Appendix S1: Supplementary methods

Here, we provide more information on the quantification of the experimental excretion rates used for model validation in the main text and the parameters needed to run the model. Table 1 shows the sample size for each part of data collection per species.

Table 1. Sample size for each component of data collection conducted within the framework of this study.

Species	Excretion	Turnover	Metabolism	Growth	Body CNP	Diet CNP
Zebrasoma scopas	43	11	21	13	16	NA
Balistapus undulatus	34	8	11	8	26	15
Epinepehlus merra	51	8	15	17	43	10

1. Fish excretion

We measured excretion estimates in situ following the methodologies of Schaus et al. (1997), as modified by Whiles, Huryn, Taylor, \& Reeve (2011). We placed individual fish in an incubation chamber ($0.47-75 \mathrm{~L}$ Ziploc bag) containing a known volume (0.08 to 19.5 L) of pre-filtered seawater ($0.7 \mu \mathrm{~m}$ pore size Gelman GFF) for 30 minutes (Allgeier, Wenger, Rosemond, Schindler, \& Layman, 2015; Whiles et al., 2011). We incubated a set of controls (typically $\mathrm{n}=6$) for the same time period at each sampling event. All incubated fishes and controls were kept at a constant temperature during the excretion trial $\left(25-27.5^{\circ} \mathrm{C}\right)$. We extracted seawater samples from each bag (filtered with $0.45 \mu \mathrm{~m}$ pore size Whatman nylon membrane filters) and immediately placed them on ice. We analysed samples for ammonium and phosphorous.

Seawater samples extracted from each incubation container (filtered with $0.45 \mu \mathrm{~m}$ pore size Whatman nylon membrane filters) and placed immediately on ice. Within 12 hours, samples were analysed for ammonium using the methodologies of Taylor et al. (2007), or frozen for transport to University of California Santa Barbara (UCSB) for soluble reactive phosphorus analyses using the ascorbic acid method and colorimetric analyses (Eaton, Clesceri, Greenberg, \& Franson, 1995). Excretion rates were converted to $\mathrm{g} \mathrm{d}^{-1}$ by multiplying hourly estimates by 24 .

2. Turnover rates of \mathbf{N} and P

Following equations 6 and 7 , we measured F_{N} and F_{P} as minimal excretion rates for N and P . Fish $(\mathrm{n}=27)$ were collected by divers in Moorea in 2018 and placed in a holding tank $(1,000$ L) with flow-through seawater for 72 hours with no food. Following the starvation period, individuals were placed in incubation containers and nutrient samples were taken using the same methodology as for excretion rates. Water samples were frozen immediately after filtration and analysed in Moorea at CRIOBE using standard methods following Aminot \& Kérouel (2007). Here we assume turnover to be equal to the measured excretion rates of starved fish. As expected, $F_{0 \mathrm{Pz}}<F_{0 \mathrm{Nz}}$ because bone cells, which contain most P , generally degrade slowly compared to other cell types ($F_{\mathrm{P}} \approx 0.0003 \mathrm{~g} \mathrm{P} \mathrm{d}^{-1}, 10 \%$ per year; Manolagas, 2000; Sterner \& Elser, 2002). There were no significant differences in minimal excretion rates among the three species, so average across-species values were used.

3. Metabolism

We used flow-through respirometry to measure standard metabolic rate (SMR) and maximum metabolic rate (MMR), which is defined as the maximum rate of oxygen consumption that a fish can achieve at a given temperature (Norin \& Clark, 2016) for a wide range of body sizes (see 3.2). Here SMR is considered a synonym of $F_{\mathrm{C} r}$. The parameters α, f_{0} and θ were obtained by fitting a Bayesian regression model of SMR and MMR ($\mathrm{g} \mathrm{C} \mathrm{d}^{-1}$) as a function of body mass (g) using the R package brms (see 3.3, Bürkner, 2017). Estimates for the cost of growth, ϕ, were obtained using the model of Barneche \& Allen (2018) (equation 5, main text), and values for trophic level and aspect ratio were extracted from FishBase using fishflux functions trophic_level() and aspect_ratio(), respectively.

3.1 Fish capture

Fish were caught by divers using nets and clove oil in the lagoon at $1-8 \mathrm{~m}$ depth near Opunohu Bay in Moorea, French Polynesia during fall 2018. After capture, fish were transported to the lab and were starved for 24 to 48 h at $27-28^{\circ} \mathrm{C}$ in large tanks.

