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Abstract 

Competition and collaboration are strategies that can be used to optimize the outcomes of social 

interactions. Research into the neuronal substrates underlying these aspects of social behavior has been 

limited due to the difficulty in distinguishing complex activation via univariate analysis. Therefore, we 

employed multivoxel pattern analysis of functional magnetic resonance imaging to reveal the neuronal 

activations underlying competitive and collaborative processes when the collaborator/opponent used 

myopic/predictive reasoning. Twenty-four healthy subjects participated in 2 × 2 matrix-based 

sequential-move games. Searchlight-based multivoxel patterns were used as input for a support vector 

machine using nested cross-validation to distinguish game conditions, and identified voxels were 

validated via the regression of the behavioral data with bootstrapping. The left anterior insula (accuracy 

= 78.5%) was associated with competition, and middle frontal gyrus (75.1%) was associated with 

predictive reasoning. The inferior/superior parietal lobules (84.8%) and middle frontal gyrus (84.7%) 

were associated with competition, particularly in trials with a predictive opponent. The visual/motor 

areas were related to response time as a proxy for visual attention and task difficulty. Our results suggest 

that multivoxel patterns better represent the neuronal substrates underlying the social cognition of 

collaboration and competition inter-mixed with myopic and predictive reasoning than do univariate 

features.  

 

Keywords: Collaboration; competition; fMRI; multivoxel pattern analysis; strategic reasoning; visual 
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1. Introduction 

Social interaction influences both the self and others (Rilling et al., 2004) and can shape an individual’s 

behavior in distinct ways depending on environmental demands, such as whether competition or 

collaboration with others is required to achieve the best outcomes. Previous neuroimaging studies 

attempting to identify the neuronal substrates underlying social interactions have found increased 

activation within the medial prefrontal cortex, posterior superior temporal sulcus, and temporoparietal 

junction (Coricelli and Nagel, 2009; Fareri and Delgado, 2014; McCleery et al., 2011; Rilling et al., 

2004; Saxe and Kanwisher, 2003; van der Meer et al., 2011).  

 

Despite these previous studies, there have been few systematic comparisons of the brain 

regions associated with competitive and collaborative decision-making (Becchio et al., 2012; 

Christopoulos and King-Casas, 2015; Decety et al., 2004; Le Bouc and Pessiglione, 2013; Ramsøy et 

al., 2015). Using a pattern completion game, Decety and colleagues (2004) found that the competitive 

decision-making process was encoded in the dorsomedial prefrontal cortex, whereas the collaborative 

decision-making process was encoded in the medial orbitofrontal cortex and limbic area (Decety et al., 

2004). More recently, Le Bouc and Pessiglione (2013) employed a handgrip task to manipulate the 

physical effort between participants and a computerized agent in a competitive or collaborative context 

and found activation in the medial prefrontal cortex during competition and in the temporoparietal 

junction during collaboration (Le Bouc and Pessiglione, 2013).  

 

Social interactions may also require higher-level reasoning for optimal outcomes, such as 

predicting the responses of others in specific situations (Coricelli and Nagel, 2009; Krill and Platek, 

2012; Xiang et al., 2012; Yoshida et al., 2010). Coricelli and Nagel (2009) adopted the “beauty contest” 

game to investigate how a player’s own strategies account for the strategic reasoning of other players 
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(Costa-Gomes and Crawford, 2006; Nagel, 1995) and found that high-level reasoning was associated 

with greater activation in the medial prefrontal cortex, as evidenced by the blood-oxygenation level-

dependent (BOLD) response from functional magnetic resonance imaging (fMRI). Yoshida and 

colleagues (2010) found increased dorsolateral prefrontal activation under higher-level reasoning 

compared with lower-level reasoning during a two-player stag hunt game in which the participant and 

computerized agent had to choose whether to collaborate in hunting a highly valued stag or defer to 

hunting less valuable rabbits separately (Battalio et al., 2001; Skyrms, 2004). Reasoning level refers to 

the level of thinking that is employed in social interactions in which the actions of others affect the 

individual’s own outcomes in order to predict these actions (Goodie et al., 2012; Hedden and Zhang, 

2002). Therefore, we were interested in investigating both the effects of different reasoning levels on 

the decision-making process and the difference in neuronal activation patterns for each reasoning level 

in competitive and collaborative scenarios. 

 

A univariate approach in which each voxel is treated as an independent unit (Becchio et al., 

2012; Christopoulos and King-Casas, 2015; Decety et al., 2004; Le Bouc and Pessiglione, 2013; 

Ramsøy et al., 2015) has been widely adopted to estimate voxel-wise neuronal activation in imaging 

studies of social behavior. However, this univariate approach may be insufficient when attempting to 

identify the neuronal underpinnings of experimental variables and/or conditions if the spatial pattern of 

activation across neighboring voxels is also informative in explaining other variables and/or conditions. 

As an alternative, a multivoxel or multivariate pattern analysis (MVPA) strategy that employs neuronal 

activation patterns is widely considered to be a promising analytical tool for the investigation of 

representative patterns in two or more experimental conditions (Allefeld and Haynes, 2014; Haxby, 

2012; Kay et al., 2008; Kriegeskorte et al., 2006; Mur et al., 2009; Wang et al., 2013), such as 

competition/collaboration and lower-/higher-level reasoning.  
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Therefore, in the present study, we examined the neuronal substrates of low- and high-level 

strategic decision-making in contexts requiring competition or collaboration using MVPA to 

distinguish activation patterns acquired during a modified matrix-based sequential-move game 

originally designed by Hedden and Zhang (Hedden and Zhang, 2002; Zhang et al., 2012). In contrast 

to other paradigms, such as the beauty contest game (Coricelli and Nagel, 2009; Costa-Gomes and 

Crawford, 2006; Nagel, 1995) and the stag hunt game (Battalio et al., 2001; Skyrms, 2004; Yoshida et 

al., 2010), the brain regions contributing to two distinct components of social interaction – (a) 

competition/collaboration and (b) depth of strategic reasoning – could be systematically investigated 

using this chosen paradigm. We hypothesized that distinct patterns of neuronal activation depending 

on the requirement for competition or collaboration and whether the social counterpart used low-level 

(myopic) or high-level (predictive) reasoning can be revealed using our experimental paradigm by 

applying MVPA analysis to acquired fMRI data. We also predicted that the prefrontal cortex, parietal 

lobe, and other brain regions would be uniquely altered under different social interaction when 

systematically evaluated using behavioral measurements. 

 

2. Materials and Methods 

2.1. Participants 

The Institutional Review Board (IRB) at Korea University approved the overall study protocol. All 

participants provided written informed consent and were compensated based on IRB documents. 

