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ABSTRACT: To what extent the speed of mutational production of phenotypic variation determines
the rate of long-term phenotypic evolution is a central question. Houle ef al. recently addressed this
question b,studxiy the mutational variances, additive genetic variances, and macroevolution of
locations of yg#asintersections on fly wings, reporting very slow phenotypic evolution relative to the
rates of mt, high phylogenetic signals, and a strong, linear relationship between the
mutational variance of a trait and its rate of evolution. Houle et al. found no existing model of

phenotypicf@volution to be consistent with all these observations, and proposed the improbable

scenario of equal influence of mutational pleiotropy on all traits. Here we demonstrate that the
purported lihear reldtionship between mutational variance and evolutionary divergence is artifactual.
We further show that the data are explainable by a simple model in which the wing traits are
effectivelyeutral @t least within a range of phenotypic values but their evolutionary rates are

d because mutations affecting these traits are purged owing to their different

pleiotropic effects @n other traits that are under stabilizing selection. Thus, the evolutionary patterns

mOf ologies are explainable under the existing theoretical framework of phenotypic

evolution.

INTROD‘m

ental question in evolutionary biology is the extent to which the rate of long-term
phenotypi 1on is determined by the rate of production of phenotypic variation by newly arising
mutations (Lande 1976; Chakraborty and Nei 1982; Hill 1982; Lynch and Hill 1986; Lynch 1990;
Schluter 1996; Wagner and Altenberg 1996; Futuyma 2010). This question likely has different
answers foLt traits. At one extreme are purely neutral traits whose evolutionary rates are
dictated by, with which phenotypic variations originate via mutation. At another extreme are
traits subje@m
the stremn, and frequency of Darwinian selection instead of mutation. The lack of

empiric

g positive selection such that their evolutionary rates are primarily determined by

this question is in a large part owing to the scarcity of suitable data to address

this queWe such data require the information about the same phenotypic traits from

mutants (e, ion accumulation lines or gene deletion lines) as well as from different species.
In study, Houle ef al. addressed the above question by studying the evolution of

locations ntersections on fly wings in the past 40 million years after inspecting over 50,000

wings fr than 100 Drosophilid species (Houle, et al. 2017). After comparing the covariance
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matrices respectively representing the mutational inputs (M) and evolutionary rates (R), they reported
that (1) the rate of phenotypic evolution is orders of magnitude lower than the neutral expectation
from the gltation' variance, (2) the phylogenetic signals of most of these phenotypic traits are high,
and (3) the eyalutionary rate of a trait depends linearly on its mutational variance (i.e., with a log-

linear slop&o loule et al. examined nine existing models of phenotypic evolution (Table S1) but

found none that is consistent with all of the above features. After exhausting all existing models,
I I
Houle ef alfgsuggested that their observations may be explained if “most mutations cause deleterious

pleiotropic e E at render them irrelevant to adaptation, and, more importantly, the proportion of
O

mutational that is deleterious is similar for all traits” (Houle, et al. 2017).

He, onstrate that the reported linear relationship (or a log-linear slope of 1) between
mutational and evolutionary divergence among the fly wing traits is an artifact resulting from
the use of ethod and that applying an unbiased method reveals a sublinear relationship (i.e.,
with a log-li pe smaller than 1). Thus, Houle ef a/l.’s model that all wing traits are equally
impacted b nal pleiotropy is not only theoretically improbable but also empirically refuted.
Having re-¢Sti the relationship, we consider the implications of the corrected observations in the

by a simpl

context of cxistimggévolutionary models, and show that patterns of fly wing evolution are explainable
SN0 b which the focal wing traits are themselves effectively neutral at least within a

range o ic values but most mutations affecting the focal traits are purged by selection due to

their pleiotro cts on fitness-related traits.

