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ING Interneuron Network 

Gamma

Abstract

Recent experimental results have shown that the detection of cues in behavioral attention tasks 

relies on transient increases of acetylcholine (ACh) release in frontal cortex and cholinergically-

driven oscillatory activity in the gamma frequency band(Howe et al., 2017).The cue-induced 

gamma rhythmic activity requires stimulation of M1 muscarinic receptors.Usingbiophysical 

computational modeling, we show that a network of excitatory (E) and inhibitory (I) neurons, 

that initially displays asynchronous firing, can generate transient gamma oscillatory activity in 

response to simulated brief pulses of ACh.  ACh effects are simulated astransient modulation of 

the conductance of an M-type K+ current which is blocked by activation of muscarinic receptors 

and has significant effects on neuronal excitability. TheACh-induced effects on the M-current 

conductance, , change network dynamics to promote the emergence of network gamma ���
rhythmicity through a PING mechanism. Depending on connectivity strengths between and 

among E and I cells, gamma activity decays with the simulated transient modulation or is ���
sustained in the network after the transient has completely dissipated. We investigated the ���
sensitivity of the emergent gamma activity to synaptic strengths, external noise and simulated 

levels of  modulation. To address recent experimental findings that cholinergic signaling is ���
likely spatially focused and dynamic, we show that localized  modulation can induce ���
transient changes of cellular excitability in local subnetworks, subsequently causing population-

specific gamma oscillations. These results highlight dynamical mechanisms underlying 

localization of ACh-driven attentional responses and the emergence of dominance of ACh-driven 

cell populationswithin a network.   

Significance Statement

Neuromodulation of cortical regions by acetylcholine has traditionally been assumed to be 

temporally slow and spatially diffuse. Recent experiments, however, indicate that cholinergic 

signaling is fast and spatially localized in the context of attentional performance tasks. 

Additionally, cholinergic transients generated gamma frequency oscillations that contributed to 
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successful attentional performance. Using computational modeling, we show that transient 

cholinergic modulation of neural excitability induced the emergence of transient synchronous 

gamma activity from a background of asynchronous firing in excitatory-inhibitory neural 

networks.  Spatially localized simulated cholinergic modulation generated spatially localized 

gamma rhythms. Given the importance of gamma rhythms in cognitive processing, these results 

suggest that spatially localized, cholinergically-induced gamma may contribute to selectivity in 

the processing of competing external stimuli, as occurs in attentional tasks.

Introduction

Cholinergic neurons situated in the basal forebrain (BF) project to virtually all cortical layers and 

regions. In contrast to traditional descriptions of this projection system as “diffusely organized” 

and involved in the relatively slow regulation of cortical activity states, contemporary evidence 

indicates the presence of BF subpopulations of neurons with highly topographically organized 

afferent and efferent projections (Zaborszky et al., 2005; Zaborszky et al., 2015; Gielow & 

Zaborszky, 2017; Yuan et al., 2018) and, in cortex, of spatially and temporally discrete, fast, 

phasic or “transient” cholinergic signaling (Parikh et al., 2007). Because cortical cholinergic 

activity is necessary for attentional performance in rodents and humans (McGaughy et al., 1996; 

Kim et al., 2017), the role of cholinergic transients has been investigated specifically in the 

context of attentional performance. In rats performing a signal detection-based attention task, 

cholinergic transients were found to be evoked by cues that were successfully detected, but not 

by missed cues (Howe et al., 2013). Moreover, optogenetic suppression and generation of 

transients indicated that cholinergic transients are necessary and sufficient for the detection of 

cues in such contexts (Gritton et al., 2016). Transient cholinergic signaling has been proposed to 

account for a range of behavioral and cognitive functions which traditionally have been 

associated with more slowly (over minutes) changing extracellular ACh levels (Sarter  & Lustig, 

2019).

Consistent with the finding that cholinergic transients are necessary to force a relatively 

complex behavioral response, the determination of their postsynaptic impact indicated that these 

transients generate high-frequency oscillations in the gamma range in frontal cortex, and that 

gamma oscillations remain active through the cue-response period. Moreover, generation of 

gamma oscillations requires local, frontal stimulation of muscarinic M1 ACh receptors 
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(mAChRs). Blocking M1-mediated increases in gamma power was sufficient to reduce cue 

detection rates (Howe et al., 2017). The present study was guided by questions about the 

potential, neuronal network-based mechanisms which allow brief, phasic ACh release events to 

generate such impactful high-frequency oscillations. 

Using biophysical models of networks of excitatory and inhibitory neurons we show that 

simulated transient ACh modulation throughmAChRs can induce network gamma rhythmicity. 

As previously shown (Borgers et al., 2005);(Tiesinga et al., 2001), simulated mAChR effects on 

membrane potassium currents can promote tonic synchronous network oscillatory activity in the 

gamma band through a PING mechanism. While these previous results suggest that transient 

ACh modulation should be able to result in transient gamma band oscillatory activity, many 

questions remain regarding network and modulation conditions that support reliable generation 

and dissolution of transient gamma rhythmic activity. In this study, we particularly focus on the 

characteristics of transient ACh modulation and network properties that allow the transient 

emergence of gamma oscillations from background asynchronous, non-rhythmic activity. The 

role of acetylcholine in attentional modulation of neural network responses has been previously 

investigated in computational models of diverse brain networks (Hasselmo et al., 1992; Tiesinga 

et al., 2001; Borgers et al., 2005; Borgers & Kopell, 2008; Deco & Thiele, 2011) (see (Newman 

et al., 2012)and (Thiele & Bellgrove, 2018)for reviews). Here, we concentrate onACh-induced 

effects on neuronal excitability that generate transient gamma band rhythmicity that is associated 

with attentional performance. We show that spatially-localized transient ACh modulation can 

induce spatially-localized transient gamma oscillations which can act as a substrate for 

attentional selectivity in network processing of external stimuli. However, we also show, that the 

parametric region in which gamma oscillationsare readily generated due to ACh increase is 

bistable. This means that reduction of ACh tone alone may not lead to its abolition – noise or 

other desynchronizing agentsare needed for prompt gamma dissolution. 

