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To what extent the speed of mutational production of phenotypic variation determines the rate of long-term phenotypic evolution

is a central question. Houle et al. recently addressed this question by studying the mutational variances, additive genetic variances,

and macroevolution of locations of vein intersections on fly wings, reporting very slow phenotypic evolution relative to the rates

of mutational input, high phylogenetic signals, and a strong, linear relationship between the mutational variance of a trait and

its rate of evolution. Houle et al. found no existing model of phenotypic evolution to be consistent with all these observations,

and proposed the improbable scenario of equal influence of mutational pleiotropy on all traits. Here, we demonstrate that the

purported linear relationship between mutational variance and evolutionary divergence is artifactual. We further show that the

data are explainable by a simple model in which the wing traits are effectively neutral at least within a range of phenotypic values

but their evolutionary rates are differentially reduced because mutations affecting these traits are purged owing to their different

pleiotropic effects on other traits that are under stabilizing selection. Thus, the evolutionary patterns of fly wing morphologies

are explainable under the existing theoretical framework of phenotypic evolution.
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A fundamental question in evolutionary biology is the extent to

which the rate of long-term phenotypic evolution is determined

by the rate of production of phenotypic variation by newly arising

mutations (Lande 1976; Chakraborty and Nei 1982; Hill 1982;

Lynch and Hill 1986; Lynch 1990; Schluter 1996; Wagner and

Altenberg 1996; Futuyma 2010). This question likely has differ-

ent answers for different traits. At one extreme are purely neu-

tral traits whose evolutionary rates are dictated by the rates with

which phenotypic variations originate via mutation. At another

extreme are traits subject to strong positive selection such that

their evolutionary rates are primarily determined by the strength,

duration, and frequency of Darwinian selection instead of muta-

tion. The lack of empirical answers to this question is in a large

part owing to the scarcity of suitable data to address this question,

because such data require the information about the same pheno-

typic traits from mutants (e.g., mutation accumulation lines or

gene deletion lines) as well as from different species.

In a recent study, Houle et al. addressed the above ques-

tion by studying the evolution of locations of vein intersections

on fly wings in the past 40 million years after inspecting over

50,000 wings from more than 100 Drosophilid species (Houle

et al. 2017). After comparing the covariance matrices that respec-

tively represent the mutational inputs (M) and evolutionary rates

(R), they reported that (1) the rate of phenotypic evolution is or-

ders of magnitude lower than the neutral expectation from the

mutational variance, (2) the phylogenetic signals of most of these

phenotypic traits are high, and (3) the evolutionary rate of a trait

depends linearly on its mutational variance (i.e., with a log-linear

slope of 1). Houle et al. examined nine existing models of pheno-

typic evolution (Table S1) but found none that is consistent with

all of the above features. After exhausting all existing models,

Houle et al. suggested that their observations may be explained if

“most mutations cause deleterious pleiotropic effects that render

them irrelevant to adaptation, and, more importantly, the propor-

tion of mutational variation that is deleterious is similar for all

traits” (Houle et al. 2017).

Here, we demonstrate that the reported linear relationship

(or a log-linear slope of 1) between mutational variance and
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evolutionary divergence among the fly wing traits is an artifact

resulting from the use of a biased method and that applying an

unbiased method reveals a sublinear relationship (i.e., with a log-

linear slope smaller than 1). Thus, Houle et al.’s model that all

wing traits are equally impacted by mutational pleiotropy is not

only theoretically improbable but also empirically refuted. Hav-

ing reestimated the relationship, we consider the implications of

the corrected observations in the context of existing evolutionary

models, and show that patterns of fly wing evolution are explain-

able by a simple model in which the focal wing traits are them-

selves effectively neutral at least within a range of phenotypic

values but most mutations affecting the focal traits are purged by

selection due to their pleiotropic effects on fitness-related traits.

