately placed in77

the chamber to estimate maximum metabolic rates (MMR) by recording the first 30 s of the78

first respirometry cycle. This seems to be the most efficient way to get the MMR for a wide79
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range of species (Norin & Clark, 2016).80

3.3 Metabolic parameters81

To obtain parameters f 0 and α , we fit linear regression models for each species with the log-82

transformed SMR (g/day) as the response variable and the log-transformed biomass (g) as the83

explanatory variable. Models were fit in a Bayesian framework using the R package RStan84

(Stan Development Team, 2018). The body mass-independent metabolic normalisation con-85

stant (g C g-α d-1), f 0 (see eqn 4 in the main text), was obtained by exponentiating the in-86

tercept of this log-log regression. The slope of the regression equals α , the a dimensionless87

mass-scaling exponent in eqn 4. We used weakly informative priors. We assumed the ac-88

tivity scope, θ to equal (SMR+MMR)/2SMR. A second linear model was applied, similar89

to the above mentioned model, but with the log-transformed MMR as the response variable.90

The slope of each species of this regression did not differ from the slope of the SMR regres-91

sions, as their respective 95% credible intervals overlapped substantially. Thus, our data sug-92

gests that the intra-specific ratio of mass scaling exponents (SMR and MMR) is 1 on aver-93

age. Therefore, for each species, we averaged values of θ across all individuals to calculate an94

overall θ .95

4. Growth96

We used otoliths to fit growth curves for each species. Individuals were collected in Moorea,97

French Polynesia with the use of spearguns, and otoliths were extracted, processed and read98

for annual growth increments (see 4.1, 4.2). fishflux provides the function oto_growth()99

to estimate VBGC parameters from otolith readings, using a Bayesian hierarchical regression100

model (see 4.3). If original otolith readings are unavailable, VBGC parameters l∞, k and t0 can101

be retrieved from FishBase for many species. The fishflux function growth_params() re-102

turns estimates that are available on FishBase. We note that parameter estimates from otolith103

analysis are considered better than other methods, and parameters can vary with location due104

to temperature differences, thus introducing potential biases (Barneche & Allen, 2018; Morais105

& Bellwood, 2018). We suggest using the standardised estimates and standard deviations fol-106

lowing the fish growth model of Morais & Bellwood (2018) when location-specific otolith107
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data is unavailable.108

We convert mass from total length using the length-weight equation m = εlb, where ε (g cm-b)109

is constant, and b is a dimensionless exponent. Their respective standard deviations were110

retrieved from FishBase and estimated using a Bayesian model (Froese, Thorson, & Reyes,111

2014). fishflux provides the function find_lw() to obtain means and standard deviations112

of these parameters. Wet-to-dry mass conversion constants were measured from the same113

specimens that were used for the nutrient content analysis (see 5. Elemental stoichiometry).114

4.1 Sample collection115

A total of 288 specimens belonging to 20 species were collected in March 2016 and Novem-116

ber 2018 in Moorea, French Polynesia using spear guns. Total (TL) and standard length (SL)117

were measured to the nearest millimetre. For each individual, pairs of sagittae were extracted,118

cleaned with distilled water, dried and transported to Perpignan, France.119

4.2 Otolith processing and back-calculation120

For each species, one or both of the otoliths was cut transversely, using a diamond disc saw121

(Presi Mecatome T210) to obtain a section of 500 μm. Sections were then fixed on a glass122

slide with thermoplastic glue, sanded with abrasive discs of decreasing grain size (2 400 and123

1 200 grains per 2 cm) to get closer to the nucleus and polished using a 0.25 µm diameter dia-124

mond suspension. All sections were photographed under Leica DM750 light microscope with125

a Leica ICC50 HD microscope camera and LAS software (Leica Microsystems). For each126

species, a reading transect was chosen and distances across annual growth increments were127

measured using ImageJ (version 1.51j8). This procedure was repeated twice by two readers128

in order to limit observer bias on age estimates. The measurements realised by the different129

readers were averaged for each section. To estimate the fish lengths for previous ages, the130

back-calculation procedure, proposed by Vigliola & Meekan (2009) was used.131

4.3 Growth parameters132

The von Bertalanffy growth curve (VBGC) was selected to describe the fish growth (eqn 2 in133

the main text; Bertalanffy, 1957). The VBGC was fitted on length-at-age data with a hierar-134
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chical non-linear regression in a Bayesian framework using stan (Carpenter et al., 2017) and135

(RCore Team, 2018). In the model, l∞ varies among individuals, unlike t0. It has been shown136

that VBGC parameters l∞ and κ are correlated in a consistent way, where the slope of the log-137

transformed regression theoretically has an average of -2.31 (Morais & Bellwood, 2018). This138

correlation is explicitly included in the regression model where κ = exp(sl ∗ log(l∞)+ gp),139

where sl is the slope and gp is the intercept, which is the growth performance index (Morais140

& Bellwood, 2018). Informative priors for sl and gp were specified, using published informa-141

tion (Morais & Bellwood, 2018) and a weakly-informative prior was set for l∞:142

sl ∼ normal(−2.3,0.22),

gp ∼ normal(3,2),

l∞ ∼ normal(15,5).