Methods

Neuron model

All neurons in the network are modeled using a Hodgkin-Huxley-type model that includes a Na+ 

current, a delayed rectifier K+ current and a leak current. An additional M-type slow K+ current 

is added to simulate modulation by acetylcholine via mAChRs(McCormick & Prince, 1985; 
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Krnjevic, 2004; Stiefel et al., 2009). The maximum conductance  of the M-type K+ current is ���
the parameter that represents the amount of ACh modulation. In general,  is set between 0 ���
mS/cm2 and 1.5 mS/cm2 with low  corresponding to large concentration of ACh. The current ���
balance equation for each neuron is

��V

dt
= ― ����3∞ℎ(� ― ���) ― ����4(� ― ��) ― ����(� ― ��) ― ��(� ― ��) + ���� + ������― ����

where /cm2. V represents the membrane voltage in millivolts and t is time in milliseconds. � = 1��
, ,  and  are maximal conductances of the corresponding currents. In all the cells, ��� ��� ��� ��

 mS/cm2,  mS/cm2,  mS/cm2.   is varied as described below. To ��� = 24 ��� = 3 �� = 0.02 ���
show the influence of   on neuronal excitability, the neuronal input-frequency curve is plotted ���
for various values of  (Figure 1C). The ENa, EK, EL are the reversal potentials for sodium, ���
potassium and leak currents, where mV, mV, mV,respectively.  ��� = 55 �� = ―90 �� = ―60 ����
represents the externally applied current to both excitatory and inhibitory cells.  models the ����
synaptic input current that the cell receives from all other connected cells in the network (see 

below). represents external Poisson noise delivered to each cell (see below). The , h, n, z ������ �∞
are unitless gating variables of the corresponding current activation, with their evolution given 

by general equation:

���� =
�∞(�) ― ���(�) for� = ℎ,�,�

where �∞(�) =
1

1 + �( ― � ― 30)/9.5

ℎ∞(�) =
1

1 + �(V + 53)/7.0

�∞(�) =
1

1 + �( ― � ― 30)/10

�∞(�) =
1

1 + �( ― � ― 39)/5

�ℎ(�) = 0.37 +
2.78

1 + �(� + 40.5)/6
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��(�) = 0.37 +
1.85

1 + �(� + 27)/15��(�) = 75

Heterogeneity in cell dynamics is introduced by varying the external driving current ����
to every excitatory cell (  is different for every cell but kept constant throughout the ����
simulation). The amplitude of this external current is chosen to make the intrinsic firing rates of 

excitatory cells for baseline  (0.6 mS/cm2) follow a normal distribution with mean frequency ���
of 50 Hz and standard deviation of 5 Hz. Thus, based on the neuronal input-frequency curve 

(Figure 1C),  values were chosen between 2.814 A/cm2 and 3.427 A/cm2. For every ���� μ μ
inhibitory cell, the baseline current is chosen from a uniform distribution, with meannear current 

threshold (-0.2 A/cm2) and standard deviation 0.02 A/cm2. μ  μ
Network structure

The E-I network consists of 1000 neurons, among which 800 neurons are excitatory and 200 

neurons are inhibitory. The connectivity between every pair of neurons is randomly assigned. 

Each E cell receives pre-synaptic input from other E cells with probability of 5% (unless 

otherwise specified) and from inhibitory cells with probability of 30%. Each I cell receives pre-

synaptic input from all other cells (both excitatory and inhibitory cells) with probability 30%. 

This connectivity is based grossly on that experimentally reported (Ascoli & Atkeson, 2005; 

Viriyopase et al., 2016).

In the simulations shown in Figure 7, the excitatory cells are divided randomly into two 

groups with 400 neurons in each group. Other connectivity probabilities are kept the same except 

that the probability that two excitatory cells from different groups are connected is reduced to 

0.5%.

The synaptic current is modeled with a double-exponential profile:����(�) = ����(� ― ����)(∑�� �―(� ― ��)/�� ― �―(� ― ��)/��)
In the equation,  is the decay time constant and  is the rise time constant. In the simulations, �� ��

 ms for excitatory synapses,  ms for inhibitory synapses,  ms for all the �� = 3 �� = 5.5 �� = 0.2

synapses. The  are the firing times of the spikes of presynaptic neurons. V is the membrane ��
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voltage of post-synaptic neuron and  is the reversal potential of the synaptic current, which is ����
set to be 0 mV for excitatory synapses and -75 mV for inhibitory synapses;  is the maximal ����
conductance of the synaptic current or synaptic strength. The default values are =0.004 ���
mS/cm2, =0.016 mS/cm2, =0.002 mS/cm2, =0.003 mS/cm2. In Figure 3 and Figure 6, ��� ��� ���
synaptic conductances were varied as indicated.

Transient ACh pulse

ACh modulation was modeled as a brief reduction in the maximal conductance of the M-current, 

, simulating the post-synaptic effect of AChmediated by mAChRs. The baseline  value, ��� ���
, in the excitatory cells and inhibitory cells was set to be 0.6 mS/cm2 and 0 mS/cm2, gKs

respectively (except for simulations in Figure 4 and Figure 6 c, d, e, f). The  transient was ���
modeled by , where  is a piecewise function with an initial linear decrease gKs ―∆gKs(�) ―∆gKs(�)
and an exponential recovery (see Figure 2a):

∆���(�) = {
0                            �� t ≤ ��∆��� ∙ � ― ����        �� �� < t ≤ �� + ��

∆��� ∙ �― � ― ��― ����            �� t > �� + ��
where  is the time that the transient starts and was set to 2000 ms in all simulations. The decay ��
time  was set to 100 ms, so the maximum  reduction occurred at 2100 ms.  is the recovery �� ��� ��
constant which reflects the time of  recovery and was set to =3600 ms. With this value,  ��� �� ���
recovers to very close to after approximately 1500 ms.  represents the amplitude of the gKs ∆���

 transient and its default setting is 0.6 mS/cm2 (except in Figure 4). In Figures 2-5 and 7, the ���
 transient is applied only to excitatory cells. In Figure 4,  and  are varied to study ��� gKs ∆���

their influence on emergent gamma oscillations. In Figure 6 c,d, the default  transient is ���
applied to only inhibitory cells, and in Figure 6 e,f, it is applied to all cells.