Healthy volunteers with no neuropsychiatric or neurological disorders and no contraindications for 

magnetic resonance imaging (MRI) were recruited. A total of 24 right-handed volunteers participated 

(12 females, Edinburg’s handedness score = 89.3 ± 5.8; age = 23.9 ± 3.3 years; see Table S1 for 

additional details on the participants).  
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2.2. Sequential-move games involving competition and collaboration with two levels of reasoning 

Figure 1 shows the experimental paradigm for the 2 × 2 matrix-based sequential-move game originally 

proposed by Hedden and Zhang (2002) and modified to incorporate a competitive (CP) or collaborative 

(CB) mode of social interaction with a staff member (social counterpart; one of our lab members) 

employing two levels of reasoning. The matrix contains four cells (A, B, C, and D) with two rewards 

in each cell (the first reward for the participant and the second for the staff member). The game starts 

at cell A, and the participant needs to decide whether to move to cell B for the best final outcome 

depending on the task conditions. If the participant decides to move to cell B, the staff member then 

needs to decide whether to move to cell C. If the staff member decides to move to cell C, the participant 

can then decide to move to cell D. These decisions are based on rewards. If either the participant or 

staff member decides not to move to the next cell, the game ends and the participant and staff member 

receive the dollar amount written in that final (stop) cell. In collaboration mode, the participant was 

instructed to maximize both the sum of their rewards and that of the staff member, whereas in 

competition mode, the participant was instructed to maximize their reward while minimizing the staff 

member’s reward. In addition, the participants were told that the staff member would use either low-

level reasoning or high-level reasoning (referred to as myopic and predictive, respectively).  

 

For example, in the collaboration mode game shown in Figure 1, the participant would know 

that if they move from A to B, (a) a myopic staff member will compare the sum of rewards at B and C 

($4 vs. $3) and decide to stay at B to maximize the total reward, and (b) a predictive staff member will 

also compare the sum of the rewards at D versus B and C ($8 vs. $4 and $3) and thus will move to C 

(despite it having less money) because the staff member knows that the participant will then move to 

D to obtain the largest reward. Thus, the participant will stay at A for a myopic staff member (so that 
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the game stops at A and they get $5) or move to B for a predictive staff member (so that the game stops 

at cell D and they get $8).  

 

In competition mode, the participant would know that (a) a myopic staff member will compare 

the difference of rewards at B and C ($4 − $3 = $1 vs. $3 − $1 = $2) and decide to move to C to obtain 

a greater reward than the participant, and (b) a predictive staff member will also compare the difference 

of the reward at D (i.e., $2 − $4 = −$2) and thus will not move from B to C despite the greater reward 

at C vs. B ($2 vs. $1), because the staff member knows that the participant will move from C to D to 

obtain a greater reward than the staff member (4$ − $2 = $2). Thus, the participants will move to B 

against a myopic staff member (so that the game proceeds to C and then D) or stay at A against a 

predictive staff member (so that the game stops at A and the participant gets $1 rather than stopping at 

B where the staff member obtains the larger reward).  

 

 

In matched-control mode using the same set of games for the competition or collaboration 

condition, the participants were asked to maximize their own reward while ignoring the staff member’s 

reward. In control mode using the same game for collaboration in Figure 1, the participant will not 

move to B when facing a myopic staff member (because the staff member will stay at B for $3 rather 

than move to C for $1) or will move to B when facing a predictive staff member (because the staff 

member will move to C knowing that the participant will then move to D for the higher reward, which 

is $4 for both).  

 

In each game trial, two questions were also presented: (Q1) “Will OO (the staff member’s 

initials) move to C?” and (Q2) “Will you move to B?” The next game trial started when the participants 
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answered “Yes” or “No” to these two questions by pressing a button on a fiber-optic response pad 

(Current Design, PA, USA; www.curdes.com). 

 

2.3. Experimental setup 

There were four game scenarios across the competition and collaboration game modes with either a 

myopic or predictive staff member (i.e., a 2 × 2 factorial design), and each scenario was performed in 

a separate fMRI run (i.e., four runs total). Each run consisted of 10 game trials in either the competitive 

or collaborative mode along with the 10 matched control trials with either a myopic or predictive staff 

member (i.e., 80 trials total; 20 trials per run). The game mode and the staff member’s reasoning level 

were fixed in each scenario. Participants were told the game mode (competitive or collaborative) before 

each scenario began; however, they were not informed of the staff member’s reasoning level in each 

scenario and thus had to infer it from the staff member’s behavior as the trials proceeded in order to 

obtain the maximum reward. The participants were told that they would be compensated proportionally 

to the rewards they obtained from all of the game trials. Once the participant was placed in the MRI 

scanner, a computerized agent, instead of the staff member, assigned programmed strategies according 

to the game mode and reasoning level used. The participants performed the four scenarios in a pseudo-

randomized order (i.e., inter-mixed order across four scenarios for each of the subjects; “randperm.m” 

function with a randomized seed in MATLAB [version 2016a] was used for the randomization). Prior 

to the experiment, subjects practiced the task during an interview day. 

 

During the debriefing, the participants provided subjective scores on a 5-point Likert scale for 

(1) “how much do you agree that you were competing against the staff?” (or “how much do you agree 

that you were collaborating with the staff?”) (22 of 24 participants) and (2) “how difficult were the 

competition games?” (or “how difficult were the collaboration games?”) (all 24 participants). The 
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competition and collaboration scores were defined from the first question and the difficulty scores for 

each of the competition and collaboration game modes were defined from the second question. Then, 

the participants were informed that a computerized agent was employed on behalf of our staff member 

to ensure the consistency of the experiment. 

 

2.4. fMRI data acquisition and preprocessing 

BOLD fMRI data were acquired using a standard gradient-echo echo-planar imaging (EPI) pulse 

sequence on a 3-Tesla MRI scanner (Tim Trio; Siemens, Erlangen, Germany; TR/TE = 2000/30 ms; 

35 interleaved axial slices parallel to the anterior and posterior commissural plane without a gap; voxel 

size = 3 × 3 × 4 mm3, matrix size = 80 × 80 voxels; flip angle = 90°; field-of-view = 240 × 240 mm2). 

 

The first five EPI volumes (10 s) of each run were excluded to allow the T1 effect to equilibrate. 

The remaining EPI volumes were preprocessed using the SPM8 toolbox (www.fil.ion.ucl.ac.uk/spm) 

with standard options, including slice timing correction, realignment, and spatial normalization to the 

Montreal Neurological Institute template with 3-mm isotropic voxel size. Spatial smoothing was not 

performed to fully preserve task condition-dependent differences in the multivoxel patterns from the 

BOLD signals (Kriegeskorte et al., 2008). All participants (n = 24) exhibited head motion of less than 

1 mm during realignment. The mean (± standard deviation) of translational and rotational head motions 

across all the subjects were 0.63 mm (± 0.32 mm) and 1.14 ° (± 0.41 °), respectively. 