3.2 Respirometry

Oxygen consumption was measured using intermittent-flow respirometry combined with pyroscience optic fibre, following the methods described by Svendsen, Bushnell, \& Steffensen (2016). Intermittent-flow respirometry combines short measurement periods in a recirculating, but closed, respirometer with clean water flush periods (Svendsen et al., 2016). One complete measurement cycle consists of three timing periods: the flush period where the chamber is open followed by two closed periods, wait and measure. The wait period is required before measuring oxygen consumption to allow all the water in the chamber to mix and the oxygen content to decline linearly (Svendsen et al., 2016). The respirometer volume should be chosen depending on the fish's volume and behaviour while still being small enough to result in a readable decline in oxygen concentration. A respirometer:organism volume ratio between 20 and 50 appears to be comfortable for most organisms but is small enough to result in a 10% drop in oxygen concentration (Svendsen et al., 2016). Three different volumes of chambers ($0.36 \mathrm{~L}, 0.97270 \mathrm{~L}$ and 4.4 L) were used to have a chamber volume-to-fish volume ratio of 61:1-9:1 for Epinephelus merra, 358:1-10:1 for Zebrasoma scopa, and 241:1-10:1 for Balistapus undulatus. When the ratio was too high or too low, the closing time (respirometry cycle) of the chamber was adapted to obtain accurate MO_{2} measurements. Respirometry cycles were processed during a 20 h period ($12 \mathrm{p} . \mathrm{m}$. to $8 \mathrm{a} . \mathrm{m}$. the following day) while leaving the fish undisturbed in the chamber. For each measurement and each chamber size, a blank chamber was used simultaneously, and a post blank measurement was processed for each chamber at the end of the run to account for microbial respiration. Temperature was kept constant to $28.20 \pm 0.35^{\circ} \mathrm{C}$, and a light cycle of 12 h was used ($6 \mathrm{a} . \mathrm{m}$. to 6 p.m.).

SMR was calculated using MO_{2} measurement during the entire period. Noisy measurements were removed by checking the R^{2} of the drop in oxygen. Then, SMR was defined, using the average of the lowest 10% of the MO_{2} values, after removal of the outliers, following recommendations by Chabot, Steffensen, \& Farrell (2016).

At the start of a respirometry run, all fish where chased for 1 min and immediately placed in the chamber to estimate maximum metabolic rates (MMR) by recording the first 30 s of the first respirometry cycle. This seems to be the most efficient way to get the MMR for a wide
range of species (Norin \& Clark, 2016).

3.3 Metabolic parameters

To obtain parameters $f 0$ and α, we fit linear regression models for each species with the logtransformed SMR (g/day) as the response variable and the log-transformed biomass (g) as the explanatory variable. Models were fit in a Bayesian framework using the R package RStan (Stan Development Team, 2018). The body mass-independent metabolic normalisation constant $\left(\mathrm{g} \mathrm{C} \mathrm{g}^{-\alpha} \mathrm{d}^{-1}\right), f 0$ (see eqn 4 in the main text), was obtained by exponentiating the intercept of this log-log regression. The slope of the regression equals α, the a dimensionless mass-scaling exponent in eqn 4 . We used weakly informative priors. We assumed the activity scope, θ to equal $(S M R+M M R) / 2 S M R$. A second linear model was applied, similar to the above mentioned model, but with the log-transformed MMR as the response variable. The slope of each species of this regression did not differ from the slope of the SMR regressions, as their respective 95% credible intervals overlapped substantially. Thus, our data suggests that the intra-specific ratio of mass scaling exponents (SMR and MMR) is 1 on average. Therefore, for each species, we averaged values of θ across all individuals to calculate an overall θ.

4. Growth

We used otoliths to fit growth curves for each species. Individuals were collected in Moorea, French Polynesia with the use of spearguns, and otoliths were extracted, processed and read for annual growth increments (see 4.1, 4.2). fishflux provides the function oto_growth() to estimate VBGC parameters from otolith readings, using a Bayesian hierarchical regression model (see 4.3). If original otolith readings are unavailable, VBGC parameters l_{∞}, k and t_{0} can be retrieved from FishBase for many species. The fishflux function growth_params() returns estimates that are available on FishBase. We note that parameter estimates from otolith analysis are considered better than other methods, and parameters can vary with location due to temperature differences, thus introducing potential biases (Barneche \& Allen, 2018; Morais \& Bellwood, 2018). We suggest using the standardised estimates and standard deviations following the fish growth model of Morais \& Bellwood (2018) when location-specific otolith
data is unavailable.

