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Abstract The exchange of energy between the lower atmosphere and the ionosphere thermosphere
system is not well understood. One of the parameters that is important in the lower thermosphere is
atomic oxygen. It has recently been observed that atomic oxygen is higher in summer at ∼95 km. In this
study, we investigate the sensitivity of the upper thermosphere to lower thermospheric atomic oxygen
using the Global Ionosphere Thermosphere Model (GITM). We use the Whole Atmosphere Community
Climate Model with thermosphere and ionosphere extension (WACCM-X) to drive the lower atmospheric
boundary of atomic oxygen in GITM between ∼95 and 100 km and compare the results with the current
mass spectrometer incoherent scatter (MSIS) driven GITM. MSIS has higher atomic oxygen in the winter
hemisphere while WACCM-X has higher atomic oxygen in the summer hemisphere. The reversal of atomic
oxygen distribution affects the pressure distribution between 100 and 120 km, such that the hemisphere
with larger O number density has stronger equatorward winds, and lower temperature mainly due to
adiabatic and radiative cooling. This affects thermospheric scale heights such that the hemisphere with
more O has lower N2 and thus enhanced O/N2. This behavior is observed in the opposite hemisphere when
MSIS is used as the lower boundary for GITM. Overall, O/N2 for WACCM-X driven GITM matches better
with the global ultraviolet imager (GUVI) data. We find that the impact of lower thermospheric atomic
oxygen on upper thermosphere is not just through diffusive equilibrium but also through secondary effects
on winds and temperature.

1. Introduction
The coupling between the lower atmosphere and the ionosphere-thermosphere (IT) system remains one of
the biggest challenges in understanding and observing space weather. Numerous studies have been con-
ducted over the past few decades to understand the dynamical and compositional changes in the IT densities
and temperature because of the lower atmosphere (e.g., Hagan & Forbes, 2002; Immel et al., 2006; Malhotra
et al., 2016; Shimazaki, 1967, 1968; X. Zhang et al., 2010b, 2010a, etc.). The vertical coupling via gravity
waves, planetary waves, and atmospheric tides plays a crucial role in the momentum, energetics, and com-
position of the IT system (Lindzen, 1981; Qian et al., 2009; Siskind et al., 2014; Yamazaki & Richmond, 2013).
Because most space-based activities are in the thermosphere/ionosphere of either Earth or other planets,
it is imperative to understand the physical processes affecting this region of the atmosphere. For example,
ionospheric irregularities impacting communication systems (e.g., Kelly et al., 2014), such as equatorial
bubbles, are thought to be seeded from the lower and middle atmosphere (Hysell et al., 1990; Prakash, 1999;
Rottger, 1973).

In order to better understand how the lower atmospheric variability at various spatial and temporal scales
propagates into the upper atmosphere, attempts have been made to develop whole atmosphere models,
such as, the Whole Atmosphere Community Climate Model with Thermosphere and Ionosphere Extension
(WACCM-X) (H.-L. Liu et al., 2018), the Ground to topside model of Atmosphere and Ionosphere for Aeron-
omy (GAIA) (Jin et al., 2011), the Whole Atmosphere Model (WAM) (Akmaev et al., 2008; Fuller-Rowell
et al., 2008), and the Canadian Middle Atmosphere Model (CMAM) (Beagley et al., 1997). Apart from
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seamless atmospheric modeling, another approach to better understanding the lower atmospheric influ-
ences in the IT system is by coupling a lower atmosphere model with an IT/upper atmospheric model
(e.g., Akmaev, 2011; Roble, 2013). While whole atmosphere models are more self-consistent, coupled models
are better suited for isolating the effects of specific lower boundary conditions on the upper atmosphere
(e.g., Hagan et al., 2009; Q. Wu et al., 2012).

For upper atmospheric models, lower boundary conditions are especially important for introducing com-
positional changes in the IT system, as the composition at 100–130 km map to higher altitudes because of
diffusive equilibrium (Colegrove et al., 1966). Major constituents in the MLT are atomic oxygen (O), molecu-
lar nitrogen (N2), and molecular oxygen (O2). Between the altitudes 80 and 100 km, the lifetime of O changes
from hours to several months, and therefore, O in the lower thermosphere becomes highly susceptible to
dynamical transport by winds (Brasseur & Solomon, 1984; Smith et al., 2010). Changes in O concentra-
tion in this region map to total neutral densities at higher altitudes in the thermosphere as O becomes
the major species above 200 km. It is also known that the electron density in the F region ionosphere is
approximately proportional to O/N2 because O acts as a source of free electrons while N2 acts as the sink
(Shimazaki, 1965, 1966).

In the upper thermosphere, a hemispheric asymmetry in the distribution of species is observed in solstice
conditions. Higher concentrations of lighter species, for example, O and He are observed in the winter
hemisphere, also called the “winter bulge,” whereas heavier species (e.g., O2 and N2) are concentrated in
the summer hemisphere (e.g., Johnson, 1964, 1973; Johnson & Gottlieb, 1970, 1973; Keating & Prior, 1968;
King, 1964; Mayr et al., 1978; Reber et al., 1968). Two processes that are thought to be responsible for this
redistribution are horizontal transport across the hemispheres and vertical transport. In the thermosphere,
meridional wind circulation is dominated by interhemispheric winds from summer to winter due to the
temperature gradient arising from asymmetrical solar heating between the hemispheres. Numerous studies
(Cageao & Kerr, 1984; Mayr et al., 1978) have put forward the horizontal transport of O into the winter hemi-
sphere by the meridional winds as the primary reason for the winter bulge. In the middle thermosphere, the
vertical winds in the summer are largely upward whereas the vertical winds in the winter hemisphere are
downward. This causes vertical transport of the species such that in the summer hemisphere, upward winds
result in decrease of lighter species and increase of heavier species (Burns et al., 1989; Hays et al., 1973;
Jones Jr. et al., 2018; X. Liu et al., 2014; Reber & Hays, 1973; Rishbeth, 1998). The opposite happens in the
winter hemisphere resulting in a relative increase of lighter species and decrease of heavier species. The
importance of one mechanism versus the other (i.e., horizontal vs. vertical transport) is still under investiga-
tion. Fuller-Rowell (1998) linked the two mechanisms by describing the mixing to be similar to a huge eddy,
calling it the “thermospheric spoon.” Sutton (2016) found that both phenomena are inherently linked with
one another with convergent horizontal motion increasing downwelling and divergent motion increasing
upwelling, thereby transporting light constituents both horizontally and vertically simultaneously.