 

 

 

2.5. Estimation of neuronal activation 

To create the features for MVPA, a general linear model (GLM) was applied to the preprocessed BOLD 
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fMRI data (Kamitani and Sawahata, 2010; Mahmoudi et al., 2012; Misaki et al., 2010; Swisher et al., 

2010). The onset timing of each competition, collaboration, and control game trial and offset timing for 

the participants to make a decision regarding the second question (Q2) were used to model the reference 

hemodynamic response function (HRF) for each game trial using SPM8. Then, the trial-wise regressors 

across all the conditions (i.e., competition, collaboration, and control) were defined as the results of the 

convolved signals between the HRF and trial-wise information for onset and offset of the trial. In this 

study, the control trials were not used for further analysis and the response time was not included as a 

parametric modulation factor in the GLM. For each participant, neuronal activation patterns were 

estimated from the beta values of the GLM across voxels within the whole brain (i.e., 10 beta maps for 

each competition or collaboration game mode with the myopic or predictive staff member). If the 

response time of any trial was slower than 1.5 times the interquartile range of all response times for 

that game mode, the corresponding trial was treated as invalid and excluded from analysis (2 trials for 

two subjects and 1 trial for three subjects).  

 

2.6. Classification of competition versus collaboration and myopic versus predictive reasoning 

Figure 2(a) presents a flow diagram of the searchlight MVPA-based classification approach adopted 

for each subject. There were a total of six scenarios for binary classification: (i) competition vs. 

collaboration mode across all myopic and predictive staff member trials, (ii) competition vs. 

collaboration mode considering only myopic staff member trials, (iii) competition vs. collaboration 

mode considering only predictive staff member trials, (iv) myopic staff vs. predictive staff member 

trials across both game modes, (v) myopic staff vs. predictive staff for the competition mode trials, and 

(vi) myopic staff vs. predictive staff for the collaboration mode trials. Four-class classification across 

all four conditions (vii) was also conducted. The available trials for each of these seven classification 

scenarios were divided into five folds: three folds for training a support vector machine (SVM) 
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classifier, one fold for validation (to optimize the SVM parameter and searchlight size among 1-, 2-, 

and 3-voxel sizes), and one remaining fold for testing. Therefore, each fold included 8 trials for each 

of the classification scenarios from (i), (iv), and (vii) and 4 trials for the classification scenarios of (ii), 

(iii), (v), and (vi). 

 

The beta values for the voxels within the searchlight area were normalized to fall between 0 

and 1 across the trials in the training data (i.e., normalization with the range from 0 to 1 across the 

number of voxels × the number of trials used), and scaling factors for this normalization were applied 

to the validation and test data. A ν-SVM classifier with a linear kernel was used as implemented in the 

LIBSVM software toolbox (www.csie.ntu.edu.tw/~cjlin/libsvm). The latent parameter ν of the ν-SVM 

was optimized via a grid search using uniformly distributed candidate values (from 0.1 to 0.8, with an 

interval of 0.1) (Chen et al., 2005). The nested cross-validation classification test (Allefeld and Haynes, 

2014; Filzmoser et al., 2009; Hebart et al., 2015; Lindquist et al., 2017; Varoquaux et al., 2017) was 

repeated 10 times using 10 randomly shuffled training, validation, and test sets, and average 

classification accuracies are reported. We used custom-made MVPA code implemented in MATLAB, 

and the results were verified by comparing them with results from the decoding toolbox (TDT) (Hebart 

et al., 2015). To validate the results between custom-made MVPA code and the TDT toolbox, we 

randomly selected three subjects and employed the same procedure, such as nested cross-validation 

with parameter optimization. The difference in individual classification accuracy between the custom-

made MVPA code and the TDT toolbox ranged from 0% to 0.21% for all voxels in the whole brain. 

 

The classification results from each of the 24 subjects were the clusters of brain regions with a 

minimum of 20 voxels, accuracy ≥ 70% for binary classification, and accuracy ≥ 50% for four-class 
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classification. These results were subjected to one-sample t-tests for group inference (Eger et al., 2009). 

The statistical significance of group inference was estimated from 10,000 classification tests performed 

using randomly permuted training, validation, and test sets, with randomly assigned class labels for the 

test sets (Cauchoix et al., 2014; Liang et al., 2013; Stelzer et al., 2013). 

 

 

2.7. Comparison of identified brain regions using the univariate approach and MVPA 

The neuronal activations arising from confounding factors related to visual attention level may 

potentially be estimated when using a univariate approach because BOLD signals are known to be very 

sensitive to attention level (Bartels et al., 2008; Li et al., 2008; Logothetis, 2003; Ungerleider and G, 

2000). We thus conducted univariate estimation and compared the results to those from MVPA 

classification. For voxel-wise univariate analysis, a linear mixed-effect test (Barr et al., 2013) was 

adopted for each of the six contrasts: (1) competition vs. collaboration across all myopic and predictive 

staff member trials, (2) competition vs. collaboration considering only myopic staff member trials, (3) 

competition vs. collaboration considering only predictive staff member trials, (4) myopic staff vs. 

predictive staff member trials across both game modes, (5) myopic staff vs. predictive staff for 

competition mode, and (6) myopic staff vs. predictive staff for collaboration mode. The statistical 

significance (p < 0.05) was estimated from a null distribution that was obtained from 10,000 tests 

performed using randomly permuted sets with randomly assigned contrast labels. 

 

2.8. Evaluation of identified brain regions using voxel-wise multiple regression  

The brain regions identified using the univariate approach and MVPA were further evaluated with 

voxel-wise multiple regression and permutation testing. For the univariate approach, the beta values 

were predicted using the competitive and collaborative scores, with response time, age, and sex 
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included as confounding factors. In particular, response time was included to remove possible visual 

attention components affecting our experimental conditions (i.e., CP vs. CB and predictive vs. myopic). 

In addition, reasoning time was defined as the period from the onset time of the second question to the 

participants making a decision. Because the subjects were assumed to have finished mathematical 

calculations prior to answering the first question, we expected the subjects to process only the 

opponent’s strategy (i.e. myopic/predictive) when answering the second question. This reasoning time 

was used as the interest-of-regressor to predict myopic and predictive reasoning order by regressing 

out response time, age, and sex. Classification accuracy was used as the target variable for MVPA. The 

statistical significance of the prediction based on the regression analysis was evaluated using 

nonparametric significance testing. To this end, the regression analysis was conducted using subjective 

scores or reasoning time in a randomly shuffled order. This process was repeated 10,000 times to 

generate a null distribution with one-tailed significance testing using a Bonferroni-corrected p-value 

(Kim et al., 2015; Maysov and Kipyatkov, 2011; Mundfrom et al., 2006). 