Materials and Methods
COMPARISON OF COVARIANCE MATRICES

To compare the covariance matrices that respectively represent

the mutational inputs (M) and evolutionary rates (R) of various

traits along a set of orthogonal directions in the phenotypic space,

Houle et al. first rescaled the matrices so that they have the same

trace, which is the sum of diagonal elements. That is, they set

R̃ = R tr(M )
tr(R) , where tr(M) and tr(R) are traces of M and R ma-

trices, respectively, and R̃ is the rescaled R matrix. They then

computed H = R̃+M
2 . M and R̃ were subsequently converted to

KTMK and KTR̃K, respectively, where K denotes the matrix com-

prising the eigenvectors of H. The diagonal elements of KTMK

and KTR̃K were then compared to obtain a scaling exponent be-

tween M and R. Comparisons between M and G (the matrix of ad-

ditive genetic covariances) and between R and G were performed

likewise. The practice of deriving K from the average of M and R̃

inevitably biases the subsequent analysis to dimensions where M

and R variances are similar, which would cause overestimation of

the correlation coefficient and regression slope between log10(R

variance) on log10(M variance).

To avoid the above problem, we used a new matrix compar-

ison method, which is identical to Houle et al.’s method except

that K is derived solely from M (when comparing M with R or G)

or G (when comparing G with R) instead of H. In the reanalysis of

the fly wing traits, the number of eigenvectors of K along which

variances were compared is the same as the number of orthogo-

nal traits plotted in the corresponding comparison of matrices in

Houle et al. (2017). That is, regressions were performed using the

first 18 eigenvectors of K when M was compared with R or G and

the first 17 eigenvectors of K when G was compared with R.

EXAMINATION OF MATRIX COMPARISON METHODS

USING SIMULATION

To evaluate the performances of Houle et al.’s method and the

new method in comparing M with R, we used each method to an-

alyze simulated covariance matrices. We first independently gen-

erated two random 24 × 24 covariance matrices that represent M

and R, respectively. Each matrix was obtained by first generating

a correlation matrix and then converting it to the corresponding

covariance matrix. Each correlation matrix was generated by the

rcorrmatrix function of the R package clusterGeneration (Qiu

and Joe 2015), with each correlation coefficient following a beta

distribution β(α + d−2
2 , α + d−2

2 ), where α was set to be 1 and d,

the number of dimensions or traits, was set at 24. The diagonal

elements of each matrix were drawn from a gamma distribution

with the shape parameter k = 0.5; we chose this distribution be-

cause it resembles the empirical distribution of mutational vari-

ances (Houle and Fierst 2013). The simulated M and R matrices

were subjected to the analysis by Houle et al.’s method and our

new method, respectively. The above process was repeated 100

times to acquire distributions of the linear regression slope and

Pearson’s correlation coefficient between log10(R variance) and

log10(M variance) produced by each method.

Because empirically estimated covariance matrices are sub-

ject to estimation error due to limited sample sizes, we re-

peated the above analyses with each matrix now replaced with

an estimate of it. For each M (denoted Moriginal) or R (denoted

Roriginal) matrix used in the previous analysis, we estimated a

covariance matrix from 100 independent samples from the mul-

tivariate normal distribution of the original matrix. The estimates

of M and R (denoted Mobs and Robs) were then compared using

Houle et al.’s and our methods, respectively. Additionally, these

analyses were performed across a range of similarity between M

and R. For each pair of Moriginal and Roriginal, we obtained a series

of new R matrices and compared M with each of the new R ma-

trices. The new R matrices were obtained as Rw = wRoriginal +
(1 – w)Moriginal, where w is the weight of Roriginal and a series of

w equal to 0, 0.1, 0.2, …, 0.9, and 1 was considered.

Finally, to subject the matrices to realistic levels of error aris-

ing from the stochasticity of evolution as well as imprecise esti-

mation, we simulated multivariate trait evolution along the phy-

logenetic tree of Drosophilid species used by Houle et al. and

treated the M matrix estimated from the fly wing traits (Houle

and Fierst 2013), MHF, as Moriginal in the simulation because it

is presumably similar to the true M in terms of the structure. In

each simulation, the matrix describing trait evolution (Rw) was

obtained from Moriginal and an independent matrix denoted Roriginal

using the preceding formula. Here, Roriginal was generated in the

same way as the random M and R matrices used in the previ-

ous steps, except that its diagonal elements were sampled from a

gamma distribution with the shape parameter k = 0.05, such that

the skewness of the distribution of the diagonal elements of Rw

is similar to that observed from the empirically estimated R ma-

trix of the fly wing traits (Houle et al. 2017). Similar results were

obtained when we used k = 0.025 or 0.1. The evolution followed
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a multivariate Brownian motion model. In particular, the multi-