In the mesosphere, the meridional circulation is in the same direction, from summer to winter, but driven
by a different mechanism. Large westward gravity wave drag in the winter hemisphere, and eastward gravity
wave drag in the summer hemisphere causes the circulation to be from summer to winter through Coriolis
force (Qian & Yue, 2017). Smith et al. (2010) used O mixing ratio at 0.0046 hPa (∼84 km) from the Sound-
ing of the Atmosphere using Broadband Emission Radiometry (SABER) instrument to show that there is
a winter maximum in O which is likely linked to the abovementioned gravity wave driven downwelling in
the winter. However, they observed the opposite hemispheric distribution at a lower pressure, 0.0008 hPa
(∼94 km) with higher O mixing ratio in the summer hemisphere and lower in the winter hemisphere. The
greatest variation was found to be at midlatitudes with the phase of midlatitude variation reversing between
84 and 94 km. The level of reversal was found to be at 0.001 hPa (∼93 km). The higher summer atomic
oxygen concentration may be an indication that the summer upwelling circulation cell has reversed and
there is a downward circulation cell above the mesopause (∼83–89 km) (Smith et al., 2010). Another rea-
son may be enhanced molecular diffusion of O due to higher temperatures from higher altitudes (Smith
et al., 2010). A similar reversal was also observed by Russell et al. (2004) using Wind Imaging Interfer-
ometer (WINDII) data and Sheese et al. (2011) using Optical Spectrograph and Infrared Imaging System
(OSIRIS) data. Qian et al. (2017) found evidence of lower thermospheric winter to summer circulation
using WACCM-X and SABER CO2 data citing convergence in summer and divergence in winter about
10 km above the mesopause. It was explained to be forced by gravity waves (Lindzen, 1981; H.-L. Liu, 2007;
Rezac et al., 2015; Smith et al., 2011). It is possible that this circulation is responsible for the distribution of
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atomic oxygen observed by Smith et al. (2010). Qian and Yue (2017) studied the impact of the lower ther-
mospheric winter-to-summer circulation on the upper thermosphere by forcing the meridional and vertical
winds of the NCAR Thermosphere-Ionosphere-Electrodynamics General Circulation Model (TIE-GCM)
(Qian et al., 2014; Richmond et al., 1992, and references therein) in the altitude range of ∼97–110 km toward
a winter-to-summer circulation. They found that upwelling decreases the upper thermospheric O/N2 in
the winter hemisphere, whereas, downwelling increases it in the summer hemisphere, thus reducing the
gradient between the two hemispheres.

This study reports the impact of changing the distribution of the lower thermospheric atomic oxygen on
the upper thermosphere. This is done by changing the lower boundary condition for atomic oxygen in the
Global Ionosphere Thermosphere Model (GITM) from an empirical model (mass spectrometer incoherent
scatter, MSIS) to a whole atmosphere model (WACCM-X). MSIS and WACCM-X have oppositely oriented
atomic oxygen distributions in latitude, with WACCM-X having a distribution that is more consistent with
observations. This is done while keeping other species' number densities, temperature, and winds constant
at the model lower boundary. This is different from Qian and Yue (2017) because our goal is to explain the
mechanisms that are involved in lower-upper thermospheric coupling in the context of lower thermospheric
O concentration rather than the winter-to-summer circulation.

2. Methodology
2.1. Models
2.1.1. GITM
GITM is a physics-based three-dimensional spherical model that simulates the thermosphere and iono-
sphere by determining the density, momentum, and energy self-consistently (Ridley et al., 2006). GITM
explicitly solves for the neutral densities of O, O2, N(2D), N(2P), N(4S), N2, NO, and He; and ion species
O+(4S), O+(2D), O+(2P), O+

2 , N+,N+
2 , NO+, and He+. It uses a stretched altitude grid from 100 to 600 km

that allows for nonhydrostatic conditions to exist (Deng et al., 2008). The vertical grid spacing is less than
3 km in the lower thermosphere and over 10 km in the upper thermosphere. It allows different models of
high-latitude electric fields, auroral particle precipitation, and solar EUV inputs to be used. Here, we use
the Weimer model (Weimer, 2005) for the high-latitude potential, FISM EUV empirical model (Chamberlin
et al., 2008), and NOAA POES Hemispheric Power-driven model (Fuller-Rowell & Evans, 1987) as an
estimate of power deposited in the polar regions by energetic particles.
2.1.2. MSIS Radar
In its default configuration, GITM uses the MSIS radar model, NRLMSISE-00 (Hedin, 1983, 1987, 1991;
Picone et al., 2002) as the thermospheric lower boundary condition on the number densities and temper-
ature. NRLMSISE-00 is an empirical model that uses Fourier-modulated spherical harmonics in latitude,
longitude, and time, and Bates-Walker (Walker, 1965) and cubic spline fits in the vertical to numerous satel-
lite, ground based and rocket observations. NRLMSISE-00 has been widely used to understand vertical
coupling between the lower atmosphere and the IT system (Fuller-Rowell, 1998; H.-L. Liu et al., 2010; Qian
et al., 2018; Weimer et al., 2018; Yue et al., 2019). Since it is an empirical model, it gives a good estimate of
neutral densities and temperature for average conditions where observations exist. The inputs to MSIS are
the solar flux proxy, F10.7, and geomagnetic activity level (Ap).
2.1.3. WACCM-X
WACCM-X is also a physics-based model, covering the whole atmosphere starting from the surface to
2.5 × 10−9 hPa or ∼500k̇m in altitude (H.-L. Liu et al., 2010, 2018). It is based on the NCAR WACCM (Garcia
et al., 2007; Marsh et al., 2013), which in turn is based on the NCAR Community Atmosphere Model
(CAM) (Lin, 2004). In this study, we use the specified dynamics configuration of WACCM-X, also known
as SD-WACCM-X. In this configuration, dynamical fields (temperature, zonal and meridional winds, and
surface pressure) are specified in the troposphere and stratosphere from the Modern Era Retrospective
Analysis for Research and Applications (MERRA) (Rienecker et al., 2011). WACCM-X can also be run
without constraining the troposphere and stratosphere, also usually referred to as the free-running mode.
Since we are only using the results from SD-WACCM-X here, we will refer to these simulations as WACCM-X.
The horizontal resolution (latitude × longitude) of the model is 1.9◦ × 2.5◦, and the time step is 5 min.
A detailed description of WACCM-X is given in H.-L. Liu et al. (2010) and H.-L. Liu et al. (2018). Hourly
averaged values are used in our study. WACCM-X is used as the lower boundary for GITM and the simulation
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Table 1
Parameter Values at the Lower Boundary—GITM w/ MSIS and GITM
w/ WACCM-X

Parameter Value
Temperature, T 150 K
Zonal winds, U 0 m/s
Meridional winds, V 0 m/s
Molecular oxygen, O2 1 × 1018 m−3

Molecular nitrogen, N2 1 × 1019 m−3

Nitric oxide, NO 1 × 1014 m−3

results are compared with MSIS-driven GITM. The version of Commu-
nity Earth System Model (CESM) that is used in this study is 2.0.