 

2.9. Cross-set classification to validate MVPA 

The identified brain regions and corresponding classification accuracy may be affected by potential 

problems of overfitting arising from training on one set of trials and testing on an independent set of 

trials. Thus, the cross-set classification approach (Kaplan et al., 2015; Wisniewski, 2018; Wisniewski 

et al., 2016) was adopted by training the classifier to distinguish between collaboration and competition 

using data from trials with a myopic player. The trained classifier was then applied to the test set on 

data from trials where the opponent was a predictive player. In addition, the classifier was trained using 

data from trials with a predictive player and tested using data from trials with a myopic player. 

Similarly, to distinguish trials involving myopic and predictive staff members, the classifier was trained 

using data from collaboration trials and tested using data from competition trials. Additionally, the 
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classifier was trained using data from competition trials and tested using data from collaboration trials. 

 

3. Results 

3.1. Behavioral data 

The proportion of participants that made the correct decision according to the context of 

competition/collaboration with the myopic or predictive staff member (stay at cell A or move to cell B) 

was 95.1% ± 3.1% (mean ± standard deviation), indicating that participants accurately inferred the staff 

member’s reasoning level. The average rating for task difficulty was significantly higher during the 

competition trials than the collaboration and control trials (Table 1). Response time was significantly 

higher in competition mode (9.31 ± 1.79 s) than in collaboration mode (6.73 ± 1.31 s; t(23) = 9.63, 

Bonferroni-corrected p = 5.03 × 10−5, effect size d = 1.64) and with the predictive staff member (9.48 

± 2.31 s) than with the myopic staff member (7.28 ± 1.51 s; t(23) = 8.92, Bonferroni-corrected p = 8.98 

× 10−5, effect size d = 1.13; Figure 3). 

3.2. Brain regions identified from competition versus collaboration classification 

Figure 4 shows the results from searchlight-based multivoxel pattern classification (Fig. 4a) and the 

univariate approach (Fig. 4c) to distinguish between the competition and collaboration modes. The 

subsequent voxel-wise regression analysis for accuracy and (i) subjective scores (Fig. 6a) or (ii) 

response time (Fig. 6b) is also presented. The visual, parietal, and frontal areas fulfilled the criteria for 

classification, but the left anterior insula and bilateral parietal activation dominantly predicted the 

subjective scores for competition without the confounding influence of visual attention components. 

These brain regions also fulfilled the criteria for distinguishing competition from collaboration when 

facing the predictive staff member. In this case, classification results from the supplementary motor 

area (SMA) and the left anterior/right posterior insula were able to predict the subjective scores for 

competition when the visual attention components were regressed out. In contrast, only small regions 
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of the cuneus, cerebellum, posterior cingulate cortex, and precuneus fulfilled the criteria for the 

classification of competition versus collaboration with the myopic staff members. There were few 

voxels with features that were able to predict subjective scores in this classification scenario. Response 

time, a proxy for visual attention, was predominantly identified across the visual and parietal areas. 

 

3.3. Brain regions identified from myopic versus predictive reasoning order classification 

Figure 5 presents the results of the classification of game trials involving myopic and predictive 

reasoning order, and the subsequent regression analysis is shown in Figure 7. The visual area, superior 

and inferior parietal lobules, middle frontal gyrus, and medial superior frontal gyrus exhibited a 

classification accuracy that was well above the level of chance. Of these brain regions, the brain features 

in the middle frontal gyrus and bilateral parietal areas predicted reasoning time in the game trials with 

a predictive staff member after controlling for visual attention component. Parts of the visual areas were 

associated with the visual attention components of the game trials with a myopic staff member. Brain 

regions distinguishing the two reasoning levels in competition mode were found. After regressing out 

visual attention component, classification features in the superior parietal lobule, inferior/middle frontal 

gyrus, and inferior/superior parietal lobule predicted the reasoning time for games with a predictive 

staff member. The middle occipital gyrus and supplementary motor area also showed an association 

with the reasoning time for games with a myopic staff member. However, binary classification of the 

reasoning level in collaboration mode found that only the superior parietal area had features that 

predicted the reasoning time for games with a predictive staff member. In this classification analysis, 

visual attention components were mainly found in the visual and motor areas and parts of frontal and 

parietal areas. 

 

3.4. Comparison between the univariate approach and MVPA 
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Figure 4 displays the spatial patterns for competition and collaboration from (a) MVPA, (b) overlapping 

patterns from MVPA and the univariate approach, and (c) the univariate approach. Figures 6 and 8 

present the subsequent regression analysis for MVPA and the univariate approach, respectively. For 

myopic versus predictive reasoning order, Figure 5 represents the spatial patterns from (a) MVPA, (b) 

overlapping patterns from MVPA and the univariate approach, and (c) the univariate approach. Figures 

7 and 9 present the results from a subsequent regression analysis for MVPA and for the univariate 

approach, respectively. The univariate approach mostly covers sensory areas such as the visual and 

motor areas and the corresponding patterns mostly overlapped with the patterns from MVPA. The brain 

areas identified using the univariate approach covered parts of the frontal, motor, and subcortical areas. 

Of these brain areas, the beta values of a few scattered voxels in the visual areas predicted behavioral 

information for trials involving a myopic staff member or collaboration. From the subcortical, frontal, 

and parietal areas, the beta values predicted cognitive load in trials involving a predictive staff member 

or competition. Both MVPA and the univariate approach found that the visual and motor areas were 

most strongly associated with the visual attention components. 

 

3.5. Classification across all four conditions 

Figure 10 shows the brain regions identified using four-class classification. The visual, parietal, and 

frontal areas showed significantly greater classification accuracies than chance (Fig. 10a; Table S11). 

The classification accuracy for competition against a predictive staff member (i.e., CP1) was higher 

than the classification accuracy for collaboration with either a myopic or predictive staff member (i.e., 

CB0 or CB1; Fig. 10b), despite the fact that the beta values in these brain regions did not differ across 

game modes and reasoning levels (Fig. 10c). The accuracy of the left inferior and right superior parietal 

lobules and left middle frontal gyrus for a predictive staff member (CP1) predicted the competition 

scores (Fig. 10d) by excluding the visual attention component. The visual areas and supplementary 
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motor areas were able to predict collaboration scores for both myopic and predictive staff members. 