variate phenotype at each node of the phylogeny was obtained by

X = XA + l�X , where XA is the phenotype at the node imme-

diately ancestral to the focal node, l is the length of the branch

connecting the two nodes, and �X is a vector sampled from the

corresponding multivariate normal distribution of Rw. For each

combination of w and k, we performed 50 simulations, each with

an independently simulated Roriginal as well as the corresponding

Rw. After each simulation, we respectively used Houle et al.’s

method and the new method to compare estimates of M and R,

Mobs and Robs. Mobs was estimated from 150 independent vec-

tors taken from the distribution of MHF; the sample size was set

to be 150 because the empirical M matrix for the fly wing traits

was estimated from 150 sublines (Houle and Fierst 2013). Robs

was estimated from the evolved phenotypes using the ratematrix

function of the geiger package in R (Revell et al. 2007; Pennell

et al. 2014), which estimates evolutionary covariances using an

independent contrast approach (Felsenstein 1985) and fits the ob-

servations to a Brownian motion model.

A NEUTRAL MODEL WITH PLEIOTROPY TO EXPLAIN

THE EVOLUTION OF FLY WING MORPHOLOGIES

Below we describe a neutral model with mutational pleiotropy

that can almost perfectly explain the evolutionary patterns of

fly wing morphologies. In our model, the focal wing traits are

neutral, but mutations affecting the focal traits also influence

other (unconsidered) traits that are subject to stabilizing selec-

tion (Turelli 1985; McGuigan et al. 2011). Consequently, these

pleiotropic mutations are purged because of their effects on the

nonfocal traits; the higher the pleiotropy of a mutation (i.e.,

the number of nonfocal traits affected by the mutation), the

higher the chance that it will be purged (Estes and Phillips 2006;

McGuigan et al. 2014). Importantly, the extent to which a focal

trait is affected by the mutations’ pleiotropic effects on nonfocal

traits can be correlated with its mutational variance.

Because all analyses of focal traits are conducted on the or-

thogonal traits, the following description of focal traits refers to

focal orthogonal traits unless otherwise noted. In our model, the

number (n) of nonfocal traits that are genetically correlated with

a focal trait is a function of the mutational variance of the focal

trait (VM ) described by

n = A + Blog10VM . (1)

When VM < 10−A/B, n is set to 0. We model n as a logarith-

mic rather than linear function of VM to slow the impact of VM on

n as VM increases.

Given n, the number (m) of nonfocal traits affected by a mu-

tation that impacts the focal trait is a binomial random variable

under the assumption that the mutation affects the nonfocal traits

independently. The expected value of m, E (m), is equal to
n∑

i=1
Pi,

where Pi is the probability that the mutation affects the ith nonfo-

cal trait. A larger E (m) means that an average mutation is more

pleiotropic. The parameter B determines the scaling relationship

between M and R variances. When B > 0, M variance has a pos-

itive effect on n, E(m), and the pleiotropic effect of mutations on

nonfocal traits. By contrast, when B < 0, these effects become

negative.

SIMULATION OF EVOLUTION OF NEUTRAL TRAITS

WITH MUTATIONAL PLEIOTROPY

To illustrate that the model described above is capable of pro-

ducing evolutionary patterns similar to those of fly wing traits,

we conducted a new set of simulations of trait evolution where

mutational pleiotropy depends on M variance as described in the

above section. Parameters were chosen such that the scaling of

R variance with M variance resembles that observed from the fly

wing traits under the new matrix comparison method. Although

the parameters used in the simulation presented are specific, we

note that they are not unique in yielding results resembling pat-

terns of fly wing evolution. Because the orthogonal traits were

derived from the original fly wing traits by extracting the axes

with the largest mutational variances, mutant phenotypes are gen-

erally concentrated along these axes and effects of mutations are

expected to be largely following them. Although it is an approx-

imation to assume that mutations strictly follow these axes, this

approximation allows separate simulations of the evolution of dif-

ferent focal traits, which substantially simplifies the simulation

that is meant to illustrate our model.