Poisson Noise

In Figures 2, 5 and 7, in addition to heterogeneity introduced by different external driving current 

, random external noisy input in the form of Poisson distributed, brief, depolarizing ‘kick’ ����
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stimuli were applied to both the excitatory cells and inhibitory cells to simulate background noise 

outside the network from other parts of the brain. In each simulation, the amplitude and Poisson 

rate of kicks to all cells are fixed at same values. Each kick was a square applied current pulse of 

duration 1 ms.

Simulation

The codes implementing the simulations were written in Matlab.  All simulations were run for 

4000 ms. Initial conditions for membrane voltages and gating variables were set randomly. 

Initial conditions for V ranged between -62 mV to -22 mV; initial conditions for n, h, and z 

ranged between 0.2 and 0.8, 0.2 and 0.8, and 0.15 and 0.25, respectively. The ordinary 

differential equation system is solved by fourth order Runge-Kutta method. Results shown in 

Figures 3-6 were averaged over 5 simulations.

In sample raster plots in Figures 2, 3 and 7, red represents excitatory cells with indices from 1 to 

800 (red and green in Figure 7) and blue represents inhibitory cells with indices from 801 to 

1000. The excitatory cells are sorted so that the cells with the highest driving current are ����
assigned the lowest index, while the cells with lowest driving current are assigned the highest 

index. The two groups of excitatory cells are sorted separately in Figure 7.

Measures

Synchrony measure is used to quantify how well the cells are synchronized in the network by 

measuring the degree of spike coincidence (Golomb & Rinzel, 1993; 1994). Spike trains for each 

cell are first convolved with a Gaussian function to form a simulated spike trace, . The ��(�)
Gaussian is in the form  where  is the spike time. The averaged spike trace over g(t) = �― (� ― �0)

2

1.6 �0

all cells  is defined as where N is number of the cells. The variance of V(t) V(t) =
1�∑�� = 1

��(�)
individual spike traces  and the variance of the average spike trace  are defined as�� σσ� =  < V�(t)2 > ― < ��(�) > 2σ =  < V(t)2 > ― < �(�) > 2

where <> is the time average over the interval during which synchrony is measured. The 

synchrony measure is defined as
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S =
�

1�∑�� = 1
��(�)

Therefore, S=0 indicates complete asynchrony and S=1 indicates complete synchrony.

In the figures, synchrony measures are calculated in different intervals relative to the simulated 

ACh pulse. As the major part of the pulse is contained in the time interval from 2050 ms to 2550 

ms, synchrony measure is calculated over this interval to describe network activity during the 

pulse. Spikes from 1500 ms to 2000 ms and spikes from 3500 ms to 4000 ms are used to 

calculate the synchrony measure before the pulse and after the pulse, respectively. 

To determine duration of synchrony in Figure 5, the synchrony measure of inhibitory 

cells from 2000 ms to 4000 ms was calculated in 20 time windows of length 100 ms. Time 

windows with synchrony measure greater than 0.7 were considered synchronized. The threshold 

of S = 0.7 for inhibitory cells was chosen from observations of raster plots.

The Fourier transform was used to compute the change of power in each frequency band over 

time. To compute the power spectrogram, simulated spike traces, obtained by convolving spike 

trains of each cell with the Gaussian function above, were summed across all excitatory cells to 

simulate a local field potential (LFP). The Fourier transform was applied to the simulated LFP in 

sliding time windows to obtain the power spectrum over time. The window width was 500 ms 

with a sliding step size of 10 ms.

In Figure 7, average firing frequency is calculated in a sliding time window to show frequency 

changes over time. To compute, we define  as the number of times that cell fires in a time �� � 

window of length T = 500 ms and then compute the average firing frequency in the time window 

as 

f =

∑�� = 1
����

The summation is over the groups of ACh modulated and non-ACh modulated excitatory cells 

and inhibitory cells separately where   is the number of cells in each group. Average firing �
frequency in computed in each 500 ms time window with a 10 ms sliding step size. 
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Results

ACh modulation ofneural response properties

Acetylcholine (ACh) modulatesintrinsicmembrane excitabilityof a neuron through muscarinic 

and nicotinic receptors (m/nAChRs). Guided by neurophysiological evidence, here we 

concentrated on the effects of ACh modulation through mAChRs and theiraction on the slow, 

hyperpolarizing voltage-gatedK+M-current. We modeledneuronal dynamics using a biophysical 

cell model based on the Hodgkin-Huxley formalism that incorporates the M-current in addition 

to spike-generating Na+ and K+ ionic currents. The model,originally developed by Stiefel et 

al.(Stiefel et al., 2009),is based on experimental recordingsof ACh modulation ofvisual cortex 

principal cells(Stiefel et al., 2008)(see Methods for details). We varied the maximal conductance 

( ) of the M-current in excitatory cells as a proxy for the local ACh level, with =0 ��� ���
mS/cm2corresponding to high ACh level (down-regulation of the M-current) and =1.5 ���
mS/cm2 corresponding to lowest AChlevel (up-regulation of the M-current).  Here, we 

specifically investigated the emergence of transient gamma band rhythmic network activity due 

to transient increase of ACh level, simulated by transient decrease in , mimicking phasic ACh ���
release measured during cued response attentional tasks (Howe et al., 2017).  