 

3.6. Cross-set classification 

Figure 11 presents the brain regions identified by cross-set classification, including the (a) results from 

adopting nested cross-validation mixing conditions across the training and test sets, (b) results from 

cross-set classification by training the classifier to distinguish between collaboration and competition 

using data from trials with a myopic player and testing the classifier on data from trials where the 

opponent was a predictive player, or (c) vice versa. Classification was otherwise conducted by training 

the classifier to distinguish between myopic and predictive order in collaboration trials and testing the 

classifier using data from trials involving competition (e) and vice versa (f). The results demonstrated 

a significant overlap between nested cross-validation schema and cross-set classification. Of the brain 

regions identified using nested cross-validation, the superior frontal gyrus, insula, and parts of the 

parietal areas were not identified using cross-set classification for the contrast between competition and 

collaboration. For the contrast between myopic and predictive order, the middle/superior frontal gyrus, 

precentral gyrus, and supplementary motor areas were not identified. 

 

4. Discussion 

4.1. Summary of the study 

Our modified matrix-based, sequential-move game with a systematically controlled 

opponent/collaborator assignment and reasoning level combined with searchlight-based multivoxel 

pattern classification identified multiple brain regions in the visual, parietal, and frontal areas (including 

the insula) associated with social cognition. To the best of our knowledge, this is the first study to apply 

these techniques to a nested cross-validation framework, which increases the possibility of 

generalization to independent subjects and reduces the potential for the under-estimation of neuronal 
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substrates compared to univariate analysis.  

 

Based on subsequent voxel-wise multiple regression, left anterior insula activation appears to 

be strongly involved in thought processes related to competition but not collaboration. In addition, the 

middle frontal gyrus, inferior and superior parietal lobules, middle occipital gyrus, and cuneus appear 

more strongly associated with predictive reasoning than myopic reasoning. Finally, the inferior and 

superior parietal lobules and the middle frontal gyrus exhibited a specific association with competition 

only against an opponent using higher-level reasoning.  

 

4.2. Brain regions identified from the classification of competition versus collaboration 

The brain regions identified from the classification of competition versus collaboration were mainly 

found in the visual, parietal, and frontal areas, which is in accordance with previous studies (Bechara 

et al., 2000; Decety et al., 2004; Fareri and Delgado, 2014; Jakab et al., 2012; Jones et al., 2011; Koban 

and Pourtois, 2014; Le Bouc and Pessiglione, 2013). For example, several studies have reported greater 

neuronal activation in the middle and superior frontal areas during competitive tasks than during 

collaborative tasks (Decety et al., 2004; Fareri and Delgado, 2014; Le Bouc and Pessiglione, 2013). 

When visual stimuli were used to control the cognitive processes related to competition and 

collaboration among participants as well as the response type of a computerized agent (Le Bouc and 

Pessiglione, 2013), greater activation in the visual areas was reported for competition than for 

collaboration, possibly because of the increased attentional focus during competition. The fact that the 

classification accuracy of the left anterior insula was greater than the level of chance and that the 

corresponding beta values predicted competition scores suggests that insular activation is related to the 

level of motivation, which may be greater under competitive than collaborative conditions (Jakab et al., 

2012; Koban and Pourtois, 2014). The observed activity in the SMA may be related to the mental 
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simulation of the sequential moves and/or to the keypad responses to Q1 and Q2 (Nachev et al., 2007). 

These brain regions were also identified by pattern classification of competition versus collaboration 

when considering only trials with a predictive staff member (higher-level reasoning) but were weaker 

when considering only trials with a myopic staff member (lower-level reasoning). This suggests the 

engagement of more complex neural processing pathways in the former condition, which is consistent 

with (a) the longer response times in competitive trials versus collaborative trials with a predictive staff 

member and (b) the disappearance of this difference between competition and collaboration in trials 

with a myopic staff member. Furthermore, regression analysis with response time as a covariate 

revealed that sensory areas including the visual and motor areas had a weak association with cognitive 

load. Our results also indicated that visual attention components were highly associated with response 

time. These results are in line with previous studies that have reported the prediction of visual awareness 

by removing visual attention components (Webb et al., 2016). He and colleagues also reported the 

separation of valid and invalid trials due to neglect from stroke patients (He et al., 2007), in which the 

functional processing of the brain might be better investigated by removing the visual attention 

components. 

 

4.3. Brain regions identified using the classification of reasoning level 

The middle frontal area and inferior and superior parietal lobules were identified from the classification 

of game trials with myopic or predictive staff members across the two game modes. This extensive 

cortical activation pattern is consistent with the longer response times when playing against a predictive 

staff member compared with a myopic staff member, particularly in competition mode. Similarly, in 

previous studies, higher-level reasoning by an opponent increased the cognitive effort required by 

participants to predict their opponent’s strategy (Allred et al., 2016; Brañas-Garza and Smith, 2016; 

Duffy and Smith, 2014; Hedden and Zhang, 2002). Furthermore, neuronal activation in the dorsolateral 
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prefrontal cortex, a region in close proximity to the middle frontal area identified in the present study, 

was greater in a high-level than a low-level reasoning condition (Coricelli and Nagel, 2009). Stone and 

colleagues reported that autistic patients with damage to the middle frontal gyrus exhibited lower 

accuracy in a false belief task (Stone et al., 1998). This suggests that the middle frontal gyrus may be 

important for understanding others’ thoughts, particularly higher levels of reasoning, a faculty impaired 

in cases of autism.  

 

 

The brain regions across the visual and motor areas identified from MVPA classification 

disappeared when the confounding effect of response time was removed from the brain features. 

However, the middle frontal areas and bilateral parietal areas remained (Figs. 6 and 7). This regression 

analysis thus reflects task-related cognitive processes while ignoring visual attention components (He 

et al., 2007; Webb et al., 2016) and task difficulty (Demb et al., 1995; Gilbert et al., 2012). For example, 

Gilbert et al. (2012) have suggested that task difficulty can be measured by response time and does not 

provide an adequate account of task-induced changes in signals from regions-of-interest. Further 

research is thus warranted to identify an approach that can accurately define task difficulty and visual 

attention components in cognitive tasks. 