MATERIzs iS AND METHODS

Compariso, ariance matrices

To ¢ the covariance matrices respectively representing the mutational inputs (M) and
evolutiona‘rafes i ?3) of various traits along a set of orthogonal directions in the phenotypic space,
Houle caled the matrices so that they have the same trace, which is the sum of diagonal

elemenchey setR =R i:((l;:)) , where tr(M) and t(R) are traces of M and R matrices,

respectivel;, and 55 the rescaled R matrix. They then computed H = %, M and R were

ed to K'MK and K'RK, respectively, where K denotes the matrix comprising the

subsequently cou

. The diagonal elements of K'MK and K’ RK were then compared to obtain a scaling
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exponent between M and R. Comparisons between M and G (the matrix of additive genetic
covariances) and between R and G were performed likewise. The practice of deriving K from the

averagewmevitably biases the subsequent analysis to dimensions where M and R variances

are similar, ydaigh would cause overestimation of the correlation coefficient and regression slope
e

5 BSTETH: above problem, we used a new matrix comparison method, which is identical to

Houle et alh)d except that K is derived solely from M (when comparing M with R or G) or G

(when co ing @ with R) instead of H. In the reanalysis of the fly wing traits, the number of

between lo ance) on logo(M variance).

C

eigenvecto ong which variances were compared is the same as the number of orthogonal

traits plott orresponding comparison of matrices in Houle et al. (2017). That is, regressions

5

were perfo g the first 18 eigenvectors of K when M was compared with R or G and the first

17 eigenve when G was compared with R.

U

Examinat

o

trix comparison methods using simulation

Tofeva @ the performances of Houle ef al.’s method and the new method in comparing M
with R, we used €ach method to analyze simulated covariance matrices. We first independently
generat andom, 2424 covariance matrices that respectively represent M and R. Each matrix

was obtain st generating a correlation matrix and then converting it to the corresponding

M

covaria ach correlation matrix was generated by the rcorrmatrix function of the R

package clusterGeneration (Qiu and Joe 2015), with each correlation coefficient following a beta
C d— d- . . .
distributio > 2 ,a+ 72), where a was set to be 1 and d, the number of dimensions or traits,

was set at iagonal elements of each matrix were drawn from a gamma distribution with the

G

shape para 0.5; we chose this distribution because it resembles the empirical distribution of

mutational (Houle and Fierst 2013). The simulated M and R matrices were subjected to the

n

analysi al.’s method and our new method, respectively. The above process was repeated

L

100 tim i€ distributions of the linear regression slope and Pearson’s correlation coefficient

between lo iance) and log (M variance) produced by each method.

U

B pirically estimated covariance matrices are subject to estimation error due to
limited s 1zes, we repeated the above analyses with each matrix now replaced with an estimate

of it. For denoted M yigina) or R (denoted Rrigina)) matrix used in the previous analysis, we

A
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estimated a covariance matrix from 100 independent samples from the multivariate normal
distribution of the original matrix. The estimates of M and R (denoted M, and R,,s) were then
compared wsing H@hle et al.’s and our methods, respectively. Additionally, these analyses were
performed aci@ss.a range of similarity between M and R. For each pair of Moyigina and Roiginal, We
obtained a R matrices and compared M with each of the new R matrices. The new R
matrices- were obtained as Ry, = WRoriginal + (1-W)Mriginal, Where w is the weight of Royigina and a series

of w equals 0,0.1,0.2, ...,0.9, and 1 was considered.

Finglly, to§gubject the matrices to realistic levels of error arising from the stochasticity of
evolution m imprecise estimation, we simulated multivariate trait evolution along the
phylogenemDrosophilid species used by Houle et al. and treated the M matrix estimated from
the fly win t oule and Fierst 2013), Myr, as Moigina in the simulation because it is presumably
similar to tm in terms of the structure. In each simulation, the matrix describing trait evolution
(Ry,) was olotai 0om M igina1 and an independent matrix denoted Rorigina using the preceding
formula. : inat Was generated in the same way as the random M and R matrices used in the
previous smpt that its diagonal elements were sampled from a gamma distribution with the
shape paramo.OS, such that the skewness of the distribution of the diagonal elements of R, is

similar to that ed from the empirically estimated R matrix of the fly wing traits (Houle, et al.

2017). ts were obtained when we used £ = 0.025 or 0.1. The evolution followed a
multivariate jan motion model. In particular, the multivariate phenotype at each node of the
phylog obtained by X = X, + [AX, where X, is the phenotype at the node immediately

ancestral to the focal node, / is the length of the branch connecting the two nodes, and AX is a vector
sampled frgm the corresponding multivariate normal distribution of R,. For each combination of w
and k, we h 50 simulations, each with an independently simulated Royiinal as well as the

correspond @ After each simulation, we respectively used Houle ef al.’s method and the new

method to cO c estimates of M and R, M s and Ryps. Mops Was estimated from 150 independent
vectors ta he distribution of Myg; the sample size was set to be 150 because the empirical M
matrix ing traits was estimated from 150 sublines (Houle and Fierst 2013). R,s was

estimateHVOIVGd phenotypes using the ratematrix function of the geiger package in R
(Revell, et‘mPennell, et al. 2014), which estimates evolutionary covariances using an

independe t approach (Felsenstein 1985) and fits the observations to a Brownian motion

model.