Mutational input
For a neutral focal trait, mutations affecting the trait were gen-

erated per unit of time by simulation. The number of mutations

followed a Poisson distribution with the mean equal to λM , which

is a constant for a given focal trait. The effect of a mutation on

the focal trait followed a normal distribution with a mean of 0 and

a standard deviation of σ. Thus, mutational variance of the focal

trait, which is defined as phenotypic variance introduced by new

mutations per unit time, is VM = λM σ2.

Because it is unclear whether the observed variation in VM

across traits is contributed by the variation in mutation rate, ef-

fect size, or a combination of the two, we considered two extreme

cases, denoted model 1 and model 2, respectively, in which one

of λM and σ varies across focal traits while the other is constant.

We sampled VM of focal traits from a gamma distribution with

the scale parameter θ = 0.1 and shape parameter k = 0.5, be-

cause such a skewed distribution is similar to those observed for

mutational variances of fly wing traits (Houle and Fierst 2013)

and yeast cell morphology traits (Ho et al. 2017). In particular,
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when fitting the positive eigenvalues of the M matrix to a gamma

distribution, we found the estimated shape parameters for the two

datasets to be 0.41 and 0.22, respectively. When λM varies across

focal traits (model 1), σ was set at 0.01 and λM of each focal

trait was obtained as λM = VM
σ2 ; when σ varies across focal traits

(model 2), λM was set at 500 and σ of each focal trait was
√

VM
λM

.

Before comparing mutational input and evolutionary diver-

gence, we estimated VM for each focal trait from 150 independent

samples taken from a normal distribution with the variance equal

to the corresponding true value.

Pleiotropic effect of mutations
We assume that a mutation affecting a focal trait had a proba-

bility of 0.5 to influence each nonfocal trait; when it did have

an effect, the effect followed a normal distribution with a mean

of 0 and a standard deviation of 0.01. To identify A and B val-

ues in equation 1 that make our model predictions resemble ac-

tual observations, we first looked for a value of n that can yield

the evolutionary rate 10−6 to 10−4 times the neutral expecta-

tion, because the ratio of the observed amount of evolution of

the fly wing traits and that expected from the mutational input

falls in the range from 3.81 × 10−6 to 5.77 × 10−5. Because the

probability that a mutation affects a nonfocal trait is 0.5 in our

model, the proportion of mutations that are not pleiotropic is 0.5n.

If all pleiotropic mutations are unacceptable, log0.510−4 ≤n ≤
log0.510−6, that is, 13.3 < n < 19.9. Because there is a small

proportion of pleiotropic mutations that are benign enough to be

acceptable, n may need to be slightly larger to produce the same

rate of evolution. Hence, we decided that n should roughly range

between 14 and 20, and accordingly set A = 20. Because the

observed scaling exponent between M variance and R variance

is smaller than 1 for the fly wing traits (see Results), B should

be positive. We looked for a positive B that would make n no less

than 14 for the focal trait with the smallest M variance (0.000401)

in our simulation. Solving n = 20 + Blog100.000401 ≥ 14, we

found B ≤ 1.77. We therefore set B at 1.7. For the focal trait with

the greatest M variance (0.222), the maximum of n is obtained as

the largest integer under 20 + 1.7 × log100.222 = 18.89, which

is 18, a number within the desired range. We note that the prob-

ability that a mutation affects a nonfocal trait, which is 0.5 in

our simulation, was arbitrarily chosen; having it been a different

value, the values of A and B would be different.