In this neural model, changes in conductance valuesresult in changes to the neuronal ���
input-frequency (I-f) dependence. Namely, with decreasing , the neuronal input-frequency (I-���
f) curve changes froma discontinuous profile (Type II) to a continuous profile (Type I) (Figure 

1c) and, at the same time, the neural membrane becomes significantly more excitable, with lower 

 significantly elevating the frequency response of the cell to the same level of input. ���
Additionally, decreasing  induces a simultaneous change in the neuronal phase response ���
curve (PRC) (Figure 1d) (Stiefel et al., 2008). The PRC profile changes from Type II for which 

either delays or advances in spike timing can be induced by a brief excitatory stimulus depending 

on its timing, to Type I for which spike timing is only advanced by the stimulus. Previous 

analytical and numerical work has shown that neurons with Type II PRCs are more prone to 

synchronize compared to cells with Type I PRCs (Ermentrout, 1996; Bogaard et al., 2009; Fink 

et al., 2011).We initially focused on  modulation of excitatory cell responses( set to 0 ��� ���
mS/cm2 in inhibitory cells), but also considered  modulation of both cell types.���A
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Model networkswere composed of 800 excitatory (E) and 200 inhibitory (I) neurons with 

random connectivityamong and between each cell type(Figure 1a, see Methods for details).Cells 

additionally received noisy external synaptic input. First, we investigatedeffects of global 

transient  modulation on the generation of transient gamma rhythmic synchronous dynamics ���
in the network, then we consideredspatially localized, transient  modulation in a network ���
consisting of two subpopulations of E cellswhere only onewas modulated(Figure 1b), and 

investigatedspatially localized generation of transient gamma oscillatory dynamics. 

Phasic ACh release promotes emergent gamma oscillations 

In our E-I network model,transient decrease of changedthe network dynamical regime from ���
asynchronous activity to gamma band oscillations. Interestingly, the emergent gamma could be 

maintained as a stable state in the network after the phasic  hadrecovered, or could be ���
destabilized through external noise, causing the network to revert back to the asynchronous state 

when the  transient dissipated. Figure 2 depicts an example oftransient emergent gamma in ���
response to phasic  modulation. Here, the E cells wereassumed to contain muscarinic ���
receptors that induce a transient decrease in  (Figure 2a).���

To detect emergence of rhythmic network activity, we computed the Fourier transform of 

the simulated local field potential (LFP, see Methods)to show characteristics of network activity 

inthe frequency domain (Figure 2b). Initially, cells fired asynchronously with no rhythmic 

activity apparent across the network. Keeping all other network parameters the same, as  ���
decreased, firing rates of all the cells in the network rapidly increased due to changes in E cell 

intrinsic excitability (Figure 1c). During the  decrease, increased power at very low ���
frequencies was observed due to the sharp rise in overall network activity and the simulated 

LFP.The increased activity from excitatory cells led to the emergence of gamma frequency band 

synchrony through the so-called Pyramidal Interneuron Gamma (PING) process(Whittington et 

al., 2000; Borgers & Kopell, 2005)(Tiesinga & Sejnowski, 2009). In this process, the increased 

excitation from E cells leads to increased firing and synchronization of I cells. This, in turn, leads 

to silencing of the E cells, which when released from inhibition fire synchronously, subsequently 

driving another synchronous burst of inhibition. Here, gamma band synchrony emerged as I cell 

synchrony consolidated during the decrease in (Figure 2c) and gamma decayed as ��� ���

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved

recovered (Figure 2d). Below, we analyze the reliability of the emergence and maintenance of 

this gamma band synchrony as important properties are varied, such as synaptic strengths, the 

presence of external noise and the efficacy of simulated ACh on the M current. This analysis 

reveals that inducing gamma rhythms transiently from a background of asynchronous activity 

depends sensitively on network and modulation characteristics.

Sensitivity of emergent gamma to network connectivity

We next investigated to what extent emergence of ACh mediated gamma band oscillations 

depended on the properties of network connectivity. To isolate network connectivity effects,the 

external noisy inputto cells was not included. We varied the magnitude of the synaptic 

conductancesfrom I to E cells (I-E synapses, ,y-axis, Figure 3 a-c) and within the excitatory ���
(E-E connectivity, ) and inhibitory (I-I connectivity, ) subnetworks (x-axis, Figure 3 a-c) ��� ���
keeping E-I synaptic strength fixed(  fixed at 0.002 mS/cm2).The resultant network dynamics, ���
quantified by the synchrony measure (color in Figure 3 a-c, see Methods), within 

thisconnectivity parameter space could be divided roughly into three regimes(Figure 3d, e, f). 

With low I-E connectivity, the E-I networkdid notfully synchronize in response to the  ���
transient (Figure 3d, bottom region, <0.002 mS/cm2). Although excitability of the excitatory ���
cells rose during the  decrease and therefore inhibitory cells received more input from ���
excitatory cells and became more synchronized, the low I-E synaptic conductance, however, 

stopped the inhibitory cells from synchronizing the excitatory cells to form PING rhythmicity 

across the network. Thus, the excitatory cells fire asynchronouslybefore, during and after the ���
pulse.

For moderate values of I-E connectivity (  between 0.002 - 0.005 mS/cm2),the network ���
firedasynchronously before the  transient and synchronized to form gamma oscillations ���
during the transient (Figure 3e). Synaptic strength values for the results shown in Figure 2 are in 

this regime. Interestingly, for some synaptic strength values within this parameter range,gamma 

synchrony could be maintainedeven after the  transient ended (Figure 3e, right panel), ���
indicating that the network stably generatesboth asynchronous firing and gamma rhythmicity, 

and that the  pulse switches the network between these two regimes. Experimentally,ACh-���
induced gamma band synchrony has been observed only transiently, indicating lack of stability 
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of the synchronous gamma regime.We show below that maintained gamma synchrony after 

dissipation of the  transient can be easily destabilized byexternal noisy input to the network.���
Finally, for high I-E connectivity ( >0.005 mS/cm2), the network remains synchronized ���

before,during and after the  transient, with increased E cell excitability during the pulse ���
acting to increase the frequency of synchronous firing (Figure 3f).