(1)

Estimates for l∞ can vary substantially among populations or even individuals (Morais &143

Bellwood, 2018). We standardised κ to the maximum measured total length in Moorea (un-144

published data), to avoid individuals reaching the asymptotic length prematurely and growth145

equalling zero in the application of the bioenergetic model for the case study.146

5. Elemental stoichiometry of fish and diet147

Sixteen individuals were collected in 2016 in Moorea, their gut contents were removed, and148

the whole body was freeze-dried and ground to powder with a Precellys homogeniser. Qk (%)149

were then measured in the lab using standard methods. Ground samples were analysed for150

%C and %N content using a CHN Carlo-Erba elemental analyzer (NA1500) for %P using dry151

oxidation-acid hydrolysis extraction followed by a colorimetric analysis (Allen, Grimshaw,152

Parkinson, & Quarmby, 1974). Elemental content was calculated based on dry mass. Means153

and standard deviations for C, N and P were obtained through a hierarchical multivariate154

model with fixed effects per family, genus and species. C, N and P content of diet items were155

analysed using the same methods as described above.156

Values for Dk (%) were approximated from published estimates. Zebrasoma scopas is known157
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to feed on red algae (Choat, Clements, & Robbins, 2002). We adopted QN (0.68 %; Lin &158

Fong, 2008) and QC (20.9%; Pillans, Franklin, & Tibbetts, 2004) from Acanthophora spi-159

cifera, and QP (0.33%; Suzumura et al., 2002) from another red algae species, Galaxaura160

sp. Dk values for B. undulatus and E. merra were estimated based on a collection of poten-161

tial diet items of similar families (Allgeier et al., 2015). B. undulatus feeds on a wide range162

of plant and animal matter, but the majority of their prey items are in the phylum Arthropoda,163

followed by Chordata and Mollusca (Casey et al., 2019). Therefore, we averaged Dk values164

of molluscs, crustaceans and small fishes (n = 15). Finally, E. merra feeds primarily on crabs165

(Randall & Brock, 1960). Thus, we averaged Dk values measured from small crabs (n = 5).166

Stoichiometry of diet items were analysed using similar methods as described above.167

6. Assimilation efficiencies168

Element-specific assimilation efficiencies, ak, are needed to estimate the available proportion169

of matter after ingestion. These parameters were treated as fixed, with values of 0.8, 0.8 and170

0.7 for C, N and P respectively (Deslauriers, Chipps, Breck, Rice, & Madenjian, 2017).171

7. R package fishflux172

fishflux makes the application of our theoretical framework user-friendly with the use of173

the main function cnp_model_mcmc(). We devised our model to rely on parameters that are174

widely available, while accounting for uncertainties. Several parameters for fishflux are175

publicly accessible, and the package provides user-friendly functions to retrieve them. For176

example, growth parameters for the VBGC are available on FishBase or can be extrapolated177

with basic traits such as temperature and body size (Morais & Bellwood, 2018). Moreover,178

length-weight parameters have been predicted for all species on FishBase (Froese et al., 2014),179

and metabolic parameters F0 and α can be extracted from flow-through respirometry exper-180

iments. To calculate the energetic cost of growth, we use traits that are likewise available on181

FishBase (i.e. aspect ratio and trophic level, Barneche & Allen, 2018). Equipped with these182

parameters, the most critical input data is body size, which is frequently collected at the indi-183

vidual level in underwater visual censuses or fisheries catch data (Samoilys & Carlos, 2000).184

As such, our model offers a unique opportunity to infer biogeochemical dynamics from stan-185
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dardized and widely used survey techniques in fish ecology. Furthermore, fishflux provides186

functions to extract specific results (extract()), plot output (cnp_plot()), extract the limit-187

ing element (limitation()), and investigate the sensitivity of the predictions due to the un-188

certainty of input parameters (sensitivity()). For details, see the help pages and vignettes189

of fishflux.190
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