We convert mass from total length using the length-weight equation $m=\varepsilon l^{b}$, where $\varepsilon\left(\mathrm{g} \mathrm{cm}^{-b}\right)$ is constant, and b is a dimensionless exponent. Their respective standard deviations were retrieved from FishBase and estimated using a Bayesian model (Froese, Thorson, \& Reyes, 2014). fishflux provides the function find_lw() to obtain means and standard deviations of these parameters. Wet-to-dry mass conversion constants were measured from the same specimens that were used for the nutrient content analysis (see 5. Elemental stoichiometry).

4.1 Sample collection

A total of 288 specimens belonging to 20 species were collected in March 2016 and November 2018 in Moorea, French Polynesia using spear guns. Total (TL) and standard length (SL) were measured to the nearest millimetre. For each individual, pairs of sagittae were extracted, cleaned with distilled water, dried and transported to Perpignan, France.

4.2 Otolith processing and back-calculation

For each species, one or both of the otoliths was cut transversely, using a diamond disc saw (Presi Mecatome T210) to obtain a section of $500 \mu \mathrm{~m}$. Sections were then fixed on a glass slide with thermoplastic glue, sanded with abrasive discs of decreasing grain size (2 400 and 1200 grains per 2 cm) to get closer to the nucleus and polished using a $0.25 \mu \mathrm{~m}$ diameter diamond suspension. All sections were photographed under Leica DM750 light microscope with a Leica ICC50 HD microscope camera and LAS software (Leica Microsystems). For each species, a reading transect was chosen and distances across annual growth increments were measured using ImageJ (version 1.51 j 8). This procedure was repeated twice by two readers in order to limit observer bias on age estimates. The measurements realised by the different readers were averaged for each section. To estimate the fish lengths for previous ages, the back-calculation procedure, proposed by Vigliola \& Meekan (2009) was used.

4.3 Growth parameters

The von Bertalanffy growth curve (VBGC) was selected to describe the fish growth (eqn 2 in the main text; Bertalanffy, 1957). The VBGC was fitted on length-at-age data with a hierar-
chical non-linear regression in a Bayesian framework using stan (Carpenter et al., 2017) and (RCore Team, 2018). In the model, l_{∞} varies among individuals, unlike $t 0$. It has been shown that VBGC parameters l_{∞} and κ are correlated in a consistent way, where the slope of the logtransformed regression theoretically has an average of -2.31 (Morais \& Bellwood, 2018). This correlation is explicitly included in the regression model where $\kappa=\exp \left(s l * \log \left(l_{\infty}\right)+g p\right)$, where $s l$ is the slope and $g p$ is the intercept, which is the growth performance index (Morais \& Bellwood, 2018). Informative priors for $s l$ and $g p$ were specified, using published information (Morais \& Bellwood, 2018) and a weakly-informative prior was set for l_{∞} :

$$
\begin{array}{r}
s l \sim \operatorname{normal}(-2.3,0.22), \\
g p \sim \operatorname{normal}(3,2), \tag{1}\\
l_{\infty} \sim \operatorname{normal}(15,5) .
\end{array}
$$

Estimates for l_{∞} can vary substantially among populations or even individuals (Morais \& Bellwood, 2018). We standardised κ to the maximum measured total length in Moorea (unpublished data), to avoid individuals reaching the asymptotic length prematurely and growth equalling zero in the application of the bioenergetic model for the case study.

5. Elemental stoichiometry of fish and diet

Sixteen individuals were collected in 2016 in Moorea, their gut contents were removed, and the whole body was freeze-dried and ground to powder with a Precellys homogeniser. $Q_{\mathrm{k}}(\%)$ were then measured in the lab using standard methods. Ground samples were analysed for \%C and \%N content using a CHN Carlo-Erba elemental analyzer (NA1500) for \%P using dry oxidation-acid hydrolysis extraction followed by a colorimetric analysis (Allen, Grimshaw, Parkinson, \& Quarmby, 1974). Elemental content was calculated based on dry mass. Means and standard deviations for C, N and P were obtained through a hierarchical multivariate model with fixed effects per family, genus and species. C, N and P content of diet items were analysed using the same methods as described above.

Values for $D_{\mathrm{k}}(\%)$ were approximated from published estimates. Zebrasoma scopas is known
to feed on red algae (Choat, Clements, \& Robbins, 2002). We adopted $Q_{\mathrm{N}}(0.68 \%$; Lin \& Fong, 2008) and $Q_{\mathrm{C}}(20.9 \%$; Pillans, Franklin, \& Tibbetts, 2004) from Acanthophora spicifera, and $Q_{\mathrm{P}}(0.33 \%$; Suzumura et al., 2002) from another red algae species, Galaxaura sp. D_{k} values for B. undulatus and E. merra were estimated based on a collection of potential diet items of similar families (Allgeier et al., 2015). B. undulatus feeds on a wide range of plant and animal matter, but the majority of their prey items are in the phylum Arthropoda, followed by Chordata and Mollusca (Casey et al., 2019). Therefore, we averaged D_{k} values of molluscs, crustaceans and small fishes $(\mathrm{n}=15)$. Finally, E. merra feeds primarily on crabs (Randall \& Brock, 1960). Thus, we averaged D_{k} values measured from small crabs $(\mathrm{n}=5)$. Stoichiometry of diet items were analysed using similar methods as described above.