This article is protected by copyright. All rights reserved.

5



A neutral model with pleiotropy to explain the evolution of fly wing morphologies

Below we describe a neutral model with mutational pleiotropy that can almost perfectly

explain nary patterns of fly wing morphologies. In our model, the focal wing traits are
neutral, bug @ ns affecting the focal traits also influence other (unconsidered) traits that are
subject to s giselection (Turelli 1985; McGuigan, et al. 2011). Consequently, these pleiotropic

mutatioffs HFEPHFEEd because of their effects on the non-focal traits; the higher the pleiotropy of a
mutation (i mber of non-focal traits affected by the mutation), the higher the chance that it
will be purms and Phillips 2006; McGuigan, et al. 2014). Importantly, the extent to which a

focal trait i d by the mutations’ pleiotropic effects on non-focal traits can be correlated with its

mutational m

Beﬁanalyses of focal traits are conducted on the orthogonal traits, the following

description of focalftraits refer to focal orthogonal traits unless otherwise noted. In our model, the

number (7) of non-focal traits that are genetically correlated with a focal trait is a function of the

mutationalgariance of the focal trait (V,,) described by

A+ Blogqo Vy. [1]

When V), <10 ,nissetto 0. We model # as a logarithmic rather than linear function of Vj; to

slow the of V, on n as V), increases.

number (m) of non-focal traits affected by a mutation that impacts the focal trait
is a binomial random variable under the assumption that the mutation affects the non-focal traits
independex!z. The expected value of m, E (m), is equal to );/-, P;, where P; is the probability that
the mutation affects the ith non-focal trait. A larger E (m) means that an average mutation is more
pleiotropic arameter B determines the scaling relationship between M and R variances. When

B> 0, M variafice has a positive effect on n, £(m), and the pleiotropic effect of mutations on non-focal

traits. By Sntrast, when B < 0, these effects become negative.

-

Simulation 03 eviiltion of neutral traits with mutational pleiotropy

To illustzage that the model described above is capable of producing evolutionary patterns

similar @ glof fly wing traits, we conducted a new set of simulations of trait evolution where
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mutational pleiotropy depends on M variance as described in the above section. Parameters were
chosen such that the scaling of R variance with M variance resembles that observed from the fly wing

traits unde*he ne, matrix comparison method. While the parameters used in the simulation
presented arggspecific, we note that they are not unique in yielding results resembling patterns of fly
wing evolse the orthogonal traits were derived from the original fly wing traits by
extractir& the axes with the largest mutational variances, mutant phenotypes are generally

concentratg along these axes and effects of mutations are expected to be largely following them.

Although it 1§ an approximation to assume that mutations strictly follow these axes, this
approxima@s separate simulations of the evolution of different focal traits, which

substantial%ﬂes the simulation that is meant to illustrate our model.

Mutational input i

Foﬂfocal trait, mutations affecting the trait were generated per unit of time by

simulation.

which is a micv)r a given focal trait. The effect of a mutation on the focal trait followed a

ber of mutations followed a Poisson distribution with the mean equal to 1,

normal distg ith a mean of 0 and a standard deviation of . Thus, mutational variance of the

focal traa isgdefined as phenotypic variance introduced by new mutations per unit time, is

unclear whether the observed variation in Vj; across traits is contributed by the
variation in mutation rate, effect size, or a combination of the two, we considered two extreme cases,

denoted mm model 2, respectively, in which one of 4;; and ¢ varies across focal traits while

the other is . We sampled V), of focal traits from a gamma distribution with the scale
parameter nd shape parameter k = 0.5, because such a skewed distribution is similar to
those obse utational variances of fly wing traits (Houle and Fierst 2013) and yeast cell
morpho i o, et al. 2017). In particular, when fitting the positive eigenvalues of the M
matrix t istribution, we found the estimated shape parameters for the two datasets to be
0.41 and 0. ctively. When A, varies across focal traits (model 1), o was set at 0.01 and A, of
each focal traji obtained as Ay, = I(17—1‘24; when o varies across focal traits (model 2), A, was set at
500 and focal trait was \/%
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Before comparing mutational input and evolutionary divergence, we estimated V,, for each

focal trait from 150 independent samples taken from a normal distribution with the variance equal to

the corresglnding 'ue value.