WACCM-X solves the Navier-Stokes equations in pressure coordinates,
whereas GITM solves them in altitude coordinates. WACCM-X outputs
the mixing ratio for different species, whereas GITM uses number densi-
ties as boundary conditions. Therefore, the total neutral number density
in WACCM-X is calculated from pressure and temperature fields (using
the ideal gas law). WACCM-X also outputs the altitude corresponding
to each pressure level at every grid cell. The total number densities
and atomic oxygen mixing ratio in pressure coordinates are converted
to altitude coordinates by linearly interpolating them to 95, 97.5, and
100 km, thus putting them on a uniform altitude grid. The total num-
ber density is multiplied by the mixing ratio of atomic oxygen (also in
altitude coordinates) to get number densities for atomic oxygen on the
altitude grid.

2.2. GITM Simulations

Atomic oxygen number densities from MSIS and WACCM-X were used as inputs at the lower boundary of
GITM. WACCM-X is expected to have significantly more variability owing to nonmigrating tides, planetary
waves and gravity waves that propagate through the lower atmosphere to the thermosphere. On the other
hand, because MSIS is an empirical model, it should provide a good estimate of average conditions but may
not be as accurate in representing the impact of forcing from above (e.g., magnetospheric inputs) or forcing
from below (e.g., atmospheric gravity waves). Also, at these altitudes, MSIS has only the mean component
and migrating tides with a small dependence on F10.7 and Ap. It should be noted that real time-varying
geospace conditions are used as inputs in these simulations.

To specify the lower boundary condition in GITM, two ghost cells below 100 km are used. In these cells,
state values are specified. In order to not drive constant acceleration, a hydrostatic solution is used, where
the density is set in the cell closest to 100 km (second cell), and the density in the lower cell is derived. In
both the simulations, the temperature in both cells and across the globe were held constant at 150 K, while
all components of the winds were held to be zero. For O2, N2, and NO, the number densities in the second
cell are constant across the globe and specified in Table 1. For the minor species, He and N(4S), MSIS is used
to specify the number densities in both the simulations. For O, a zero gradient in altitude is used since O
peaks in this region. Therefore, the O number densities in the first cell are same as in the second cell. O is
allowed to have horizontal structure, such that, for the GITM w/ MSIS simulation, MSIS is used to specify
the O number densities, whereas, for the GITM w/ WACCM-X simulation, the abovementioned linearly
interpolated O number densities are used.

Hourly averaged WACCM-X O number densities are used. Since the time steps in GITM are much smaller
than the 1 hr time resolution of WACCM-X output, WACCM-X number densities are linearly interpolated in
time between every hour. These number densities are linearly interpolated to GITM's second cell's altitude
and grid locations. MSIS O number density is computed at each GITM time step and location. The only dif-
ference between the two runs, GITM w/ MSIS and GITM w/ WACCM-X is the atomic oxygen between 95 and
100 km. This was specifically done to explore the effect of the O number density in the lower thermosphere
on the system.

Results from the two simulations spanning 21 days, 15 January 2010 to 4 February 2010 are discussed here.
Since, it took around 9 days for the model to achieve a nearly steady globally averaged O density at 200 km
altitude, results from the last 12 days, 24 January 2010 to 4 February 2010 are discussed. The two simulations
are referred to as GITM w/ MSIS and GITM w/ WACCM-X. This time period is chosen because it is a geo-
magnetically quiet time around solstice that results in a hemispherically asymmetric lower thermospheric
O number density between MSIS and WACCM-X. Simulations results from 24 June 24, 2010 to 5 July 2010
are also discussed here.

2.3. Data

In this study, SABER data are used to validate the lower thermospheric atomic oxygen in WACCM-X. We also
use Global Ultraviolet Imager (GUVI) O/N2 to validate the integrated thermospheric O/N2 in GITM once
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the lower boundary atomic oxygen is changed from MSIS to WACCM-X. A brief description of the SABER
and GUVI instruments is provided below for the interested reader.
2.3.1. SABER
Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) is an instrument on
Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics (TIMED) satellite. Its primary goal is to
quantify the energy budget of mesosphere and lower thermospheric (MLT) (Mlynczak, 1996, 1997). TIMED
was launched in 2001 in a 74.1◦ inclination orbit at an altitude of 630 km (Russell III et al., 1999; Yee, 2003).
It has a yaw period of ∼60 days in which the latitudinal coverage alternates between 82◦N to 53◦S and 53◦N
to 82◦S. SABER has a vertical resolution of ∼2 km and horizontal resolution of ∼300 km depending on the
limb geometry. SABER takes limb scan profiles of 10 spectral channels between 1.27 and 17 μm, indicating
the kinetic temperature of O and CO2 in the MLT region (∼65–105 km) (Rezac et al., 2015).