Fitness function and selection
The fitness of a mutant depends on its phenotype and is assumed

to be a function of its phenotypic Euclidean distance (D) from

the optimal phenotype. D is computed from values of the no-

focal traits and equals

√
n∑

i=1
di

2, where di is the distance between

the value of the ith nonfocal trait and the optimal value of this

trait. We also considered scenarios where the focal trait is under

selection rather than strictly neutral, in which case D is equal to√
cd f

2 +
n∑

i=1
di

2, where d f is the distance between the phenotypic

value of the focal trait and the optimum and c is a coefficient de-

ciding the importance of the focal trait, relative to that of a non-

focal trait, to fitness. We examined three values of c in our simu-

lations, 10−4, 10−3, and 10−2. We considered a Gaussian fitness

function in which mutant fitness f = exp(−D2

2 ). The selection co-

efficient is s = f
fa

− 1, where fa is the ancestral fitness (i.e.,

fitness of the mean phenotype of the population). The fixation

probability of a mutation is given by F = 1−exp(−2s)
1−exp(−4Nes) (Kimura

1962). At the end of each time unit, the phenotypic effect of a

mutation is added onto the population mean with a probability of

2NeF (when 2NeF > 1, it is treated as 1).

Phenotypic divergence and phylogenetic signal
For each trait with given VM and n, we independently simulated

its phenotypic evolution 50 times, all starting from the pheno-

typic optimum. Each simulation lasted for t = 1000 units of time,

after which the variance among the 50 replicates (R variance) was

calculated at each time unit. Pearson’s correlation coefficient be-

tween time and R variance at the time was calculated to represent

the phylogenetic signal. We note that the length of the simulation

(t) has a negligible effect on the simulation result, because the

focal trait is neutral (or nearly so) and the R variance increases

with time at a constant rate, as indicated by the high phylogenetic

signal observed.

Results
HOULE ET AL.’S METHOD OF MATRIX COMPARISON

IS BIASED

To investigate the scaling relationship between mutational vari-

ance and evolutionary divergence among the fly wing morpho-

logical traits under investigation, Houle et al. compared the co-

variance matrices that represent the mutational inputs (M) and

evolutionary divergences (R) of various traits along a set of or-

thogonal directions in the phenotypic space. For this purpose,

Houle et al. used an eigenvector matrix K of the mean of M and R

to determine the orthogonal directions, which could create a bias

toward directions shared by M and R and inflate the correlation

between log10(M variance) and log10(R variance). In theory, this

potential bias can be avoided if K is derived solely from M such

that the set of orthogonal directions is mutationally independent.

We refer to this modified method as the new method.

To examine the potential bias of Houle et al.’s method, we

first used Houle et al.’s method as well as the new method to

analyze M and R matrices that were completely independently

generated. We analyzed 100 such pairs, obtaining distributions of
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the linear regression slope and Pearson’s correlation coefficient

between log10(R variance) and log10(M variance). Both the slope

(Fig. 1A) and the correlation coefficient (Fig. 1B) tend to be pos-

itive when we used Houle et al.’s method (mean slope = 0.844,

P = 3.76 × 10−101, two-sided t-test, degree of freedom [df] =
99; mean correlation coefficient = 0.840, P = 2.72 × 10−78,

two-sided t-test, df = 99), although the matrices being compared

are independent from each other. By contrast, distributions of

the slope (Fig. 1A) and correlation coefficient (Fig. 1B) when

we used the new method are centered around 0, as expected

(mean slope = 0.010, P = 0.25, two-sided t-test, df = 99; mean

correlation coefficient = 0.059, P = 0.12, two-sided t-test,

df = 99).

Because the observed M and R matrices are subject to es-

timation error, we also repeated the above analyses with such

errors introduced. In particular, we drew samples from each M

(or R) matrix used in the previous analyses, denoted Moriginal (or

Roriginal), to obtain its estimate, denoted Mobs (or Robs) (see Mate-

rials and Methods). We estimated, using both matrix comparison

methods, the regression slope and the correlation coefficient be-

tween log10(Mobs variance) and log10(Robs variance) across a wide

range of similarity between Moriginal and Rw, which is a weighted

average of Moriginal and Roriginal. The slope estimated by the new

method tends to be lower compared with that in the absence of

error in matrices to be compared, especially when Moriginal and

Rw are similar (Fig. S1). Nevertheless, the difference is rather

small, suggesting that the new method is sufficiently robust to er-

ror in matrix estimation. By contrast, estimates of the slope and

the correlation coefficient by Houle et al.’s method are positive

and almost invariable with respect to how similar Rw is to Moriginal

(Fig. S1), indicating that Houle et al.’s method is not only biased

but also uninformative.