 

4.4. Comparison between the univariate approach and MVPA 

Our study compared the spatial patterns identified using the univariate approach and MVPA. Many 

MVPA studies have reported that classical univariate analysis is less capable of determining whether 

an identified brain region is related to specific cognitive process or highly affected by visual attention 

components (Davis et al., 2014; Gilron et al., 2017; Mahmoudi et al., 2012; Todd et al., 2013; 

Wisniewski et al., 2016). MVPA also faces potential issues such as feature selection, the complexity of 
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dimensionality, and validation by selecting optimal parameters (Mahmoudi et al., 2012). Nevertheless, 

in line with other MVPA-based research, our study revealed that MVPA outperformed the univariate 

approach, revealing that the insula, frontal and parietal regions were associated with the specific 

cognitive process load for one of the forms of social cognition (i.e., competition under predictive 

reasoning). On the other hand, the univariate approach mainly identified the visual and motor areas, 

including other regions including the insula, subcortical areas, and parietal areas. However, few voxels 

in the visual and motor areas survived after regressing out response time. Consequently, the MVPA 

approach allows brain regions to be investigated in terms of their relationship with cognitive processing 

regardless of the presence of visual attention components. In addition, whole-brain MVPA using deep 

neural networks would be a potentially viable approach to further enhance the prediction performance 

(Jang et al., 2016; Kim et al., 2019a; Kim et al., 2016).  

 

4.5. Interaction between competition/collaboration and strategic reasoning level 

From our four-class classification results, the beta values of the bilateral parietal lobule and middle 

frontal gyrus predicted competition scores. Notably, the bilateral parietal lobule was also identified in 

the classification of myopic versus predictive staff members, and the beta values of the corresponding 

areas were significantly associated with response time in the predictive condition. The temporoparietal 

junction has been reported as a core brain region involved in the “Theory-of-Mind” (Decety et al., 2004; 

Gallagher et al., 2000; Marjoram et al., 2006; Saxe, 2006) and is particularly associated with the mental 

state of belief (Saxe, 2006). The parietal lobule regions identified in our study (x, y, z = −48, −47, 46 

mm and 44, −48, 43 mm for the left and right hemispheres, respectively) are in proximity to the 

temporoparietal junction. The minimum Euclidean distance between the focus of our identified right 

superior parietal lobule and the focus of the temporoparietal junction (as provided by Mars and 

colleagues; x, y, z = 49, −46, 46 for the right hemisphere) (Mars et al., 2012) is approximately 2 voxels 
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(6 mm). The bilateral parietal lobules have also been reported as the neuronal substrate for competition 

in previous studies (Decety et al., 2004; Fareri and Delgado, 2014). In contrast, activation of the parietal 

areas may also be related to attentional and executive switching between competition and collaboration 

modes (Decety et al., 2004). 

 

4.6. Evaluation of MVPA via cross-set classification 

We conducted MVPA for each experimental factor first using all data and then separately for each of 

the two conditions for the other factor. For example, the classification of collaboration and competition 

was run using only data from trials involving interaction with a myopic staff member or those with a 

predictive staff member. Kaplan et al. (2015) suggested cross-set classification as a way to characterize 

abstraction in neural representations and to avoid circular analysis (Kaplan et al., 2015; Wisniewski, 

2018; Wisniewski et al., 2016). Similarly, the comparison between the performance of nested cross-

validation and cross-set classification in the present study indicated the possibility of overfitting or 

relatively low accuracy when using cross-set classification. 

 

 

4.7. Potential weaknesses and future work 

The number of participants in our study was relatively low. Thus, in order to reduce the false positive 

error rate and increase the generalizability of our results for independent subjects, we employed a k-

fold cross-validation framework by dividing the data from the participants into training and test sets for 

both multivoxel pattern classification and random permutation testing for logistic regression.  

 

 In principle, it is also possible that these differences in activation reflect the cognitive load for 

task performance (addition vs. subtraction) rather than the task conditions. However, the response times 

This article is protected by copyright. All rights reserved.



24 
 

did not differ between collaboration with and competition against the myopic staff member, which 

require different arithmetic tasks (Fig. 3). Moreover, previous fMRI (Kawashima et al., 2004) and EEG 

(Zhou et al., 2006) studies have reported no significant difference in the activation patterns between 

addition and subtraction. Previous studies that have employed MVPA to examine addition vs. 

subtraction have reported high accuracy in the absence of activation differences (Haynes et al., 2007). 

Interestingly, Haynes and colleagues (2007) reported similar middle frontal gyrus and insula areas to 

those identified in the present study to distinguish competitive and collaborative decision-making 

processes. They used response time as a regressor to estimate activation levels during addition and 

subtraction trials. However, in our study, potential confounding factors arising from response time-

related patterns were addressed by conducting an additional regression analysis to remove the visual 

attention components. Thus, the interpretations in this study may have removed the effect of these 

mathematical calculations; future research can confirm whether the mathematical processes used need 

to be considered in designing an experiment. 

 

Previous research that has compared event-related and block-based designs (Chee et al., 2003; 

Mechelli et al., 2003; Petersen and Dubis, 2012; Tie et al., 2009) has demonstrated that event-related 

designs may capture hemodynamic response functions better than block-based designs, thus increasing 

the sensitivity to the condition-of-interest. In the present study, we excluded a few trials in which the 

response time was slower than 1.5 times the interquartile range of all response times for that game 

mode. This created an unbalanced number of trials, which might have led to classification results that 

were biased toward the class with the higher number of trials. In addition, the eye-tracking during the 

experiment would be helpful in ascertaining the participants’ understanding of the purpose of the 

experimental design by monitoring their choice process (Polonio et al., 2015). For example, we expect 

participants to gaze at and focus more on cell D than on other cells when following predictive reasoning 
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in our experiment. 

 

As an extension of our study, interesting future work could include (1) identification of the 

neuronal substrates for social interactions using real-time fMRI (Emmert et al., 2016; Kim et al., 2015; 

Kim et al., 2019b; Lee et al., 2012) and (2) examination of the activation changes when social 

interaction is modulated toward cooperative behavior, such as in a hyper-scanning paradigm (Montague 

et al., 2002). Further, social interaction with real-time neuroimaging may be useful in preclinical 

settings to facilitate competitive and/or collaborative decision-making in patients with autistic spectrum 

disorders and/or antisocial personality disorders (Andari et al., 2010; Bühler et al., 2011; Mier et al., 

2013). Another potentially interesting future study is to investigate the neuronal substrates for 

collaboration and cooperation in the context of reinforcement learning because the participants in our 

study received a reward after each trial. Previous studies have reported common neuronal substrates 

for social interaction and monetary reward learning, such as the ventral medial prefrontal cortex (Hare 

et al., 2010; Joiner et al., 2017; Lin et al., 2011). It would be of interest to determine whether a monetary 

reward enhances the capability for social interaction through a reinforcement learning framework by 

tracking value and state parameters based on in-game rewards (Lin et al., 2011; Zaki et al., 2016).  
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5. Conclusions 

We identified some of the neuronal circuitry underlying competitive and collaborative thought 

processes in healthy participants during interactions with competitors/collaborators using low-level 

(myopic) or high-level (predictive) reasoning. For this task, we adopted searchlight-based multivoxel 

pattern classification and subsequent voxel-wise multiple regression with behavioral scores for 

validation in a nested cross-validation framework by separating the training and test subjects to prevent 

“double-dipping” or circular analysis. The anterior insula and SMAs were associated with competition 

but not collaboration. The middle frontal gyrus, inferior and superior parietal lobules, middle occipital 

gyrus, and the cuneus were also associated with competition, especially against those using high-level 

reasoning. We believe that the presented method may prove useful for the investigation of abnormal 

neuronal circuitry in patients with various cognitive and anti-social disorders. 
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Tables 
Table 1. Subjective scores from participants. 