We note that in the low  regime, the I cells were generally more synchronized than the ���
E cells. This I cell synchrony is similar to interneuron network gamma (ING) synchrony since it 

is generated by the recurrent synaptic coupling among the I cells (Whittington et al., 2000; 

Tiesinga & Sejnowski, 2009). In some definitions of ING, the I cells should be intrinsically 

spiking; here not all I cells spike without input, but the mean external driving current to I cells is 

close to their current firing threshold and excitation from the E cells promotes their firing. With 

this characterization of low  regime dynamics, the moderate  regime exhibits bistability ��� ���
between ING and PING dynamics where either state is observed, and the high  regime ���
displays only PING dynamics. In separate simulations, we explicitly tested bistability of ING 

and PING solutions in the moderate  regime and verified that either solution is maintained ���
depending on the initial conditions of the network state (results not shown).

These results show that inducing transient gamma rhythmicity requires network 

connectivity characteristics near the regime supporting both ING andPING synchrony. This may 

restrict properties of the asynchronous network states from which transient ACh can generate 

gamma oscillations.

Sensitivity of emergent gamma to simulated ACh level

We next investigated how the magnitude of simulated effects of ACh on the maximal 

conductance of the M-current, , affected the emergence of gamma rhythmicity (Figure 4). To ���
model the pulse, was set initially to a baseline value, , representing the absence or a low ��� ��� gKs

ACh level. During the pulse, was dropped to as the ACh transient reached its peak. ��� gKs ―∆gKs

Thus, we can relate to the peak magnitude of the post-synaptic effects of the ACh pulse. ∆gKs

Afterwards, recovered exponentially back to the baseline level, following the time course ���
depicted in Figure 2a. To measure the efficacy of the pulse to induce gamma, we measure ���
network synchrony before the pulse (when , Figure 4a), during the transient (Figure gKs =  gKs ���
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4b), and subsequently calculate the difference (Figure 4c) for E cells (Figure 4, top panels) and I 

cells (Figure 4, bottom panels) separately.

Results in the parameter space spanned by (y-axis) and (x-axis) could be divided gKs ∆gKs

into three regimes based on observed dynamics of the network (only values above the diagonal 

were considered to ensure that the lowest  value during the pulse,  , was not ��� gKs ―∆gKs

negative). In the lower left corner, baseline is low, and is small amplitude (due to the  gKs ∆gKs ���
range constraints). Here, even beforethe pulse was applied, the excitatory cells displayed high ���
excitability driving emergence ofPING synchrony.During the ACh pulse, the dynamics didn’t 

change significantly, resulting in a differencein synchrony near zero (Figure 4c).

In the intermediate baseline regime (for   between 0.4 and 0.8 mS/cm2), the network gKs

exhibited asynchronous dynamics before the pulse. The left hand side of this regime ���
corresponds to low magnitude of ACheffects (  small). Here, the increase of excitability of ∆gKs

the excitatory cells associated with the pulsewas not sufficient to drive PING synchrony, and ���
the network remained in an asynchronous firing regime during the  pulse. However, for larger ���

values (center right part of this regime), increased E cell excitability mediated the formation ∆gKs

of gamma synchrony during the  pulse (Figure 4b). This results in a significant increase in ���
synchrony difference (Figure 4c).  

In the third regime for highbaseline ( ), the network exhibited strong ��� gKs > 0.8

synchrony before the  pulse. This synchrony was, however, not solelymediated by the PING ���
mechanism, as the E cell excitability that drives PING was significantly decreased in this 

regime.Instead, synchrony was additionallysupported by changes in neuronal response properties 

obtained with high  values, specifically changes in the PRC. As shown in Figure 1d, for large ���
 values,the profile of the phase response curve changes from Type I to Type II facilitating ���

promotion of synchrony. Separate simulations of the network in this regime verify that when 

synaptic connections from the I cell to the E cells were blocked ( = 0mS/cm2) synchrony was ���
observed although the synchrony measure was higher with I to E synapses intact due to the PING 

mechanism (results not shown). Here, in this parameter regime, large decreasedM-current ∆gKs

conductance and subsequentlyshiftedthe PRC toward a Type I profile resulting in weakened 

synchrony. Hence, within this regime, the effect of the  pulse is essentially reversed with less ���
synchrony being observed during the pulse as compared to before its presentation.
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Thus, the emergence of transient gamma rhythmicity from a background of asynchronous 

activity requires sufficient magnitude of the mAChR mediated post-synaptic effects and tight 

control of those effects in the absence of ACh.

Effects of external noise on duration of emergent gamma

Next, we investigated how external noise affects stability of the emerging synchronous gamma 

oscillations during the  transient. This was particularly important as we observed that for ���
noiseless network simulations gamma oscillations could be maintained after the  transient ���
subsided. Such a stability in gamma band oscillations is not observed experimentally. Here, 

external noise was simulated by brief,depolarizing ‘kick’ stimuli arriving to E and Icells at 

random times, governed by a Poisson process (see Methods). We measured the duration of 

synchronous gamma oscillations after the onset of the  transient as a function of the ���
amplitude and average frequency of the kickstimuli (Figure 5).As expected, stronger and/ormore 

frequent kickstimuliled to shorter duration of synchronous gamma (Figure 5).When both the rate 

and amplitude of the noisy kickswere small (Figure 5; bottom left corner), synchronous gamma 

oscillations remained stable indefinitely after the  transient. On the other hand, when rate and ���
amplitude were both large (Figure 5; top right corner), the network didn’t achieve a synchronized 

state even at the minimum of the  pulse. In the intermediate regime, as the rate and amplitude ���
of kicks increased, the time duration of the synchronous state decreased; moreover, we found 

that, in this regime, the duration of gamma oscillationsrarely exceeded the duration of the  ���
pulse. In summary, excessive noisy conditions in the network inhibits the emergence of gamma 

rhythmicity and its duration.