O is generated by photodissociation of molecular oxygen by solar UV radiation and has two very bright fine
structure lines, 63.184 μm (4.75 THz) and 145.525 μm (2.06 THz). However, both of these wavelengths are
particularly hard to measure with the current state-of-the-art satellites instruments. Past and present tech-
nologies require a detection system cooled to cryogenic 4 K temperatures, which poses a significant mission
cost and lifetime overhead. D. L. Wu et al. (2016) described an emerging technique, THz limb sounder (TLS)
using a Schottky-diode-based receiver which has good radiometric sensitivity at noncryogenic temperature.
Studies over the last few decades have used balloons (Lin et al., 1987; Mlynczak et al., 2004), rocket borne in
situ observations (Gumbel, 1997; K. Grossmann & Offermann, 1978; Offermann, 1974; von Zahn, 1967) and
space station observations (K. U. Grossmann et al., 2000). Since there are no global observations made by
observing radiant emission of O directly, SABER calculates O using indirect methods (Mlynczak, 1996, 1997;
Rezac et al., 2015). During the daytime, O is derived using the emission of ozone (O3) at 9.6 μm assuming
that there is an equilibrium between the photolysis of O3 and the recombination of O and O2. During night,
it is inferred from the emission of the vibrationally excited Meinel OH band, which is formed by the reaction
between atomic hydrogen (H) and O3. This measurement assumes that there is an equilibrium between this
reaction and the recombination of O and O2 (Mlynczak et al., 2013, 2018).
2.3.2. GUVI
The GUVI is a far ultraviolet hyperspectral imager aboard the TIMED satellite, measuring the terrestrial
airglow from 120 to 180 nm (Christensen et al., 2003). Some of the objectives of GUVI are to make accurate
observations of thermospheric temperature and composition and to understand the response of thermo-
sphere ionosphere system to various energy fluxes. It measures in five far ultraviolet bands corresponding
to emission features of H (121.6), OI (130.4), OI (135.6), and the N2 Lyman-Birge-Hopfield (LBH) bands
(Christensen et al., 1994, 2003; Paxton et al., 1999). In the imaging mode, a scan mirror subsystem (Humm
et al., 1998, 1999) scans the instantaneous field of view cross-track of the satellite once every 15 s. The scan
begins on the limb and covers 140◦, that is, 80◦ from nadir above the limb on the cold side of the satellite
(away from the Sun) to 60◦ toward the warm side (Paxton et al., 2004). Since December 2007 when the scan
mirror failed, GUVI only operates in the spectral stare mode at about 47◦ from nadir. In this mode, data are
recorded continuously from all 176 spectral pixels for each of the 14 spatial pixels (Meier et al., 2014). The
height-integrated O/N2 ratio referenced at a N2 column-integrated number density of 1017 cm−2 is obtained
from the disk 135.6 nm and LBHS day glow data (Y. Zhang et al., 2004, 2014).

3. Results and Discussion
3.1. Lower Boundary Comparison

Figure 1 shows a comparison between atomic oxygen number densities of GITM w/ MSIS (Figure 1a) and
GITM w/ WACCM-X (Figure 1b) at 100 km, averaged over the last 12 days of the simulation. For GITM
w/ MSIS, O is higher in the northern winter whereas for GITM w/ WACCM-X, O is higher in the southern
summer. Figure 1c shows the difference between panels (b) and (a), that is, GITM w/ WACCM-X - GITM
w/ MSIS. The absolute difference is larger in the summer hemisphere.

In order to determine which simulation result is closer to the observed O distribution, Figure 2a shows
SABER atomic oxygen number densities at 100 km gridded in 4◦ × 4◦ bins, averaged for January from
2002–2017. Figure 2b shows the number of measurements in each bin. The high latitudes have lower num-
bers of measurements compared to middle-lower latitudes, because of the inclination of TIMED satellite.
Long-term averaging is helpful in reducing the uncertainty associated with the decrease in abundance of
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Figure 1. (a) Atomic oxygen for GITM w/ MSIS at 100 km averaged for time periods 24 January 2010 to 4 February 2010. (b) Similar to (a) but for GITM
w/ WACCM-X. (c) Averaged difference in atomic oxygen at 100 km: GITM w/ WACCM-X (b)—GITM w/ MSIS (a). Note the thicker black line roughly parallel
to the equator. This is the zero line where no difference is seen.

daytime ozone due to photolysis. The atomic oxygen number densities are larger in the summer (Southern)
Hemisphere which is similar to Figure 1b for GITM w/ WACCM-X. The summer hemisphere number den-
sity maximum is at different latitudes, with the SABER maximum occurring at higher latitudes than the
WACCM-X maximum. Because of the lower number of SABER measurements at high summer latitudes,
there is a greater statistical uncertainty associated with the measurements. Another source of uncertainty
is the accuracy of the temperature at 100 km, through the recombination rate coefficient in the steady-state
chemical expression used to derive atomic oxygen from ozone (Mlynczak et al., 2013). Lastly, SABER day-
time ozone has a likely high bias as reported by Smith et al. (2013). Thus, the absolute magnitude of SABER
data is different from both MSIS and WACCM-X. SABER values are ∼3 times the model values, resulting
in a larger gradient between the hemispheres. Using WACCM-X O number densities as an approximation
for the true O number density distribution, this study focuses on explaining the large-scale effects of the O
number density distribution at the mesopause on the thermosphere.

As an aside, MSIS was developed using data from a wide variety of in situ satellite measurements in the upper
themosphere (Hedin, 1987, 1991; Picone et al., 2002) and did not include measurements of O in this region.
At around 100 km, a hemispheric gradient in the atomic oxygen number density in MSIS is predicted, with
lower O number density in the summer hemisphere, similar to the observations in the middle-upper ther-
mosphere (Reber & Hays, 1973). However, in the region between 90 and 150 km, limited observations were
available, primarily being temperature and total neutral density measurements inferred from rockets and
incoherent scatter radars. NRLMSISE-00 did not include the SABER measurements in its fitting procedure
because TIMED hadn't been launched yet. In MSIS, below the turbopause (∼105 km), the number densi-
ties were extrapolated using the average molecular weight of the atmosphere assuming a perfectly mixed
atmosphere along with a correction factor to account for chemical and dynamical flow effects on various
species. Below the turbopause, these chemical dynamical correction factors imply that the atmosphere is
not fully mixed until ∼80 km or lower. Between 120 and 105 km, the number densities are a meld of their
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Figure 2. (a) Atomic oxygen for SABER in number m−3 at 100 km for the month of January binned together for the
years 2002–2017. The bin size is 4◦ × 4◦. (b) Number of measurements in each bin for the month of January for
2002–2017.

fully mixed and diffusively separated values along with the correction factor. The correction factor for O
does not take into account the dynamical/chemical effects that lead to larger summer atomic oxygen, thus
explaining the similar hemispheric gradient of atomic oxygen number density in the upper as well as the
lower thermosphere.

However, O departs from diffusive and fully mixed equilibrium in the mesosphere and lower thermosphere
due to chemistry, eddy mixing, and dynamic transport, which is highlighted by the incorrect O distribution
in MSIS, as compared to both WACCM-X results and SABER observations. One of the reasons for the O
reversal in SABER data is suggested by Smith et al. (2010) through the effect of temperature and molecular
diffusion. Higher temperatures in the summer hemisphere may lead to molecular diffusion of O from higher
to lower altitudes resulting in high O concentration. The transport of O via lower thermosphere winter to
summer circulation suggested by Qian and Yue (2017) and Rezac et al. (2015) may also be the reason for this
reversal. Another contribution to high summer O can be from the eddy turbulence or eddy diffusion. Eddy
diffusion is a macroscopic description of flow induced by the gravity wave motion (Hodges, 1969). However,
previous studies suggest that other tidal and wave activity can contribute to the mixing and turbulence in
this region (Jones Jr. et al., 2017; Salinas et al., 2016). Numerous observational (e.g., Fukao et al., 1994;
Kirchhoff & Clemesha, 1983; Sasi & Vijayan, 2001) and modeling studies (e.g., Pilinski & Crowley, 2015;
Qian et al., 2009; Salinas et al., 2016) have found that eddy diffusion coefficient is larger in summer and
smaller in winter. However, the exact magnitude of the eddy diffusion term near the turbopause still remains
elusive. We have yet to achieve a universal model for specifying the eddy diffusion coefficient. It is possible
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Figure 3. (a) The contours indicate the zonally averaged meridional wind in m/s for GITM w/ MSIS averaged for 24 January 2010 to 4 February 2010. Positive
values indicate northward wind while negative values indicate southward wind. The arrows signify a vector sum of meridional and vertical winds (scaled by
×50). (b) Similar to (a) but for GITM w/ WACCM-X. (c) Averaged difference in meridional winds, GITM w/ WACCM-X (b)—GITM w/ MSIS (a). Note the
thicker black contour line. This is the zero line where no difference is seen.