Subject number #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 Mean± 
SD Statistic 

Subjective 
scores 

CP n/a n/a 4 4 4 5 5 3 3 2 5 3 4 2 3 4 3 5 5 4 5 3 5 4 
3.86 

± 
0.99 Kendall’s 

τ = 0.47 
 (p = 0.006) 

CB n/a n/a 4 5 3 4 5 2 3 4 4 2 5 2 3 3 3 5 5 5 5 5 5 4 3.91 ± 
1.11  

Task 
difficulty 

CP 4 4 4 4 4 3 3 4 4 3 4 2 4 1 3 3 5 3 5 5 2 3 4 4 3.33 ± 
0.98 F(2,71) = 

26.83 
(Bonferroni 

corrected 
*p = 1.65×10−7) 

CB 2 2 1 1 2 2 2 1 2 2 2 2 2 1 3 1 2 4 2 1 2 1 2 1 1.67 ± 
0.49 

CTR 2 3 2 3 3 2 2 2 2 2 3 2 3 2 4 3 3 2 5 3 2 3 3 3 2.33 ± 
0.49 

SD, standard deviation; n/a, not available; CP, competition; CB, collaboration; CTR, control; *, one-way repeated-measures 

ANOVA test. 
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Figure Legends 
Figure 1. The experimental paradigm used for the competition and collaboration trials with two 

reasoning levels. The move from cell A to B was determined by the participant, the move from cell B 

to C by a staff member (initials OO), and the move from cell C to D was the participant’s decision if 

the staff member decided to move from cell B to C. The first and second rewards in each set of 

parentheses are the payoffs for the participant and staff member, respectively. Participants answered 

two questions on (a) the move of the staff member (Q1) and (b) their own move (Q2) with either “Yes” 

or “No.” The participant then observed how the game proceeded based on his/her decision and the staff 

member’s decision. The two players received their payoffs according to the cell where the game ended. 

See the “2.2. Sequential-move games involving competition and collaboration with two levels of 

reasoning” subsection of the Methods for details.  

 

Figure 2. Procedure for the within-subject searchlight-based multivoxel pattern analysis (MVPA) 

classification. Once the functional magnetic resonance imaging (fMRI) data were preprocessed, the 

neural activation of the voxels was estimated from the general linear model across the whole brain. The 

multivoxel activation patterns were prepared for each trial in competition (CP) and collaboration (CB) 

modes and the lower and higher reasoning levels of myopic (MS) and predictive (PS) staff members, 

respectively, to conduct each binary classification and the four-class classification. Using a five-fold 

nested cross-validation (CV) framework, the optimal parameter for the support vector machine (SVM) 

was chosen based on the maximum validation accuracy, and the trained SVM was employed to 

determine test accuracy using the one remaining fold. See the “2.6. Classification of competition 

versus collaboration and myopic versus predictive reasoning” subsection of the Methods for details.  

 

Figure 3. Average (bar) and standard deviation (whisker) of the response time across all subjects (n = 
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24) in the game trials with collaboration (CB) or competition (CP) and a myopic staff member using 

lower-level reasoning or a predictive staff member using higher-level reasoning. In our study, a 

computerized agent was employed as the staff member. The p-values from a paired t-test were 

Bonferroni-corrected by dividing it by the total number of subjects. 

  

Figure 4. Brain regions identified in the classification of competition (CP) and collaboration (CB). (a) 

Brain maps representing the spatial patterns from group inference (Bonferroni-corrected p-values < 

10−3 from 10,000 random permutations) obtained by applying one-sample t-tests to the accuracy maps 

from individual classification tests (accuracy > 70% with 20 contiguous voxels) across all 24 subjects. 

(First row) Classification of CP vs. CB across the two reasoning levels. (Second row) Classification of 

CP vs. CB from the game trials with MS. (Third row) Classification of CP vs. CB from the game trials 

with PS. (See Table S3 for details). (b) Overlapping patterns for the univariate approach and MVPA. 

(c) Brain maps representing the spatial patterns from group inference (Bonferroni-corrected p-values < 

0.05 from 10,000 random permutations) obtained by applying one-sample t-tests to the beta maps from 

individual analysis across all 24 subjects. (First row) Contrast of CP vs. CB across the two reasoning 

levels. (Second row) Contrast of CP vs. CB from the game trials with MS. (Third row) Contrast of CP 

vs. CB from the game trials with PS. (See Table S5 for details). See the “3.2. Brain regions identified 

from competition versus collaboration classification” and “3.4. Comparison between the 

univariate approach and MVPA” subsections of the Results for details. MS, myopic staff; PS, 

predictive staff; MOG, middle occipital gyrus; IOG, inferior occipital gyrus; IPL, inferior parietal 

lobule; SPL, superior parietal lobule; aINS, anterior insula; SFG, superior frontal gyrus; PrCG, 

precentral gyrus; PCC, posterior cingulate cortex; SOG, superior occipital gyrus; pINS, posterior 

insula; SMA, supplementary motor area; IFG, inferior frontal gyrus. 
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Figure 5. Brain regions identified by a myopic (MS) versus a predictive (PS) staff member. (a) Brain 

maps representing the spatial patterns from group inference (Bonferroni-corrected p-values < 10−3 from 

10,000 random permutations) obtained by applying one-sample t-tests to the accuracy maps from 

individual classification tests (accuracy > 70% with 20 contiguous voxels) across all 24 subjects. (First 

row) Classification of MS vs. PS across the two decision-making processes. (Second row) 

Classification of MS vs. PS from CP. (Third row) Classification of MS vs. PS from CB. (See Table S4 

for details) (b) Overlapping patterns for the univariate approach and MVPA. (c) Brain maps 

representing the spatial patterns from group inference (Bonferroni-corrected p-values < 0.05 from 

10,000 random permutations) obtained by applying one-sample t-tests to the beta maps from individual 

analysis across all 24 subjects. (First row) Contrast of MS vs. PS across the two decision-making 

processes. (Second row) Contrast of MS vs. PS from CP. (Third row) Contrast of MS vs. PS from CB. 