Only AChmodulation of excitatory cells promotesstrong emergent gamma

In the simulations reported above,simulated ACheffects on the M-current occurred only in the E 

cells. However, it is known that there are inhibitory interneuron types that have muscarinic 

receptors(Disney & Aoki, 2008). Thus, we investigated whether incorporating ACh modulation 

of the M-current in I cells,instead of E cells, or in both E and Icellscould produce synchronous 

gamma oscillations(Figure 6).The figure displays thedifferences in network synchrony measured 

in the E cells (top panels) and in the I cells (bottom panels) between beforeand during the  ���
transient (left panels), and between before and after the  transient (right panels). As the ���
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network connectivity regimes where gamma synchrony can occur in these cases may vary, we 

considered the full ranges of network synaptic strengths where E cell  modulation had the ���
strongest effects (as in Figure 3; for example, Figure 6a displays the difference of Figure 3b and 

Figure 3a).  We observed that  modulationof the E cells had the most pronounced effects for ���
the transition to gamma band synchrony (Figure 6 a,b), whereas  modulation to only the I ���
cells (Figure 6 c,d) or to both E and I cells (Figure 6 e,f) induced only slight changes in network 

synchrony. 

When only I cellswere modulated (Figure 6 c, d), the  transient caused increases in ���
synchrony only for network connectivity parametersin the regime where E cells showed 

synchronous firing prior to the  transient (see Figure 3a). However, for high wii values (lower ���
right corner), synchrony of I cells dropped during the  pulse, due to increased excitability ���
leading to increased inhibition among them. With almost all connectivity parameters, network 

dynamics returned to their initial state after the  pulse even without the presence of external ���
noise.

When modulation was applied to bothE and Icellssimultaneously (Figure 6 e,f), we ���
observed increases in gamma bandsynchrony only with the combination of small I-E 

connectivity and relatively small intra-connectivity.But again networks returned to their initial 

state after the  transient.���
Hence, emergence of gamma rhythmicity depended strongly on mAChR-mediated effects 

primarily occurring in excitatory cells.Simulated ACh modulation of only the I cells resulted in 

increases in gamma synchrony in parameter regimes exhibiting synchrony before the 

modulation, similar to previously reported effects of attentional modulation of I cells (Buia& 

2006).

Spatially localized ACh modulation induces spatially localized gamma

Finally, since recent experimental results indicate that cholinergic signaling is spatially focused 

rather than broadly distributed across networks(Sarter & Lustig, 2019), we investigated effects of 

spatially localized modulation on generation of spatially localized gamma oscillations. Here, ���
E cells are divided into two groups (Figure 1b) – only the targeted group (red) received���
modulation;in the non-targeted group (green)  remainedat its baseline levelthroughout the ���
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simulation (Figure 7). As the transient was applied to the targeted excitatory group, its firing rate, 

as observed earlier, significantly increased (Figure 7a,d). This increased excitatory drive 

increasedI cell firing and eventually caused them to synchronize. All E cells, including the non-

targeted group, received inhibitory signaling. As a consequence, firing frequency in the non-

targeted group decreased (Figure 7a,d). As I cell synchrony consolidated, PING mediated 

gamma band oscillations emerged in both E cell groups (Figure7b,c,e), however power in the 

gamma frequency bandwas significantly stronger in the targeted group than in the non-targeted 

group.Gamma oscillations were weak in the non-targeted group due to theirlower excitability 

that caused longer recovery times from the synchronous inhibitory input. The increased 

excitability of the E cells in the targeted group allowed them to recover faster and generate 

another burst of excitation to drive the next inhibitory burst before the non-targeted E cells could 

fully recover. Hence, the targeted group displayed both significant enhancement of firing 

frequency and power of gamma band synchrony over the non-targeted group. This spatial 

localization of gamma band oscillationspossibly providesfor enhanced firing pattern readout 

from localized ensembles of cells within a network.

Discussion

Motivated by recent evidence for fast, phasic and spatially localized ACh signaling in cortical 

networks and its generation of transient gamma rhythmicity, we investigated its underlying 

neuronal network-based mechanisms using biophysical computational modeling of E-I networks. 

Post-synaptic ACheffects were simulated by the blockade of the muscarinic M-type 

K+conductance in excitatory cells based on experimental evidence showing the reliance on ���
muscarinic receptors for the generation of gamma rhythmicity(Howe et al., 2017). Our 

resultsshow that simulated ACh transients, causing increases in E cell excitability, induced 

gamma band rhythmic firing through a PING mechanism, as might be inferred from previous 

findings (Borgers et al., 2005)(Tiesinga et al., 2001; Buia & Tiesinga, 2006; Buia & Tiesinga, 

2008; Tiesinga & Buia, 2009). However, we show that the reliability of the generation of gamma 

rhythmicityfrom a background of asynchronous activity depends sensitively on important 

network and modulation characteristics. In particular, the emergence of gamma oscillations 

depended on synaptic connection strengths among E cells and among I cells, while connection 

strengths from I to E cells had a larger role in causing synchronous gamma oscillations in the 
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absence of simulated ACh. The presence of external noise in the network affected the generation 

and duration of gamma oscillations. Interestingly, for some network connectivity regimes in the 

absence of external noise, induced gamma oscillations were sustained even after the simulated 

ACh transient completely dissipated. This suggests that networks can support bistable states 

involving PING dynamics, and conversely, that external mechanisms might be needed to 

eliminate gamma oscillation after ACh diminishes. Including simulated ACh modulation of the I 

cells, in addition to or instead of the E cells, was not as effective in generating gamma 

oscillations, although it affected synchrony as previously shown (Buia & Tiesinga, 2006). Lastly, 

we showed that spatially localized simulated ACh modulation induced gamma oscillations in a 

subset of cells in a network without recruiting the entire network in the rhythmic activity, which 

may contribute to the selective processing of stimuli (see below).