In reality, when the true M is given, Robs is subject to varia-

tion due to the stochasticity of evolution. To ensure that our find-

ing holds for evolutionary data, we simulated phenotypic evolu-

tion along the fly phylogenetic tree used by Houle et al., with

the M matrix estimated from the fly wing data (Houle and Fierst

2013), MHF, treated as Moriginal. Trait evolution followed a mul-

tivariate Brownian motion model described by the matrix Rw,

which was obtained by taking weighted averages of MHF and an

independent matrix Roriginal (see Materials and Methods). Results

of this analysis are generally similar to those based on randomly

generated matrices and no trees. In particular, when Mobs and Robs

are compared using Houle et al.’s method, the linear regression

slope of log10(Robs variance) on log10(Mobs variance) is close to 1

regardless of the similarity between MHF and Rw (Fig. S2). Taken

together, we conclude that comparing M and R variances along

Figure 1. Comparison between Houle et al.’s method and our

new method. (A) Frequency distributions (gray bars) of the lin-

ear regression slope between log10(M variance) and log10(R vari-

ance) estimated by Houle et al.’s method (y-axis) and our new

method (x-axis), whenM and Rmatrices are independently gener-

ated. (B) Frequency distributions (gray bars) of the correlation be-

tween log10(M variance) and log10(R variance) estimated by Houle

et al.’s method (y-axis) and our new method (x-axis), whenM and

R matrices are independently generated. In both panels, each dot

represents a pair of uncorrelated matrices compared.
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Figure 2. Linear regression between log10(M variance) and log10(R variance) or log10(G variance) along orthogonal directions for fly

wing traits. (A and B) Linear regression between log10(M variance) and log10(R variance) estimated using Houle et al.’s method (A) or the

new method (B). (C and D) Linear regression between log10(M variance) and log10(G variance) estimated using Houle et al.’s method (C)

or the new method (D). In each panel, r stands for Pearson’s correlation coefficient, and the shaded region shows the 95% confidence

interval of the regression. The number of orthogonal traits presented in each panel is the same as in Houle et al. (2017).

eigenvectors of an average matrix of them is uninformative and

sheds little light on the real scaling relationship between M and R

variances.

UNEQUAL CONSTRAINTS ON THE FLY WING TRAITS

Using Houle et al.’s method, we reproduced their result of a

slope of nearly 1 in the linear regression between log10(M vari-

ance) and log10(R variance) for fly wing traits (Fig. 2A). But our

simulation suggested that this estimation is unlikely to be reli-

able. Indeed, when the fly wing data are reanalyzed using the

new method, the slope reduced to 0.54, which is significantly

smaller than 1 (t = 6.27, P = 1.13 × 10−5, two-sided t-test, df

= 16; Fig. 2B). Applying the new method also caused a similar

reduction in the slope of the linear regression between log10(M

variance) and log10(G variance) (t = 8.62, P = 2.09 × 10−7,

two-sided t-test, df = 16; Figs. 2C and 2D), where the G matrix

represents intraspecific phenotypic variations caused by additive

genetic (co)variances (Mezey and Houle 2005). The finding of

a slope of approximately 0.5 for the linear regression between

log10(M variance) and log10(R variance) or log10(G variance)
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indicates that R or G variance does not scale linearly with M vari-

ance. Rather, the positive impact of M variance on R or G variance

gradually diminishes as M variance rises.

Interestingly, G and R matrices are indeed similar in the

structure. When the G and R variances are compared along the

eigenvectors of G, the regression slope between log10(G vari-

ance) and log10(R variance) is 0.95, which is not significantly

different from 1 (t = 0.72, P = 0.48, two-sided t-test, df = 15).

This observation is consistent with the view that standing genetic

variation has a profound impact on long-term evolution (Schluter

1996).