that larger eddy diffusion during summer leads to downward transport of O into the lower thermosphere
resulting in the increase of summer O/N2.

3.2. Effect on Lower-Upper Thermosphere

Figure 3 shows GITM zonally averaged meridional winds in the thermosphere from 100 to 275 km.
Figures 3a and 3b are the winds for GITM w/ MSIS and GITM w/ WACCM-X, respectively. Winds vectors
comprising of both vertical (scaled by 50) and meridional winds components are overlaid on the contour
plots. The general circulation remains similar between the two simulations. Between 100 and 120 km, winds
are equatorward and above 160 km the circulation is dominated by summer to winter winds with upwelling
in summer and downwelling in winter at middle-high latitudes.

Figure 3c is the difference between the zonally averaged meridional winds, GITM w/ WACCM-X - GITM
w/ MSIS. As mentioned previously, the only difference between the two simulations is the atomic oxygen
distribution below 100 km. The difference in Figure 3c is positive in the region between 100 and 120 km. This
indicates that GITM w/ WACCM-X has larger equatorward winds in the summer (Southern) Hemisphere,
whereas GITM w/ MSIS has larger equatorward winds in the winter (Northern) Hemisphere. This is because
of the difference in latitudinal O number density gradient between the two simulations such that, the winds
induced by the lower boundary O gradient superimpose on the main equatorward circulation cells. Thus,
because of the opposite O distribution, the hemisphere with larger equatorward winds simply reverses.
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Figure 4. (a) The contours indicate the force terms of northward momentum equation in m/s2 for GITM w/ MSIS, zonally averaged for 24 January 2010 to 4
February 2010. (b) Similar to (a) but for Coriolis force. (c) Similar to (a) but for pressure gradient force. Positive values indicate that the pressure is increasing
from north to south. (d) Similar to (a) but for Ion Drag. (e) Averaged difference in meridional pressure gradient forces, GITM w/ WACCM-X—GITM w/ MSIS.
Note the thicker black contour line. This is the zero line where no difference is seen.

The forces affecting the winds in the thermosphere can be understood by investigating the contribution
of force terms of the horizontal momentum equation. The northward momentum equation in GITM is as
follows (Ridley et al., 2006):
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Figure 5. (a) The contours indicate the temperature in K for GITM w/ MSIS zonally averaged for 24 January 2010 to 4 February 2010. (b) Similar to (a) but for
GITM w/ WACCM-X. (c) Zonally averaged percentage difference in temperatures GITM w/ WACCM-X (b)—GITM w/ MSIS (a). Note the thicker black contour
line. This is the zero line where no difference is seen.

where 𝜃 denotes the north latitude, 𝜙 denotes east longitude, r is the radial distance from the center of the
Earth, u is the neutral velocity, Ω is the angular velocity of the planet, kb is the Boltzmann constant, mn is
the number density weighted average mass, T is the neutral temperature, and 𝜌 is the mass density. ℱ𝜃 is
the force due to ion-neutral friction and viscosity in 𝜃 direction. The superscript for each term is for notation
purposes only. Terms (1), (2), and (3) on the right represent the advective terms from the total derivative of
velocity. Terms (7) and (8) are the velocity terms due to the spherical coordinates. Terms (4) and (5) represent
the force arising from pressure gradient. Terms (9) and (10) are the centrifugal and Coriolis force terms,
respectively.

Figure 4 shows the zonally and temporally averaged centrifugal (Figure 4a), Coriolis (Figure 4b), pres-
sure gradient (Figure 4c), and ion drag (Figure 4d) forces from GITM w/ MSIS. It should be noted that
these figures represent the force terms on the right side of Equation 1 with the appropriate sign. Clearly,
on average, the centrifugal and pressure gradient forces dominate this region of the thermosphere. Below
120 km, near the boundary of the model, the pressure gradient force in Figure 4c is weak owing to a nearly
constant boundary condition on number densities (except O), temperatures, and winds. Thus, the two equa-
torward circulation cells between 100 and 120 km are driven by centrifugal force shown in Figure 4a. In
the middle thermosphere, between 125 and 200 km, the winds can develop creating a pressure bulge and
can cause a redistribution of the temperature and densities to create oppositely directed forces that cancel
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Figure 6. (a) The contours indicate the percent adiabatic heating per day (normalized by temperature) for GITM w/ MSIS zonally averaged for 24 January
2010—4 February 2010. (b) Similar to (a) but for GITM w/ WACCM-X. (c) Zonally averaged difference in adiabatic heating GITM w/ WACCM-X (b)—GITM
w/ MSIS (a). Note the thicker black contour line. This is the zero line where no difference is seen.

the centrifugal force. A more-precise boundary condition on the pressure would have a bulge at the equa-
tor, such that the latitudinal gradient in pressure more closely balances the centrifugal force (i.e., an
oblate-spheroid atmosphere instead of a perfect sphere). We refer to this as the poleward directed pressure
gradient force. Above this altitude range, the pressure gradient force is from the summer to winter because
of the temperature gradient, driving the main circulation. Coriolis force shown in Figure 4b is weak and acts
opposite to the centrifugal force. Ion drag shown in Figure 4b is also weak and has a significant magnitude
only above 200 km, where it acts mostly against the main circulation.