(See Table S6 for details). See the “3.3. Brain regions identified from myopic versus predictive 

reasoning order classification” and “3.4. Comparison between the univariate approach and 

MVPA” subsections of the Results for details. CP, competition; CB, collaboration; MOG, middle 

occipital gyrus; SPL, superior parietal lobule; IPL, inferior parietal lobule; PrCG, precentral gyrus; 

MFG, middle frontal gyrus; mSFG, medial-superior frontal gyrus; SMA, supplementary motor area; 

IFG, inferior frontal gyrus; PoCG, postcentral gyrus. 

  

Figure 6. Brain regions identified by regression analysis for the competition (CP) versus collaboration 

(CB) from MVPA. (a) Brain maps representing the spatial patterns (Bonferroni-corrected p-values < 

0.05 from 10,000 random permutations) obtained by regression analysis of subjective scores. (First 

row) CP vs. CB across the two reasoning orders. (Second row) CP vs. CB from the game trials with 

MS. (Third row) CP vs. CB from the game trials with PS. (See Table S7 for details). (b) Spatial patterns 

related to visual attention components during the regression analysis of response time. See the “3.2. 
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Brain regions identified from competition versus collaboration classification” subsection of the 

Results for details. MS, myopic staff; PS, predictive staff; MOG, middle occipital gyrus; aINS, anterior 

insula; IOG, inferior occipital gyrus; PrCG, precentral gyrus; SPL, superior parietal lobule; SFG, 

superior frontal gyrus; IPL, inferior parietal lobule; PCC, posterior cingulate cortex; pINS, posterior 

insula; SMA, supplementary motor area. 

 

Figure 7. Brain regions identified by regression analysis for a myopic (MS) versus a predictive (PS) 

staff member from MVPA. (a) Brain maps representing the spatial patterns (Bonferroni-corrected p-

values < 0.05 from 10,000 random permutations) obtained by regression analysis of reasoning time. 

(First row) MS vs. PS across the two decision-making processes. (Second row) MS vs. PS from CP. 

(Third row) MS vs. PS from CB. (See Table S8 for more details).  (b) Spatial patterns related to visual 

attention components during the regression analysis of response time. See the “3.3. Brain regions 

identified from myopic versus predictive reasoning order classification” subsection of the Results 

for details. CP, competition; CB, collaboration; MOG, middle occipital gyrus; IPL, inferior parietal 

lobule; mSFG, medial-superior frontal gyrus; SPL, superior parietal lobule; IFG, inferior frontal gyrus; 

MFG, middle frontal gyrus; PoCG, postcentral gyrus; SMA, supplementary motor area. 

 

Figure 8. Brain regions identified by regression analysis for competition (CP) versus collaboration 

(CB) from the univariate approach. (a) Brain maps representing the spatial patterns (Bonferroni-

corrected p-values < 0.05 from 10,000 random permutations) obtained by regression analysis of 

subjective scores. (First row) CP vs. CB across the two reasoning orders. (Second row) CP vs. CB from 

the game trials with MS. (Third row) CP vs. CB from the game trials with PS. (See Table S9 for more 

details) (b) Results related to visual attention during the regression analysis of response time. See the 

“3.4. Comparison between the univariate approach and MVPA” subsection of the Results for 
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details. MS, myopic staff; PS, predictive staff; mOFC, medial orbitofrontal cortex; IFG, inferior frontal 

gyrus; SFG, superior frontal gyrus; SPL, superior parietal lobule; SMA, supplementary motor area; 

PrCN, precuneus; PoCG, postcentral gyrus; PrCG, precentral gyrus; IPL, inferior parietal lobule; aINS, 

anterior insula; THL, thalamus. 

 

Figure 9. Brain regions identified by regression analysis for a myopic (MS) versus a predictive (PS) 

staff member from the univariate approach. (a) Brain maps representing the spatial patterns 

(Bonferroni-corrected p-values < 0.05 from 10,000 random permutations) obtained by regression 

analysis of reasoning time. (First row) MS vs. PS across the two decision-making processes. (Second 

row) MS vs. PS from CP. (Third row) MS vs. PS from CB. (See Table S10 for more details) (b) Results 

related to visual attention during the regression analysis of response time. See the “3.4. Comparison 

between the univariate approach and MVPA” subsection of the Results for details. CP, competition; 

CB, collaboration; MOG, middle occipital gyrus; PrCG, precentral gyrus; MCC, middle cingulate 

cortex; SPL, superior parietal lobule; IPL, inferior parietal lobule; THL, thalamus; PoCG, postcentral 

gyrus; SOG, superior occipital gyrus. 

 

Figure 10. Brain regions identified by four-class classification. (a) Brain maps representing the spatial 

patterns from group-inference (Bonferroni-corrected p-values < 0.05 from 10,000 random 

permutations) obtained by applying one-sample t-tests to the accuracy maps from individual 

classification tests for four-class classification (accuracy > 50% with 20 contiguous voxels) across all 

24 subjects. (See Table S11 for details). (b) Histogram of voxel-wise average classification accuracy 

within a cluster across subjects for each of the four classes. (c) Histogram of voxel-wise beta values 

within a cluster across subjects for each of the four classes. (d) The results from the regression using 

voxel-wise individual classification accuracy and behavioral information. See the “3.5. Classification 
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across all four conditions” subsection of the Results for details. CP, competition; CB, collaboration; 

MS, myopic staff; PS, predictive staff; IPL, inferior parietal lobule; SPL, superior parietal lobule; SMA, 

supplementary motor area; MFG, middle frontal gyrus; IFG, inferior frontal gyrus. 

 

Figure 11. Brain regions identified from cross-set classification. (a) Classification of CP vs. CB with 

mixed training/test sets. (b) Classification of CP vs. CB with a training set from the game trials with 

MS and a test set from the game trials with PS. (c) Classification of CP vs. CB with a training set from 

the game trials with PS and a test set from the game trials with MS. (d) Classification of MS vs. PS 

with mixed training/test sets. (e) Classification of MS vs. PS with a training set from the game trials 

with CP and a test set from the game trials with CB. (f) Classification of MS vs. PS with a training set 

from the game trials with CB and a test set from the game trials with CP. See the “3.7. Cross-set 

classification” subsection of the Results for details. CP, competition; CB, collaboration; MS, myopic 

staff; PS, predictive staff; MOG, middle occipital gyrus; IOG, inferior occipital gyrus; aINS, anterior 

insula; PrCG, precentral gyrus; IPL, inferior parietal lobule; SPL, superior parietal lobule; SMA, 

supplementary motor area; MFG, middle frontal gyrus; SFG, superior frontal gyrus; mSFG, medial-

superior frontal gyrus. 
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