6. Assimilation efficiencies

Element-specific assimilation efficiencies, a_{k}, are needed to estimate the available proportion of matter after ingestion. These parameters were treated as fixed, with values of $0.8,0.8$ and 0.7 for C, N and P respectively (Deslauriers, Chipps, Breck, Rice, \& Madenjian, 2017).

7. R package fishflux

fishflux makes the application of our theoretical framework user-friendly with the use of the main function cnp_model_mcmc(). We devised our model to rely on parameters that are widely available, while accounting for uncertainties. Several parameters for fishflux are publicly accessible, and the package provides user-friendly functions to retrieve them. For example, growth parameters for the VBGC are available on FishBase or can be extrapolated with basic traits such as temperature and body size (Morais \& Bellwood, 2018). Moreover, length-weight parameters have been predicted for all species on FishBase (Froese et al., 2014), and metabolic parameters F_{0} and α can be extracted from flow-through respirometry experiments. To calculate the energetic cost of growth, we use traits that are likewise available on FishBase (i.e. aspect ratio and trophic level, Barneche \& Allen, 2018). Equipped with these parameters, the most critical input data is body size, which is frequently collected at the individual level in underwater visual censuses or fisheries catch data (Samoilys \& Carlos, 2000). As such, our model offers a unique opportunity to infer biogeochemical dynamics from stan-
dardized and widely used survey techniques in fish ecology. Furthermore, fishflux provides functions to extract specific results (extract()), plot output (cnp_plot()), extract the limiting element (limitation()), and investigate the sensitivity of the predictions due to the uncertainty of input parameters (sensitivity()). For details, see the help pages and vignettes of fishflux.

Bibliography

Allen, S. E., Grimshaw, H. M., Parkinson, J. A., \& Quarmby, C. (1974). Chemical analysis of ecological materials, (p. 565). Blackwell Scientific Publications.

Allgeier, J. E., Wenger, S. J., Rosemond, A. D., Schindler, D. E., \& Layman, C. A. (2015). Metabolic theory and taxonomic identity predict nutrient recycling in a diverse food web. Proceedings of the National Academy of Sciences, 112(20), E2640-E2647. doi: 10.1073/pnas. 1420819112

Aminot, A., \& Kérouel, R. (2007). Dosage automatique des nutriments dans les eaux marines : méthodes en flux continu. (p. 188). doi: 10.2307/302397

Barneche, D. R., \& Allen, A. P. (2018). The energetics of fish growth and how it constrains food-web trophic structure. Ecology Letters, 21(6), 836-844. doi: 10.1111/ele. 12947

Bertalanffy, L. von. (1957). Quantitative laws in metabolism and growth. The Quarterly Review of Biology, 32, 217-231. doi: 10.1086/401873

Bürkner, P.-C. (2017). brms : An R Package for Bayesian Multilevel Models using Stan. Journal of Statistical Software, 80(1), 1-28. doi: 10.18637/jss.v080.i01

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., ... Riddell, A. (2017). Stan : A Probabilistic Programming Language. Journal of Statistical Software, 76(1), 1-31. doi: 10.18637/jss.v076.i01

Casey, J. M., Meyer, C. P., Morat, F., Brandl, S. J., Planes, S., \& Parravicini, V. (2019). Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods in Ecology and Evolution, 00, 1-14. doi: 10.1111/2041-210X. 13206

Chabot, D., Steffensen, J. F., \& Farrell, A. P. (2016). The determination of standard metabolic rate in fishes. Journal of Fish Biology, 88(1), 81-121. doi: 10.1111/jfb. 12845

Choat, J. H., Clements, K. D., \& Robbins, W. D. (2002). The trophic status of herbivorous fishes on coral reefs 1: Dietary analyses. Marine Biology, 140(3), 613-623. doi: 10.1007/s00227-001-0715-3

Deslauriers, D., Chipps, S. R., Breck, J. E., Rice, J. A., \& Madenjian, C. P. (2017). Fish Bioenergetics 4.0: An R-Based Modeling Application. Fisheries, 42(11), 586-596. doi: 10.1080/03632415.2017.1377558

Eaton, A. D., Clesceri, L. S., Greenberg, A. E., \& Franson, M. A. H. (1995). Standard Methods for the Examination of Water and Wastewater. American Public Health Association.