In the behavioral cue detection experimental results, the observed ACh induced gamma 

band activity occurred over a range of frequencies (Howe et al., 2017). Specifically, in response 

to the cue, there was an initial burst of high-frequency gamma synchrony (75 - 90 Hz) followed 

by longer-lasting lower gamma frequency activity (47 – 57 Hz). Our simulation results show a 

similar variation of gamma frequency in response to the  pulse, namely frequencies decrease ���
over the range of approximately 90 to 50 Hz during the pulse (see Figure 2b). This frequency 

decrease follows the time course of the  transient, however the frequency values are ���
determined by the PING mechanism. While the experimentally observed high and low frequency 

gamma activity may be associated with different mechanisms (Howe et al., 2017), our results 

suggest that a variation in gamma frequency can be the result of variation in the efficacyof ACh 

modulation. 

In this study, we focused on the modulation of cortical circuitry mediated by muscarinic 

cholinergic receptors (mAChRs). In the motivating experimental study, Howe et al. (Howe et al., 

2017)concluded that activation of mAChRs was the basis for the long lasting gamma rhythms 

induced by cue-associated ACh transients. Cholinergic effects mediated by nicotinic receptors 

(nAChRs), on the other hand, modulated only initial transient gamma activity observed at cue 

onset. As additional justification, based on effects of nAChR activation in neocortical circuits 

(Colangelo et al., 2019), their effects may also act to contribute to generation of gamma 

oscillations by the mechanisms described here. Specifically, activation of nAChRs pre-

synaptically modulates cortical pyramidal cell synaptic transmission leading to increases in 
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glutamatergic synaptic signaling. Some studies report that inhibitory interneuronsare the post-

synaptic targets of the boosted signaling (Couey et al., 2007; Obermayer et al., 2018; Urban-

Ciecko et al., 2018). These effects align with the PING mechanism for gamma oscillations that 

relies on strong excitatory drive to inhibitory cells, and with previous modeling studies showing 

promotion of ING and PING synchrony with increased excitatory drive to inhibitory cells (Buia 

& Tiesinga, 2006). Activation of nAChRs has also been reported to increase excitability of 

neocortical pyramidal cells (Hedrick & Waters, 2015). While this excitability increase may be 

mediated by changes in intracellular Ca2+ activity, rather than by modulation of membrane K+ 

currents as occurs with mAChR activation, it would likewise promote gamma rhythmicity by a 

PING mechanism. 

A number of other computational modeling studies have investigated the role of ACh in 

attention and processing of sensory inputs (Hasselmo et al., 1992; Tiesinga et al., 2001; Borgers 

et al., 2005; Borgers & Kopell, 2008; Deco & Thiele, 2011; Kanamaru et al., 2013) (see 

(Newman et al., 2012) for review). In particular, these studies address how ACh modulates 

network dynamics to support selectivity in network responses to competing external stimuli, or 

winner-take-all dynamics, as would occur in selective attention tasks (Thiele & Bellgrove, 2018). 

The contribution of gamma oscillations in selective attention was included in (Borgers & Kopell, 

2005; Borgers & Kopell, 2008) where, in the presence of competing external excitatory stimuli, 

ACh modulation promoted increased gamma activity in the subset of cells receiving stronger 

stimuli. These studies consider diverse effects of ACh modulation on neuron and network 

properties including modulation of mAChR-mediated K+ currents (Borgers & Kopell, 2005)and 

additional K+ and Ca2+ currents (Tiesinga et al., 2001), increases in inhibitory synaptic activity 

(Borgers & Kopell, 2008), decreases in inhibitory synaptic activity (Kanamaru et al., 2013), or 

some combination of these effects (Hasselmo et al., 1992; Deco & Thiele, 2011).In related 

modeling studies of selective attention in visual cortical circuits, attention, simulated as changes 

in top-down or sensory-associated excitatory drive to E and/or I cells, facilitated selective 

responses and increased gamma band oscillations and synchrony (Buia & Tiesinga, 2008; 

Tiesinga & Buia, 2009).

Our results point to a slightly different mechanism for selectivity in processing of 

competing external stimuli. Namely, spatially localized ACh could bias the network response to 

be dominated by the activity of the affected excitatory neurons. Their interaction with local 
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inhibitory neuronscan induce spatially localized gamma which provides the network oscillatory 

dynamics necessary to promote cognitive processing of stimuli introduced in that local area of 

the network. Multiple lines of evidence support the contributions of gamma oscillations as 

important for cognition (Buzsaki & Wang, 2012; Cannon et al., 2014) and integration of sensory 

input(Singer & Gray, 1995). Thus, we hypothesize, that spatially localized ACh-induced gamma 

primes the network for successful cognitive processing of spatially coincident stimuli. This 

provides an additional mechanism or dynamical layer for priming an attentionally activated 

subnetwork toward integration of sensory information via gamma band oscillations and biasing 

the network response to be driven by that subpopulation.

Figure 1: Schematic diagram of network structure and effects of simulated acetylcholine (ACh) 

modulation on neuronal input-frequency (I-F) curveand phase response curve (PRC).
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(a) The network consisted of 800 excitatory cells and 200 inhibitory cells with random 

connectivity within and between groups. Excitatory cells received external noisy input. 

AChmodulation was simulated by brief down-regulation of the K+ M current conductance, ,  ���
applied only to excitatory cells (except in results in Figure 6).  (b) In a different network 

configuration for results in Figure 7, excitatory cells are divided into two groups, where only one 

group (targeted) receives  modulation.  (c) Current-frequency (I-F) curves for the Hodgkin-���
Huxley-type model neuron containing the K+ M current that is down-regulated by ACh. 

Different  values correspond to different ACh levels(see Methods). When  is low (high ��� ���
ACh), the neurons are more excitable with higher gain and a Type I profile of the I-F curve. 