Figure 4e shows the difference between the pressure gradient forces of GITM w/ WACCM-X and GITM
w/ MSIS. The differences corresponding to other force terms are negligible and are not shown here. Between
100 and 120 km, a small difference exists between the simulations which can be largely attributed to
the density gradient difference. This difference results in the wind differences shown in Figure 3c. GITM
w/ WACCM-X (GITM w/ MSIS) has weaker pressure gradient force in the summer (winter) hemisphere.
More O at summer high latitudes in GITM w/ WACCM-X weakens the poleward directed pressure gradient
force which increases the acceleration due to centrifugal force, resulting in stronger winds as compared to
GITM w/ MSIS. Similarly, GITM w/ MSIS has weaker poleward directed pressure gradient force and larger
acceleration due to centrifugal force in the winter hemisphere. The wind difference between 140 and 200 km
altitude will be discussed later. It is important to note that the change in lower boundary O only changes
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Figure 7. (a) The contours indicate the difference in percent advective heating per day (normalized by temperature), GITM w/ WACCM-X—GITM w/ MSIS,
zonally averaged for 24 January 2010 to 4 February 2010. (b) Similar to (a) but for radiative heating. Note the thicker black contour line. This is the zero line
where no difference is seen.

the magnitude of the winds and does not change the direction of the wind. The transition to the upper
thermospheric summer to winter circulation starts above 120 km, resulting in high atomic oxygen in the
winter hemisphere above this altitude in both the simulations. This was also observed by K. U. Grossmann
et al. (2000) at an altitude of 140 km using CRISTA experiments.

Figure 5 shows the zonally averaged temperature for the two simulations. Figures 5a and 5b are the tempera-
ture plots for GITM w/ MSIS and GITM w/ WACCM-X, respectively, while Figure 5c is the percent difference
between the two. The temperature shows a similar pattern between Figures 5a and 5b. The temperatures are
the lowest in the high-latitude region in the 100–120 km altitude range. This can be attributed to the adia-
batic and advective cooling due to the equatorward circulation cells as shown previously in Figure 3. Above
this altitude, there is a sharp increase in the temperature with temperatures rising up to 1,000 K in summer
(Southern) Hemisphere. As seen in Figure 5c, the temperature difference between the two simulations starts
at altitudes slightly above 100 km. In the summer hemisphere, GITM w/ WACCM-X has a lower tempera-
ture, while in the winter hemisphere, GITM w/ MSIS has a lower temperature. The temperature difference
is as high as 5% (35 K) in the Southern Hemisphere. Thus, reversing the O number density distribution at
the lower boundary leads to a change in lower thermospheric temperature, that is, lower thermospheric
temperatures occur at latitudes with higher O concentrations.

Figures 6a and 6b show the zonally averaged percent adiabatic heating per day (normalized by tempera-
ture) for GITM w/ MSIS and GITM w/ WACCM-X, respectively. For both the simulations the overall heating
pattern remains similar. In the lower thermosphere, between 100 and 120 km, the high latitudes have adi-
abatic cooling, and the lower latitudes have adiabatic heating. The reason for this is the equatorward wind
cells as mentioned before and shown in Figure 3. Above 125 km, the summer hemisphere experiences adi-
abatic cooling (due to diverging winds), and the winter hemisphere gets warmer (due to converging winds)
because of the summer to winter circulation. The difference between the two simulations is shown in
Figure 6c. Between 100 and 120 km, in the summer hemisphere, GITM w/ WACCM-X has more adiabatic
cooling because of larger equatorward winds. Similarly, in the winter hemisphere, GITM w/ MSIS has a
tiny bit more adiabatic cooling. Above this altitude region, the adiabatic heating difference shows a roughly
similar pattern as the wind difference of Figure 3c. In the summer hemisphere, except at middle-high
latitudes, GITM w/ WACCM-X has more adiabatic cooling while in the winter hemisphere, GITM w/ MSIS
has more adiabatic cooling. It should be noted that adiabatic heating differences in Figure 6c do not exactly
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Figure 8. Height profile for (a) temperature (K), (b) atomic oxygen (m−3), (c) molecular nitrogen (m−3), (d) O/N2 averaged for 24 January 2010 to 4 February
2010. The x axis indicates the values of each parameter while y axis is the altitude. The red (blue) curves are for GITM w/ WACCM-X (MSIS). Each parameter is
divided into Northern and Southern Hemispheres, and cosine-weighted averaged for latitudes 30–90◦. The black vertical line in (d) indicates where O/N2 is 1.

correspond to the temperature difference of Figure 5c. This is because of the contribution of other terms of
the energy equation.

Figures 7a and 7b show the percent difference between the two simulations for advective and radiative heat-
ing per day (normalized by temperature), respectively. For both GITM w/ MSIS and GITM w/ WACCM-X,
advective heating shows similar heating patterns (not shown here), and largely follows the meridional wind
patterns of Figure 3. Meridional winds in the upper thermosphere advect fluid parcels of higher tempera-
ture from summer to winter, resulting in heating in the winter hemisphere, whereas equatorward winds in
the lower thermosphere advect fluid parcels of lower temperature from higher latitudes, resulting in cooling
at lower latitudes. The difference between the two simulations as shown in Figure 7a is small relative to the
adiabatic heating differences and largely follows the meridional wind differences at midlatitudes of Figure 3.
The radiative cooling comes from a combination of CO2 cooling in the 100–120 km altitude range, NO cool-
ing in the 100–150 km range and O cooling above that. In the summer hemisphere, GITM w/ WACCM-X
has larger O and therefore, less total radiative heating (more cooling), and in the winter hemisphere, GITM
w/ MSIS has larger O and thus less radiative heating. The sum of these three terms, Figures 6c, 7a, and 7b
largely explains the temperature difference observed in Figure 5c, as the radiative heating mostly
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Figure 9. Height profile for the percentage difference in GITM w/ WACCM-X—GITM w/ MSIS for temperature (red),
O (black), N2 (green), electron density (blue). These profiles are averaged for 24 January 2010 to 4 February 2010 and
cosine-weighted averaged for latitudes 30–90◦ and divided into Northern and Southern Hemispheres.

compensates for the anomalous differences (e.g., GITM w/ MSIS has larger adiabatic cooling in summer
middle-high latitudes) in Figure 6c. The contribution of other terms of the energy equation are analyzed as
well (not shown here): (a) The difference between the two simulations for auroral heating is negligible in
comparison to the abovementioned terms, (b) chemical heating difference has a significant magnitude and
reinforces the temperature differences in Figure 5c, (c) the molecular conduction heating and Joule heating
differences have an opposite distribution as the other terms and mainly contribute in reducing the magni-
tude of the overall heating difference. The sum of these individual heating terms do not exactly correspond
to the temperature distribution of Figure 5c, indicating the nonlinearity of the thermospheric dynamics.