Q.

PleiotroaicM mutations

WL that a mutation affecting a focal trait had a probability of 0.5 to influence each
non-focal w\ it did have an effect, the effect followed a normal distribution with a mean of 0
and a stand ation of 0.01. To identify 4 and B values in Eq. [1] that make our model

predictionsf€s actual observations, we first looked for a value of # that can yield the

S

evolutiona e®0° to 10 times the neutral expectation, because the ratio of the observed amount
of evolutio

3.81x10

y wing traits and that expected from the mutational input falls in the range from

U

x 107>, Because the probability that a mutation affects a non-focal trait is 0.5 in

our model, rtion of mutations that are not pleiotropic is 0.5". If all pleiotropic mutations are

N

unaccepta 05107 <n < —loggs 107°. Thatis, 13.9 <n < 19.9. Because there is a small

proportion opic mutations that are benign enough to be acceptable, n may need to be slightly

d

larger to p same rate of evolution. Hence, we decided that n should roughly range between

14 and dingly set A = 20. Because the observed scaling exponent between M variance

and R variance aller than 1 for the fly wing traits (see Results), B should be positive. We looked

forap would make 7 no less than 14 for the focal trait with the smallest M variance
(0.000401) in our simulation. Solving n = 20 + Blog;0.000401 > 14, we found B < 1.77. We
therefore s@ B at 1.7. For the focal trait with the greatest M variance (0.222), the maximum of # is
obtained aste*argest integer under 20 + 1.7 X log;, 0.222 = 18.89, which is 18, a number within

our simulations#vas arbitrarily chosen; having it been a different value, the values of 4 and B would

be differe:‘

-

the desired e note that the probability that a mutation affects a non-focal trait, which is 0.5 in

Fitness function selection
The fitn f a mutant depends on its phenotype and is assumed to be a function of its
phenot idean distance (D) from the optimal phenotype. D is computed from values of the
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non-focal traits and equals /Z?ﬂ diz, where d; is the distance between the value of the ith non-focal

trait and thi optirni value of this trait. We also considered scenarios where the focal trait is under

selection ra strictly neutral, in which case D is equal to \/ colf2 + 3™, d;%, where dy is the
distance b enotypic value of the focal trait and the optimum and c is a coefficient

decidin@hEFHPOrtance of the focal trait, relative to that of a non-focal trait, to fitness. We examined

three value iour simulations, 10, 10, and 102, We considered a Gaussian fitness function in

2
which mutgnt fitnegs /= exp (— D?) The selection coefficient is s = fL — 1, where f, is the ancestral

fitness (i.e., fitngss of the mean phenotype of the population). The fixation probability of a mutation
is given b L x;I()SquS)s ) (Kimura 1962). At the end of each time unit, the phenotypic effect of a
mutation isﬂnto the population mean with a probability of 2N, F (when 2N ,F > 1, it is treated

as 1).

Phenotypic ce and phylogenetic signal

For €acli®fait with given V,,; and n, we independently simulated its phenotypic evolution 50
a

times, ng from the phenotypic optimum. Each simulation lasted for # = 1,000 units of time,
after which nce among the 50 replicates (R variance) was calculated at each time unit.
Pearso coefficient between time and R variance at the time was calculated to represent

the phylogenetic signal. We note that the length of the simulation (#) has a negligible effect on the
simulation MCause the focal trait is neutral (or nearly so) and the R variance increases with

time at a co te, as indicated by the high phylogenetic signal observed.

RESULTs

Houle ewod of matrix comparison is biased

To investigate the scaling relationship between mutational variance and evolutionary

divergence amongghe fly wing morphological traits under investigation, Houle ef a/. compared the

ces that represent the mutational inputs (M) and evolutionary divergences (R) of

various trait set of orthogonal directions in the phenotypic space. For this purpose, Houle ef

This article is protected by copyright. All rights reserved.

9



al. used an eigenvector matrix K of the mean of M and R to determine the orthogonal directions,
which could create a bias towards directions shared by M and R and inflate the correlation between
logo(M vamiance) @hd log;o(R variance). In theory, this potential bias can be avoided if K is derived
solely from M that the set of orthogonal directions are mutationally independent. We refer to

this modifi€d d as the new method.