Froese, R., Thorson, J. T., \& Reyes, R. B. (2014). A Bayesian approach for estimating length-weight relationships in fishes. Journal of Applied Ichthyology, 30(1), 78-85. doi: 10.1111/jai. 12299

Lin, D. T., \& Fong, P. (2008). Macroalgal bioindicators (growth, tissue N, $\delta 15 \mathrm{~N}$) detect nutrient enrichment from shrimp farm effluent entering Opunohu Bay, Moorea, French Polynesia. Marine Pollution Bulletin, 56(2), 245-249. doi: 10.1016/j.marpolbul.2007.09.031

Manolagas, S. C. (2000). Birth and Death of Bone Cells: Basic Regulatory Mechanisms and Implications for the Pathogenesis and Treatment of Osteoporosis 1. Endocrine Reviews, 21(2), 115-137. doi: 10.1210/edrv.21.2.0395

Morais, R. A., \& Bellwood, D. R. (2018). Global drivers of reef fish growth. Fish and Fisheries, 19(5), 874-889. doi: 10.1111/faf. 12297

Norin, T., \& Clark, T. D. (2016). Measurement and relevance of maximum metabolic rate in fishes. Journal of Fish Biology, 88(1), 122-151. doi: 10.1111/jfb. 12796

Pillans, R. D., Franklin, C. E., \& Tibbetts, I. R. (2004). Food choice in Siganus fuscescens: Influence of macrophyte nutrient content and availability. Journal of Fish Biology, 64(2), 297-309. doi: 10.1111/j.0022-1112.2004.00261.x

Randall, J. E., \& Brock, V. E. (1960). Observations on the Ecology of Epinepheline and Lut-
janid Fishes of the Society Islands, with Emphasis on Food Habits. Transactions of the American Fisheries Society, 89(1), 9-16. doi: 10.1577/1548-8659(1960)89[9:OOTEOE]2.0.CO;2

RCore Team. (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

Samoilys, M. A., \& Carlos, G. (2000). Determining methods of underwater visual census for estimating the abundance of coral reef fishes. Environmental Biology of Fishes, 57(3), 289304. doi: 10.1023/A:1007679109359

Schaus, M. H., Vanni, M. J., Wissing, T. E., Bremigan, M. T., Garvey, J. E., \& Stein, R. A. (1997). Nitrogen and phosphorus excretion by detritivorous gizzard shad in a reservoir ecosystem. Limnology and Oceanography, 42(6), 1386-1397. doi: 10.4319/lo.1997.42.6.1386 Stan Development Team. (2018). RStan: the R interface to Stan. R package version 2.17.3. doi: 10.3168/jds.S0022-0302(63)89186-9

Sterner, R., \& Elser, J. (2002). Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere (pp. 1-439). Retrieved from https://press.princeton.edu/ titles/7434.html

Suzumura, M., Miyajima, T., Hata, H., Umezawa, Y., Kayanne, H., \& Koike, I. (2002). Cycling of phosphorus maintains the production of microphytobenthic communities in carbonate sediments of a coral reef. Limnology and Oceanography, 47(3), 771-781. doi: 10.4319/lo.2002.47.3.0771

Svendsen, M. B., Bushnell, P. G., \& Steffensen, J. F. (2016). Design and setup of intermittentflow respirometry system for aquatic organisms. Journal of Fish Biology, 88(1), 26-50. doi: 10.1111/jfb. 12797

Taylor, B. W., Keep, C. F., Hall, R. O., Koch, B. J., Tronstad, L. M., Flecker, A. S., ... J. (2007). Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. Journal of the North American Benthological Society, 26(2), 167-177. doi: 10.1899/0887-3593(2007)26[167:ITFAMM]2.0.CO;2

Vigliola, L., \& Meekan, M. G. (2009). The Back-Calculation of Fish Growth From Otoliths.

In Tropical fish otoliths: Information for assessment, management and ecology (pp. 174211). doi: 10.1007/978-1-4020-5775-5_6

Whiles, M. R., Huryn, A. D., Taylor, B. W., \& Reeve, J. D. (2011). Influence of handling stress and fasting on estimates of ammonium excretion by tadpoles and fish: recommendations for designing excretion experiments. Limnology and Oceanography: Methods, 7(1), 1-7. doi: 10.4319/lom.2009.7.1