Figure 8 shows the mean height profiles of temperature, O, N2, and O/N2 separated into Northern and
Southern Hemispheres averaged poleward of ±30◦ latitude. The red and blue curves are for GITM w/
WACCM-X and GITM w/ MSIS simulations, respectively. Larger differences between the curves exist in the
summer (Southern) Hemisphere for all parameters. Figure 9 shows the percentage difference between the
two simulations for temperature, O, N2, and the electron density. Figures 8a and 9 show that the difference in
temperature between the two simulations remains roughly constant with altitude. The effect of the change
in temperature on neutral number densities can be understood using diffusive equilibrium as a rough guide
(e.g., Schunk & Nagy, 2009).

ns(z) = ns(zo) ×
Ts(zo)
Ts(z)

× e− ∫ z
zo

(dz′)
Hs , (2)

Hs =
kBTs

msg
(3)

where ns(z) and Ts(z) are the number density and temperature at altitude z, respectively. The parameters
ns(zo) and Ts(zo) are the number density and temperature at a reference altitude zo, respectively. Hs is the
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Figure 10. (a) The contours indicate the O/N2 for GITM w/ MSIS averaged for 24 January 2010 to 4 February 2010 using a logarithmic color scale. (b) Similar
to (a) but for GITM w/ WACCM-X. (c) Averaged difference in O/N2 GITM w/ WACCM-X (b)—GITM w/ MSIS (a). Note the thicker black contour line. This is
the zero line where no difference is seen.

scale height for each species and is directly proportional to temperature, Ts and inversely proportional to
the mass of the species, ms. kB is the Boltzmann constant and g is the acceleration due to gravity. We can
break Equation 2 into two contributing terms, the temperature ratio term, Ts(zo)

Ts(z)
, and the scale height term,

e− ∫ z
zo

(dz′)
Hs (This is just for nomenclature; the scale height term depends on temperature, too).

For N2 (assuming zo to be at 100 km), number densities are the same between the two simulations at 100 km
(ns(zo)) and the entire difference arises because of different distributions of O at the boundary. The temper-
ature at the lower boundary (Ts(zo)) is also the same between the simulations. In the Southern Hemisphere,
GITM w/ WACCM-X has lower temperature (Ts(z)) (Figure 5) resulting in larger temperature ratio term,
causing an increase in N2 number densities. Whereas, the scale height term is smaller causing a decrease
in N2 number densities. The effect of these two terms cancel each other and as a result, the difference in
N2 number densities between the two simulations is small in the lower thermosphere. In the upper ther-
mosphere, the difference in the temperature ratio terms between the simulations remains the same, while
the difference in the scale height terms becomes larger because of the integrated effect of exponential. As a
result, N2 decreases faster for GITM w/ WACCM-X in the Southern Hemisphere, because of lower temper-
ature and smaller scale height. Therefore, the difference in N2 between the two simulations increases with
height as seen in Figure 9. The percentage difference of N2 reaches about ∼10% in the Northern Hemisphere
and ∼−30% in the Southern Hemisphere.

For the atomic oxygen profile in Figure 8b, the lower boundary number density term (ns(zo)) is important
because the two simulations have different O at the lower boundary. The difference is as large as ∼50%

MALHOTRA ET AL. 15 of 22



Journal of Geophysical Research: Space Physics 10.1029/2020JA027877

Figure 11. Integrated O/N2 with a reference altitude of 1017 cm−2 for (a) GITM w/ MSIS, (b) GITM w/ WACCM-X, (c) TIMED GUVI data. The O/N2 in GITM
are sampled at GUVI times and locations.

at 100 km as seen in Figure 9. Moreover, the contribution of the temperature ratio term reinforces the dif-
ference in ns(zo) between the two simulations. In the lower thermosphere, at southern latitudes, GITM
w/ WACCM-X has larger ns(zo) and larger temperature ratio term because of the lower temperature, which
results in increased O. However, in the upper thermosphere, as the scale height term becomes important,
a lower temperature and thus a lower scale height has the opposite effect on O as it acts to decrease the O
number densities faster (also observed for N2 above). Similarly, GITM w/ MSIS has higher temperature in
this hemisphere resulting in larger scale height and a slower decrease. Therefore, the difference between the
simulations reduces in magnitude with altitude in Figure 9. For the Northern Hemisphere, the difference
between ns(zo) ×

Ts(zo)
Ts(z)

at lower altitudes is small as also shown in Figure 1. In the lower thermosphere, this
term dominates. However, with increasing altitude, the effect of scale height causes the O number densities
for the two simulations to become very close in magnitude and eventually at higher altitudes causes the dif-
ference to reverse. It should also be noted that the lower thermosphere is dominated by dynamics and the
diffusive equilibrium reasoning here is used as a rough guide to understand the vertical profiles of different
species.

Figure 8d shows the height profiles for O/N2. O/N2 increases with altitude due to larger rate of decrease of
N2 as compared to O (N2 has smaller scale height because of its larger mass). In the Southern Hemisphere,
GITM w/ WACCM-X has larger O and smaller N2 resulting in larger O/N2 which affects the electron density.
In the Northern Hemisphere, the situation is reversed where GITM w/ MSIS has larger O/N2 and electron
density. Figure 9 also shows the percentage difference in height profile of electron density between the
two simulations. The difference ranges between 10% and 40% at F region altitudes and follows the O/N2
difference in both the hemispheres.

Contour plots for O/N2 are shown in Figure 10. Above ∼120 km, both simulations show similar patterns in
O/N2 with larger values in the winter hemisphere. This is indicative of the summer to winter circulation
shown in Figure 3. Figure 10c shows the percent difference between the two simulations. The difference is
as large as 60% between the two simulations in the lower thermosphere in the Southern Hemisphere. The
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Figure 12. Atomic oxygen (m−3) at 100 km averaged from 24 June 2010 to 5 July 2010 for (a) GITM w/ MSIS, (b) GITM w/ WACCM-X. (c) Atomic oxygen for
SABER in m−3 interpolated at 100 km for the month of January binned together for the years 2002–2017. The bin size is 4◦ × 4◦. (d) Averaged difference in O/N2
GITM w/ WACCM-X—GITM w/ MSIS for 24 June 2010 to 5 July 2010. Note the thicker black contour line. This is the zero line where no difference is seen.

effect of lower thermospheric O distribution superimposes on the overall O/N2 distribution in the upper
thermosphere, leading to increases in O/N2 in the hemisphere with larger lower thermospheric O. The effect
of using O number densities from WACCM-X is to decrease the overall O/N2 gradient between the two
hemispheres. This result is similar to that observed by Qian and Yue (2017). When comparing the global
averages, GITM w/ WACCM-X has higher O/N2, resulting in larger electron density.