B} o "N the potential bias of Houle et al.’s method, we first used Houle et al.’s method as
well as the od to analyze M and R matrices that were completely independently generated.
We analyzg@100uch pairs, obtaining distributions of the linear regression slope and Pearson’s
correlationwnt between log;o(R variance) and log;o(M variance). Both the slope (Fig. 1a) and
the correlatj icient (Fig. 1b) tend to be positive when we used Houle ef al.’s method (mean
slope = 0.8 3.76 X 107191 two-sided t-test, degree of freedom df = 99; mean correlation
coefficient = 0.84G P = 2.72 X 10778, two-sided t-test, df = 99), although the matrices being
compared 3

correlation nt (Fig. 1b) when we used the new method are centered around 0, as expected
, P = 0.25, two-sided t-test, df = 99; mean correlation coefficient = 0.059,

endent from each other. By contrast, distributions of the slope (Fig. 1a) and

(mean slop,

P =0.12, t-test, df = 99).

Because'the observed M and R matrices are subject to estimation error, we also repeated the

above a with such errors introduced. In particular, we drew samples from each M (or R)
matrix usedd revious analyses, denoted Myiginal (O Roriginar), t0 obtain its estimate, denoted Moy,
(or Reps als and Methods). We estimated, using both matrix comparison methods, the

regression slope and the correlation coefficient between log;o(M,s variance) and log;o(Ro,s Variance)

across a wih of similarity between Myiginal and Ry, which is a weighted average of Mgina and
Roriginal. Thogsl®P@gestimated by the new method tends to be lower compared with that in the absence
of error in 0 be compared, especially when Myigina1 and R,, are similar (Fig. S1).

Neverthele ifference is rather small, suggesting that the new method is sufficiently robust to
error in ma;x estimation. By contrast, estimates of the slope and the correlation coefficient by Houle

et al.’s method aregpositive and almost invariable with respect to how similar Ry, is to Moyiginal (Fig.

S1), indicating that Houle ef al.’s method is not only biased but also uninformative.

In hen the true M is given, R is subject to variation due to the stochasticity of
evolution. T e that our finding holds for evolutionary data, we simulated phenotypic evolution
along t logenetic tree used by Houle et al., with the M matrix estimated from the fly wing
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data (Houle and Fierst 2013), My, treated as Moyigina. Trait evolution followed a multivariate
Brownian motion model described by the matrix R, which was obtained by taking weighted averages
of Myr andgan indgpendent matrix Roriginai (s€€ Materials and Methods). Results of this analysis are
generally simidaito those based on randomly generated matrices and no trees. In particular, when
M, and Rred using Houle et al.’s method, the linear regression slope of 1og;o(Robs
Variancca on log,o(M,,s variance) is close to 1 regardless of the similarity between My and R,, (Fig.

ogether, we conclude that comparing M and R variances along eigenvectors of an

average matrix of them is uninformative and sheds little light on the real scaling relationship between

Unequal ¢ ints on the fly wing traits

Usi e et al.’s method, we reproduced their result of a slope of nearly 1 in the linear

regression ogio(M variance) and log;o(R variance) for fly wing traits (Fig. 2a). But our
simulation that this estimation is unlikely to be reliable. Indeed, when the fly wing data are
reanalyzed @ new method, the slope reduced to 0.54, which is significantly smaller than 1 (¢ =

6.27,P = ~5, two-sided t-test, df = 16; Fig. 2b). Applying the new method also caused a

similar the slope of the linear regression between log;o(M variance) and log;((G variance)
(t=8.62,P = x 1077, two-sided t-test, df = 16; Fig. 2¢-d), where the G matrix represents
intrasp pic variations caused by additive genetic (co)variances (Mezey and Houle 2005).

The finding of a slope of approximately 0.5 for the linear regression between log;o(M variance) and
log;o(R Var;nce) or log;o(G variance) indicates that R or G variance does not scale linearly with M
variance. Rather, the positive impact of M variance on R or G variance gradually diminishes as M

variance ri

Int i , G and R matrices are indeed similar in the structure. When the G and R
variances afg compared along the eigenvectors of G, the regression slope between log;o(G variance)
and loglq *arian') is 0.95, which is not significantly different from 1 (= 0.72, P = 0.48, two-
sided t-test, df =15). This observation is consistent with the view that standing genetic variation has a

profound impact ol long-term evolution (Schluter 1996).