A NEUTRAL MODEL WITH MUTATIONAL PLEIOTROPY

EXPLAINS PATTERNS OF FLY WING EVOLUTION

Our analysis shows that Houle et al.’s third observation on fly

wing evolution mentioned in Introduction should be replaced

with a sublinear relationship between the evolutionary rate of a

trait and its mutational variance (i.e., the scaling exponent is be-

low 1). Even with Houle et al.’s third observation corrected, the

nine existing models of phenotypic evolution previously consid-

ered by these authors are still unable to reconcile the three obser-

vations, because none of the models predicting a high phyloge-

netic signal as in the fly wing data allow a scaling exponent of

about 0.5 that is observed in these data (Table S1). Furthermore,

the model proposed by Houle et al. that all wing traits concerned

are affected by pleiotropy to the same extent is empirically false

in addition to being theoretically implausible.

Below we show that patterns of fly wing evolution are ex-

plainable by a neutral model with mutational pleiotropy. In our

model, the focal wing traits are effectively neutral, but muta-

tions affecting the focal traits also influence nonfocal traits that

are subject to stabilizing selection. In addition, focal traits with

higher M variances are genetically correlated with more nonfocal

traits so are impacted more by their mutational correlation to non-

focal traits (see Materials and Methods). Our model makes three

predictions that are respectively consistent with the three patterns

of fly wing evolution. First, a focal trait is expected to evolve

more slowly than predicted from the M variance, because most

mutations affecting the focal trait are selectively removed due to

their deleterious effects on correlated traits. Second, because the

focal trait itself is effectively neutral, its divergence is unbounded,

resulting in a high phylogenetic signal. Finally, the positive corre-

lation between M variance and pleiotropy means that the fraction

of mutations that are acceptable declines with M variance, creat-

ing a slope that is lower than 1 for the linear regression between

log10(M variance) and log10(R variance) or log10(G variance).

To illustrate the above model predictions on long-term phe-

notypic evolution, we simulated the evolution of the population

mean values of 20 neutral, orthogonal, focal traits, each geneti-

cally correlated with a set of nonfocal traits that are under sta-

bilizing selection. Mutations were randomly generated per unit

time and subject to drift and selection. The simulation lasted for

1000 time units and was repeated 50 times per trait to create 50

replicate lineages. For each trait, the phenotypic variance among

the 50 lineages at each of the 1000 time units was used to rep-

resent the evolutionary divergence (R variance) at that time, and

its correlation with time is a measure of the phylogenetic signal.

The simulation results showed that, for most traits, the amount of

phenotypic divergence is four to five orders of magnitude lower

than predicted from the total mutational input (Figs. 3A and 3B).

In addition, almost all traits exhibited phylogenetic signals ex-

ceeding 0.9 (Figs. 3C and 3D). Finally, the slope of the linear

regression between log10(M variance) and log10(R variance) is

significantly lower than 1 (t = 8.49, P = 1.03 × 10−7 when

mutation rate is variable, two-sided t-test, df = 18; t = 8.44,

P = 1.13 × 10−7 when mutation effect size is variable, two-

sided t-test, df = 18; Figs. 3A and 3B). These results closely

matched those observed in fly wing evolution, quantitatively ver-

ifying the validity and suitability of our model. Similar patterns

were observed when the focal traits are not strictly neutral but

are under weak selection (Table S2), indicating that the observed

patterns of fly wing evolution can also be explained even if the

wing traits are not strictly neutral but have not been outside the

range of effective neutrality in the last 40 million years.

Discussion
In this study, we showed that the method used by Houle et al.

to compare matrices is biased, resulting in the erroneous conclu-

sion of a linear relationship between mutational variance and evo-

lutionary divergence among fly wing morphologies. We demon-

strated by computer simulation that a simple modification of their

method yields virtually unbiased results under a wide range of

parameter values, including those reflecting the fly wing data.