Above 125 km, as shown in Figure 3, the winds are dominated by northward interhemispheric winds.
Figure 3c showed that the winds in the upper thermosphere are slower for GITM w/ WACCM-X in the
Southern Hemisphere and faster in the Northern Hemisphere. From Figure 10c, GITM w/ WACCM-X has
∼20–30% more O/N2 than GITM w/ MSIS in the equatorial region. This mainly comes from +∼20% in O and
−∼10% difference in N2. It can be observed from Figure 4e that GITM w/ WACCM-X has smaller northward
directed pressure gradient in most of the summer and winter hemisphere at midlatitudes and larger at higher
latitudes in the winter hemisphere. The latitudinal gradient of higher equatorial O in GITM w/ WACCM-X
leads to slower northward winds in the summer hemisphere and faster northward winds in the winter hemi-
sphere as compared to GITM w/ MSIS which has higher winter O. This change in interhemispheric winds
is in equilibrium with the reduced O/N2 gradient for GITM w/ WACCM-X. Because the thermosphere is
a nonlinear system, changes in densities, temperatures, and winds further affect the transport and density
distribution. Only the first-order impact of lower thermospheric O distribution on the upper thermosphere
is considered here.
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Figure 11 shows a comparison between integrated O/N2 for the two simulations and GUVI observations. As
mentioned previously, using GITM w/ WACCM-X decreases the gradient in O/N2 between the two hemi-
spheres. Figure 11 shows O/N2 is higher for GITM w/ WACCM-X in the Southern Hemisphere and lower
in the Northern Hemisphere as compared to GITM w/ MSIS. In both hemispheres, GITM w/ WACCM-X
matches with GUVI observations (Figure 11c) better. We would expect the correction of N2 and other param-
eters in the lower thermosphere to bring the model results even closer to the observations. It was shown by
Perlongo et al. (2018) that GITM has lower summer electron densities than the GPS TEC observations in
both the northern and southern midlatitudes. Using GITM w/ WACCM-X at the lower boundary, this will
potentially be corrected as the electron density depends on the O/N2.

When the opposite solstice (i.e., June) is considered, the opposite behavior is observed. Figure 12 shows
atomic oxygen distributions and O/N2 for the month of June. GITM w/ WACCM-X and SABER number
densities are similar in O distribution, although they are off in magnitude, while the MSIS-driven simulation
has the opposite gradient in O. Figure 12d shows the height profile of difference in O/N2 between the two
simulations. This is opposite of Figure 10c. Thus, the opposite O distribution in the lower thermosphere
affects both solstices in a similar, but opposite, way.

As mentioned above, the decrease in O/N2 gradient in GITM w/ WACCM-X is consistent with the results
obtained by Qian and Yue (2017). They explained the mechanism via vertical mixing due to lower thermo-
spheric winter to summer circulation but did not show the species distribution in the lower thermosphere
as a result of this circulation. Whereas this work starts with the species distribution in the lower thermo-
sphere to observe the impact on the upper thermosphere. It is found that the O distribution at the mesopause
affects the upper thermosphere in a more direct way than just through molecular diffusion: it impacts the
wind and temperature distributions which subsequently changes the scale heights of molecular species. It
is also found that using this distribution increases the global O/N2 which is opposite to the result obtained
by Qian and Yue (2017). However, this difference depends on the lower thermospheric species distribution
from WACCM-X in our study and thus will change depending on the variability of the phenomena leading
to this distribution.

4. Conclusions
Variations in O in the mesosphere and the lower thermosphere affect the composition and dynamics of
the upper thermosphere as it becomes a major species above 200 km. Previous studies (Rezac et al., 2015;
Russell et al., 2004; Smith et al., 2010) have shown that the summer hemisphere has higher atomic oxygen
concentration in the lower thermosphere (90–100 km). Qian et al. (2017) suggested that the lower thermo-
sphere winter to summer circulation is responsible for the high summer concentration of CO2 in this region.
In this study, we investigate the effect of the MLT O distribution on the composition and dynamics of the
middle-upper thermosphere using an ionosphere-thermosphere model, GITM. Conventionally, GITM uses
O distribution that is higher in winter from MSIS at its lower boundary. We change the lower boundary O
distribution to be higher in summer, as specified by WACCM-X, which also matches better with the obser-
vations from SABER. We find that the reversal of O hemispheric concentration changes the magnitudes of
the winds between 100 and 120 km due to the differences in pressure gradients. The hemisphere with larger
O number densities has larger equatorward winds resulting in adiabatic cooling in that hemisphere. Larger
radiative cooling in that hemisphere also leads to the cooling of that hemisphere. Other terms of the temper-
ature equation such as advective, chemical, auroral, Joule, and molecular conduction heating also change
and affect the temperature distribution. Overall, the lower temperature decreases the scale height of N2 and
other molecular species in the hemisphere with more lower thermospheric O, resulting in a reduction of
their number densities at higher altitudes. We also find that the averaged O densities at 100 km in both MSIS
and WACCM-X are much lower than SABER. If these O densities would have been much closer to SABER,
we would expect higher O in the thermosphere in both the simulations. We would also expect a net lower
temperature in the thermosphere due to larger radiative cooling, which would then also change the wind
magnitudes.

In January, the Southern Hemisphere has larger atomic oxygen in GITM w/ WACCM-X (and SABER data)
as compared to GITM w/ MSIS, larger equatorward winds, more adiabatic and radiative cooling, lower tem-
perature, and lower N2. This results in an increased O/N2 and electron densities in the Southern (summer)
Hemisphere in the GITM w/ WACCM-X simulation. The opposite behavior is observed in the Northern
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(winter) Hemisphere. The change in O/N2 is as large as 63% in the summer hemisphere in the lower ther-
mosphere. This also slows down the northward interhemispheric winds in the summer hemisphere and
speeds them up in the winter hemisphere. It is found that the vertical column integrated O/N2 in GITM w/
WACCM-X matches the TIMED GUVI O/N2 measurements better in both the hemispheres, as GITM w/
MSIS tends to understimate O/N2 in the summer and overestimate it in the winter hemisphere. We would
expect the correction of other mesopause boundary drivers within GITM such as N2 and temperature to
further improve the agreement between model results and the observations.

Data Availability Statement

The atomic oxygen used in this study is from SABER data Version 2.0 and was downloaded from this
site (http://saber.gats-inc.com/data.php). The level 3 O/N2 GUVI data was downloaded from this site
(http://guvitimed.jhuapl.edu/). The GITM runs that were used in this study can be accessed at this site
(https://doi.org/10.7302/yagm-xv95).
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