<
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A neutral model with mutational pleiotropy explains patterns of fly wing evolution

Our analysis shows that Houle ef al.’s third observation on fly wing evolution mentioned in
Introdchbe replaced with a sublinear relationship between the evolutionary rate of a trait
and its munce (i.e., the scaling exponent is below 1). Even with Houle ef al.’s third
observatio he nine existing models of phenotypic evolution previously considered by

these alfhorS™aresstill unable to reconcile the three observations, because none of the models

predicting agh ylogenetic signal as in the fly wing data allow a scaling exponent of about 0.5 that
is observedgft thcsg data (Table S1). Furthermore, the model proposed by Houle et al. that all wing
traits conce affected by pleiotropy to the same extent is empirically false in addition to being

theoretical sible.

S

Be ow that patterns of fly wing evolution are explainable by a neutral model with

mutational pleiotrgpy. In our model, the focal wing traits are effectively neutral, but mutations

U

affecting the focal traits also influence non-focal traits that are subject to stabilizing selection. In

addition, fagal traits with higher M variances are genetically correlated with more non-focal traits so

A

are impacted more by their mutational correlation to non-focal traits (see Materials and Methods).

Our modelfina ree predictions that are respectively consistent with the three patterns of fly wing

a

evolution. Firsti®focal trait is expected to evolve more slowly than predicted from the M variance,
becaus utations affecting the focal trait are selectively removed due to their deleterious

effects on co traits. Second, because the focal trait itself is effectively neutral, its divergence

Vi

is unbo ’ ing in a high phylogenetic signal. Finally, the positive correlation between M

variance and pleiotropy means that the fraction of mutations that are acceptable declines with M

]

variance, ¢ slope that is lower than 1 for the linear regression between log;o(M variance) and

log;o(R vari log;o(G variance).

Q

To e the above model predictions on long-term phenotypic evolution, we simulated

the evolutigit of the population mean values of 20 neutral, orthogonal, focal traits, each genetically

£

correlat of non-focal traits that are under stabilizing selection. Mutations were randomly

L

generat me and subject to drift and selection. The simulation lasted for 1000 time units

and was re times per trait to create 50 replicate lineages. For each trait, the phenotypic

U

variance a 50 lineages at each of the 1000 time units was used to represent the evolutionary
divergence ce) at that time, and its correlation with time is a measure of the phylogenetic

signal. lation results showed that, for most traits, the amount of phenotypic divergence is

A
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four to five orders of magnitude lower than predicted from the total mutational input (Fig. 3a, b). In
addition, almost all traits exhibited phylogenetic signals exceeding 0.9 (Fig. 3c, d). Finally, the slope
of the lineq reﬁre’on between log;o(M variance) and log;o(R variance) is significantly lower than 1
(t=18.49, P =ak3 x 10~7 when mutation rate is variable, two-sided t-test, df = 18; ¢ = 8.44,

P =1.13 @ en mutation effect size is variable, two-sided #-test, df = 18; Fig. 3a, b). These
results %osMhed those observed in fly wing evolution, quantitatively verifying the validity and

suitability @f our model. Similar patterns were observed when the focal traits are not strictly neutral

but are undeg,weak selection (Table S2), indicating that the observed patterns of fly wing evolution
d even if the wing traits are not strictly neutral but have not been outside the range

of effective neutzality in the last 40 million years.

DISCUSSION

u

In , we showed that the method used by Houle ef al. to compare matrices is biased,

N

resulting i eous conclusion of a linear relationship between mutational variance and

evolutiona nce among fly wing morphologies. We demonstrated by computer simulation

that a simp cation of their method yields virtually unbiased results under a wide range of

d

parame cluding those reflecting the fly wing data. Using the new method, we estimated

that the scalin nent between mutational variance and evolutionary divergence is significantly

smaller esting that the impact of the rate of mutational input on the rate of phenotypic
evolution is not constant but declines with the rate of mutational input. That is, compared with traits
with relatiy@gly low mutational inputs, those with relatively high mutational inputs do not evolve as
rapidly as h linearly from their mutational inputs. With these findings, patterns of fly wing