Using the new method, we estimated that the scaling exponent

between mutational variance and evolutionary divergence is sig-

nificantly smaller than 1, suggesting that the impact of the rate

of mutational input on the rate of phenotypic evolution is not

constant but declines with the rate of mutational input. That is,

compared with traits with relatively low mutational inputs, those

with relatively high mutational inputs do not evolve as rapidly as

predicted linearly from their mutational inputs. With these find-

ings, patterns of fly wing evolution are explainable by a model in

which the wing traits are effectively neutral, but their evolution-

ary rates are differentially reduced because mutations affecting

these traits are purged owing to their different pleiotropic effects

on other traits that are under stabilizing selection. When the ex-

tent to which the evolution of a trait is constrained by pleiotropy

increases with the mutational variance of the trait, a scaling

exponent between 0 and 1 will result. Mechanistically, such a
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Figure 3. Patterns of phenotypic evolution observed from computer simulation of 20 neutral, orthogonal, focal traits with mutational

pleiotropy, when the between-trait variation inM variance is due to the variation inmutation rate (A and C) or effect size (B and D). (A and

B) Linear regression between log10(M variance) and log10(R variance) upon evolution of 1000 time units. Presented areM and R variances

per time unit. The shaded region shows the 95% confidence interval of the regression. (C and D) Distribution of the phylogenetic signals

of the focal traits. The phylogenetic signal of a trait is measured by Pearson’s correlation between the evolutionary time and R variance

at the time for the trait.

relationship may have resulted from the positive correlation be-

tween the pleiotropic level of a mutation and its effect size on

individual traits, a trend present among mouse skeletal charac-

ters and yeast cell morphologies (Wagner et al. 2008; Wang et al.

2010).

Our model differs from the one proposed by Houle et al. in

several aspects. First, Houle et al. did not specify whether the

focal traits are neutral or not in their model, whereas they are ef-

fectively neutral in our model. The neutrality appears to be key

to the reconciliation between the observations of a high phyloge-

netic signal and slow evolution relative to the mutational input.

Second, in our model, mutational pleiotropy arises from the non-

focal traits genetically correlated with the focal trait concerned,

but Houle et al. did not state whether their mutational pleiotropy

arises from nonfocal traits alone or also other focal traits. Third,

all focal traits are constrained to the same level by mutational

pleiotropy in Houle et al.’s model, which is a highly restrictive

assumption that is not supported by the fly wing data. By con-

trast, in our model, the level of mutational pleiotropy (arising

from non-focal traits) is allowed to vary among focal traits. For
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example, the present analysis of the fly wing data suggests a pos-

itive relationship between the mutational variance of a focal trait

and the level of mutational pleiotropy that the trait is subject to.

Finally, Houle et al.’s model remains a verbal one, whereas we

have provided quantitative formulation of our model (see Materi-

als and Methods).

Our evolutionary simulation under the newly proposed

model is able to recapitulate all major patterns observed in the

evolution of the fly wing morphologies. Nevertheless, it is pos-

sible that the fly data also fit some other models. In particular,

our results suggest the plausibility but do not prove that the fly

wing traits are neutral. Indeed, an expanded model in which the

focal traits are effectively neutral only within a range of pheno-

typic values can also explain fly wing evolution, provided that

40 million years of evolution under mutational pleiotropy has not

reached the boundaries of this range (Table S2). Regardless, our

analysis suggests that fly wing evolution is explainable under the

existing theoretical framework of phenotypic evolution.

The invaluable data collected by Houle et al. have allowed

an unprecedented population genetic analysis of macroevolution

of morphologies. To the best of our knowledge, no other large

phenotypic data simultaneously comprising M, G, and R from

long-term evolution exist. Only when many such data become

available may we test the general applicability of our model or its

expanded version in explaining phenotypic evolution, and only

then can one tell whether the current theoretical framework of

phenotypic evolution is generally correct.
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Supporting Information
Additional supporting information may be found online in the Supporting Information section at the end of the article.

Figure S1. Performances of Houle et al.’s method and the new method across a range of similarity between M and R, with M and R matrices subject to
estimation error.
Figure S2. Performances of Houle et al.’s method and the new method when the empirical M matrix is set to be Moriginal and the Drosophilid tree is used
to simulate trait evolution (see Materials and Methods).
Table S1. Models examined by Houle et al. and their predictions regarding evolutionary rate, scaling exponent of evolutionary rate with mutational
variance, and phylogenetic signal.
Table S2. Patterns of phenotypic evolution observed from computer simulation of nonneutral, orthogonal, focal traits with mutational pleiotropy.
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