Conversely when is high (low ACh), neuron excitability is lower and I-F curves have Type II ���
profiles.(d) Phase response curves (PRCs) for the model neuron at different  values. When ���

 is low, brief excitatory applied current pulses induce only advances in time of spike firing ���
(positive phase shifts) regardless of their timing (Type I PRC). At high  values, brief ���
excitatory stimuli result in either advances or delays (negative phase shifts) of spike firing 

depending on their timing (Type II PRC).
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Figure 2: Emergence of gamma oscillations mediated by a simulated AChtransient.

(a) Transient change in maximum conductance of K+ M current, , simulating AChtransient. ���
(b)Power spectrogram computed from simulated local field potential (see Methods). Starting at 

2000 ms, the transient led to increasing power in the gamma band. At around 3000 ms, the ���
gamma power dropped back to the default level with the recovery of . (c) Raster plot ���
showingthe time range at which the network began to change from asynchronousfiring to 

synchronousgamma oscillations with onset of transient (excitatory cells in red and inhibitory ���
cells in blue).(d)Raster plot showing the time range during the recovery of the  transient when ���
synchronousgamma oscillations gradually dissipated and the network returned to the 

asynchronized state.
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Figure 3: Sensitivity of emergent gamma to network connectivity strength between and among 

excitatory and inhibitory cells. 

(a-c) Synchrony measure (color, see Methods) of excitatory cells (top) and inhibitory cells 

(bottom) computed in 500 ms time intervals before (left panels), during (middle panels), and 

after (right panels) the simulated ACh transient, averaged over 5 simulations. Maximum 

conductances of synaptic currents among the inhibitory cells (I-I synapses, ) and among the ���
excitatory cells (E-E synapses, ) are varied on the x-axis and maximum ��� = 0.25���
conductances of synaptic currents from the inhibitory cells to the excitatory cells (I-E synapses, 

)  is varied on the y-axis (conductance of E-I synapses was fixed at 0.002 mS/cm2). (a) ��� ��� =  

Before the transient (1500-2000 ms), networks exhibited synchronous or asynchronous firing ���
depending on the connectivity strengths. (b) During the transient (2050-2550 ms), ���
synchronousgamma oscillations were exhibited by networks in a wider range of connectivity 

strengths.(c) After the  transientrecovered (3500-4000 ms), gamma oscillations were ���
maintained in networksin some synaptic strength parameter regimes (compare with (a)), or 

network activity returned to the pre-stimulus state. (d-f) Raster plots showing network firing for 

synaptic strength values indicated in (a-c) during time intervals before (left), during (middle) and 

after (right) the transient (excitatory cells in red, inhibitory cells in blue). The parameter ���
values used in (e) are the same as in Figure 2. External random noise was not included in these 

simulations.
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Figure 4: Sensitivity of emergent gamma on magnitude of simulated ACh effects. Magnitudes of 

the maximum conductance of the K+ M current before and after the simulated ACh transient, 

baseline (y-axes), andof the maximum change in during the ACh transient,  (x-axes), gKs ��� ∆gKs

were varied. Synchrony measures (color) for excitatory cells (top) and inhibitory cells (bottom) 

computed in 500 ms time intervals before the ACh transient (a) and during the ACh transient 

(b).(c) Differences in synchrony measures computed before and during the transient highlight 

parameter regimes in which gamma synchrony is most affected. Gamma synchrony was reliably 

induced for moderate values of both baseline and (from around 0.4 mS/cm2 to 0.8 gKs ∆gKs

mS/cm2).
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Figure 5: Duration of gamma synchrony in the presence of external random noise. External noise 

can drive the synchronized network back to asynchrony as the  transient recovers. Color ���
shows the average time duration (in ms) of gamma synchronyinduced by the transient for ���
different amplitudes(y-axis) and rates(x-axis) of brief, depolarizing kick stimuli delivered as 

arandom Poisson process to each neuron. When the amplitude and rate were small, synchronous 

gamma remained stable (duration >1500 ms) after the  transientrecovered. When the ���
amplitude and/or rate were large, the noise prohibited the network from displaying gamma 

synchrony even during the  pulse. Results are averaged over 5 simulation runs. Noise ���
parameters for simulations displayed in Figure 2 are indicated by ‘X’.
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Figure 6: Induction of gamma synchrony by simulated AChmodulation to only inhibitory cells or 

to both excitatory and inhibitory cells. Differences in synchrony measures (color) between before 

and during (a, c, e) the  transient, and between before and after (b, d, f) the transient for ��� ���
excitatory cells (top panels) and inhibitory cells (bottom panels) whenthe transient was applied to 

only excitatory cells (a, b), to only inhibitory cells (c, d), or to both excitatory and inhibitory 

cells (e, f). Panel (a) [(b)] is the difference between Figure 3 panels (b) and (a) [(c) and 

(a)].Simulated ACh modulation to only inhibitory cells or to both excitatory and inhibitory cells 

did not effectively induce gamma synchrony and network activity returned to its initial state after 

the  transient recovered. External random noise was not included in these simulations. ���
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Figure 7: Spatially localized simulated ACh modulation generates local gamma.

(a) Raster plot from the network structure illustrated in Figure 1b when the transient is only ���
applied to group 1 excitatory cells (red, index:1-400). During the transient, the activity of group 

2 excitatory cells (green, index: 410-800) is slightly inhibited, while the group 1 excitatory cells 

(red) and inhibitory cells (blue, index: 801-1000) show higher activity and synchronization. (b-c) 

Power spectrogram of the simulated local field potential of group 1 excitatory cellsand group 2 

excitatory cells, respectively. The power of gamma oscillation for group 1 cells is stronger than 

group 2 cells during the transient. Change of average firing frequency over time ((c), see ���
Methods) and change of synchrony measure over time ((d), see Methods) showed that the 

targeted excitatory cells (group 1, red) and inhibitory cells (blue) increased their firing and 

synchrony during  modulation while non-targeted excitatory cells (green) showed decreased ���
firing and only very weak synchrony during the  transient. ���
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