@tes’are differentially reduced because mutations affecting these traits are purged owing
to their difgeni p:eiotropic effects on other traits that are under stabilizing selection. When the

extent t

evolution 3

able by a model in which the wing traits are effectively neutral, but their

evolutiona

volution of a trait is constrained by pleiotropy increases with the mutational
variance , a scaling exponent between 0 and 1 will result. Mechanistically, such a
relationshime resulted from the positive correlation between the pleiotropic level of a

mutation a ct size on individual traits, a trend present among mouse skeletal characters and

yeast ce&gies (Wagner, et al. 2008; Wang, et al. 2010).
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Our model differs from the one proposed by Houle ef al. in several aspects. First, Houle et al.
did not specify whether the focal traits are neutral or not in their model, whereas they are effectively
neutral in %r moﬁ'. The neutrality appears to be key to the reconciliation between the observations
of a high phylegenetic signal and slow evolution relative to the mutational input. Second, in our
model, rnutropy arises from the non-focal traits genetically correlated with the focal trait
concerned, but Houle ef al. did not state whether their mutational pleiotropy arises from non-focal

traits alonef®r also other focal traits. Third, all focal traits are constrained to the same level by

mutational opy in Houle et al.’s model, which is a highly restrictive assumption that is not

supported | wing data. By contrast, in our model, the level of mutational pleiotropy (arising

from non-focal fraits) is allowed to vary among focal traits. For example, the present analysis of the
fly wing d@ts a positive relationship between the mutational variance of a focal trait and the

level of mi leiotropy that the trait is subject to. Finally, Houle et al.’s model remains a

verbal one, while W have provided quantitative formulation of our model (see Materials and

Methods).

Oum)nary simulation under the newly proposed model is able to recapitulate all major

patterns obthe evolution of the fly wing morphologies. Nevertheless, it is possible that the
11 LAC

fly data als other models. In particular, our results suggest the plausibility but do not prove

that the ts are neutral. Indeed, an expanded model in which the focal traits are effectively

neutral only range of phenotypic values can also explain fly wing evolution, provided that 40

million evolution under mutational pleiotropy has not reached the boundaries of this range

(Table S2). Regardless, our analysis suggests that fly wing evolution is explainable under the

existing thsretical framework of phenotypic evolution.

Thegd able data collected by Houle ef al. have allowed an unprecedented population

genetic ané acroevolution of morphologies. To the best of our knowledge, no other large
phenotypic imultaneously comprising M, G, and R from long-term evolution exist. Only when
many such\data become available may we test the general applicability of our model or its expanded

version in gxplainigg phenotypic evolution, and only then can one tell whether the current theoretical
Ef

framework fhenotypic evolution is generally correct.
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Figure legends

Figure 1. Comparison between Houle et al.’s method and our new method. (a) Frequency

distribut ars) of the linear regression slope between log;o(M variance) and log;o(R
variance) oule et al.’s method (y-axis) and our new method (x-axis), when M and R
matrices a tly generated. (b) Frequency distributions (grey bars) of the correlation
betweelﬂomiance) and logo(R variance) estimated by Houle et al.’s method (y-axis) and our

new metho, i§), when M and R matrices are independently generated. In both panels, each dot

represents @.\ncorrelated matrices compared.
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Figure 2. Linear regression between log;o(M variance) and log;o(R variance) or log;o(G variance)

along orthogonal directions for fly wing traits. (a-b) Linear regression between log;o(M variance) and

logio(R VarE' ncel ’imated using Houle et al.’s method (a) or the new method (b). (c-d) Linear
regression begwgen logo(M variance) and log;o(G variance) estimated using Houle ef al.’s method (¢)

or the new @ d). In each panel, » stands for Pearson’s correlation coefficient, and the shaded

region shows the 95% confidence interval of the regression. The number of orthogonal traits
H I

presented i!each panel is the same as in Houle et al. (2017).
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Figure 3. Patterns of phenotypic evolution observed from computer simulation of 20 neutral,

orthogo its with mutational pleiotropy, when the between-trait variation in M variance is

due to the M\in mutation rate (a, ¢) or effect size (b, d). (a-b) Linear regression between

logio(M va 0g1o(R variance) upon evolution of 1000 time units. Presented are M and R
varianc® peramentnit. The shaded region shows the 95% confidence interval of the regression. (c-
d) Distribu, e phylogenetic signals of the focal traits. The phylogenetic signal of a trait is
measured I@n’s correlation between the evolutionary time and R variance at the time for the

trait.
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